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Abstract: Bacteriophage (phage) therapy is a promising alternative to antibiotics for the treatment of
bacterial pathogens, including Clostridium difficile. However, as for many species, in C. difficile the
physical interactions between phages and bacterial cells have not been studied in detail. The initial
interaction, known as phage adsorption, is initiated by the reversible attachment of phage tail fibers
to bacterial cell surface receptors followed by an irreversible binding step. Therefore binding can
dictate which strains are infected by the phage. In this study, we investigated the adsorption rates and
irreversible binding of three C. difficile myoviruses: CDHM1, CDHM3 and CDHM6 to ten strains that
represent ten prevalent C. difficile ribotypes, regardless of their ability to infect. CDHM1 and CDHM3
phage particles adsorbed by ~75% to some strains that they infected. The infection dynamics for
CDHM6 are less clear and ~30% of the phage particles bound to all strains, irrespective of whether a
successful infection was established. The data highlighted adsorption is phage-host specific. However,
it was consistently observed that irreversible binding had to be above 80% for successful infection,
which was also noted for another two C. difficile myoviruses. Furthermore, to understand if there
is a relationship between infection, adsorption and phage tail fibers, the putative tail fiber protein
sequences of CDHM1, CDHM3 and CDHM6 were compared. The putative tail fiber protein sequence
of CDHM1 shares 45% homology at the amino acid level to CDHM3 and CDHM6, which are identical
to each other. However, CDHM3 and CDHM6 display differences in adsorption, which highlights that
there is no obvious relationship between putative tail fiber sequence and adsorption. The importance
of adsorption and binding to successful infection is often overlooked, and this study provides useful
insights into host-pathogen interactions within this phage-pathogen system.

Keywords: Clostridium difficile; phage adsorption; phage tail fibers; phage-host interactions

1. Introduction

Clostridium difficile is the most common cause of infectious antibiotic-associated diarrhea in the
developed world [1,2]. C. difficile infection (CDI) predominately stems from the administration of broad
spectrum antibiotics, which causes dysbiosis, allows C. difficile to colonize the gut and cause disease [3].
Patients can suffer from mild diarrhea to pseudomembranous colitis to death in severe infections
and high rates of 20% disease relapse are observed following antibiotic therapy [4–6]. To add to the
burden, over 350 different subgroups have been identified, which are grouped into ribotypes based
on their sequences between 16S and 23S rRNA genes [7,8]. The most prevalent C. difficile ribotypes
worldwide associated with infection are 002, 005, 014/020, 015 and the hypervirulent ribotypes 027
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and 078 [9]. Only three antibiotics (metronidazole, vancomycin and fidaxomicin) are available to treat
CDI, and worryingly C. difficile is beginning to develop resistance against them [10,11]. Consequently,
replacements or adjuncts to antibiotics are needed to treat CDI. Bacteriophages (phages) are viruses
that target and kill bacteria with high specificity to the level of individual bacterial species and even
strains, and they have great promise to be developed as alternative therapeutics for CDI [12,13].

Isolating phages that lyse clinically prevalent C. difficile ribotypes has proven to be challenging,
in part due to the difficulties with working with an anaerobic organism [14,15]. However significant
progress has been made, and phages have been isolated that can lyse clinically relevant ribotypes [16–22]
and are specific so they do not infect other Clostridia species or hospital pathogens, such as
Pseudomonas aeruginosa [23]. To develop a phage-based product to target multiple C. difficile ribotypes,
individual and combinations of seven isolated phages: CDHM1–6 and CDHS1 were tested. CDHM3
was identified as the broadest phage from the collection and was able to infect 31/80 strains from
12 different ribotypes, which included all seven strains of ribotype 014/020 screened. However, significant
bacterial lysis was observed with a four-phage cocktail (CDHM1, 2, 5, 6) that was able to completely
eradicate C. difficile in vitro [15]. The same four-phage cocktail could significantly reduce C. difficile
colonization in vivo using hamster and in Galleria mellonella larva models [15,23–25]. Similarly, in vitro
batch fermentation human colon models and human cell lines [26] have provided useful insights in to the
specificity of C. difficile phages and shown phages do not have a deleterious impact on commensal gut
bacteria [27–29].

Although we now have over 10 C. difficile phages in our collection, little is known about their
physical interactions with their bacterial host. Understanding the initial phage-host interaction is
an important step towards determining infection parameters, which could help answer if phages
can bind to cells they cannot infect and if so is bacterial resistance at this level [30]. Adsorption and
successful attachment can then potentially be exploited to broaden the infectivity of phages and to
develop innovative biotechnological phage-based tools for bacterial diagnostics [31,32].

