THE UNIVERSTIY OF WAR

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/108555

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Spike shape and synaptic-amplitude distribution interact to set the high-frequency firing-rate response of neuronal populations

Magnus J. E. Richardson*
Warwick Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom

(Dated: September 18, 2018)

Abstract

The dynamics of an ensemble of particles driven out of a potential well, with replacement, by the Poissonian arrival of amplitude-distributed shot noise is examined. A general formula for the high-frequency limit of the escape-rate susceptibility is derived. For certain choices of potential well and amplitude distribution the decay of the high-frequency susceptibility exhibits a non-universal exponent. This is a qualitatively different response to that predicted by the diffusion approximation. To provide an example the general framework is applied to a problem of current interest in the biophysics of neuronal voltage dynamics. It is shown that the firing-rate response of neurons to rapidly varying stimuli can be significantly enhanced depending on the ratio between the scale of excitatory post-synaptic potentials and the voltage range over which an action potential initiates. The result is robust to various choices of threshold definition and also to synaptic filtering at physiologically reasonable timescales.

To appear in Physical Review E (2018)

PACS numbers: 87.19.11, 87.19.lc, 87.19.1q, 87.85.dm

I. INTRODUCTION

The principal neurons of the neocortex generate spike trains that show considerable variability [1] so that, in the context of a recurrent network, neurons receive a highly fluctuating synaptic drive. The integration of the stochastic synaptic input and subsequent generation of variable spike trains has been studied intensively since the mid-1960s [2-4], initially for simplified models of neurons with a leakless or leaky, ohmic membrane response. A common theoretical approach is to model the fluctuating synaptic input as Gaussian white noise, which is applicable when the incoming drive has high rate, low amplitude and short temporal correlations. For a leaky integrate-and-fire neuron this results in an OrnseteinUhlenbeck process with a threshold-reset mechansism to which the Fokker-Planck formalism can be applied [4, 5]. At the single neuron or unconnected population level this allows for the calculation of the instantaneous firing rate, spike-train spectrum [6] and coefficient of variation [7]. For networks of neurons the description afforded by the Fokker-Planck framework allows for mean-field networks to be analysed and the phase-diagram of emergent states derived $[8,9]$.

Isolated synaptic potentials evoked between neocortical pyramidal neurons in quiescent tissue have a lognormal amplitude distribution [10] with mean values in the range of $1-2 \mathrm{mV}[11-13]$. These amplitudes represent a significant fraction of the potential difference between the rest and threshold. Moreover, because the neuronal voltage is typically just below threshold during network activity $[14-16]$ only a few additional inputs may be re-

[^0]quired to make the neuron spike. Positive correlations within the presynaptic population will increase the likelihood that inputs occur at similar times, increasing the effective size of the synaptic pulses [17-19]. Conversely, short-term synaptic depression [20,21] will act to reduce subsequent amplitudes in closely timed input on the same afferent fibres. Taken together these experimental results suggest that the synaptic-amplitude distribution in active networks will be a function of the network state and that the Gaussian (or diffusion-limit) approximation of small amplitudes will not be reliable under all circumstances.

Though the majority of studies of stochastic neuronal integration have used the small-amplitude, high-rate diffusion limit, the effect of finite amplitude-distributed drive has been included in models to examine the effect of finite-amplitde inputs on subthreshold voltage fluctuations [22-24], firing properties [25-30] with other population-based approaches extending the analysis to filtered [31] or non-Poissonian input [32, 33] for the leakyintegrate and fire model. Recently, there have also been a number of analytical advances: a solution for the steady-state and modulated rate of a leaky integrate-andfire neuron receiving exponentially distributed excitatory and inhibitory synaptic drive [34] was found; an intriguing connection of that result to the more general solution of a neuron driven by dichotomous noise [35] was demonstrated; and the effect of shot noise in inhibitory networks [36] was analysed with exact results for a variety of inibitory post-synaptic potential distributions [37].

As well as providing a biophysically more detailed description of synaptic drive than the diffusion approximation, there are significant differences in the response of neurons to finite-amplitude drive. Neurons driven by shot noise respond faster [27] and exhibit qualitatively different response to high-frequency modulations
[34]. This is particularly the case for the treatment of modulated inhibition [27, 34] because in the diffusion approximation inhibitory fluctuations contribute to the voltage variance which can bring a neuron across threshold, whereas in the shot-noise description it is only the excitatory component that can cause an action potential.

The second component of the forward modelling from synaptic-input statistics to neuronal firing patterns is the neuronal response itself. The majority of results for the stochastic integration of synaptic drive, both for Gaussian and shot-noise drive, have been derived with neurons for which the membrane response is linear and ohmic, specifically for the leaky integrate-and-fire (LIF) neuron model (see references [38] and [39] for a comprehensive early review). Near the threshold for spike initiation, however, the current-voltage relationship is non-linear due to the activation of the spike-generating sodium current [40]. A variety of non-linear generalisations of the LIF model have been proposed, with the quadratic IF [41] the most well-known of early models. Later, a principled reduction of a detailed, high-dimensional neuron model to a one-variable model suggested that the nonlinear current-voltage relationship should combine a linear term with an exponential non-linearity near the spikeinitiation threshold [42]. It was then shown experimentally that this exponential integrate-and-fire (EIF) model provides an accurate model of the integration properties of neocortical pyramidal cells in layers $2 / 3,4$ and 5 [43, 44] and fast-spiking interneurons [45]. Empirically, the voltage range around threshold over which the spike starts to activate is between $\delta_{\mathrm{T}}=0.5-1.5 \mathrm{mV}$. An interesting observation [46] is that the spike-onset sharpness δ_{T} plays a key role in setting the cross-over frequency above which populations of EIF neurons respond with decreasing amplitude to modulated Gaussian synaptic drive: the smaller δ_{T} the higher the cut-off frequency.

Synaptic amplitudes are typically of the order of 1 mV and the experimentally measured spike-onset sharpness has a similar range, so an obvious question is whether there is some interaction between these two extrinsic and intrinsic biophysical quantities that affects neuronal integration - this is the subject of this paper. First, in Section II, a general framework for analysing the high-frequency response of non-linear IF neurons driven by amplitudedistributed shot noise is developed. In Sections III and IV it is shown that for populations EIF neurons the ratio of mean synaptic amplitude and spike-onset sharpness has a qualitative effect on the high-frequency response. In Section V and VI the robustness of the results are examined against spike-threshold definition and synapticfiltering timescale, respectively. The paper closes with a Discussion followed by an Appendix containing technical details of the numerical approaches used. The Julia code [47] used to generate the first three figures is also provided in the Supplemental Material [48].

II. GENERAL RESULT

A population of neurons is considered, each with a state variable v and each receiving independent realisations of a Poissonian shot-noise process $s(t)$ of rate $R(t)$. The dynamics of one of the neurons obeys

$$
\begin{equation*}
\frac{d v}{d t}=f(v)+s(t) . \tag{1}
\end{equation*}
$$

The Poisson-distributed pulses arrive at times $\left\{t_{k}\right\}$ with each pulse having a positive amplitude a_{k} independently drawn from a distribution $A(a)$ so that

$$
\begin{equation*}
s(t)=\sum_{\left\{t_{k}\right\}} a_{k} \delta\left(t-t_{k}\right) \tag{2}
\end{equation*}
$$

Hence, on the arrival of a pulse at time t_{k} the voltage jumps by a_{k}. The continuity equation for a population of neurons with an explicit spike, such as for the quadratic or exponential integrate-and-fire model, takes the form

$$
\begin{equation*}
\frac{\partial P}{\partial t}+\frac{\partial J}{\partial v}=r \delta\left(v-v_{r e}\right) \tag{3}
\end{equation*}
$$

where $P(v, t)$ is the probability density, $J(v, t)$ is the flux and $r(t)$ is the time-dependent firing rate. The Diracdelta source term handles the voltage reset $v_{\text {re }}$ from the sink at threshold $v_{\text {th }}$. We first consder the limit $v_{\text {th }} \rightarrow \infty$ and will treat the case of a finite threshold in Section V. The flux can be resolved into two components: the first arising from the intrinsic voltage dynamics and the second from the synaptic shot-noise drive J_{s}

$$
\begin{equation*}
J=f P+J_{s} \tag{4}
\end{equation*}
$$

In the limit $v \rightarrow \infty$ the flux J tends to the ensemble escape rate $r(t)$ and hence

$$
\begin{equation*}
P(v, t) \rightarrow \frac{r(t)}{f(v)} \tag{5}
\end{equation*}
$$

for high voltages. The shot-noise flux includes jumps that bring the voltage past v from lower values u, so

$$
\begin{equation*}
J_{s}(v, t)=R_{s}(t) \int_{-\infty}^{v} \mathrm{~d} u P(u, t) T(v-u) \tag{6}
\end{equation*}
$$

where $T(v)=\int_{v}^{\infty} A(a) d a$ is the tail function of the shotnoise amplitude distribution. Note that the large- v behaviour of J_{s} depends on whether the product of the density $P \simeq r(t) / f(u)$ and tail function $T(v-u)$ decreases or grows with u in the integrand in equation (6). If the amplitudes are small, as assumed in the standard diffusion approximation, then only the density $P(u)$ near v contributes significantly to the integral; however, if the amplitudes are large then jumps from the entire probability density below v need be accounted for. The coupled integro-differential equations (3-6) fully specify the dynamics of the system for an arbitrary rate $R_{s}(t)$.

