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Spike shape and synaptic-amplitude distribution interact to set
the high-frequency firing-rate response of neuronal populations

Magnus J. E. Richardson∗

Warwick Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom
(Dated: September 18, 2018)

The dynamics of an ensemble of particles driven out of a potential well, with replacement, by
the Poissonian arrival of amplitude-distributed shot noise is examined. A general formula for the
high-frequency limit of the escape-rate susceptibility is derived. For certain choices of potential well
and amplitude distribution the decay of the high-frequency susceptibility exhibits a non-universal
exponent. This is a qualitatively different response to that predicted by the diffusion approximation.
To provide an example the general framework is applied to a problem of current interest in the bio-
physics of neuronal voltage dynamics. It is shown that the firing-rate response of neurons to rapidly
varying stimuli can be significantly enhanced depending on the ratio between the scale of excitatory
post-synaptic potentials and the voltage range over which an action potential initiates. The result
is robust to various choices of threshold definition and also to synaptic filtering at physiologically
reasonable timescales.

To appear in Physical Review E (2018)

PACS numbers: 87.19.ll, 87.19.lc, 87.19.lq, 87.85.dm

I. INTRODUCTION

The principal neurons of the neocortex generate spike
trains that show considerable variability [1] so that, in
the context of a recurrent network, neurons receive a
highly fluctuating synaptic drive. The integration of the
stochastic synaptic input and subsequent generation of
variable spike trains has been studied intensively since
the mid-1960s [2–4], initially for simplified models of neu-
rons with a leakless or leaky, ohmic membrane response.
A common theoretical approach is to model the fluctu-
ating synaptic input as Gaussian white noise, which is
applicable when the incoming drive has high rate, low
amplitude and short temporal correlations. For a leaky
integrate-and-fire neuron this results in an Ornsetein-
Uhlenbeck process with a threshold-reset mechansism to
which the Fokker-Planck formalism can be applied [4, 5].
At the single neuron or unconnected population level this
allows for the calculation of the instantaneous firing rate,
spike-train spectrum [6] and coefficient of variation [7].
For networks of neurons the description afforded by the
Fokker-Planck framework allows for mean-field networks
to be analysed and the phase-diagram of emergent states
derived [8, 9].

Isolated synaptic potentials evoked between neocor-
tical pyramidal neurons in quiescent tissue have a log-
normal amplitude distribution [10] with mean values in
the range of 1-2mV [11–13]. These amplitudes represent
a significant fraction of the potential difference between
the rest and threshold. Moreover, because the neuronal
voltage is typically just below threshold during network
activity [14–16] only a few additional inputs may be re-
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quired to make the neuron spike. Positive correlations
within the presynaptic population will increase the like-
lihood that inputs occur at similar times, increasing the
effective size of the synaptic pulses [17–19]. Conversely,
short-term synaptic depression [20, 21] will act to reduce
subsequent amplitudes in closely timed input on the same
afferent fibres. Taken together these experimental results
suggest that the synaptic-amplitude distribution in ac-
tive networks will be a function of the network state and
that the Gaussian (or diffusion-limit) approximation of
small amplitudes will not be reliable under all circum-
stances.

Though the majority of studies of stochastic neuronal
integration have used the small-amplitude, high-rate dif-
fusion limit, the effect of finite amplitude-distributed
drive has been included in models to examine the ef-
fect of finite-amplitde inputs on subthreshold voltage
fluctuations [22–24], firing properties [25–30] with other
population-based approaches extending the analysis to
filtered [31] or non-Poissonian input [32, 33] for the leaky-
integrate and fire model. Recently, there have also been
a number of analytical advances: a solution for the
steady-state and modulated rate of a leaky integrate-and-
fire neuron receiving exponentially distributed excitatory
and inhibitory synaptic drive [34] was found; an intrigu-
ing connection of that result to the more general solution
of a neuron driven by dichotomous noise [35] was demon-
strated; and the effect of shot noise in inhibitory networks
[36] was analysed with exact results for a variety of in-
ibitory post-synaptic potential distributions [37].

As well as providing a biophysically more detailed de-
scription of synaptic drive than the diffusion approxi-
mation, there are significant differences in the response
of neurons to finite-amplitude drive. Neurons driven
by shot noise respond faster [27] and exhibit qualita-
tively different response to high-frequency modulations
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[34]. This is particularly the case for the treatment of
modulated inhibition [27, 34] because in the diffusion
approximation inhibitory fluctuations contribute to the
voltage variance which can bring a neuron across thresh-
old, whereas in the shot-noise description it is only the
excitatory component that can cause an action potential.

The second component of the forward modelling from
synaptic-input statistics to neuronal firing patterns is the
neuronal response itself. The majority of results for the
stochastic integration of synaptic drive, both for Gaus-
sian and shot-noise drive, have been derived with neurons
for which the membrane response is linear and ohmic,
specifically for the leaky integrate-and-fire (LIF) neuron
model (see references [38] and [39] for a comprehensive
early review). Near the threshold for spike initiation,
however, the current-voltage relationship is non-linear
due to the activation of the spike-generating sodium cur-
rent [40]. A variety of non-linear generalisations of the
LIF model have been proposed, with the quadratic IF
[41] the most well-known of early models. Later, a prin-
cipled reduction of a detailed, high-dimensional neuron
model to a one-variable model suggested that the non-
linear current-voltage relationship should combine a lin-
ear term with an exponential non-linearity near the spike-
initiation threshold [42]. It was then shown experimen-
tally that this exponential integrate-and-fire (EIF) model
provides an accurate model of the integration proper-
ties of neocortical pyramidal cells in layers 2/3, 4 and 5
[43, 44] and fast-spiking interneurons [45]. Empirically,
the voltage range around threshold over which the spike
starts to activate is between δT =0.5−1.5mV. An interest-
ing observation [46] is that the spike-onset sharpness δT
plays a key role in setting the cross-over frequency above
which populations of EIF neurons respond with decreas-
ing amplitude to modulated Gaussian synaptic drive: the
smaller δT the higher the cut-off frequency.

Synaptic amplitudes are typically of the order of 1mV
and the experimentally measured spike-onset sharpness
has a similar range, so an obvious question is whether
there is some interaction between these two extrinsic and
intrinsic biophysical quantities that affects neuronal inte-
gration - this is the subject of this paper. First, in Section
II, a general framework for analysing the high-frequency
response of non-linear IF neurons driven by amplitude-
distributed shot noise is developed. In Sections III and
IV it is shown that for populations EIF neurons the ratio
of mean synaptic amplitude and spike-onset sharpness
has a qualitative effect on the high-frequency response.
In Section V and VI the robustness of the results are ex-
amined against spike-threshold definition and synaptic-
filtering timescale, respectively. The paper closes with a
Discussion followed by an Appendix containing techni-
cal details of the numerical approaches used. The Julia
code [47] used to generate the first three figures is also
provided in the Supplemental Material [48].