Phage binding to bacterial cells occurs when the phage receptor-binding proteins or tail fibers,
located at the tip of the tail, bind to their target receptor(s) on the bacterial cell [33]. The attachment
between the phage tail fibers and bacterial receptors is highly specific and even within a single bacterial
species, multiple phage receptors are generally present [34,35]. Consequently, tails fibers play a vital
role in determining the host range and in part dictate which bacterial strains are lysed by the phage [29].
Phage adsorption occurs by a three-step process of initial contact, reversible attachment and irreversible
binding [32]. The first step involves random phage collision governed by Brownian motion or diffusion
and once adsorbed the phages undergo a “random walk” on the bacterial cell surface until it is captured
by the phage receptor [33]. Then phages bind reversibly to their receptor on the bacterial surface and
can still become de-absorbed, a process which has been experimentally shown to keep the phage close
to its specific receptor [36]. The final step is permanent as phages bind irreversibly either to the same
receptor where they were reversibly bound to, or to a second receptor [29]. Irreversible phage binding
causes conformational rearrangement of phage structures, generally the baseplate, which in turn leads
to the insertion of viral DNA into the bacterial host [30]. Consequently, successfully reversible and
subsequent irreversible phage binding is necessary for phage infection.

Extensive adsorption studies have been conducted for phages infecting Gram-positive bacteria
including: Bacillus subtilis, Listeria monocytogenes and Lactococcus lactis [37–41]. However, studies on
reversible and irreversible adsorption of C. difficile phages to clinically relevant strains they can and
cannot infect have not been conducted. In this study, we determined the adsorption dynamics of three
C. difficile myoviruses: CDHM1, CDHM3 and CDHM6 as we hypothesize there is a link between phage
binding and infection. These three phages were selected of the basis that they have similar host ranges;
CDHM1 and CDHM6 are part of four-phage cocktail previously shown to effectively lyse C. difficile:
and all three phages can all be amplified on the same C. difficile strain [13,22,25]. Adsorption of all three
phages to ten different clinically relevant C. difficile strains, regardless of whether they could infect the
strain or not was investigated [15]. The specificity of the phages was determined by also assessing their
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adsorption dynamics on strains of Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA)
and Pseudomonas aeruginosa. In addition, irreversible adsorption was analyzed for all strain-phage
combinations to determine whether below ~40% irreversible phage adsorption correlated with the
inability of the phage to infect that particular strain. Furthermore, to determine if host range,
phage adsorption and irreversible binding is generalized for C. difficile phages, binding was investigated
for further two C. difficile phages. Additionally, to understand if there is a link between adsorption,
infection and putative tail fiber protein sequence, these protein sequences of CDHM1, CDHM3 and
CDHM6 were compared against each other, and to other previously isolated C. difficile phages. Our data
suggests that although there is no link between C. difficile phage infection, adsorption and putative tail
fiber protein sequence, there is a link between irreversible phage binding and infection.

2. Materials and Methods

2.1. Bacterial Strains and Phages Used and Their Growth Conditions

The ten C. difficile strains used in this study were AKC (ribotype 002), AIN (ribotype 005),
ASH (ribotype 013), ATJ (ribotype 014/020), ARU (ribotype 026), CD105LC1 (ribotype 027), CD105HE1
(ribotype 076), ASS (ribotype 078), APT (ribotype 087) and ARZ (ribotype 107). All C. difficile strains
were from our laboratory collection. All strains, except CD105HE1 were isolated from clinical fecal
samples from patients who tested positive for C. difficile toxins, strains were ribotyped in our laboratory
as previously described [40]. Strain CD105HE1 was isolated from the environment [42,43]. All strains
were stored in 25% glycerol at −80 ◦C and routinely cultured on 1% brain heart infusion (BHI;
Oxoid, Basingstoke, UK) supplemented with 7% defibrinated horse blood (TCS Biosciences Ltd.,
Buckingham, UK) and incubated anaerobically (10% H2, 5% CO2 and 85% N2, MinMACS, Don Whitley
Scientific, Bingley, UK). To prepare liquid cultures single colonies were inoculated into fastidious
anaerobic broth (FAB; BioConnections, Kynpersley, UK) and stored in the anaerobic chamber at 37 ◦C.