A. Steady-state distribution and rate

When the incoming rate is constant $R_{s}(t)=\bar{R}_{s}$, the distribution and flux take their steady-state values \bar{P}, \bar{J}_{s}. Integration of the continuity equation (3) gives a step function for the total flux \bar{J} which, on insertion into the flux equation (4), gives

$$
\begin{equation*}
\bar{r} \theta\left(v-v_{r e}\right)=f \bar{P}+\bar{J}_{s} \tag{7}
\end{equation*}
$$

with the shot-noise flux defined through its equation

$$
\begin{equation*}
\bar{J}_{s}=\bar{R}_{s} \int_{-\infty}^{v} \mathrm{~d} u \bar{P}(u, t) T(v-u) \tag{8}
\end{equation*}
$$

in steady-state form.

B. Limit of high-frequency susceptibility

A sinusoidal modulation of amplitude \hat{R}_{s} and of frequency $f=\omega / 2 \pi$ of the presynaptic rate around its steady-state value \bar{R}_{s} is now considered. In complex form this can be written

$$
\begin{equation*}
R_{s}(t)=\bar{R}_{s}+\hat{R}_{s} e^{i \omega t} \tag{9}
\end{equation*}
$$

For weak modulation, or for high-frequency modulation in which the response becomes weak, the density will be well approximated by $P(v, t) \simeq \bar{P}+\hat{P} e^{i \omega t}$ where $\bar{P}(v)$ is the steady-state density and $\hat{P}(v ; \omega)$ is proportional to \hat{R}_{s}. A similar approximation for the flux and firing rate, with analogous notation, can also be made.

The goal of this section is to calculate the highfrequency limit of the modulated firing rate $\hat{r}(\omega)$ - this quantity is a direct measure of the susceptibility of the neuronal population to modulated input. The first step is to substitute the modulated density from the flux equation (4) into the continuity equation (3) to give

$$
\begin{equation*}
\frac{f}{i \omega} \frac{d \hat{J}}{d v}+\hat{J}=\hat{J}_{s} \tag{10}
\end{equation*}
$$

The source term has been dropped: only behaviour for $v>v_{\text {re }}$ needs to be considered because extracting the asymptotics in the limit $\omega \rightarrow \infty$ will require analysis of the density and flux in the limit $v \rightarrow \infty$. However, this limit also implies $f(v) \rightarrow \infty$ and, because the ratio f / ω appears in equation (10), some care is required. To this end the variable $\lambda(v)$ is introduced

$$
\begin{equation*}
\lambda=i \omega \int_{v}^{\infty} \frac{\mathrm{d} y}{f(y)} \text { so that } \frac{f}{i \omega} \frac{d}{d v}=-\frac{d}{d \lambda} . \tag{11}
\end{equation*}
$$

The transformation has a natural interpretation because the integral above is the escape time starting from a point v outside the potential well. Usefully, the limit $v \rightarrow \infty$
corresponds to $\lambda \rightarrow 0$ where the modulated flux tends to the modulated escape rate $\hat{J} \rightarrow \hat{r}$. We now rewrite equation (10) in terms of λ

$$
\begin{equation*}
\frac{d \hat{J}}{d \lambda}-\hat{J}=-\hat{J}_{s} \tag{12}
\end{equation*}
$$

and analytically continue \hat{J} by integrating λ from $0 \rightarrow$ ∞ to show that \hat{r} is the Laplace transform of \hat{J}_{s} when expressed in terms of the variable λ

$$
\begin{equation*}
\hat{r}=\int_{0}^{\infty} \mathrm{d} \lambda e^{-\lambda} \hat{J}_{s}(v(\lambda ; \omega)) \tag{13}
\end{equation*}
$$

Furthermore, for high frequencies \hat{J}_{s} becomes proportional to the steady-state shot-noise flux \bar{J}_{s}. This is seen in equation (6) evaluated at the weak-modulation level

$$
\begin{equation*}
\hat{J}_{s}=\hat{R}_{s} \int_{-\infty}^{v} \mathrm{~d} u \bar{P}(u) T(v-u)+\bar{R}_{s} \int_{-\infty}^{v} \mathrm{~d} u \hat{P}(u) T(v-u) \tag{14}
\end{equation*}
$$

The second term on the right-hand-side becomes less significant at high frequency because from equation (3) the modulated density \hat{P} decays as $1 / i \omega$ times the flux and rate, which themselves do not grow with frequency. The first term in equation (14) is proportional to the steadystate shot-noise flux (Eq. 8) so that $\hat{J}_{s} \rightarrow \hat{R}_{s} \bar{J}_{s} / \bar{R}_{s}$ in the high-frequency limit. Combining this result with equation (13) gives

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty} \hat{r}=\frac{\hat{R}_{s}}{\bar{R}_{s}} \int_{0}^{\infty} \mathrm{d} \lambda e^{-\lambda} \bar{J}_{s}(v(\lambda ; \omega)) \tag{15}
\end{equation*}
$$

where $\bar{J}_{s}(v(\lambda ; \omega))$ is the $v \rightarrow \infty$ limit of the steady-state shot-noise flux rewritten in terms of λ. Generally speaking, on substitution of $v(\lambda)$ a series of terms with increasing reciprocal powers of $i \omega$ is found, with the leadingorder term giving the high-frequency asymptote. This is the shot-noise extension of an earlier result for Gaussian white noise [49] and is the main result of the current paper: the high-frequency susceptibility of a general class of non-equilibrium escape processes can be written as a Laplace transform of the steady-state shot-noise flux.

III. EIF MODEL WITH TWO COMMON CASES

The result of the previous section are now used to investigate the high-frequency response of the exponential integrate-and-fire (EIF) model neuron [42] to finiteamplitude synaptic drive. This model that has been shown to provide an accurate description of experimental data [43] while at the same time maintaing a good level of mathematical tractability. The dynamics of the model in this context can be written

$$
\begin{equation*}
\tau \frac{d v}{d t}=\delta_{\mathrm{T}} e^{\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}-v+\tau s(t) \tag{16}
\end{equation*}
$$

A

B

C

FIG. 1: Steady-state properties of an exponential integrate-and-fire (EIF) neuron driven by a shot-noise process with exponentially distributed amplitudes. (A) Force $f(v)$ given in Eq. 17 and corresponding potential. The stable and unstable fixed points are marked. The $f(v)$ minimum is at v_{T} and δ_{T} sets the steepness outside the well. Parameters used are $\tau=20 \mathrm{~ms}, v_{\mathrm{T}}=10 \mathrm{mV}$ and $\delta_{\mathrm{T}}=0.6 \mathrm{mV}$. (B) Example voltage time-courses for three cases (i-iii) with small, medium and large exponentially distributed synaptic amplitudes (mean $a_{s}=0.2,0.6,1.8 \mathrm{mV}$, respectively). The synaptic rate \bar{R}_{s} for each case is adjusted so the firing rate is $r=5 \mathrm{~Hz}$. (C) Firing rate \bar{r} versus synaptic rate \bar{R}_{s} for each case with 5 Hz cases marked (symbols). (D) Probability densities $\bar{P}(v)$ corresponding to the examples of panel B. At voltages $v \gg v_{\mathrm{T}}$ the densities all decay exponentially with scale δ_{T} (see Eq. 5). The synaptic flux \bar{J}_{s} (Eq. 6) involves an integral over $\bar{P}(v) \exp \left(v / a_{s}\right)$ and so the behaviour of the integrand changes qualitatively with the ratio $a_{s} / \delta_{\mathrm{T}}$. Other parameters used are $v_{\mathrm{re}}=5 \mathrm{mV}$ and $v_{\mathrm{th}}=30 \mathrm{mV}$. The code generating the figure is provided [48].
where the shot-noise process $s(t)$ is defined by equation (2). These dynamics are supplemented by a threshold at infinity and reset to v_{re}. The intrinsic voltage dynamics are governed by the forcing term

$$
\begin{equation*}
f(v)=\frac{1}{\tau}\left(\delta_{\mathrm{T}} e^{\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}-v\right) \tag{17}
\end{equation*}
$$

where τ is the membrane time-constant and $\delta_{\mathrm{T}}<v_{\mathrm{T}}$ are positive parameters that characterise the onset of the action potential or spike. Plots of the force $f(v)$ and the equivalent potential well $-\int^{v} \mathrm{~d} v f(v)$ are provided in Fig. 1A. Biophysically, δ_{T} is related to how rapidly the spike-generating sodium-current activates whereas v_{T} is a measure of the voltage around which this current becomes significant [42]. It can be noted that the leaky-integrate-and-fire model, featuring a linear forcing term, is recovered in the limit $\delta_{\mathrm{T}} \rightarrow 0$. The lower stable v_{s} and upper unstable v_{u} voltage fixed points $f(v)=0$
$v_{\mathrm{s}}=-\delta_{T} W_{0}\left(-e^{-v_{\mathrm{T}} / \delta_{\mathrm{T}}}\right), \quad v_{\mathrm{u}}=-\delta_{\mathrm{T}} W_{-1}\left(-e^{-v_{\mathrm{T}} / \delta_{\mathrm{T}}}\right)$.
can be written [50] in terms of Lambert W functions. For the values $v_{\mathrm{T}}=10 \mathrm{mV}$ and $\delta_{\mathrm{T}}=0.6 \mathrm{mV}$ used in the figures the fixed points are $v_{\mathrm{s}} \simeq 3.46 \times 10^{-8} \mathrm{mV}$ and $v_{\mathrm{u}} \simeq 11.8 \mathrm{mV}$. The reset $v_{\mathrm{re}}=5 \mathrm{mV}$ is chosen so that $v_{\mathrm{s}}<v_{\mathrm{re}}<v_{\mathrm{u}}$.

