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Abstract. Modelling of the glucose metabolism for the purpose of improvieg th
diagnosis and therapy of diabetes mellitus has been the subjectasthefe
decades. Despite this effort, conventional models describing postpgindizde
profiles of healthy subjects fail to include the phenomendpigifasic glucose
responses. Continuous glucose monitoring data recorded from &itayhsub-
jects show that mono- and biphasic glucose responses from regular meals are
equally common. We therefore developed a suitable parametriel noagable

of producing mono- as well as biphasic meal responses. It is exprgdssshb
second order differential equation with a dual Gaussian input m&ddition-

ally, a simple method for classifying meal responses into mono- casippro-

files was developed. Model inversion was performed using a Bdlesian
method.R? values of model output compared to CGM data was 91.6 + 8.3 %,
indicating the models ability of accurately describing a wide rahgexed meal
glucose responses. Parameters were found to be associated withecistics

of individual meals. We suggest that the model could be usduldotively as-
sess postprandial hyperglycemia, one of the main measures for glyoerinial

Keywords: healthy subjects, input function, postprandial glucose dynamics,
system identification.

I ntroduction

Diabetes mellitus is one of the most common metabolic disorders and maniésts its
by a failure of the body to regulate the concentration of glucose lnidbd in a healthy
range. In this context, various diagnostic and therapeutic methods rehoatedge

of the underlying mechanisms of glucose regulation. For that reasoremadital
modelling of the glucose metabolism in the healthy as well as the diabetic state has
gained much attention in research over the past decades. Hereby, one of tloeusain
points has been the metabolism in a postprandial state, modelled with tlod t@lp
responding profiles glucose and other substances, e.g. insulin. Ehefleiomedical

detail incorporated into those models is thereby strongly dependent opéngresntal

data available for model identification [1].
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By analyzing postprandial glucose profiles from healthy subjecsucoing mixed
meals, i.e. meals containing carbohydrates as well as fat and protein,ufrernoe of
two distinct peaks rather than only one single peak in the prbofilebeen reported [2].

A similar effect has also been described with a pure glucose meal dudrej glucose
tolerance test (OGTT) [3At present day, the occurrence of biphasic glucose responses
has not been incorporated into models describing the postprandial glucose nratabolis
from mixed meals. Conventional models are only capable of produaingphasic
(single peak) responses, including the well-established and highlgntifili simula-

tion model byDalla-Man et al.[4]. In those models it is common to use various types
of input functions to model the impact of food on the glucose concentrdtiese
input functions can be an impulse (e.g. [5]), of trapezoidal/trianginape [6] or be
described by the general functional fofift) = t exp(—t) or f(t) = t exp(—t?) [7,

8].

In this paper we present a model capable of describing monophasic as well as bipha-
sic responses from mixed meals by introducing a type of inpatidum often used in
the modelling of hormone secretion patterns T9le model was designed to be identi-
fied using only data from continuous, subcutaneous glucoseariagi (CGM). We
demonstrate that the model possess enough flexibility to describe respogsessipf
varying shape from different meals and that parameters of the modeledeel to the
characteristics of the meal. Secondly we introduce a simple method for dteseiBal
responses as morr biphasic, based on similar process developed for sparsely sam-
pled glucose data during an OGTT.[3]

In doing so, we want to establish a method for objectively charactetl#ngost-
prandial glucose exposure under realistic conditions. Such a tool couedbéouim-
prove the assessment of the overall state of glycemic control in individfedtedfby
diabetes mellitus.

2 M ethods

2.1 DataCollection

CGM data was collected from five healthy male subjects (Age: 26-47, BMI:32622-
kg/m¥) undergoing inpatient monitoring at the Human Metabolism Research Ut at
University Hospitals Coventry and Warwickshire, UK. For that, the Freestyle Naviga
tor 2 CGM system (Abbot Diabetes Care Inc., 1360 South Loop Roaaed&aCA,
USA) providing a 10-min sampling period was utilizédter a sufficient sensor “warm
up” period, 18 hours of consecutive glucose data, collected between 09:06:66d
the following day was recorded. During this time, subjects conswartethl of four
meals and performed two 30 min periods of light stepping exercige3t 4nd 16:30.
The meals consisted of standard western menu items and were identicalfiojealiss
with only the amounts adapted to ensure an isocaloric diet. In detail, teeo§lcaio-
ries from carbohydrates and the overall share of the total daily calorie inta&ecent
for each meal were as follows: breakfast (52 / 25), lunch (44 / 34erdfa7 /26) and
snack (74 / 15).
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Prior to the study, appropriate ethical approval including the compliancetheith
Ethical Principles for Medical Research on Human Subjects set by Declaration of Hel-
sinki was granted (REC Reference: 13/WM/0327).