Escherichia coli and MRSA strains were isolated in our laboratory and the Pseudomonas aeruginosa
PAO1 ATCC 15692 strain were used in this study [43]. All strains were stored as 50% glycerol stocks at
−80 ◦C and routinely grown on LB 1% agar plates incubated overnight at 37 ◦C. To prepare liquid
cultures a single colony was taken from plates and inoculated into 5 mL LB broth. Cultures were
grown overnight at 37 ◦C with shaking at 100 rpm.

The C. difficile myoviruses CDHM1, CDHM2, CDHM3, CDHM5 and CDHM6 were isolated in our
laboratory and have previously been described in detail [15,25,28,42]. All phages were individually
propagated to 109 plaque forming units (PFU)/mL in broth cultures of strain CD105HE1 (will be
referred to as propagation host), filtered using 0.22 µL filters (Merck Millipore Ltd., Nottingham, UK)
and stored at 4 ◦C until use.

2.2. Phage Host Range Analysis and Efficiency of Plating

The phages were screened for lytic activity on C. difficile strains using the spot testing method [15,44].
Briefly, 300 µL of an overnight C. difficile liquid culture grown in FAB was mixed with 3 mL of 0.5%
BHI agar overlay with 0.01 M CaCl2, 0.4 M MgCl2 (will be referred to as salts) and poured onto BHI
1% agar circular 90 mm plates. To the agar overlay 10 µL of phage lysate at titers of ~5 × 108 PFU/mL
were spotted, incubated under anaerobic conditions overnight at 37 ◦C and plates were assessed for
lytic activity.

Phages were tested for lytic activity on E. coli, P. aeruginosa and MRSA using the spot testing
method [15,44]. Overnight liquid cultures of the bacteria grown in LB broth were mixed with 3 mL LB
0.5% agar and poured onto LB 1% agar plates, to which 10 µL of phage lysate were spotted. Plates were
incubated at 37 ◦C overnight and assessed for lytic activity.

Efficiency of plating (EOP) was assessed using a previously described method [44,45]. Briefly a
series of 10-fold dilutions were made for each phage and 10 µL of the dilutions were spotted on lawns
of C. difficile. Average PFU/mL values were calculated from three biological replicates, each with three
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technical repeats, which were then compared against the EOP of the phages on their propagation host
CD105E1 and are presented as percentage differences.

2.3. Phage Adsorption and Irreversible Phage Binding

Liquid cultures of C. difficile in BHI broth; and E. coli, P. aeruginosa and MRSA in LB broth were
incubated overnight and in the morning were diluted 100-fold in 1 mL of fresh media. C. difficile cultures
were incubated anaerobically till an optical density (OD550) of 0.2 was reached and E. coli, P. aeruginosa
and MRSA cultures were incubated at 37 ◦C with shaking at 100 rpm till the cultures were at OD600 of
0.2. At these OD readings, bacterial counts were ~4 × 107 colony forming units (CFU)/mL, which was
previously determined by growth curves. At this OD (reflective of exponential growth), the phage
being tested was added at a multiplicity of infection of 1. In addition 1 mL of salt solution (0.01 M CaCl2,
0.4 M MgCl2) was added, as it significantly improved phage adsorption (Supplementary Figure S1)
and is consistent with the literature [33,35,46]. The suspension was mixed by gentle inversion and
incubated for 30 min in conditions specific for the bacterial species being examined.

A 30 min incubation time was selected as the optimal sample point to quantify the number
of total phages adsorbed, as at 40 min new phage progeny were released for all phages on their
propagation host. A phage-only control was also included to determine if there are interactions
between the phage and the media; if the phages were being degraded by experimental procedure and
to confirm the adsorption data collected were not experimental artifacts. After the 30 min incubation
period samples were centrifuged at 21,000× g for 10 min at 4 ◦C to pellet phage-adsorbed cells.
The supernatant contained free, unabsorbed phages and will be referred to as S1. The supernatant was
serially diluted 10-fold in BHI broth and spot-tested on a lawn of their host, CD105E1 to determine
phage titers [44]. The percentage of total phage particles adsorbed was calculated by comparing phage
titers in the phage-only control supernatant to the number of free phages in the supernatant of the
different bacterial-phage suspensions. Percentages were plotted on a bar graph using the software
GraphPad Prism version 7 [47] and average data was plotted from three biological repeats, each three
technical replicates.