Before going on to consider the effects of different synaptic-amplitude distributions, it is worth calculating the form of the quantity λ given by equation pair (11) for the EIF model. To avoid complicating the later derivations by introducing unnecessary subdominant terms
only the exponential term in $f(v) \simeq \delta_{\mathrm{T}} e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} / \tau$ is used in equation pair (11). This is because the linear forcing term in equation (16) will not contribute significantly in the high-voltage limit. In this approximation λ becomes

$$
\begin{equation*}
\lambda=i \omega \tau e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{T}} . \tag{19}
\end{equation*}
$$

This completes the description of the intrinsic, neuronal component of the model. In the remainder of this section two common choices for the synaptic-amplitude distribution $A(a)$, that of small and then constant amplitudes, are considered before going on to examine a biophysically motivated choice for $A(a)$ that leads to richer behaviour in Section IV.

A. Prediction of diffusion approximation

The EIF model driven by stochastic synaptic drive has been studied extensively in the diffusion approximation, under the assumption of high input rate R_{s} and small synaptic amplitudes a_{k}, to yield a Gaussian whitenoise process. In this limit the tail function $T(a)$ decays sharply and the integral in equation (6) depends only locally on P. Performing a Taylor-expansion of $P(u)$ around v in equation (6) results in

$$
\begin{equation*}
J_{s}=R_{s} P \int_{0}^{\infty} \mathrm{d} a T(a)-R_{s} \frac{\partial P}{\partial v} \int_{0}^{\infty} \mathrm{d} a a T(a)+\cdots . \tag{20}
\end{equation*}
$$

From the tail function definition $d T / d a=-A(a)$ so it is straightforward to show, using integration by parts, that

$$
\begin{equation*}
J_{s} \simeq R_{s}\langle a\rangle P-R_{s} \frac{\left\langle a^{2}\right\rangle}{2} \frac{\partial P}{\partial v} \tag{21}
\end{equation*}
$$

where the expansion is truncated at second order (the diffusion approximation) and the angular parentheses denote an average over the distribution $A(a)$. Substitution into equations $(3,4)$ yields a Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=R_{s} \frac{\left\langle a^{2}\right\rangle}{2} \frac{\partial^{2} P}{\partial v^{2}}-\frac{\partial}{\partial v}\left[\left(f+R_{s}\langle a\rangle\right) P\right]+r \delta\left(v-v_{r e}\right) \tag{22}
\end{equation*}
$$

The corresponding high-frequency firing-rate response has already been derived elsewhere [46] as

$$
\begin{equation*}
\hat{r}(\omega) \simeq \hat{R}_{s} \frac{\tau \bar{r}}{i \omega \tau}\left(\frac{\langle a\rangle}{\delta_{\mathrm{T}}}+\frac{\left\langle a^{2}\right\rangle}{2 \delta_{\mathrm{T}}^{2}}\right) \tag{23}
\end{equation*}
$$

where \bar{r} is the steady-state rate. The prediction of the diffusion approximation for the high-frequency exponent $\hat{r} \sim 1 /(i \omega)^{\beta}$ is therefore $\beta=1$ and is universal because it is not a function of the parameters of the externally imposed synaptic drive.

B. Fixed synaptic amplitude

The general result (Eq. 15) derived earlier is now used to go beyond the diffusion approximation by considering fixed, but not necessarily small, synaptic amplitude a_{s}. For this case the amplitude and tail functions are

$$
\begin{equation*}
A(a)=\delta\left(a-a_{s}\right) \quad \text { and } \quad T(a)=\theta\left(a_{s}-a\right) \tag{24}
\end{equation*}
$$

To use the formula for the high-frequency susceptibility the synaptic flux in the limit of large voltages is required. The form $\bar{P}(v) \simeq \bar{r} \tau e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} / \delta_{\mathrm{T}}$ is used for the steady-state density (see Eq. 5) and, combined with the step-like tail function $T(a)$, the steady-state synaptic flux (Eq. 8) becomes

$$
\begin{equation*}
\bar{J}_{s}(v) \simeq \bar{R}_{s} \bar{r} \tau\left(e^{a_{s} / \delta_{\mathrm{T}}}-1\right) e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} \tag{25}
\end{equation*}
$$

in the high-voltage limit. We now rewrite this in terms of λ using its form in equation (19) to give

$$
\begin{equation*}
\bar{J}_{s}(\lambda ; \omega) \simeq \bar{R}_{s} \bar{r} \tau\left(e^{a_{s} / \delta_{\mathrm{T}}}-1\right) \frac{\lambda}{i \omega \tau} \tag{26}
\end{equation*}
$$

The steady-state shot-noise flux, now parameterised by λ, can be inserted into the result (Eq. 15) to give

$$
\begin{equation*}
\hat{r} \simeq \hat{R}_{s} \frac{\bar{r} \tau}{i \omega \tau}\left(e^{a_{s} / \delta_{\mathrm{T}}}-1\right) \tag{27}
\end{equation*}
$$

in the high-frequency limit. Note that this has the same exponent as the diffusion approximation, and agrees with that approximation up to order $a_{s}^{2} / \delta_{\mathrm{T}}^{2}$, as expected.

IV. EIF WITH EXPONENTIAL AMPLITUDES

In this section the case of synaptic amplitudes drawn from an exponential distribution of mean a_{s}

$$
\begin{equation*}
A(a)=e^{-a / a_{s}} / a_{s} \quad \text { and } \quad T(a)=e^{-a / a_{s}} \tag{28}
\end{equation*}
$$

is considered in detail. Though isolated synaptic amplitudes between layer- 5 pyramidal neurons can be modelled by a log-normal distribution [10], it should be remembered that in active networks many additional processes will act to deform this distribution, such as short-term synaptic depression and presynaptic correlations. From experience, an exponential tail is a reasonable choice the synaptic-amplitude distribution neurons receive in an active network. As will be seen, this choice also leads to qualitatively different response properties depending on the relative magnitudes of a_{s} and the spike-sharpness parameter δ_{T}.

With an exponential amplitude distribution [34] the integral equation (6) satisfies the differential equation

$$
\begin{equation*}
\frac{\partial J_{s}}{\partial v}+\frac{J_{s}}{a_{s}}=R_{s} P \tag{29}
\end{equation*}
$$

and so the master equation can be expressed in terms of the coupled differential equations $(3,29)$ together with the flux relation of equation (4).

A. Steady-state distribution and rate

Equation (7) and the steady-state form of equation (29) can be combined to give a first-order differential equation for either the probability density or the shotnoise flux

$$
\begin{equation*}
\frac{d \bar{J}_{s}}{d v}+\bar{J}_{s}\left(\frac{1}{a_{s}}+\frac{\bar{R}_{s}}{f(v)}\right)=\bar{r} \frac{\bar{R}_{s}}{f(v)} . \tag{30}
\end{equation*}
$$

This equation can be solved analytically; however, the solution is in the form of multiple nested integrals, is not particularly transparent and is awkward to evaluate numerically. An alternative approach is to directly integrate the differential equations with the boundary conditions included by adapting a numerical scheme [49] developed for diffusion approximations of synaptic drive (see Appendix for this method and also direct integration of the Master equation). Figure 1B shows time-courses for three cases where the amplitudes satisfy: (i) $a_{s}<\delta_{\mathrm{T}}$, (ii) $a_{s}=\delta_{\mathrm{T}}$ and (iii) $a_{s}>\delta_{\mathrm{T}}$, with the synaptic rate R_{s} adjusted so that each case has a firing rate $r=5 \mathrm{~Hz}$. Figure 1 C shows the steady-state output rate \bar{r} over a range of input synaptic rates \bar{R}_{s} with steady-state probability densities shown in the upper panel of Figure 1D.

B. High-frequency firing-rate response

The general result (Eq. 15) is now used to derive the high-frequency asymptotics for cases (i-iii). To use this

FIG. 2: Response of a population of shot-noise driven EIF neurons to modulated synaptic rate. (A) Weak sinusoidal modulation (Eq. 9) of the synaptic rate $R_{s}(t)$ (top panel) induces sinusoidal modulation of the population (simulations, middle panel) firing rate $r(t)$ around its steady state (histogram compared to theory, bottom panel). The amplitude and phase shift of the firing-rate respons are frequency dependent. (B) Amplitude (top) and phase (bottom) of \hat{r} versus modulation frequency (cases i-iii) around the 5 Hz steady state shown in Fig. 1B-D. The amplitude has been normalised to be unity at low frequencies and asymptotic forms (dashed lines: Eqs. 42-44) are also plotted. Case (iii) amplitude is ~ 50 times higher than case (i) at 1000 Hz modulation. The inset shows the unnormalised amplitude ($\hat{R}_{s}=1 \mathrm{kHz}$). (C) The high-frequency exponent as a function of the ratio of the mean synaptic amplitude a_{s} to the spike parameter δ_{T}. At high frequencies $\hat{r} \sim 1 /(i \omega \tau)^{\beta}$ with the diffusion approximation $\beta=1$ only valid for small jumps $a_{s}<\delta_{\mathrm{T}}$. Model parameters are the same as Fig. 1. The code generating the figure is provided [48].
formula the steady-state shot-noise flux (6) needs to be derived for each of the three cases. Note first that the tail function $T(v-u)$ grows exponentially with u with scale a_{s} whereas in the high-voltage limit the probability density decays exponentially with scale δ_{T}, because in this limit $P(u) \simeq \bar{r} \tau e^{-\left(u-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} / \delta_{\mathrm{T}}$ (see Eq. 5). The product of these growing and decaying exponetial terms within the integral for the synaptic flux (Eq. 8) will have distinct behaviour depending on the relative values of a_{s} and δ_{T} (see the lower panel of Fig. 1D). For case (i) $a_{s}<\delta_{\mathrm{T}}$ only the distribution of P at large v is relevant (this case includes the diffusion limit); case (ii) is marginal $a_{s}=\delta_{\mathrm{T}}$; and for case (iii) where $a_{s}>\delta_{\mathrm{T}}$ jumps from the bulk of the distribution below v_{T} will contribute more significantly than local jumps.