2.2 Model Formulation

The basis for the model formulation is formed by the fact that the metabofism
healthy person attempts to maintain glucose homeostasis, meaning thowarof
glucose to the blood from a meal and the subsequent rise in concentratipidlis
compensated by the endocrine system The model itself was adaptgdroous pub-
lications [10, 11] and consists of a linear second-order differesgiahtion with a
novel, nonlinear input function:

X() + 0,x(t) + 0,x(t) = f(¢,0) Q)

x(0) = x¢1 x(0) = xo2 (2
y@)=x({t)+e &~N(0,22) (3)

£1,6) = e (= T2) + e (- S @

The new external input functigf(t, 8) acts on the system describing the glucose con-
centrationx(t). In (3), the process of observing the CGM d4tg is described as hav-
ing a Gaussian distributed measurement ermith zero mean and standard deviation
2. In (1) the linear system behavior is governed by the evoluticempeter®; ando-

with the initial conditionsw; andxo, being described in (2).

The inputf(t, 8) is defined through the summation of two Gaussian distributions
and introduces additional evolution parametir® 0s. By adapting these parameters,
it is possible to induce both mono- and biphasic glucose responseth&anodel. It
was designed to represent the biphasic process of glucose absonmidinsticompo-
nent of (4) models an initial inflow of glucose from carbohydratdgereas the second
component describes mixed and delayed effects of carbohydrates, fat and ptotein in
food. The widths of the two components (corresponding to thdatdudleviation of a
Gaussian) were chosen to produce sharp or flat responses, associatedripoty-
drates or fat/protein, respectively [12]. This gives the model the abiljpyotduce a
wide variety of responses to different meals as can be seen in Fig. 1.

2.3 Parameter Estimation

Equations (1)-(4) specify a total of nine parameters that have to be estiroatdtie
CGM data only. The two initial conditions in expression (2) were fiketause the
dynamics of the model are mainly driven by the input function andftirerhave little
effect on the model output. This leawewotal of seven unknown parameters, i.e. the
evolution parameter to 6s and the measurement erioto be identified during model
inversion. For that, a variational Bayesian numerical method was emploigeal fully
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Bayesian method, allowing the identification of nonlinear models formulatécdow
dinary as well as stochastic differential equations.[BgJusing Bayesian approach, all
unknown parameters are characterized by probability distributions rathexéubwdil-
ues Furthermore, any existing information about the parameters can be inahaed
prior distributions. The particular inference method has been provenusehd and
robust by past research [10, 14]

Based on findings from a previous study [12] and the expgetiah schedule, the
sections of CGM data under meal influence were extracted for each & teed?ded
meals(see dashed vertical lines in Fig. 1). From that, the valug @fas set to the first
CGM value of the respective meal axgd to the difference of the second and first
measurement point. Additionally the offset of the CGM data wascied by subtract-
ing a basal glucose concentration value estimated as average between thelfistt and
measurement poimtf each meal. This is justified by the fact that baseline levels on the
timescale of one peak can be considered constant. After that, all severparades-
ters were estimated for each individual meal

All prior distributions utilized existing information to a varying exteftie prior
for the measurement errdwas set to in accordance with the experimentally derived
value of 0.9 £ 0.8 mmol/L for the used CGM device [15]. Therprior the normally
distributed evolution parameter&, to ds) were chosen to reflect physiologically sen-
sible ranges or based on previous findings with a similar model seJai.

All derivations were done in MATLAB 2015b (The MathWorks, IncAdple Hill
Drive, Natick MA, USA) An implementation of the inference method is published as
an open-source library of MATLAB functions [16].

24  Classfication of M eal Responses

The meal responses were classified according to the number of signiée&atvaithin

the response into the categori@sonophasic” for oneand “biphasic” for two peaks.
Based on the previously mentioned publicationTsshritter et al. [3], the following
criteria for detecting peaks were developed: a continuous rise in BG level bytat leas
0.5 mmol/L or duration of 30 min and a subsequent contindmysin BG level by at
least 0.5 mmol/L or duration of 30 min. An automated algorithm applyiese criteria

to the meal responses was implemented.