II. GENERAL RESULT

A population of neurons is considered, each with a
state variable v and each receiving independent realisa-
tions of a Poissonian shot-noise process s(t) of rate R(t).
The dynamics of one of the neurons obeys

dv

dt
= f(v) + s(t). (1)

The Poisson-distributed pulses arrive at times {tk} with
each pulse having a positive amplitude ak independently
drawn from a distribution A(a) so that

s(t) =
∑
{tk}

akδ(t− tk). (2)

Hence, on the arrival of a pulse at time tk the voltage
jumps by ak. The continuity equation for a population of
neurons with an explicit spike, such as for the quadratic
or exponential integrate-and-fire model, takes the form

∂P

∂t
+
∂J

∂v
= rδ(v − vre) (3)

where P (v, t) is the probability density, J(v, t) is the flux
and r(t) is the time-dependent firing rate. The Dirac-
delta source term handles the voltage reset vre from the
sink at threshold vth. We first consder the limit vth →∞
and will treat the case of a finite threshold in Section
V. The flux can be resolved into two components: the
first arising from the intrinsic voltage dynamics and the
second from the synaptic shot-noise drive Js

J = fP + Js. (4)

In the limit v → ∞ the flux J tends to the ensemble
escape rate r(t) and hence

P (v, t)→ r(t)

f(v)
(5)

for high voltages. The shot-noise flux includes jumps that
bring the voltage past v from lower values u, so

Js(v, t) = Rs(t)

v∫
−∞

duP (u, t)T (v − u) (6)

where T (v) =
∫∞
v
A(a)da is the tail function of the shot-

noise amplitude distribution. Note that the large-v be-
haviour of Js depends on whether the product of the
density P 'r(t)/f(u) and tail function T (v−u) decreases
or grows with u in the integrand in equation (6). If the
amplitudes are small, as assumed in the standard diffu-
sion approximation, then only the density P (u) near v
contributes significantly to the integral; however, if the
amplitudes are large then jumps from the entire probabil-
ity density below v need be accounted for. The coupled
integro-differential equations (3-6) fully specify the dy-
namics of the system for an arbitrary rate Rs(t).
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A. Steady-state distribution and rate

When the incoming rate is constant Rs(t) = R̄s, the
distribution and flux take their steady-state values P̄ ,
J̄s. Integration of the continuity equation (3) gives a
step function for the total flux J̄ which, on insertion into
the flux equation (4), gives

r̄θ(v − vre) = fP̄ + J̄s (7)

with the shot-noise flux defined through its equation

J̄s = R̄s

v∫
−∞

duP̄ (u, t)T (v − u) (8)

in steady-state form.

B. Limit of high-frequency susceptibility

A sinusoidal modulation of amplitude R̂s and of fre-
quency f = ω/2π of the presynaptic rate around its
steady-state value R̄s is now considered. In complex form
this can be written

Rs(t) = R̄s + R̂se
iωt. (9)

For weak modulation, or for high-frequency modulation
in which the response becomes weak, the density will be
well approximated by P (v, t)' P̄+P̂ eiωt where P̄ (v) is

the steady-state density and P̂ (v;ω) is proportional to

R̂s. A similar approximation for the flux and firing rate,
with analogous notation, can also be made.

The goal of this section is to calculate the high-
frequency limit of the modulated firing rate r̂(ω) - this
quantity is a direct measure of the susceptibility of the
neuronal population to modulated input. The first step is
to substitute the modulated density from the flux equa-
tion (4) into the continuity equation (3) to give

f

iω

dĴ

dv
+ Ĵ = Ĵs. (10)

The source term has been dropped: only behaviour for
v > vre needs to be considered because extracting the
asymptotics in the limit ω→∞ will require analysis of
the density and flux in the limit v→∞. However, this
limit also implies f(v)→∞ and, because the ratio f/ω
appears in equation (10), some care is required. To this
end the variable λ(v) is introduced

λ = iω

∞∫
v

dy

f(y)
so that

f

iω

d

dv
= − d

dλ
. (11)

The transformation has a natural interpretation because
the integral above is the escape time starting from a point
v outside the potential well. Usefully, the limit v→∞

corresponds to λ → 0 where the modulated flux tends
to the modulated escape rate Ĵ → r̂. We now rewrite
equation (10) in terms of λ

dĴ

dλ
− Ĵ = −Ĵs (12)

and analytically continue Ĵ by integrating λ from 0→
∞ to show that r̂ is the Laplace transform of Ĵs when
expressed in terms of the variable λ

r̂ =

∞∫
0

dλe−λĴs(v(λ;ω)). (13)

Furthermore, for high frequencies Ĵs becomes propor-
tional to the steady-state shot-noise flux J̄s. This is seen
in equation (6) evaluated at the weak-modulation level

Ĵs = R̂s

v∫
−∞

duP̄ (u)T (v−u) + R̄s

v∫
−∞

duP̂ (u)T (v−u). (14)

The second term on the right-hand-side becomes less sig-
nificant at high frequency because from equation (3) the

modulated density P̂ decays as 1/iω times the flux and
rate, which themselves do not grow with frequency. The
first term in equation (14) is proportional to the steady-

state shot-noise flux (Eq. 8) so that Ĵs→R̂sJ̄s/R̄s in the
high-frequency limit. Combining this result with equa-
tion (13) gives

lim
ω→∞

r̂ =
R̂s
R̄s

∞∫
0

dλe−λJ̄s(v(λ;ω)) (15)

where J̄s(v(λ;ω)) is the v→∞ limit of the steady-state
shot-noise flux rewritten in terms of λ. Generally speak-
ing, on substitution of v(λ) a series of terms with increas-
ing reciprocal powers of iω is found, with the leading-
order term giving the high-frequency asymptote. This is
the shot-noise extension of an earlier result for Gaussian
white noise [49] and is the main result of the current pa-
per: the high-frequency susceptibility of a general class
of non-equilibrium escape processes can be written as a
Laplace transform of the steady-state shot-noise flux.