To derive an analytical approximation for the highfrequency asymptotics the steady-state synaptic component of the flux $\bar{J}_{s}(v)$ must be re-expressed as a function of the quantity λ. Because λ is itself a function of $v-v_{\mathrm{T}}$ (see Eq. 19) it makes sense to write the leading-order forms of $s J s(v)$ in the limit of high voltage as functions of $v-v_{\mathrm{T}}$ before substituting for λ. This requires approximating the integral form for $\bar{J}_{s}(v)$ in equation (8) and making use of the high-voltage limit $\bar{P}(v) \simeq \bar{r} \tau e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} / \delta_{\mathrm{T}}$. The derivations of these leading-order forms for each case are now presented.

Case (i) When $a_{s}<\delta_{\mathrm{T}}$ the product of the steady-state probability density and amplitude tail function grows exponentially with u in the integrand of equation (8) for \bar{J}_{s}
(see Fig. 1D, blue curve) so \bar{J}_{s} can be approximated by

$$
\begin{equation*}
\bar{J}_{s}(v) \simeq R_{s} r \tau \int_{-\infty}^{v} \frac{d u}{\delta_{\mathrm{T}}} e^{-\left(u-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}-(v-u) / a_{s}} \tag{31}
\end{equation*}
$$

which can be integrated to give

$$
\begin{equation*}
J_{s}(v) \simeq \frac{R_{s} r \tau a_{s}}{\delta_{\mathrm{T}}-a_{s}} e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} \tag{32}
\end{equation*}
$$

Case (ii) For the marginal case where $a_{s}=\delta_{\mathrm{T}}$ the synaptic flux is

$$
\begin{equation*}
\bar{J}_{s}(v)=\bar{R}_{s} e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} \int_{-\infty}^{v} \mathrm{~d} u \bar{P}(u) e^{\left(u-v_{\mathrm{T}}\right) / a_{s}} \tag{33}
\end{equation*}
$$

When v is large the decaying exponential in $P(u)$ exactly matches the exponentially growing shot-noise amplitude, so the integrand tends to a constant (Fig. 2D; green curve) and the integral grows linearly as $\bar{r} \tau v / \delta_{\mathrm{T}}$. The integral in the previous equation can be rewritten as

$$
\begin{equation*}
\bar{r} \tau \frac{\left(v-v_{\mathrm{s}}\right)}{\delta_{\mathrm{T}}}+\int_{v_{\mathrm{s}}}^{v} \mathrm{~d} u\left(\bar{P}(u) e^{\left(u-v_{\mathrm{T}}\right) / a_{s}}-\frac{\bar{r} \tau}{\delta_{\mathrm{T}}}\right) \tag{34}
\end{equation*}
$$

which is exact; however, a good approximation is found by setting the upper bound of the integral at infinity because there is little contribution for $v \gg v_{\mathrm{T}}$. The
steady-state shot-noise flux for the marginal case (ii) in the high-voltage limit can therefore be approximated by

$$
\begin{equation*}
\bar{J}_{s}(v) \simeq \bar{R}_{s} \bar{r} \tau e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}\left(\frac{\left(v-v_{\mathrm{T}}\right)}{\delta_{\mathrm{T}}}+\log (\kappa)\right) \tag{35}
\end{equation*}
$$

where the v-independent component

$$
\begin{equation*}
\log (\kappa)=\frac{\left(v_{\mathrm{T}}-v_{\mathrm{s}}\right)}{\delta_{\mathrm{T}}}+\int_{v_{\mathrm{s}}}^{\infty} \frac{\mathrm{d} u}{\delta_{\mathrm{T}}}\left(\frac{\delta_{\mathrm{T}} \bar{P}(u)}{\bar{r} \tau} e^{\left(u-v_{\mathrm{T}}\right) / a_{s}}-1\right) \tag{36}
\end{equation*}
$$

has been written in this way in anticipation of it being combined with other logarithms in the resulting form for the firing-rate modulation.
Case (iii) For the case where $a_{s}>\delta_{\mathrm{T}}$ the synaptic flux is dominated by jumps from the bulk of the distribution so that we extend the integral in Eq. (8) to infinity and approximate \bar{J}_{s} as

$$
\begin{equation*}
\bar{J}_{s}(v) \simeq \bar{R}_{s} e^{-\left(v-v_{\mathrm{T}}\right) / a_{s}} \int_{-\infty}^{\infty} \mathrm{d} u \bar{P}(u) e^{\left(u-v_{\mathrm{T}}\right) / a_{s}} \tag{37}
\end{equation*}
$$

This can be integrated to give

$$
\begin{equation*}
\bar{J}_{s}(v) \simeq \bar{R}_{s} \bar{r} \tau e^{-\left(v-v_{\mathrm{T}}\right) / a_{s}} I_{s} \tag{38}
\end{equation*}
$$

where $I_{s}=\int_{-\infty}^{\infty} \mathrm{d} u e^{\left(u-v_{\mathrm{T}}\right) / a_{s}} \bar{P}(u) / \bar{r} \tau$ is over a steadystate quantity and independent of v. Note that in this case the denominator of the exponential in Eq. (38) is a_{s} rather than δ_{T}, as was the case for cases (i) and (ii).

The voltage-dependent forms for the steady-state synaptic flux $\bar{J}_{s}(v)$ for the three cases given in Eqs. (32), (35) and (38) can now be used to derive the λ-dependent forms by subsituting for $v-v_{\mathrm{T}}$ using Eq. (19). This results in

$$
\begin{align*}
& \bar{J}_{s} \simeq \frac{\bar{R}_{s} \bar{r} \tau a_{s}}{\delta_{\mathrm{T}}-a_{s}} \frac{\lambda}{i \omega \tau} \tag{39}\\
& \bar{J}_{s} \simeq \bar{R}_{s} \bar{r} \tau \frac{\lambda}{i \omega \tau} \log \left(\frac{i \omega \tau \kappa}{\lambda}\right) \tag{40}\\
& \bar{J}_{s} \simeq \bar{R}_{s} \bar{r} \tau\left(\frac{\lambda}{i \omega \tau}\right)^{\frac{\delta_{\mathrm{T}}}{a_{s}}} I_{s} \tag{41}
\end{align*}
$$

to leading order in a high-frequency expansion for cases (i-iii) respectively. Note that because of the argument of the exponential in case (iii) equation (38) fractional powers of λ and ω are generated.

These forms can then be integrated in the Laplacetransform equation (15) to finally yield the desired asymptotics:

$$
\begin{align*}
\hat{r}(\omega) \simeq \hat{R}_{s} \frac{\bar{r} \tau}{i \omega \tau} \frac{a_{s}}{\delta_{\mathrm{T}}-a_{s}} & \text { for } a_{s}<\delta_{\mathrm{T}} \tag{42}\\
\hat{r}(\omega) \simeq \hat{R}_{s} \frac{\bar{r} \tau}{i \omega \tau} \log (i \omega \tau \tilde{\kappa}) & \text { for } a_{s}=\delta_{\mathrm{T}} \tag{43}\\
\hat{r}(\omega) \simeq \hat{R}_{s} \frac{\bar{r} \tau I_{s}}{(i \omega \tau)^{\delta_{\mathrm{T}} / a_{s}}} \Gamma\left(\frac{\delta_{\mathrm{T}}}{a_{s}}+1\right) & \text { for } a_{s}>\delta_{\mathrm{T}} \tag{44}
\end{align*}
$$

where $\tilde{\kappa}=\kappa e^{\gamma-1}$ with $\gamma \simeq 0.5772$ (the Euler-Mascheroni constant) and where $\Gamma(m)$ is the standard Gamma function. The high-frequency susceptibility $1 /(i \omega)^{\beta}$ exponent β is therefore not universal: it takes the synaptic-input independent value $\beta=1$ predicted by the diffusion approximation only for small synaptic amplitudes $a_{s}<\delta_{\mathrm{T}}$ whereas when $a_{s}>\delta_{\mathrm{T}}$ the exponent $\beta=\delta_{\mathrm{T}} / a_{s}$ is a function of the synaptic amplitude distribution. The latter condition is relevant experimentally as δ_{T} can be less than 1 mV [43] and the mean synapic amplitude, even in the absence of correlations, is of the order of 1.5 mV between neocortical layer-5 pyramidal cells [11]. The asymptotic results are plotted (Fig. 2B) with a numerical solution of the master equation (see Appendix). The exponent as a function of the ratio $a_{s} / \delta_{\mathrm{T}}$ is plotted in Fig. 2 C . Note that these asymptotics are different to those for the shot-noise driven leaky-integrate-and-fire model [34] because the limits $\delta_{\mathrm{T}} \rightarrow 0$ and $\omega \rightarrow \infty$ do not commute.

C. Rapid response in the time domain

The same phenomenon can be seen in the time domain. Defining the susceptibility $\hat{\chi}(w)=\hat{r}(w) / \hat{R}$, the response to a delta-function synaptic-rate impulse $R_{s}(t)=$ $\bar{R}_{s}+\delta(t)$ is written $r(t)=\bar{r}+\chi(t)$ where \bar{r} is the steady-state rate and $\chi(t)$ is the inverse Fourier transform $\int \mathrm{d} \omega \hat{\chi} e^{i \omega t} / 2 \pi$ of the susceptibility. A convenient approximation extrapolates between low and high-frequency limits

$$
\begin{equation*}
\hat{\chi}(\omega) \simeq \frac{c_{\infty}}{\left(i \omega \tau+c_{0}\right)^{\beta}} \tag{45}
\end{equation*}
$$

The quantity c_{∞} is the prefactor of the $1 /(i \omega \tau)^{\beta}$ terms in equations (42) or (44) without the \hat{R}_{s} factors, and $c_{0}^{\beta}=c_{\infty} / \hat{\chi}(0)$. The low-frequency limit of the susceptibility $\hat{\chi}(0)$ is the gradient $d \bar{r} / d \bar{R}_{s}$ of the steady-state rate curve (Fig. 1C). The inverse transform of equation (45) provides the following approximation

$$
\begin{equation*}
\chi(t) \simeq \frac{1}{\tau} \frac{c_{\infty}}{\Gamma(\beta)}\left(\frac{\tau}{t}\right)^{1-\beta} e^{-c_{0} t / \tau} \tag{46}
\end{equation*}
$$

For case (i) where $\beta=1$ the response is finite at $t=0$ (previously shown using the diffusion approximation [46]) and equal to $\bar{r} a_{s} /\left(\delta_{\mathrm{T}}-a_{s}\right)$. However, for case (iii) there is a power law $\bar{r} I_{s} \beta(\tau / t)^{1-\beta}$ that diverges at early times. Hence neuronal populations receiving large-amplitude low-rate stimuli respond faster to rapid changes in synaptic rate than those receiving high-rate low-amplitude synaptic drive. This increased responsiveness is demonstrated for a variety of modulated synaptic rates $R(t)$ in Figure. 3A-C through numerical solution of the full master equation (see Appendix for details).