To determine what proportion of phages had irreversibly bound to the pellet the phage-adsorbed
cells were re-suspended in 1 mL of BHI broth and vortexed to remove reversibly bound phage particles.
The samples were centrifuged (21,000× g for 10 min at 4 ◦C) to re-pellet the bacteria. The supernatant
was then removed, serially diluted 10-fold and spot-tested to determine phage titers. The supernatant
contained reversibly bound phage and will be referred to as S2.

To calculate total bound phage and the percentage of irreversibly bound phage, the following
three formulae were used:

(i) Phage titer in control sample − S1 = total bound phage
(ii) S2 × 100/total bound phage = percentage reversibly bound phage
(iii) 100 − percentage reversibly bound phage = percentage of irreversibly bound phage.

2.4. Alignment and Phylogenetic Analysis

The C. difficile putative tail fiber sequence of CDHM1 (locus ID: YP_009032171.1) is available on NCBI
and putative tail fiber sequences of CDHM3 (locus ID: MH256665) and CDHM6 (locus ID: MH256666)
have been deposited. For each phage, to date only one protein has been annotated as the putative tail fiber
protein. A further 15 putative tail fiber protein sequences of other C. difficile myoviruses were obtained
from Genbank, their accession numbers are listed in Supplementary Table S1.

Protein sequence alignment and phylogenetic analysis of tail fiber proteins were conducted
using the program Molecular Evolutionary Genetics Analysis (MEGA) package, version 7
(Pennsylvania State University, Pennsylvania, USA). Phylogenetic analysis of C. difficile tail fiber
proteins was conducted using the Neighbor-joining (NJ) method and bootstrapped with 500 replicates.
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2.5. Statistical Analysis

Experimental data obtained from three independent biological replicates, each with three technical
replicates were analyzed with the two-tailed student’s t-test. Results were significant if p values were ≤ 0.05.

3. Results

3.1. Phage Host Range and Effeciency of Plating

The lytic activity of phages CDHM1, CDHM3 and CDHM6 was assessed on ten bacterial
strains that are representatives of ten clinically relevant C. difficile ribotypes worldwide (Table 1).
All phages could lytically infect strain ATJ (ribotype 014/020) and their propagation host (as previously
described [15]). On some strains the infection appeared to be incomplete, for example phages CDHM1
and CDHM6 produced turbid, hazy clearings on strain ARU (ribotype 026), which indicates that it is
not a true lytic infection. Similarly, CDHM3 produced turbid clearings on CD105LC1 (ribotype 027)
and ASH (ribotype 013). All three phages were unable to infect representative C. difficile strains from
ribotypes 002, 005, 013, 078, 087 (as previously described [15]) and 107. As expected the phages could
not lyse the E. coli, P. aeruginosa and MRSA strains examined. It should be noted here that all three
phages are able to lyse more C. difficile strains but for this study we only focused on strains that
represent clinically relevant ribotypes worldwide [15].

To explore both the adsorption dynamics and probe the efficiency of the phages to infect different
strains, EOP studies were conducted. The EOP of CDHM1 on strain ATJ (ribotype 014/020) was
not significantly different to the EOP on its propagation host (p > 0.05). In contrast there was ~20%
reduction in phage CDHM3 and CDHM6 titers on strain ATJ when compared to their propagation
host CD105HE1. On strains where only turbid clearing was observed from the host range analysis,
hazy clearings were observed until 10−2 dilution of the phage lysate stocks. At higher dilutions no
clearing or plaques were present, which suggests that the phages are unable to replicate in these strains
and that the observed clearing could be caused by another mechanism, such as lysis from without.

Table 1. Host range and efficiency of plating of C. difficile phages CDHM1, CDHM3 and CDHM6.

C. difficile Ribotype Strain Identity
Infectivity of Phages 1 Efficiency of Plating (%)

CDHM1 CDHM3 CDHM6 CDHM1 CDHM3 CDHM6

013 ASH − + − 0 0 0
014/020 ATJ ++ ++ ++ 100 73 81

026 ARU + − + 0 0 0
027 CD105LC1 − + − 0 0 0
076 CD105HE1 ++ ++ ++ 100 100 100

1 No infection is presented as −; hazy and turbid clearing by + and infection by ++.

3.2. Adsorption of CDHM1, CDHM3 and CDHM6 to Relevent C. difficile Ribotypes and Other Pathogens

3.2.1. Adsorption Dynamics of CDHM1

Within 30 min over 75% of CDHM1 had adsorbed to strains ATJ (ribotype 014/020) and CD105HE1
(ribotype 076), which were both strains the phage can infect and has a high EOP on (Figure 1a and
Supplementary Figure S2a). These results suggest that a high proportion of phage binding correlates
with successful infection and subsequent replication of CDHM1. In contrast ~15% of CDHM1 particles
bound to strain ARU (ribotype 026), on which turbid clearing was observed from the host range
analysis (Table 1). For the remaining seven bacterial strains, which were not infected by the phage,
there was ~15% adsorption. Also, ~15% phage particles bound to the P. aeruginosa strain. CDHM1
bound by ~5% to E. coli and MRSA strains, comparable to the phage control.
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3.2.2. Adsorption Dynamics of CDHM3