III. EIF MODEL WITH TWO COMMON CASES

The result of the previous section are now used to
investigate the high-frequency response of the exponen-
tial integrate-and-fire (EIF) model neuron [42] to finite-
amplitude synaptic drive. This model that has been
shown to provide an accurate description of experimental
data [43] while at the same time maintaing a good level
of mathematical tractability. The dynamics of the model
in this context can be written

τ
dv

dt
= δTe

(v−vT)/δT − v + τs(t). (16)
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FIG. 1: Steady-state properties of an exponential integrate-and-fire (EIF) neuron driven by a shot-noise process with exponen-
tially distributed amplitudes. (A) Force f(v) given in Eq. 17 and corresponding potential. The stable and unstable fixed points
are marked. The f(v) minimum is at vT and δT sets the steepness outside the well. Parameters used are τ=20ms, vT =10mV
and δT =0.6mV. (B) Example voltage time-courses for three cases (i-iii) with small, medium and large exponentially distributed
synaptic amplitudes (mean as=0.2, 0.6, 1.8mV, respectively). The synaptic rate R̄s for each case is adjusted so the firing rate
is r=5Hz. (C) Firing rate r̄ versus synaptic rate R̄s for each case with 5Hz cases marked (symbols). (D) Probability densities
P̄ (v) corresponding to the examples of panel B. At voltages v � vT the densities all decay exponentially with scale δT (see
Eq. 5). The synaptic flux J̄s (Eq. 6) involves an integral over P̄ (v) exp(v/as) and so the behaviour of the integrand changes
qualitatively with the ratio as/δT. Other parameters used are vre = 5mV and vth = 30mV. The code generating the figure is
provided [48].

where the shot-noise process s(t) is defined by equation
(2). These dynamics are supplemented by a threshold at
infinity and reset to vre. The intrinsic voltage dynamics
are governed by the forcing term

f(v) =
1

τ

(
δTe

(v−vT)/δT − v
)

(17)

where τ is the membrane time-constant and δT<vT are
positive parameters that characterise the onset of the
action potential or spike. Plots of the force f(v) and
the equivalent potential well −

∫ v
dvf(v) are provided in

Fig. 1A. Biophysically, δT is related to how rapidly the
spike-generating sodium-current activates whereas vT is
a measure of the voltage around which this current be-
comes significant [42]. It can be noted that the leaky-
integrate-and-fire model, featuring a linear forcing term,
is recovered in the limit δT→0. The lower stable vs and
upper unstable vu voltage fixed points f(v)=0

vs =−δTW0(−e−vT/δT), vu =−δTW−1(−e−vT/δT). (18)

can be written [50] in terms of Lambert W functions. For
the values vT =10mV and δT =0.6mV used in the figures
the fixed points are vs'3.46×10−8mV and vu'11.8mV.
The reset vre =5mV is chosen so that vs< vre< vu.

Before going on to consider the effects of different
synaptic-amplitude distributions, it is worth calculating
the form of the quantity λ given by equation pair (11) for
the EIF model. To avoid complicating the later deriva-
tions by introducing unnecessary subdominant terms

only the exponential term in f(v) ' δTe−(v−vT)/δT/τ is
used in equation pair (11). This is because the linear
forcing term in equation (16) will not contribute signifi-
cantly in the high-voltage limit. In this approximation λ
becomes

λ = iωτe−(v−vT)/δT . (19)

This completes the description of the intrinsic, neuronal
component of the model. In the remainder of this section
two common choices for the synaptic-amplitude distribu-
tion A(a), that of small and then constant amplitudes,
are considered before going on to examine a biophysically
motivated choice for A(a) that leads to richer behaviour
in Section IV.

A. Prediction of diffusion approximation

The EIF model driven by stochastic synaptic drive
has been studied extensively in the diffusion approxima-
tion, under the assumption of high input rate Rs and
small synaptic amplitudes ak, to yield a Gaussian white-
noise process. In this limit the tail function T (a) decays
sharply and the integral in equation (6) depends only
locally on P . Performing a Taylor-expansion of P (u)
around v in equation (6) results in

Js = RsP

∞∫
0

daT (a)−Rs
∂P

∂v

∞∫
0

daaT (a) + · · · . (20)
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From the tail function definition dT/da = −A(a) so it is
straightforward to show, using integration by parts, that

Js ' Rs〈a〉P −Rs
〈a2〉

2

∂P

∂v
(21)

where the expansion is truncated at second order (the
diffusion approximation) and the angular parentheses de-
note an average over the distribution A(a). Substitution
into equations (3,4) yields a Fokker-Planck equation

∂P

∂t
= Rs

〈a2〉
2

∂2P

∂v2
− ∂

∂v
[(f+Rs〈a〉)P ]+rδ(v−vre). (22)

The corresponding high-frequency firing-rate response
has already been derived elsewhere [46] as

r̂(ω) ' R̂s
τ r̄

iωτ

(
〈a〉
δT

+
〈a2〉
2δ2T

)
(23)

where r̄ is the steady-state rate. The prediction of the
diffusion approximation for the high-frequency exponent
r̂ ∼ 1/(iω)β is therefore β = 1 and is universal because
it is not a function of the parameters of the externally
imposed synaptic drive.

B. Fixed synaptic amplitude

The general result (Eq. 15) derived earlier is now used
to go beyond the diffusion approximation by considering
fixed, but not necessarily small, synaptic amplitude as.
For this case the amplitude and tail functions are

A(a) = δ(a− as) and T (a) = θ(as − a). (24)

To use the formula for the high-frequency susceptibil-
ity the synaptic flux in the limit of large voltages is re-
quired. The form P̄ (v) ' r̄τe−(v−vT)/δT/δT is used for
the steady-state density (see Eq. 5) and, combined with
the step-like tail function T (a), the steady-state synaptic
flux (Eq. 8) becomes

J̄s(v) ' R̄sr̄τ
(
eas/δT − 1

)
e−(v−vT)/δT (25)

in the high-voltage limit. We now rewrite this in terms
of λ using its form in equation (19) to give

J̄s(λ;ω) ' R̄sr̄τ
(
eas/δT − 1

) λ

iωτ
. (26)

The steady-state shot-noise flux, now parameterised by
λ, can be inserted into the result (Eq. 15) to give

r̂ ' R̂s
r̄τ

iωτ

(
eas/δT − 1

)
(27)

in the high-frequency limit. Note that this has the same
exponent as the diffusion approximation, and agrees with
that approximation up to order a2s/δ

2
T, as expected.

IV. EIF WITH EXPONENTIAL AMPLITUDES

In this section the case of synaptic amplitudes drawn
from an exponential distribution of mean as

A(a) = e−a/as/as and T (a) = e−a/as (28)

is considered in detail. Though isolated synaptic ampli-
tudes between layer-5 pyramidal neurons can be modelled
by a log-normal distribution [10], it should be remem-
bered that in active networks many additional processes
will act to deform this distribution, such as short-term
synaptic depression and presynaptic correlations. From
experience, an exponential tail is a reasonable choice the
synaptic-amplitude distribution neurons receive in an ac-
tive network. As will be seen, this choice also leads to
qualitatively different response properties depending on
the relative magnitudes of as and the spike-sharpness pa-
rameter δT.