FIG. 3: Populations of EIF neurons receiving large-amplitude low-rate synaptic drive react faster and stronger to transients than those receiving small-amplitude high-rate drive. (A) The stimulus $R_{s}(t)$ comprises constant-area Gaussian impulses with increasing temporal sharpness, a square-pulse current and two chirps at 100 Hz and 200 Hz all sitting on a background stimulation that results in a 5 Hz firing rate (see Fig. 1 for the three cases i-iii). (B) The firing-rate response for the three cases. Note that the large-amplitude, low-rate case (iii) response much faster (a 33ms difference at the mid-value) than the diffusion-like case (i) to the onset of the stimulation. (C) Details of the firing-rate response as marked. The responses to sharpening, constant-area Gaussian rate impulses converge to the time-domain susceptibility (see Eq. 46): case (i) remains finite whereas cases (ii-iii) diverge at early times for increasingly sharp impulses. For square-pulse stimuli case (iii) responds fastest to the onset (infinite gradient at onset) and, similarly, for oscillating waveforms where for the 200 Hz chirp case (iii) response is four-times greater than that of case (i). Neuronal parameters are the same as Fig. 1 and the stimulus parameters are given in the Appendix. The code generating the figure is provided [48].

V. EIF WITH FINITE SPIKE THRESHOLD

In this and the next section the robustness of the result of Section IV is examined. Thus far the high-frequency asymptotics were derived under the condition of an infinite spike threshold $v_{\text {th }}$, which is the voltage at which a spike is registered and the voltage subsequently reset to v_{re}. It is relevant to ask what happens if this condition is relaxed and a finite threshold for registering a spike is chosen, as would be the case experimentally. It will now be shown that when the threshold is finite the response to input modulation still behaves as if the threshold was infinite, as long as the modulation frequency is below some cross-over value; above the cross-over the response to modulation tends to a constant. However, the cross-over frequency grows exponentially with $v_{\text {th }}$ and so the results derived in the main text, which used an infinite threshold, remain correct for biophysical parameter choices.

The continuity equation at the level of the amplitudes of the modulated parameters is

$$
\begin{equation*}
i \omega \hat{P}+\frac{\partial \hat{J}}{\partial v}=\hat{r} \delta\left(v-v_{\mathrm{re}}\right)-\hat{r} \delta\left(v-v_{\mathrm{th}}\right) \tag{47}
\end{equation*}
$$

In the limit $\omega \rightarrow \infty$ it must be that $\hat{P} \rightarrow 0$ because neither the modulated flux \hat{J} or the rates diverge. The im-
plication in the corresponding flux equation evaluated at threshold $v_{\text {th }}$

$$
\begin{equation*}
\hat{J}\left(v_{\mathrm{th}}\right)=f\left(v_{\mathrm{th}}\right) \hat{P}\left(v_{\mathrm{th}}\right)+\hat{J}_{s}\left(v_{\mathrm{th}}\right) \tag{48}
\end{equation*}
$$

is that the contribution of \hat{P} will ultimately vanish in the high-frequency limit. Because $\hat{J}\left(v_{\text {th }}\right)=\hat{r}$ this leads to the finite-threshold, infinite-frequency result

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty} \hat{r}=\hat{J}_{s}\left(v_{\mathrm{th}}\right)=\frac{\hat{R}_{s}}{R_{s}} \bar{J}_{s}\left(v_{\mathrm{th}}\right) \tag{49}
\end{equation*}
$$

where the proportionality between \hat{J}_{s} and \bar{J}_{s} at highfrequency has been used (see discussion around Eq. 14). Hence, for a finite threshold the infinte-frequency limit tends to a constant - this is qualitatively different to the infinite-threshold results for cases (i-iii) derived in the main text for which \hat{r} exhibited power-law decays in frequency. However, two aspects of this result should be noted. The first is that the constant response given in equation (49) above decreases exponentially with increasing $v_{\text {th }}$ by virtue of the voltage dependence of $\bar{J}_{s}(v)$ (see Eqs. 32, 35 and 38). The second aspect is that the result just derived required that the term $f\left(v_{\text {th }}\right) \hat{P}\left(v_{\text {th }}\right)$ in the modulated flux equation can be neglected at increasing frequency. However, the prefactor $f\left(v_{\text {th }}\right)$ is exponentially large in the threshold $v_{\text {th }}$ and so the frequency
scale above which this term can be safely neglected grows very rapidly with $v_{\text {th }}$. There is therefore a cross-over frequency below which the infinite-threshold, power-law decay results are valid and above which the finite-threshold infinite-frequency result begins to dominate.

A. Cross-over frequency dependence on $v_{\text {th }}$

The cross-over frequency can be found by extending the general result in Section II to finite threshold. We start with equations $(10,11)$ but use a modified definition of λ,

$$
\begin{equation*}
\lambda=i \omega \int_{v}^{v_{\mathrm{th}}} \frac{\mathrm{~d} y}{f(y)}, \tag{50}
\end{equation*}
$$

with the upper limit at $v_{\text {th }}$ rather than infinity. The rest of the derivation follows just like the infinite-threshold case resulting in equation (15) as before. For moderate thresholds the integral form for λ in Eq. (50) for the EIF model is well approximated by

$$
\begin{equation*}
\lambda \simeq i \omega \tau e^{-\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}-i \omega \tau e^{-\left(v_{\mathrm{th}}-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} \tag{51}
\end{equation*}
$$

which includes an additional term to that in equation (19). It is this term that generates the constant response for finite thresholds. However, this term is negligible for low frequencies or high thresholds, in which case the infinite-threshold result holds. A cross-over frequency $w_{c}=2 \pi F_{c}$ can therefore be found

$$
\begin{equation*}
F_{c} \simeq \frac{1}{2 \pi \tau} e^{\left(v_{\mathrm{th}}-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}} \tag{52}
\end{equation*}
$$

that grows exponentially with $v_{\text {th }}$. More generally this can be written as

$$
\begin{equation*}
F_{c}=\frac{1}{2 \pi \mathcal{T}_{\mathrm{th}}} \text { with } \mathcal{T}_{\text {th }}=\int_{v_{\mathrm{th}}}^{\infty} \frac{\mathrm{d} v}{f(v)} \tag{53}
\end{equation*}
$$

where $\mathcal{T}_{\text {th }}$ would have been the time taken to go from threshold to infinity. The spike threshold only needs to be a few $\delta_{\mathrm{T}} \mathrm{S}$ above v_{T} (or, more accurately, the unstable fixed point v_{u} which is close in value to v_{T}) for the cross-over frequency to be sufficiently high that the infinite-threshold power-law asymptotics dominates over all biologically reasonable modulation frequencies. These results are illustrated in Figure 4 for finite thresholds at $v_{\text {th }}=12,13$ and 14 mV . Figure 4A shows the exponential EIF forcing term $f(v)$ and cross-over frequency (Eq. $53)$ as an inset. Though the constant asymptotics can be clearly seen for $v_{\text {th }}=12 \mathrm{mV}$ with a cross-over at $\sim 125 \mathrm{~Hz}$ (first 4 B panel) this threshold is just 0.3 mV above the unstable fixed point. Increasing the threshold by 1 mV moves the cross-over frequency to $\sim 1000 \mathrm{~Hz}$ (middle 4 B panel) and increasing by a further 1 mV to 2.3 mV above the unstable fixed point pushes the cross-over to above 6000 Hz (last 4B panel). Thus for any reasonable definition of the spike threshold $v_{\text {th }}$, the power-law decays in frequency derived in Section IV remain valid.

VI. EIF WITH SYNAPTIC FILTERING

Finally, a dynamical feature of synaptic drive that has not been considered in the theoretical treatment thus far is the effect of synaptic filtering due to the finite closing time of the excitatory synaptic channels. This filtering can be accounted for by including a dynamics for the synaptic drive in the voltage equation (1) such that $s(t)$ is now governed by the equation

$$
\begin{equation*}
\tau_{s} \frac{d s}{d t}=-s+\sum_{\left\{t_{k}\right\}} a_{k} \delta\left(t-t_{k}\right) . \tag{54}
\end{equation*}
$$

where τ_{s} is the time scale of the synaptic filtering and a_{k} is drawn from an exponential distribution as before. Note that in the limit $\tau_{s} \rightarrow 0$ the case of white shot-noise (Eq. 2) is recovered. Away from the region where the spike is generated, this filtered synaptic drive gives excitatory post-synaptic potentials of the classical two-exponential form, with τ_{s} setting the timescale of the rise and τ the decay

$$
\begin{equation*}
v(t)=a_{k} \frac{\tau}{\left(\tau-\tau_{s}\right)}\left(e^{-t / \tau}-e^{-t / \tau_{s}}\right) \tag{55}
\end{equation*}
$$

for an isolated input and $t>0$. Experimentally, the timescale τ_{s} for fast excitatory synaptic conductances are typically quoted as having a mean around 1.7 ms [51] and being in the range $1.3-2 \mathrm{~ms}$ [52] (though dendritic filtering can increase the spread of the effective time constant to $2.9 \mathrm{~ms} \pm 2.3 \mathrm{~ms}$ [11]).