Approximately 70% of phage CDHM3 particles bound to its propagation host (CD105HE1) on
which it clearly undergoes a lytic infection (Figure 1b and Supplementary Figure S2c). The dynamics
with other strains are a little more complex as ~28% particles adsorbed to strain ATJ, which CDHM3
infects with a high EOP, and ASH (ribotype 013), a strain that CDHM3 can only partially clear (Table 1).
This result suggests adsorption dynamics for a given phage may differ for different host-phage
combinations and a high adsorption percentage does not always result in a lytic infection. CDHM3
also produced turbid clearing on the CD105LC1 (ribotype O27) strain and phage binding was ~18%.
Similarly, ~18% of phages bound to APT (ribotype 087) and ARZ (ribotype 107), which were both
strains the phage could not infect. CDHM3 did not display non-specific binding to E. coli, P. aeruginosa
and MRSA strains as binding values were equivalent to the phage-only control.

3.2.3. Adsorption Dynamics of CDHM6

Adsorption of CDHM6 did not follow the patterns observed with phages CDHM1 or with
CDHM3 (Figure 1c and Supplementary Figure S2e). It was observed that 3–30% of phage CDHM6
were adsorbed to all C. difficile, E. coli, P. aeruginosa and MRSA strains, regardless of whether the phage
was able to sustain a lytic infection on the strain. Interestingly, CDHM6 bound by less than 20% to its
propagation host and by ~22% to strain ATJ, which are both strains the phages can infect. CDHM6 had
the highest adsorption percentage at ~30% to AKC (ribotype 002), which is a strain the phage does
not infect. CDHM6 partially cleared the ribotype 026 strain and ~13% phage adsorbed to the cells,
which was the same binding percentage noted for strain ASS (ribotype 078) that was not infected by
the phage. On E. coli, P. aeruginosa and MRSA strains the phage bound by less than 5%.
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Figure 1. The adsorption of phages CDHM1 (a), CDHM3 (b) and CDHM6 (c) to ten representative
isolates of clinically relevant C. difficile ribotypes and representative E. coli, P. aeruginosa and MRSA
strains. A phage-only control in buffer alone was included. Bar graphs show phage adsorption after
30 min. Bars represent average percentage adsorption from three independent experiments, each with
three technical repeats and error bars represent standard error of the mean.
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3.3. Irreversible Binding of Phages CDHM1, CDHM3 and CDHM6 to Different C. difficile Ribotypes

Phages CDHM1, CDHM3 and CDHM6 revealed differences in adsorption dynamics between
different phage-strain combinations. To further probe the adsorption dynamics of phage-strain
combinations, we compared the percentage of irreversibly bound phages to total bound phages
(Table 2) for all C. difficile strains used in the adsorption studies (Figure 1). The data suggests that
there was a distinct correlation between high irreversible phage binding from the total phages bound
(includes both reversible and irreversible bound phages) and infection. This is because >85% of
irreversible binding was noted for all phages to strains the phages could infect, regardless of whether
the total phage bound was 20% or 75%. Additionally, on strains where turbid clearing was observed,
50–60% phages irreversibly bound. For example, CDHM1 and CDHM6 irreversibly bound to the
ribotype 026 strain by ~60% and ~58% respectively from the total phage bound. On C. difficile strains
not infected by the phages irreversible binding was consistently below 15%, indicating 85% of phages
were reversibly bound from the total phage bound. The two exceptions were irreversible binding of
CDHM1 to strain APT by an average 29% and CDHM6 to strain ASH by 21%.

The irreversible binding protocol involved a step where bacterial-phage samples were vortexed
to remove reversibly bound phages but vortexing could potentially structurally damage the phage,
which can lead to a reduction in phage titers. To determine if this occurred phage-only controls were
included in the study. Results highlighted vortexing did not cause a significant drop in phage titers for
all phages used in this study (Supplementary Figure S2).

Table 2. Percentage of irreversibly bound phages calculated from the total number of phages bound to
different clinically relevant C. difficile ribotypes.