With an exponential amplitude distribution [34] the
integral equation (6) satisfies the differential equation

∂Js
∂v

+
Js
as

= RsP (29)

and so the master equation can be expressed in terms
of the coupled differential equations (3,29) together with
the flux relation of equation (4).

A. Steady-state distribution and rate

Equation (7) and the steady-state form of equation
(29) can be combined to give a first-order differential
equation for either the probability density or the shot-
noise flux

dJ̄s
dv

+ J̄s

(
1

as
+

R̄s
f(v)

)
= r̄

R̄s
f(v)

. (30)

This equation can be solved analytically; however, the
solution is in the form of multiple nested integrals, is
not particularly transparent and is awkward to evaluate
numerically. An alternative approach is to directly inte-
grate the differential equations with the boundary condi-
tions included by adapting a numerical scheme [49] devel-
oped for diffusion approximations of synaptic drive (see
Appendix for this method and also direct integration of
the Master equation). Figure 1B shows time-courses for
three cases where the amplitudes satisfy: (i) as < δT,
(ii) as = δT and (iii) as > δT, with the synaptic rate Rs
adjusted so that each case has a firing rate r=5Hz. Fig-
ure 1C shows the steady-state output rate r̄ over a range
of input synaptic rates R̄s with steady-state probability
densities shown in the upper panel of Figure 1D.

B. High-frequency firing-rate response

The general result (Eq. 15) is now used to derive the
high-frequency asymptotics for cases (i-iii). To use this
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FIG. 2: Response of a population of shot-noise driven EIF neurons to modulated synaptic rate. (A) Weak sinusoidal modulation
(Eq. 9) of the synaptic rate Rs(t) (top panel) induces sinusoidal modulation of the population (simulations, middle panel)
firing rate r(t) around its steady state (histogram compared to theory, bottom panel). The amplitude and phase shift of the
firing-rate respons are frequency dependent. (B) Amplitude (top) and phase (bottom) of r̂ versus modulation frequency (cases
i-iii) around the 5Hz steady state shown in Fig. 1B-D. The amplitude has been normalised to be unity at low frequencies and
asymptotic forms (dashed lines: Eqs. 42-44) are also plotted. Case (iii) amplitude is ∼50 times higher than case (i) at 1000Hz

modulation. The inset shows the unnormalised amplitude (R̂s = 1kHz). (C) The high-frequency exponent as a function of
the ratio of the mean synaptic amplitude as to the spike parameter δT. At high frequencies r̂ ∼ 1/(iωτ)β with the diffusion
approximation β= 1 only valid for small jumps as<δT. Model parameters are the same as Fig. 1. The code generating the
figure is provided [48].

formula the steady-state shot-noise flux (6) needs to be
derived for each of the three cases. Note first that the tail
function T (v−u) grows exponentially with u with scale as
whereas in the high-voltage limit the probability density
decays exponentially with scale δT, because in this limit
P (u) ' r̄τe−(u−vT)/δT/δT (see Eq. 5). The product of
these growing and decaying exponetial terms within the
integral for the synaptic flux (Eq. 8) will have distinct
behaviour depending on the relative values of as and δT
(see the lower panel of Fig. 1D). For case (i) as < δT
only the distribution of P at large v is relevant (this case
includes the diffusion limit); case (ii) is marginal as=δT;
and for case (iii) where as>δT jumps from the bulk of the
distribution below vT will contribute more significantly
than local jumps.

To derive an analytical approximation for the high-
frequency asymptotics the steady-state synaptic compo-
nent of the flux J̄s(v) must be re-expressed as a function
of the quantity λ. Because λ is itself a function of v−vT
(see Eq. 19) it makes sense to write the leading-order
forms of sJs(v) in the limit of high voltage as functions of
v−vT before substituting for λ. This requires approximat-
ing the integral form for J̄s(v) in equation (8) and making
use of the high-voltage limit P̄ (v) ' r̄τe−(v−vT)/δT/δT.
The derivations of these leading-order forms for each case
are now presented.

Case (i) When as<δT the product of the steady-state
probability density and amplitude tail function grows ex-
ponentially with u in the integrand of equation (8) for J̄s

(see Fig. 1D, blue curve) so J̄s can be approximated by

J̄s(v) ' Rsrτ

v∫
−∞

du

δT
e−(u−vT)/δT−(v−u)/as (31)

which can be integrated to give

Js(v) ' Rsrτas
δT − as

e−(v−vT)/δT . (32)

Case (ii) For the marginal case where as=δT the synap-
tic flux is

J̄s(v) = R̄se
−(v−vT)/δT

v∫
−∞

duP̄ (u)e(u−vT)/as . (33)

When v is large the decaying exponential in P (u) exactly
matches the exponentially growing shot-noise amplitude,
so the integrand tends to a constant (Fig. 2D; green
curve) and the integral grows linearly as r̄τv/δT. The
integral in the previous equation can be rewritten as

r̄τ
(v − vs)
δT

+

v∫
vs

du

(
P̄ (u)e(u−vT)/as − r̄τ

δT

)
, (34)

which is exact; however, a good approximation is found
by setting the upper bound of the integral at infinity
because there is little contribution for v � vT. The
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steady-state shot-noise flux for the marginal case (ii) in
the high-voltage limit can therefore be approximated by

J̄s(v) ' R̄sr̄τe−(v−vT)/δT

(
(v − vT)

δT
+ log(κ)

)
(35)

where the v-independent component

log(κ) =
(vT−vs)
δT

+

∞∫
vs

du

δT

(
δTP̄ (u)

r̄τ
e(u−vT)/as−1

)
(36)

has been written in this way in anticipation of it being
combined with other logarithms in the resulting form for
the firing-rate modulation.
Case (iii) For the case where as>δT the synaptic flux
is dominated by jumps from the bulk of the distribution
so that we extend the integral in Eq. (8) to infinity and
approximate J̄s as

J̄s(v) ' R̄se−(v−vT)/as

∞∫
−∞

duP̄ (u)e(u−vT)/as . (37)

This can be integrated to give

J̄s(v) ' R̄sr̄τe−(v−vT)/asIs (38)

where Is =
∫∞
−∞ due(u−vT)/as P̄ (u)/r̄τ is over a steady-

state quantity and independent of v. Note that in this
case the denominator of the exponential in Eq. (38) is as
rather than δT, as was the case for cases (i) and (ii).