An analytical treatment of the high-frequency asympotics for filtered shot-noise is beyond the scope of the current paper; however, it is straightforward to integrate the stochastic equations $(16,54)$ and extract the amplitude response for a reasonable range of frequencies. In the three panels of Fig. 5A the steady-state rate for cases (i-iii) are plotted, each for $\tau_{s}=0,1,2,3 \mathrm{~ms}$. The modulation will again be compared around a steady-state firing rate of 5 Hz and the corresponding incoming rates \bar{R}_{s} for each case (i-iii) and τ_{s} values were extracted numerically (values given in figure panels). In the four Fig. 5B panels, the modulation amplitudes measured from simulations are plotted for the different τ_{s} values. In the first panel the $\tau_{s}=0 \mathrm{~ms}$ simulations are compared to the numerical solution of the master equation (identical to Fig. 2B). For the Fig. 5B panels corresponding to $\tau_{s}=1,2,3$ a heuristic fit

$$
\begin{equation*}
\hat{r}_{\tau_{s}} \sim \frac{\hat{r}_{0}}{\sqrt{1+\left(\omega \tau_{s}\right)^{2}}} \tag{56}
\end{equation*}
$$

equivalent to a further filtering of the white-Poissonian \hat{r}_{0} numerical solution of the first panel is plotted for comparison. This heuristic result gives a reasonable indication of the behaviour for intermediate frequencies, though at higher frequencies the modulation appears to be further supressed (compare, for example, the red symbols and red curve in the second panel above for frequencies 300 Hz).

A

B

FIG. 4: Effect of a low spike threshold on the modelled high-frequency response. (A) The forcing term $f(v)$ and cross-over frequency (inset) given by Eq. 53. Spike threshold $v_{\text {th }}=12,13$ and 14 mV are marked with symbols. (B) Firing-rate response for these three thresholds (as marked) together with infinite-threshold asymptotics (Eqs. 42-44) and the corresponding finitethreshold high-frequency constant asymptotics (Eq. 49; dotted horizontal lines) for each of the three cases (i-iii) as marked. The cross-over frequency (vertical dotted line) between the power-law asymptotics seen for an infinite threshold (dashed lines) and the constant asymptotes (horizontal dotted lines) increases very rapidly (exponentially) with threshold $v_{\text {th }}$. Parameters are the same as for Fig. 1 unless marked.

To demonstrate that the stronger high-frequency firing-rate response for case (iii) over case (i) persists in the presence of synaptic filtering, the amplitude ratio of case (iii) to case (i) is plotted for the four different time constants τ_{s} in Fig. 5C. The solid line is the ratio of the numerical solution of the master equation for $\tau_{s}=0 \mathrm{~ms}$. Note that the heuristic form gives the same curve for $\tau_{s} \neq 0$ because the τ_{s}-dependent factors common to cases (i) and (iii) cancel. The large-frequency limit of the solid line is given by the ratio of equations (44) and (42) and for high frequencies grows as $(\omega \tau)^{1-\delta_{\mathrm{T}} / a_{s}}$, where a_{s} is the case (iii) mean amplitude. The ratio of the cases (iii)/(i) simulational points (red divided by blue) from Fig. 5B panels are plotted all together in Fig. 5C for the four cases up until a frequency where the corresponding case (i) was less than 2% of the low-frequency limit (dashed lines in Fig. 5B panels). As can be seen, the increased responsiveness is apparent even in the case of synaptic filtering. It becomes increasingly difficult to extract the ratio for higher frequencies because the response of case (i) is so strongly suppressed by the synaptic filtering. This region is unlikely to be physiologically relevant, but in the interests of full disclosure it should be noted that for higher frequencies the ratio saturates and appears to decrease.

VII. DISCUSSION

This paper investigated how synaptic-amplitude distributions and intrinsic spike-generating non-linearities interact to set the high-frequency response properties of neurons. The central theoretical result (Eq. 15) gives the asymptotic dynamical response in terms of a Laplace transform of the steady-state shot-noise flux. The re-
sult is fairly general in that it is applicable to any onedimensional, non-linear integrate-and-fire model driven by Poissonian shot-noise with arbitrary synaptic amplitude distribution. It can be noted that the result is qualitatively unchanged in the presence of inhibition because the high-frequency response is still expressible as a Laplace transform of the steady-state excitatory flux only.

As an example, the result was used to demonstrate that the firing-rate response of a population of EIF neurons driven by exponentially distributed shot noise is non-universal because the high-frequency exponent depends on the mean synaptic amplitude a_{s}. The diffusion approximation $[42,46]$ relevant in the limit of small a_{s} predicts a high-frequency rate response that decays with the reciprocal of frequency. The analysis here demonstrates that below a critical value $a_{s}<\delta_{\mathrm{T}}$ the prediction of the diffusion approximation is correct and the highfrequency response $1 / \omega^{\beta}$ is universal in that $\beta=1$ and is independent of the external synaptic drive. However, for mean amplitudes larger than the spike-onset sharpness $a_{s}>\delta_{\mathrm{T}}$ the exponent is non-universal and dependent on the synaptic amplitude distribution $\beta=\delta_{\mathrm{T}} / a_{s}$. These results were shown to be robust to the definition of the spike threshold and, importantly, to synaptic filtering at physiological scales. Though beyond the scope of the current paper the results are also robust against the inclusion of inhibition (as discussed above), an absolute refractory period (this merely modifies the steady-state rate in Eqs 42-44) and the effects of synaptic conductance (these are weak for excitation due to the relatively high reversal potential).

How spike sharpness determines neuronal response properties [53] has recently come under intense theoretical and experimental scrutiny [54-59]. Modelling studies

FIG. 5: Effect of synaptically filtered shot noise. (A) Steady-state rates with one panel for cases (i), (ii) and (iii) in blue, green and red respectively. The three curves in each panel are for $\tau_{s}=0,1,2$ and 3 ms (circle, star, sqaure and triangle symbols). The synaptic rates R for 5 Hz are given in the panels. (B) Amplitude of the rate modulation comparing cases (i-iii) for four different time constants as marked for the four panels. Simulations are in symbols and heuristic theory (Eq. 56) lines (color and symbol convention as for A panels). Note the stronger suppression of the high frequencies as τ_{s} increases. (C) Amplitude ratio between case (iii) and case (i) for synaptic time constants. The increased responsiveness of $a_{s}>\delta_{\mathrm{T}}$ (case iii) to $a_{s}<\delta_{\mathrm{T}}$ (case i) is present to at least 100 Hz even when there is synaptic filtering: simulation (symbols for $\tau_{s}=0,1,2,3 \mathrm{~ms}$ with same convention as A) and the line is the ratio case (iii)/(i) heuristic theory (Eq. 56) which is the same for each synaptic time constant (see accompanying text).
$[46,56,60,61]$ have shown how the spike-onset sharpness δ_{T} sets the high-frequency cut-off. However, this effect is distinct to that stemming from the interaction between spike-onset sharpness and the synaptic amplitude distribution highlighted in this paper. Spike-onset sharpness δ_{T} is an intrinsic property of the cell and largely static, whereas the effective synaptic amplitude distribution is affected by changes in the nature of the activity in the presynaptic network.

Experimental investigations into the high-frequency response properties of neurons typically involved Gaussian input [54, 55, 57, 59, 61] or Poissonian input but with modulation via an additional sinusoidal current [58]. These experimental paradigms are distinct from the scenario considered here in which a Poissonian input rate is modulated and synaptic amplitudes are drawn from a distribution. I am unaware of existing experimental studies of the firing-rate susceptibility under these conditions; however, such experiments should be relatively straightforward to perform and would provide an empircal test of the theoretical predictions in this paper.

Acknowledgments

I would like to thank Nicolas Brunel and Benjamin Lindner for their useful comments on an earlier version of this manuscript.

Appendix. Numerical methods

Numerical solutions of the system are complicated by the zero in $f(v)$ at the unstable fixed point and the exponential decay of $f(v)$ for large v : this is particularly the case for the computation of high-frequency properties. A number of approaches are used including direct solution of the steady-state rate and linear response, as well as a full solution of the shot-noise master equation in a transformed coordinate system.

Steady-state rate and density

It is straightforward to adapt the Threshold Integration method [49], originally derived for diffusion processes, to the case of shot-noise input. This involves rescaling the density and fluxes by the steady state rate \bar{r}, for example $\bar{P}=\bar{r} \bar{p}$ with analagous definitions for \bar{J} and \bar{J}_{s}. Equation (29) for the synaptic flux can be rearranged

$$
\begin{equation*}
\frac{d \bar{\jmath}_{s}}{d v}+\bar{\jmath}_{s}\left(\frac{1}{a_{s}}+\frac{\bar{R}_{s}}{f}\right)=\frac{\bar{R}_{s}}{f} \theta\left(v-v_{\mathrm{re}}\right) \tag{57}
\end{equation*}
$$

where equation (4), which gives the density in terms of the fluxes $\bar{p}=\left(\bar{\jmath}-\bar{\jmath}_{s}\right) / f(v)$, has been used and from the continuity equation (3) the scaled steady-state flux is simply $\bar{\jmath}=\theta\left(v-v_{\text {re }}\right)$. Equation (57) can be solved
analytically or numerically by integrating up from $v_{\mathrm{u}} \rightarrow$ $v_{\text {th }}$ (where $v_{\text {th }}$ is sufficiently high that its value doesn't not affect the result) and then down from $v_{\mathrm{u}} \rightarrow v_{\mathrm{s}}$. Note that $\bar{\jmath}=\bar{\jmath}_{s}=1$ at v_{u} provides the initial conditions. This also implies the scaled density at the unstable fixed point is

$$
\begin{equation*}
\bar{p}\left(v_{\mathrm{u}}\right)=\frac{1}{a_{s}\left(\bar{R}_{s}+f^{\prime}\left(v_{\mathrm{u}}\right)\right.} \tag{58}
\end{equation*}
$$

which is found by taking the derivative of equation (4) and substituting for the derivative of $\bar{\jmath}_{s}$ using equation (57). Finally, the steady-state firing rate \bar{r} is recovered by noting \bar{P} integrates to 1 so that \bar{p} integrates to $1 / \bar{r}$. This method was used to generate the figure panels 1C, 1 D.