3 Results

The quality of the model fit was evaluated using the coefficient of determir{&fipn
The overall mean and standard deviationRbare91.6 and 8.3 %, respectively. An
example of model output is given in Fig.1. The classification of the mealnesp
yielded and exact 50 % spilt between monophasic and biphasic.

In order to increase the understanding in the inferred evolution parameteds,
they were transformed into the following, more meaningful quantities

Z_L Ar = 05— 05 (DF=Z_4-
6

_2\/9—2 (5)

T =

e[k
NG
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In (5),is the period of natural oscillation of the system in minuteg #meldamping
factor (dimensionlessyir describes the time difference between the two peaks of the
input function in minutes ande the ratio between the intensities associated with the
peaks (dimensionless).
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Fig. 1. Top: example of model outputs with uncertainty. Bottom: plots ofélpective input
functionsf (t, 8). The dashed vertical lines mark beginning and end of eveay period. Here
breakfast and dinner were classified as monophasic responsesas/hunch and the snack were
classified as biphasic.

Median values and interquartile ranges of all parameters grouped byareedls-
played in Table 1The mean and standard deviatiori ofver all responses are 0.32 and
0.04 mmol/L, respectively.

Table 1. Parameters grouped according to meals. Values are given as ni@&an [

Meal 7 [min] 4 At [min] DF A [mmol/L]

Breakfast 136 0.61 67.6 1.55 0.37
[116-146] [0.37-0.67] [62.4-81.2] [1.02-1.80] [0.30-0.39]

Lunch 193 1.09 94.2 2.11 0.29
[124-205] [0.81-1.93] [86.9-97.2] [1.44-2.36] [0.28-0.34]

Dinner 126 0.46 50 1.3 0.32
[94-135] [0.41-0.55] [39.7-2.9] [1.11-2.38] [0.32-0.33]

138 0.79 72.2 1.47 0.32

Snack

[121-179]  [0.36-1.15] [66.2-78.3] [1.33-1.56] [0.31-0.34]

4 Discussion

Our experiments confirm previous findings, regarding the biphasiocenaf mixed
meal glucose responses.[Zhe classification results show that biphasic responses are
as common as monophasic responses, justifying the premise of this wdhe areskd

to include this phenomenon in realistic models. Apart from that, the mairibetion

of this work is the addition ofrainput function to an otherwise established model,
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allowing the description of a wide range of mono- and biphasic glucose sespdine
functional form of two overlapping Gaussians is novel in the contedesidribing glu-
cose dynamics and enables a high degree of flexibility by allowimgdjustment of
the intensity and the timing of the peaks.

In Fig. 1 the capability of the model to accurately describe different degrées o
phasic and monophasic responses is exemplified. The results fromathsisanfR?
values confirm this impression and shthw model’s ability to fit the data well

Due to the small number of responses recorded per meal, the usstidaitéesting
in the analysis of parameters was intentionally forgone. Neverthéléspossible to
infer information about the explanatory power of the model upgreat®n of the pa-
rameters (Table 1). In comparison with other meals, the parametedr are in-
creased during lunch. This implies that the high overall calori{3# total daily
carbohydrate intake) and especially fat/protein content (56% of calories) coskl ca
prolonged hyperglycemia. The same argument can be made for thingaa@mmeter
¢, also being increased during lunch, compared to other nidedssuggests that these
parameters are related to the food characteristics. On the other hand, thefesults
rameterdr do not clearly support the physiological interpretation of the input function
asbeing related to the carbohydrate and fat/protein content of the food .nid esieni-
larities between ratios of macronutrients in the food @aevere found.

In terms of the measurement erigrthe inferred values (0.32 + 0.04 mmol/L) lie
well within the uncertainty limits reported in literature (0.9 + 0.8afi) [15]. Addi-
tionally, the small standard deviationois a sign of consistent model fitting.

In terms of experimental design, the time difference between ragai®ll as the
time difference between exercise and meal was short. This could hava lexdting
factor in the modelling process due to overlapping effects of meaisals and phys-
ical exertion. Additionally, the homogeneity and limited size of the spaghulation
hindered the explanatory power of results as well as the ability to relate thepaedel
rameters to physiological characteristics.

Based on previous findings in our group [10], this work lsartonsidered as a fur-
ther step towards our goal of improving the evaluation of glyceomtrol in people
affected by diabetes mellitus. In particular, the model could be used to objeasvel
sess postprandial hyperglycemia, one of the main measures fomglyaentrol [17]
Future experiments will focus on isolating the effects of differentromadrients and
include subjects with different stages of impaired glucose tolerandeMrglpe 2.
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