The voltage-dependent forms for the steady-state
synaptic flux J̄s(v) for the three cases given in Eqs. (32),
(35) and (38) can now be used to derive the λ-dependent
forms by subsituting for v − vT using Eq. (19). This
results in

J̄s '
R̄sr̄τas
δT−as

λ

iωτ
(39)

J̄s ' R̄sr̄τ
λ

iωτ
log

(
iωτκ

λ

)
(40)

J̄s ' R̄sr̄τ

(
λ

iωτ

)
δT
as Is (41)

to leading order in a high-frequency expansion for cases
(i-iii) respectively. Note that because of the argument
of the exponential in case (iii) equation (38) fractional
powers of λ and ω are generated.

These forms can then be integrated in the Laplace-
transform equation (15) to finally yield the desired
asymptotics:

r̂(ω) ' R̂s
r̄τ

iωτ

as
δT − as

for as < δT (42)

r̂(ω) ' R̂s
r̄τ

iωτ
log(iωτ κ̃) for as = δT (43)

r̂(ω) ' R̂s
r̄τIs

(iωτ)δT/as
Γ

(
δT
as

+ 1

)
for as > δT. (44)

where κ̃ = κeγ−1 with γ ' 0.5772 (the Euler-Mascheroni
constant) and where Γ(m) is the standard Gamma func-
tion. The high-frequency susceptibility 1/(iω)β exponent
β is therefore not universal: it takes the synaptic-input
independent value β = 1 predicted by the diffusion ap-
proximation only for small synaptic amplitudes as < δT
whereas when as>δT the exponent β= δT/as is a func-
tion of the synaptic amplitude distribution. The latter
condition is relevant experimentally as δT can be less
than 1mV [43] and the mean synapic amplitude, even
in the absence of correlations, is of the order of 1.5mV
between neocortical layer-5 pyramidal cells [11]. The
asymptotic results are plotted (Fig. 2B) with a numerical
solution of the master equation (see Appendix). The ex-
ponent as a function of the ratio as/δT is plotted in Fig.
2C. Note that these asymptotics are different to those for
the shot-noise driven leaky-integrate-and-fire model [34]
because the limits δT→0 and ω→∞ do not commute.

C. Rapid response in the time domain

The same phenomenon can be seen in the time do-
main. Defining the susceptibility χ̂(w) = r̂(w)/R̂, the re-
sponse to a delta-function synaptic-rate impulse Rs(t)=
R̄s + δ(t) is written r(t) = r̄ + χ(t) where r̄ is the
steady-state rate and χ(t) is the inverse Fourier transform∫

dωχ̂eiωt/2π of the susceptibility. A convenient approxi-
mation extrapolates between low and high-frequency lim-
its

χ̂(ω) ' c∞
(iωτ + c0)β

. (45)

The quantity c∞ is the prefactor of the 1/(iωτ)β terms

in equations (42) or (44) without the R̂s factors, and

cβ0 = c∞/χ̂(0). The low-frequency limit of the suscepti-
bility χ̂(0) is the gradient dr̄/dR̄s of the steady-state rate
curve (Fig. 1C). The inverse transform of equation (45)
provides the following approximation

χ(t) ' 1

τ

c∞
Γ(β)

(τ
t

)1−β
e−c0t/τ . (46)

For case (i) where β = 1 the response is finite at t = 0
(previously shown using the diffusion approximation [46])
and equal to r̄as/(δT − as). However, for case (iii) there
is a power law r̄Isβ(τ/t)1−β that diverges at early times.
Hence neuronal populations receiving large-amplitude
low-rate stimuli respond faster to rapid changes in synap-
tic rate than those receiving high-rate low-amplitude
synaptic drive. This increased responsiveness is demon-
strated for a variety of modulated synaptic rates R(t)
in Figure. 3A-C through numerical solution of the full
master equation (see Appendix for details).
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FIG. 3: Populations of EIF neurons receiving large-amplitude low-rate synaptic drive react faster and stronger to transients
than those receiving small-amplitude high-rate drive. (A) The stimulus Rs(t) comprises constant-area Gaussian impulses with
increasing temporal sharpness, a square-pulse current and two chirps at 100Hz and 200Hz all sitting on a background stimulation
that results in a 5Hz firing rate (see Fig. 1 for the three cases i-iii). (B) The firing-rate response for the three cases. Note that
the large-amplitude, low-rate case (iii) response much faster (a 33ms difference at the mid-value) than the diffusion-like case (i)
to the onset of the stimulation. (C) Details of the firing-rate response as marked. The responses to sharpening, constant-area
Gaussian rate impulses converge to the time-domain susceptibility (see Eq. 46): case (i) remains finite whereas cases (ii-iii)
diverge at early times for increasingly sharp impulses. For square-pulse stimuli case (iii) responds fastest to the onset (infinite
gradient at onset) and, similarly, for oscillating waveforms where for the 200Hz chirp case (iii) response is four-times greater
than that of case (i). Neuronal parameters are the same as Fig. 1 and the stimulus parameters are given in the Appendix. The
code generating the figure is provided [48].

V. EIF WITH FINITE SPIKE THRESHOLD

In this and the next section the robustness of the result
of Section IV is examined. Thus far the high-frequency
asymptotics were derived under the condition of an infi-
nite spike threshold vth, which is the voltage at which a
spike is registered and the voltage subsequently reset to
vre. It is relevant to ask what happens if this condition
is relaxed and a finite threshold for registering a spike
is chosen, as would be the case experimentally. It will
now be shown that when the threshold is finite the re-
sponse to input modulation still behaves as if the thresh-
old was infinite, as long as the modulation frequency is
below some cross-over value; above the cross-over the re-
sponse to modulation tends to a constant. However, the
cross-over frequency grows exponentially with vth and so
the results derived in the main text, which used an infi-
nite threshold, remain correct for biophysical parameter
choices.

The continuity equation at the level of the amplitudes
of the modulated parameters is

iωP̂ +
∂Ĵ

∂v
= r̂δ(v − vre)− r̂δ(v − vth). (47)

In the limit ω→∞ it must be that P̂ → 0 because nei-
ther the modulated flux Ĵ or the rates diverge. The im-

plication in the corresponding flux equation evaluated at
threshold vth

Ĵ(vth) = f(vth)P̂ (vth) + Ĵs(vth) (48)

is that the contribution of P̂ will ultimately vanish in the
high-frequency limit. Because Ĵ(vth)= r̂ this leads to the
finite-threshold, infinite-frequency result

lim
ω→∞

r̂ = Ĵs(vth) =
R̂s
Rs

J̄s(vth) (49)

where the proportionality between Ĵs and J̄s at high-
frequency has been used (see discussion around Eq. 14).
Hence, for a finite threshold the infinte-frequency limit
tends to a constant - this is qualitatively different to the
infinite-threshold results for cases (i-iii) derived in the
main text for which r̂ exhibited power-law decays in fre-
quency. However, two aspects of this result should be
noted. The first is that the constant response given in
equation (49) above decreases exponentially with increas-
ing vth by virtue of the voltage dependence of J̄s(v) (see
Eqs. 32, 35 and 38). The second aspect is that the re-

sult just derived required that the term f(vth)P̂ (vth) in
the modulated flux equation can be neglected at increas-
ing frequency. However, the prefactor f(vth) is expo-
nentially large in the threshold vth and so the frequency
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scale above which this term can be safely neglected grows
very rapidly with vth. There is therefore a cross-over fre-
quency below which the infinite-threshold, power-law de-
cay results are valid and above which the finite-threshold
infinite-frequency result begins to dominate.