Rate-response to modulated synaptic drive

At the linear level of the response to weak harmonic modulations in the incoming synaptic drive the continuity equation (3) and synaptic flux equation (29) result in two first-order differential equations linking \hat{J} and \hat{J}_{s}

$$
\begin{align*}
\frac{d \hat{J}}{d v}+i \omega \frac{\hat{J}}{f}-i \omega \frac{\hat{J}_{s}}{f} & =\hat{r} \delta\left(v-v_{r e}\right) \tag{59}\\
\frac{d \hat{J}_{s}}{d v}+\hat{J}_{s}\left(\frac{1}{a_{s}}+\frac{\bar{R}_{s}}{f}\right)-\bar{R}_{s} \frac{\hat{J}}{f} & =\hat{R}_{s} \bar{P} \tag{60}
\end{align*}
$$

where \bar{P} can be found from the solution to (57) and the relation $\hat{P}=\left(\hat{J}-\hat{J}_{s}\right) / f(v)$ has been used. Note that this relation also implies that at the unstable fixed point $\hat{J}\left(v_{\mathrm{u}}\right)=\hat{J}_{s}\left(v_{\mathrm{u}}\right)$. This system of coupled differential equations has two inhomogeneous terms: one proportional to \hat{r} the other proportioal to \hat{R}. A convenient method for numerical solution, therefore, is to separate the full solution into two independent components each proportional to one of the inhomogeneous terms:

$$
\begin{equation*}
\hat{J}=\hat{r} \hat{\jmath}^{r}+\hat{R}_{s} \hat{\jmath}^{R} \quad \text { and } \quad \hat{J}_{s}=\hat{r} \hat{\jmath}_{s}^{r}+\hat{R}_{s} \hat{\jmath}_{s}^{R} \tag{61}
\end{equation*}
$$

These two components can be solved in much the same way as was the steady state and then combined to yield \hat{r} (see for example Fig. 2B) as is now described.
Step 1. The solution component that satisfies the inhomogeous term in equation (59) involving the output rate \hat{r} obeys the equation pair

$$
\begin{align*}
\frac{d \hat{\jmath}^{r}}{d v}+i \omega \frac{\hat{\jmath}^{r}}{f}-i \omega \frac{\hat{\jmath}_{s}^{r}}{f} & =\delta\left(v-v_{r e}\right) \tag{62}\\
\frac{d \hat{\jmath}_{s}^{r}}{d v}+\hat{\jmath}_{s}^{r}\left(\frac{1}{a_{s}}+\frac{\bar{R}_{s}}{f}\right)-\bar{R}_{s} \frac{\hat{\jmath}^{r}}{f} & =0 \tag{63}
\end{align*}
$$

At the unstable fixed point $\hat{\jmath}^{r}\left(v_{\mathrm{u}}\right)=\hat{\jmath}_{s}^{r}\left(v_{\mathrm{u}}\right)$ but, unlike for the steady-state case, this value at v_{u} is not known a priori. However, the value of the modulated flux $\hat{\jmath}^{r}$ at threshold $v_{\text {th }}$ is known and equal to 1 (because \hat{r} has
been scaled out). The strategy is therefore to integrate equation pair $(62,63)$ from v_{u} with initial conditions for $\left(\hat{\jmath}^{r}, \hat{\jmath}_{s}^{r}\right)$ of $(1,1)$ and then divide through both fluxes by $\hat{\jmath}^{r}\left(v_{\text {th }}\right)$. With the values now known at v_{u} the equation pair $(62,63)$ is integrated down from $v_{\mathrm{u}} \rightarrow v_{\mathrm{s}}$. This completes the solution for the component that is proportional to \hat{r}.
Step 2. The component that addresses the inhomogeneous term proportional to \hat{R}_{s} obeys the equations

$$
\begin{array}{r}
\frac{d \hat{\jmath}^{R}}{d v}+i \omega \frac{\hat{\jmath}^{R}}{f}-i \omega \frac{\hat{\jmath}_{s}^{R}}{f}=0 \\
\frac{d \hat{\jmath}_{s}^{R}}{d v}+\hat{\jmath}_{s}^{R}\left(\frac{1}{a_{s}}+\frac{\bar{R}_{s}}{f}\right)-\bar{R}_{s} \frac{\hat{\jmath}^{R}}{f}=\bar{P} \tag{65}
\end{array}
$$

where again we have $\hat{\jmath}^{R}\left(v_{\mathrm{u}}\right)=\hat{\jmath}_{s}^{R}\left(v_{\mathrm{u}}\right)$ at a value that is not known a-priori. In this case we will use the result that at threshold $\hat{\jmath}^{R}=0$ because the full flux is carried by the $\hat{\jmath}^{r}$ term. Let's write the solution for $v>v_{\mathrm{u}}$ as the mix

$$
\begin{equation*}
\hat{\jmath}^{R}(v)=\hat{\jmath}^{R}(v ; 0)+\kappa \hat{\jmath}^{r}(v ; 1) \tag{66}
\end{equation*}
$$

with a similar definition for $\hat{\jmath}_{s}^{R}(v)$ with the same κ. Here $\hat{\jmath}^{R}(v ; 0)$ comes from the solution to equation pair $(64,65)$ for $v>v_{\mathrm{u}}$ with initial conditions at v_{u} of $(0,0)$. The term, $\hat{\jmath}^{r}(v ; 1)$, comes from the solution to equation pair $(62,63)$ for $v>v_{\mathrm{u}}$ with initial conditions at v_{u} of $(1,1)$. Note that in the last case, because we are interested in the voltage range $v>v_{\mathrm{u}}$ the Dirac-delta function does not feature. Once these sub-solutions are obtained κ can be extracted from the condition that $\hat{\jmath}^{R}\left(v_{\text {th }}\right)=0$ so that $\kappa=-\hat{\jmath}^{R}\left(v_{\mathrm{th}} ; 0\right) / \hat{\jmath}^{r}\left(v_{\mathrm{th}} ; 1\right)$. This now gives the correct mix for the quantities $\hat{\jmath}^{R}(v)$ and $\hat{\jmath}_{s}^{R}(v)$. Given that their values at v_{u} are now known, equation pair $(64,65)$ can be integrated down from $v_{\mathrm{u}} \rightarrow v_{\mathrm{s}}$. This completes the derivation of the component proportional to \hat{R}_{s}.
Step 3. We now have the solutions for $\hat{\jmath}^{R}$ and $\hat{\jmath}^{r}$ over the full voltage range. At the stable fixed point v_{s} the flux \hat{J} is zero. Hence, from the first of equation pair (61) we have $0=\hat{r} \hat{\jmath}^{r}\left(v_{\mathrm{s}}\right)+\hat{R}_{s} \hat{\jmath}^{R}\left(v_{\mathrm{s}}\right)$ so that $\hat{r}=-\hat{R}_{s} \hat{\jmath}^{R}\left(v_{\mathrm{s}}\right) / \hat{\jmath}^{r}\left(v_{\mathrm{s}}\right)$ which constitutes the numerical solution for the modulated rate.

General numerical solution of the master equation

Following similar approaches for leaky-integrate and fire models [28-32] the full system can be solved numerically by integrating the master equation, defined through the combination of equations $(3,4,6)$. Again, it was found that a naive approach had poor convergence properties: here due to the long exponential tail in the distribution at high voltages. To avoid this a rescaling was sought that compressed the voltage range above v_{T}. The following transformation

$$
\begin{equation*}
z=\frac{e^{\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}+v / v_{\mathrm{T}}}{e^{\left(v-v_{\mathrm{T}}\right) / \delta_{\mathrm{T}}}+v / v_{\mathrm{T}}+1} \tag{67}
\end{equation*}
$$

combined with a fourth-order Runga-Kutta scheme generated accurate results with reasonable integration times. The transformation is monotonic, with the property that for $v<v_{\mathrm{T}}$ the mapping is linear $z \sim v / v_{\mathrm{T}}$ whereas in the limit of high voltages $z \rightarrow 1$. Hence, the range of z is finite (between $\sim v_{\mathrm{u}} / v_{\mathrm{T}}$ and 1). It was also convenient to mollify the reset mechanism from a delta function to a Gaussian centred on $v_{\text {re }}$ with a standard deviation $(0.1 \mathrm{mV})$ that was sufficiently narrow such that its width did not effect the final result significantly but, nevertheless, mitigated the effects of the discontinuity in probability density on the integration scheme. This method was used to generate the response in Fig. 3B-C.