A. Cross-over frequency dependence on vth

The cross-over frequency can be found by extending
the general result in Section II to finite threshold. We
start with equations (10,11) but use a modified definition
of λ,

λ = iω

vth∫
v

dy

f(y)
, (50)

with the upper limit at vth rather than infinity. The rest
of the derivation follows just like the infinite-threshold
case resulting in equation (15) as before. For moderate
thresholds the integral form for λ in Eq. (50) for the EIF
model is well approximated by

λ ' iωτe−(v−vT)/δT − iωτe−(vth−vT)/δT (51)

which includes an additional term to that in equation
(19). It is this term that generates the constant response
for finite thresholds. However, this term is negligible
for low frequencies or high thresholds, in which case the
infinite-threshold result holds. A cross-over frequency
wc = 2πFc can therefore be found

Fc '
1

2πτ
e(vth−vT)/δT (52)

that grows exponentially with vth. More generally this
can be written as

Fc =
1

2πTth
with Tth =

∞∫
vth

dv

f(v)
(53)

where Tth would have been the time taken to go from
threshold to infinity. The spike threshold only needs
to be a few δTs above vT (or, more accurately, the un-
stable fixed point vu which is close in value to vT) for
the cross-over frequency to be sufficiently high that the
infinite-threshold power-law asymptotics dominates over
all biologically reasonable modulation frequencies. These
results are illustrated in Figure 4 for finite thresholds at
vth = 12, 13 and 14mV. Figure 4A shows the exponen-
tial EIF forcing term f(v) and cross-over frequency (Eq.
53) as an inset. Though the constant asymptotics can be
clearly seen for vth =12mV with a cross-over at ∼125Hz
(first 4B panel) this threshold is just 0.3mV above the
unstable fixed point. Increasing the threshold by 1mV
moves the cross-over frequency to ∼ 1000Hz (middle 4B
panel) and increasing by a further 1mV to 2.3mV above
the unstable fixed point pushes the cross-over to above
6000Hz (last 4B panel). Thus for any reasonable defini-
tion of the spike threshold vth, the power-law decays in
frequency derived in Section IV remain valid.

VI. EIF WITH SYNAPTIC FILTERING

Finally, a dynamical feature of synaptic drive that has
not been considered in the theoretical treatment thus far
is the effect of synaptic filtering due to the finite closing
time of the excitatory synaptic channels. This filtering
can be accounted for by including a dynamics for the
synaptic drive in the voltage equation (1) such that s(t)
is now governed by the equation

τs
ds

dt
= −s+

∑
{tk}

akδ(t− tk). (54)

where τs is the time scale of the synaptic filtering and ak
is drawn from an exponential distribution as before. Note
that in the limit τs → 0 the case of white shot-noise (Eq.
2) is recovered. Away from the region where the spike
is generated, this filtered synaptic drive gives excitatory
post-synaptic potentials of the classical two-exponential
form, with τs setting the timescale of the rise and τ the
decay

v(t) = ak
τ

(τ − τs)

(
e−t/τ − e−t/τs

)
(55)

for an isolated input and t > 0. Experimentally, the
timescale τs for fast excitatory synaptic conductances are
typically quoted as having a mean around 1.7ms [51] and
being in the range 1.3−2ms [52] (though dendritic filter-
ing can increase the spread of the effective time constant
to 2.9ms±2.3ms [11]).

An analytical treatment of the high-frequency asym-
potics for filtered shot-noise is beyond the scope of the
current paper; however, it is straightforward to integrate
the stochastic equations (16,54) and extract the ampli-
tude response for a reasonable range of frequencies. In
the three panels of Fig. 5A the steady-state rate for cases
(i-iii) are plotted, each for τs=0, 1, 2, 3ms. The modula-
tion will again be compared around a steady-state firing
rate of 5Hz and the corresponding incoming rates R̄s for
each case (i-iii) and τs values were extracted numerically
(values given in figure panels). In the four Fig. 5B pan-
els, the modulation amplitudes measured from simula-
tions are plotted for the different τs values. In the first
panel the τs = 0ms simulations are compared to the nu-
merical solution of the master equation (identical to Fig.
2B). For the Fig. 5B panels corresponding to τs=1, 2, 3
a heuristic fit

r̂τs ∼
r̂0√

1 + (ωτs)2
(56)

equivalent to a further filtering of the white-Poissonian
r̂0 numerical solution of the first panel is plotted for com-
parison. This heuristic result gives a reasonable indica-
tion of the behaviour for intermediate frequencies, though
at higher frequencies the modulation appears to be fur-
ther supressed (compare, for example, the red symbols
and red curve in the second panel above for frequencies
300Hz).
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for these three thresholds (as marked) together with infinite-threshold asymptotics (Eqs. 42-44) and the corresponding finite-
threshold high-frequency constant asymptotics (Eq. 49; dotted horizontal lines) for each of the three cases (i-iii) as marked.
The cross-over frequency (vertical dotted line) between the power-law asymptotics seen for an infinite threshold (dashed lines)
and the constant asymptotes (horizontal dotted lines) increases very rapidly (exponentially) with threshold vth. Parameters
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To demonstrate that the stronger high-frequency
firing-rate response for case (iii) over case (i) persists in
the presence of synaptic filtering, the amplitude ratio of
case (iii) to case (i) is plotted for the four different time
constants τs in Fig. 5C. The solid line is the ratio of the
numerical solution of the master equation for τs = 0ms.
Note that the heuristic form gives the same curve for
τs 6=0 because the τs-dependent factors common to cases
(i) and (iii) cancel. The large-frequency limit of the solid
line is given by the ratio of equations (44) and (42) and
for high frequencies grows as (ωτ)1−δT/as , where as is the
case (iii) mean amplitude. The ratio of the cases (iii)/(i)
simulational points (red divided by blue) from Fig. 5B
panels are plotted all together in Fig. 5C for the four
cases up until a frequency where the corresponding case
(i) was less than 2% of the low-frequency limit (dashed
lines in Fig. 5B panels). As can be seen, the increased
responsiveness is apparent even in the case of synaptic
filtering. It becomes increasingly difficult to extract the
ratio for higher frequencies because the response of case
(i) is so strongly suppressed by the synaptic filtering.
This region is unlikely to be physiologically relevant, but
in the interests of full disclosure it should be noted that
for higher frequencies the ratio saturates and appears to
decrease.

VII. DISCUSSION

This paper investigated how synaptic-amplitude dis-
tributions and intrinsic spike-generating non-linearities
interact to set the high-frequency response properties of
neurons. The central theoretical result (Eq. 15) gives
the asymptotic dynamical response in terms of a Laplace
transform of the steady-state shot-noise flux. The re-

sult is fairly general in that it is applicable to any one-
dimensional, non-linear integrate-and-fire model driven
by Poissonian shot-noise with arbitrary synaptic ampli-
tude distribution. It can be noted that the result is
qualitatively unchanged in the presence of inhibition be-
cause the high-frequency response is still expressible as
a Laplace transform of the steady-state excitatory flux
only.

As an example, the result was used to demonstrate
that the firing-rate response of a population of EIF neu-
rons driven by exponentially distributed shot noise is
non-universal because the high-frequency exponent de-
pends on the mean synaptic amplitude as. The diffusion
approximation [42, 46] relevant in the limit of small as
predicts a high-frequency rate response that decays with
the reciprocal of frequency. The analysis here demon-
strates that below a critical value as<δT the prediction
of the diffusion approximation is correct and the high-
frequency response 1/ωβ is universal in that β=1 and is
independent of the external synaptic drive. However, for
mean amplitudes larger than the spike-onset sharpness
as>δT the exponent is non-universal and dependent on
the synaptic amplitude distribution β = δT/as. These
results were shown to be robust to the definition of the
spike threshold and, importantly, to synaptic filtering at
physiological scales. Though beyond the scope of the
current paper the results are also robust against the in-
clusion of inhibition (as discussed above), an absolute
refractory period (this merely modifies the steady-state
rate in Eqs 42-44) and the effects of synaptic conductance
(these are weak for excitation due to the relatively high
reversal potential).

How spike sharpness determines neuronal response
properties [53] has recently come under intense theoreti-
cal and experimental scrutiny [54–59]. Modelling studies
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FIG. 5: Effect of synaptically filtered shot noise. (A) Steady-state rates with one panel for cases (i), (ii) and (iii) in blue, green
and red respectively. The three curves in each panel are for τs=0, 1, 2 and 3ms (circle, star, sqaure and triangle symbols). The
synaptic rates R for 5Hz are given in the panels. (B) Amplitude of the rate modulation comparing cases (i-iii) for four different
time constants as marked for the four panels. Simulations are in symbols and heuristic theory (Eq. 56) lines (color and symbol
convention as for A panels). Note the stronger suppression of the high frequencies as τs increases. (C) Amplitude ratio between
case (iii) and case (i) for synaptic time constants. The increased responsiveness of as>δT (case iii) to as<δT (case i) is present
to at least 100Hz even when there is synaptic filtering: simulation (symbols for τs=0, 1, 2, 3ms with same convention as A) and
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text).

[46, 56, 60, 61] have shown how the spike-onset sharpness
δT sets the high-frequency cut-off. However, this effect is
distinct to that stemming from the interaction between
spike-onset sharpness and the synaptic amplitude distri-
bution highlighted in this paper. Spike-onset sharpness
δT is an intrinsic property of the cell and largely static,
whereas the effective synaptic amplitude distribution is
affected by changes in the nature of the activity in the
presynaptic network.

Experimental investigations into the high-frequency re-
sponse properties of neurons typically involved Gaus-
sian input [54, 55, 57, 59, 61] or Poissonian input but
with modulation via an additional sinusoidal current [58].
These experimental paradigms are distinct from the sce-
nario considered here in which a Poissonian input rate
is modulated and synaptic amplitudes are drawn from a
distribution. I am unaware of existing experimental stud-
ies of the firing-rate susceptibility under these conditions;
however, such experiments should be relatively straight-
forward to perform and would provide an empircal test
of the theoretical predictions in this paper.
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Appendix. Numerical methods

Numerical solutions of the system are complicated by
the zero in f(v) at the unstable fixed point and the ex-
ponential decay of f(v) for large v: this is particularly
the case for the computation of high-frequency proper-
ties. A number of approaches are used including direct
solution of the steady-state rate and linear response, as
well as a full solution of the shot-noise master equation
in a transformed coordinate system.

Steady-state rate and density

It is straightforward to adapt the Threshold Integra-
tion method [49], originally derived for diffusion pro-
cesses, to the case of shot-noise input. This involves
rescaling the density and fluxes by the steady state rate
r̄, for example P̄ = r̄p̄ with analagous definitions for J̄
and J̄s. Equation (29) for the synaptic flux can be re-
arranged

d̄s
dv

+ ̄s

(
1

as
+
R̄s
f

)
=
R̄s
f
θ(v − vre) (57)

where equation (4), which gives the density in terms of
the fluxes p̄ = (̄ − ̄s)/f(v), has been used and from
the continuity equation (3) the scaled steady-state flux
is simply ̄ = θ(v − vre). Equation (57) can be solved
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analytically or numerically by integrating up from vu →
vth (where vth is sufficiently high that its value doesn’t
not affect the result) and then down from vu → vs. Note
that ̄ = ̄s = 1 at vu provides the initial conditions. This
also implies the scaled density at the unstable fixed point
is

p̄(vu) =
1

as(R̄s + f ′(vu)
(58)

which is found by taking the derivative of equation (4)
and substituting for the derivative of ̄s using equation
(57). Finally, the steady-state firing rate r̄ is recovered
by noting P̄ integrates to 1 so that p̄ integrates to 1/r̄.
This method was used to generate the figure panels 1C,
1D.