Parameters used for the stimulation in figure 3

To illustrate the effect of the different high-frequency asymptotics in the time domain an input-rate stimulation $R_{s}(t)$ was constructed (see Fig. 3A) comprising: the instantaneous switching from zero to a finite value after 5 ms , which can be considered as a model of the transition from a down state to an up state; three Gaussian pulses of decreasing duration but fixed area $g_{1}(t), g_{2}(t)$, $g_{3}(t)$ that converge towards a Dirac δ-function impulse; a step rate increase followed by step decrease $s(t)$; and two chirps $c_{1}(t)$ and $c_{2}(t)$ of different frequency demonstrating that the high-frequency asymptotics are relevant even for transitory oscillatory input. The time t ran from $0 \rightarrow 570 \mathrm{~ms}$ and was sampled at $2 \mu \mathrm{~s}$.
Using case (i) as an example (Fig. 3A: blue) we write

$$
\begin{equation*}
R_{i}(t)=\theta(t-5)\left(R_{i}+\gamma_{i} S(t)\right) \tag{68}
\end{equation*}
$$

where R_{i} is the steady-state input for case (i) of 2.1 kHz (see Fig. 1C: $R_{i i}=0.59 \mathrm{kHz}$ and $R_{i i i}=0.14 \mathrm{kHz}$ for cases ii and iii) and γ_{i} is a gain factor such that each of the cases will have the same late-time response to a weak step-change in synaptic input rate around a 5 Hz steady-state output rate. This normalises the response to slowly varying stimuli across cases (i-iii) ensuring a fair comparison of the high-frequency response. Values were: $\gamma_{i}=0.025 \mathrm{kHz}, \gamma_{i i}=0.0126 \mathrm{kHz}$ and $\gamma_{i i i}=0.0059 \mathrm{kHz}$.

The shape function is common to each of the cases

$$
\begin{equation*}
S(t)=g_{1}(t)+g_{2}(t)+g_{3}(t)+s(t)+c_{1}(t)+c_{2}(t) \tag{69}
\end{equation*}
$$

with the components described above. Quantitatively, the three Gaussian pulses took the form

$$
\begin{equation*}
g_{k}(t)=10 \exp \left(-\left(t-t_{g k}\right)^{2} / 2 \sigma_{g k}^{2}\right) / \sqrt{2 \pi} \sigma_{g k} \tag{70}
\end{equation*}
$$

where $t_{g 1}=140 \mathrm{~ms}, t_{g 2}=190 \mathrm{~ms}$ and $t_{g 3}=240 \mathrm{~ms} ; \sigma_{g 1}=$ $1.7 \mathrm{~ms}, \sigma_{g 2}=0.85 \mathrm{~ms}$ and $\sigma_{g 3}=0.42 \mathrm{~ms}$ to give full-width half-maxima of $4 \mathrm{~ms}, 2 \mathrm{~ms}$ and 1 ms respectively. The stepchange in rate took the form $s(t)=2\left(\theta\left(t-t_{s 1}\right)-\theta(t-\right.$ $\left.t_{s 2}\right)$) where $t_{s 1}=290 \mathrm{~ms}$ and $t_{s 2}=350 \mathrm{~ms}$. Chirps were implemented by multiplying a cosine and a Gaussian

$$
\begin{equation*}
c_{k}(t)=\kappa_{k} \cos \left(2 \pi f_{k} t\right) \exp \left(-\left(t-t_{c k}\right)^{2} / 2 \sigma_{c k}^{2}\right) \tag{71}
\end{equation*}
$$

where $\kappa_{1}=5$ and $\kappa_{2}=7 ; t_{c 1}=445 \mathrm{~ms}$ and $t_{c 2}=520 \mathrm{~ms}$; and $\sigma_{c 1}=\sigma_{c 2}=10 \mathrm{~ms}$.
[1] Shadlen MN and Newsome WT, Curr. Opin. Neurobiol. 4, 569 (1994).
[2] Gernstein GL and Mandelbrot B, Biophys. J 4, 41 (1964).
[3] Stein RB, Biophys. J 5, 173 (1965).
[4] Johannesma PIM. In Neural networks (ER Caianiello, ed.) pp. 116-144. Springer, New York. (1968).
[5] Ricciardi LM, In Diffusion processes and related topics on biology Berlin, Springer-Verlag (1977).
[6] Lindner B, Schimansky-Geier L and Longtin A, Phys. Rev. E 66, 031916 (2002).
[7] Lindner B, Longtin A and Bulsara A, Neural Comput. 15, 1761 (2003).
[8] Brunel N and Hakim V, Neural Comput. 11, 1621 (1999).
[9] Gigante G, Mattia M and Del Giudice P, Phys. Rev. Lett. 98, 148101 (2007).
[10] Song S, Sjöström P, Reig M, Nelson and Chklowshii DB. PLoS Biol. 3, e68 (2005).
[11] Markram H, Lübke J, Frotscher M, Roth A and Sakmann B. J. Physiol. 500, 409 (1997).
[12] Perin R, Berger TK and Markram H, PNAS 108, 5419 (2011).
[13] Reyes A and Sakmann B. J. Neurosci. 19, 3827 (1999).
[14] Contreras D and Steriade M, J. Neurosci. 15, 604 (1995).
[15] Sanchez-Vives MV and McCormick DA, Nat. Neurosci. 3, 1027 (2000).
[16] Destexhe A, Rudolph M and Pare D, Nat. Rev. Neurosci. 4, 739 (2003)
[17] Bair W, Zohary R and Newsome WT, J. Neurosci. 21, 1676 (2001)
[18] DeWeese MR and Zador AM, J. Neurosci. 26, 12206 (2006).
[19] Deniz T and Rotter S, J. Phys. A: Math. Theor. 50, 254002 (2017).
[20] Abbott LF, Varela JA, Sen K and Nelson SB, Science 275, 221 (1997).
[21] Tsodyks MV and Markram H, PNAS 94, 719 (1997).
[22] Hohn N and Burkitt AN, Phys. Rev. E: 63, 031902 (2001).
[23] Richardson MJE and Gerstner W, Neural Comput. 17, 923 (2005).
[24] Wolff L and Lindner B, Phys. Rev. E 77, 041913 (2008).
[25] Knight BW, Omurtag A and Sirovich L, Neural Comput. 12, 1045 (2000).
[26] Kuhn A, Aertsen A and Rotter S, Neural Comput. 15, 67 (2003).
[27] Helias M, Deger M, Rotter S, Diesmann M, Front. Neu-
rosci. 5, 19 (2011).
[28] Iyer R, Menon V, Buice M, Koch C and Mihalas S. PLoS Comput Biol 9, e1003248 (2013).
[29] Nykamp DQ and Tranchina D, J. Comp. Neuro. 8, 19 (2000).
[30] Cain N, Iyer R, Koch C and Mihalas S. PLoS Comput Biol 12, e1005045 (2016).
[31] Haskell E, Nykamp DQ and Tranchina D Network: Comput. Neural Syst. 12141 (2001).
[32] Ly C and Tranchina D, Neural Computation 21360 (2009).
[33] Ming Lai Y and de Kamps M, Phys. Rev. E 95062125 (2017).
[34] Richardson MJE and Swarbrick R, Phys. Rev. Lett. 105, 178102 (2010)..
[35] Droste F and Lindner B, J Comput Neurosci (2017) 43, 81 (2017).
[36] Angulo-Garcia D, Luccioli S, Olmi S and Torcini A, New J. Phys. 19, 053011 (2017) .
[37] Olmi S, Angulo-Garcia D, Imparato A and Torcini A. Scientific Reports 7, 1577 (2017).
[38] Burkitt AN, Biol. Cybern, 95, 1 (2006).
[39] Burkitt AN, Biol. Cybern 95, 96 (2006).
[40] Hodgkin A and Huxley A, J. Physiol. 117, 500 (1952).
[41] Ermentrout GB and Kopell N, SIAM J. Appl. Math. 46, 233 (1986).
[42] Fourcaud-Trocmé N, Hansel D, van Vreeswijk C and Brunel N, J. Neurosci. 17, 11628 (2003).
[43] Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W and Richardson MJE, J. Neurophysiol. 99, 656 (2008).
[44] Harrison PM, Badel L, Wall MJ and Richardson MJE, PLOS Computational Biology 11, e1004165 (2015).
[45] Badel L, Lefort S, Berger TK, Petersen CCH, Gerstner W and Richardson MJE, Biol. Cybern. 99, 361 (2008).
[46] Fourcaud-Trocme N and Brunel N, J. Comput. Neurosci. 18, 311 (2005).
[47] Bezanson J, Edelman A, Karpinski S and Shah VB, SIAM Review 59, 6598 (2017).
[48] See Supplemental Material at ... for the Julia1.0 code generating figures 1-3.
[49] Richardson MJE, Phys. Rev. E 76, article-no 021919 (2007).
[50] Touboul J and Brette R, Biol. Cybern. 99, 319 (2008).
[51] Hausser M and Roth A, J. Neurosci 17, 7606 (1997).
[52] Kleppe IC and Robinson HPC, Biophys J. 77, 1418 (1999).
[53] Naundorf B, Wolf F and Volgushev M, Nature 440, 1060 (2006).
[54] Koendgen H et al, Cerebral Cortex 18, 2086 (2008).
[55] Boucsein C, Tetzlaff T, Meier R, Aertsen A, and Naundorf B, Journal of Neuroscience, 29, 1006 (2009).
[56] Wei W and Wolf F, Phys Rev Lett 106, art-no 088102 (2011).
[57] Tchumatchenko T, Malyshev A, Wolf F and Volgushev M, Journal of Neuroscience 31, 12171 (2011).
[58] Broicher T et al, Journal of Neuroscience 32, 14374 (2012).
[59] Ilin V, Malyshev A, Wolf F and Volgushev M, Journal of Neuroscience 33, 2281 (2013).
[60] Eyal G, Mansvelder HD, de Kock CPJ, and Segev I, Journal of Neuroscience 34, 8063 (2014).
[61] Testa-Silva G et al, PLoS Biology 12, e1002007 (2014).

[^0]: *Correspondence: magnus.richardson@warwick.ac.uk