Rate-response to modulated synaptic drive

At the linear level of the response to weak harmonic
modulations in the incoming synaptic drive the continu-
ity equation (3) and synaptic flux equation (29) result in

two first-order differential equations linking Ĵ and Ĵs

dĴ

dv
+ iω

Ĵ

f
− iω Ĵs

f
= r̂δ(v − vre) (59)

dĴs
dv

+ Ĵs

(
1

as
+
R̄s
f

)
− R̄s

Ĵ

f
= R̂sP̄ (60)

where P̄ can be found from the solution to (57) and the

relation P̂ = (Ĵ − Ĵs)/f(v) has been used. Note that
this relation also implies that at the unstable fixed point
Ĵ(vu) = Ĵs(vu). This system of coupled differential equa-
tions has two inhomogeneous terms: one proportional to
r̂ the other proportioal to R̂. A convenient method for
numerical solution, therefore, is to separate the full solu-
tion into two independent components each proportional
to one of the inhomogeneous terms:

Ĵ = r̂̂r + R̂ŝ
R and Ĵs = r̂̂rs + R̂ŝ

R
s . (61)

These two components can be solved in much the same
way as was the steady state and then combined to yield
r̂ (see for example Fig. 2B) as is now described.
Step 1. The solution component that satisfies the inho-
mogeous term in equation (59) involving the output rate
r̂ obeys the equation pair

d̂r

dv
+ iω

̂r

f
− iω ̂

r
s

f
= δ(v − vre) (62)

d̂rs
dv

+ ̂rs

(
1

as
+
R̄s
f

)
− R̄s

̂r

f
= 0. (63)

At the unstable fixed point ̂r(vu) = ̂rs(vu) but, unlike
for the steady-state case, this value at vu is not known
a priori. However, the value of the modulated flux ̂r

at threshold vth is known and equal to 1 (because r̂ has

been scaled out). The strategy is therefore to integrate
equation pair (62,63) from vu with initial conditions for
(̂r, ̂rs) of (1, 1) and then divide through both fluxes by
̂r(vth). With the values now known at vu the equation
pair (62,63) is integrated down from vu→vs. This com-
pletes the solution for the component that is proportional
to r̂.
Step 2. The component that addresses the inhomoge-
neous term proportional to R̂s obeys the equations

d̂R

dv
+ iω

̂R

f
− iω ̂

R
s

f
= 0 (64)

d̂Rs
dv

+ ̂Rs

(
1

as
+
R̄s
f

)
− R̄s

̂R

f
= P̄ (65)

where again we have ̂R(vu) = ̂Rs (vu) at a value that is
not known a-priori. In this case we will use the result
that at threshold ̂R = 0 because the full flux is carried
by the ̂r term. Let’s write the solution for v > vu as the
mix

̂R(v) = ̂R(v; 0) + κ̂r(v; 1) (66)

with a similar definition for ̂Rs (v) with the same κ. Here
̂R(v; 0) comes from the solution to equation pair (64,65)
for v > vu with initial conditions at vu of (0, 0). The
term, ̂r(v; 1), comes from the solution to equation pair
(62,63) for v > vu with initial conditions at vu of (1, 1).
Note that in the last case, because we are interested in
the voltage range v > vu the Dirac-delta function does
not feature. Once these sub-solutions are obtained κ can
be extracted from the condition that ̂R(vth) = 0 so that
κ = −̂R(vth; 0)/̂r(vth; 1). This now gives the correct
mix for the quantities ̂R(v) and ̂Rs (v). Given that their
values at vu are now known, equation pair (64,65) can
be integrated down from vu → vs. This completes the
derivation of the component proportional to R̂s.
Step 3. We now have the solutions for ̂R and ̂r over the
full voltage range. At the stable fixed point vs the flux
Ĵ is zero. Hence, from the first of equation pair (61) we

have 0 = r̂̂r(vs)+R̂ŝ
R(vs) so that r̂ = −R̂ŝR(vs)/̂

r(vs)
which constitutes the numerical solution for the modu-
lated rate.

General numerical solution of the master equation

Following similar approaches for leaky-integrate and
fire models [28–32] the full system can be solved numeri-
cally by integrating the master equation, defined through
the combination of equations (3, 4, 6). Again, it was
found that a naive approach had poor convergence prop-
erties: here due to the long exponential tail in the dis-
tribution at high voltages. To avoid this a rescaling was
sought that compressed the voltage range above vT. The
following transformation

z =
e(v−vT)/δT + v/vT

e(v−vT)/δT + v/vT + 1
(67)
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combined with a fourth-order Runga-Kutta scheme gen-
erated accurate results with reasonable integration times.
The transformation is monotonic, with the property that
for v < vT the mapping is linear z∼v/vT whereas in the
limit of high voltages z→1. Hence, the range of z is finite
(between ∼vu/vT and 1). It was also convenient to mol-
lify the reset mechanism from a delta function to a Gaus-
sian centred on vre with a standard deviation (0.1mV)
that was sufficiently narrow such that its width did not
effect the final result significantly but, nevertheless, mit-
igated the effects of the discontinuity in probability den-
sity on the integration scheme. This method was used to
generate the response in Fig. 3B-C.

Parameters used for the stimulation in figure 3

To illustrate the effect of the different high-frequency
asymptotics in the time domain an input-rate stimulation
Rs(t) was constructed (see Fig. 3A) comprising: the in-
stantaneous switching from zero to a finite value after
5ms, which can be considered as a model of the transi-
tion from a down state to an up state; three Gaussian
pulses of decreasing duration but fixed area g1(t), g2(t),
g3(t) that converge towards a Dirac δ-function impulse;
a step rate increase followed by step decrease s(t); and
two chirps c1(t) and c2(t) of different frequency demon-
strating that the high-frequency asymptotics are relevant
even for transitory oscillatory input. The time t ran from
0→ 570ms and was sampled at 2µs.

Using case (i) as an example (Fig. 3A: blue) we write

Ri(t) = θ(t− 5)(Ri + γiS(t)) (68)

where Ri is the steady-state input for case (i) of 2.1kHz
(see Fig. 1C: Rii = 0.59kHz and Riii = 0.14kHz for
cases ii and iii) and γi is a gain factor such that each
of the cases will have the same late-time response to a
weak step-change in synaptic input rate around a 5Hz
steady-state output rate. This normalises the response
to slowly varying stimuli across cases (i-iii) ensuring a fair
comparison of the high-frequency response. Values were:
γi = 0.025kHz, γii = 0.0126kHz and γiii = 0.0059kHz.

The shape function is common to each of the cases

S(t) = g1(t) + g2(t) + g3(t) + s(t) + c1(t) + c2(t) (69)

with the components described above. Quantitatively,
the three Gaussian pulses took the form

gk(t) = 10 exp(−(t− tgk)2/2σ2
gk)/
√

2πσgk (70)

where tg1 = 140ms, tg2 = 190ms and tg3 = 240ms; σg1 =
1.7ms, σg2 = 0.85ms and σg3 = 0.42ms to give full-width
half-maxima of 4ms, 2ms and 1ms respectively. The step-
change in rate took the form s(t) = 2(θ(t − ts1) − θ(t −
ts2)) where ts1 = 290ms and ts2 = 350ms. Chirps were
implemented by multiplying a cosine and a Gaussian

ck(t) = κk cos(2πfkt) exp(−(t− tck)2/2σ2
ck) (71)

where κ1 = 5 and κ2 = 7; tc1 = 445ms and tc2 = 520ms;
and σc1 = σc2 = 10ms.
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