Ribotype Strain Identity
Irreversible Binding (%) of C. difficile Phages 1

CDHM1 CDHM3 CDHM6

002 AKC 13 4 14
005 AIN 18 12 15
013 ASH 3 51 21

014/020 ATJ 90 93 90
026 ARU 59 2 58
027 CD105LC1 7 52 5
076 CD105HE1 95 88 97
078 ASS 16 9 7
087 APT 29 8 10
107 ARZ 9 12 7

1 Average irreversible phage binding was calculated from three independent experiments each with three
technical repeats.

3.4. Host Range, EOP, Adsorption and Irreversible Binding of Other C. difficile Phages to Different Ribotypes

Adsorption dynamics and irreversible phage binding were investigated for two more C. difficile
myoviruses: CDHM2 and CDHM5 to all the clinically relevant strains used in this study. This was
to determine whether the adsorption dynamics and patterns observed for irreversible binding are
generalized for C. difficile phages (Table 3). Both phages CDHM2 and CDHM5 were selected as they are
part of the four-phage cocktail, previously shown to lyse C. difficile in vitro and in vivo [15,17,25–27]
and they share the same propagation host as CDHM1, CDHM3 and CDHM6.

CDHM2 and CDHM5 were only able to infect strains ATJ and CD105HE1, with high EOP at 95%
and 100% respectively. The adsorption profiles of phages CDHM2 (Supplementary Figure S2b) and
CDHM5 (Supplementary Figure S2d) were very similar to CDHM1 as they bound by high percentages
to strains they could infect. CDHM2 bound by high adsorption efficiencies to ATJ by ~82% and to
CD105HE1 by ~79% and CDHM5 adsorbed to ATJ and CD105HE1 by ~82% and ~80% respectively.
For all other isolates CDHM2 and CDHM5 could not infect, adsorption ranged from 2–37%, similar to
CDHM3 and CDHM6. Therefore, the absorption data highlights and supports the observation that
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adsorption efficiencies vary for different C. difficile host-phage combinations and no generalized trends
were seen.

However, the irreversible phage binding data for CDHM2 and CDHM5 further supports that
there is a strong correlation between high irreversible binding and infection as both phages irreversibly
bound to strains ATJ and T6 by over 90% (Table 3). This was consistently observed for CDHM1,
CDHM3 and CDHM6, which could suggest that high irreversible binding and infection is generalized
for C. difficile myoviruses.

Table 3. The percentage of phages CDHM2 and CDHM5 that adsorbed and irreversibly bound to
different clinically relevant C. difficile ribotypes.

Ribotype Strain Identity

CDHM2 CDHM5

Adsorption
(%) 1

Irreversible
Binding (%) 1

Adsorption
(%) 1

Irreversible
Binding (%) 1

002 AKC 22 29 33 29
005 AIN 11 6 10 12
013 ASH 3 11 13 9

014/020 ATJ 82 92 82 97
026 ARU 32 2 10 15
027 CD105LC1 36 13 29 21
076 CD105HE1 79 98 80 97
078 ASS 20 30 17 20
087 APT 17 8 10 30
107 ARZ 26 36 17 14

1 Average adsorption and irreversible phage binding percentages were calculated from three independent
experiments each with three technical repeats.

3.5. Alignement of Putative Phage Tail Fibers

To understand the adsorption dynamics of CDHM1, CDHM3 and CDHM6 phages at a
genetic level, the sequences of each putative tail fiber protein were analyzed. Previous studies of
well-characterized phages that infect Gram-positive bacteria have experimentally shown that their
phage tail fibers play an important role in phage adsorption and binding to the bacterial cell receptor
to initiate infection. The genes encoding tail fibers are located downstream of the tape measure
protein and upstream of the holin protein [48,49]. Taking this into account, the location of the putative
tail fiber proteins annotated within the CDHM1, CDHM3 and CDHM6 phage genomes were also
located in the same position in their genomes. The putative tail fiber protein sequences of CDHM1,
CDHM3 and CDHM6 were aligned and compared to each other (Figure 2). Despite the differences
in phage adsorption the putative tail fiber protein sequences of phages CDHM3 and CDHM6 were
100% identical. However, the CDHM1 putative tail fiber protein only shared 45% sequence homology
with both phages. In addition, phage CDHM1 putative tail fiber protein sequence is much shorter
in amino acid length compared to CDHM3 and CDHM6. The alignment shows that most of the
similarities between the CDHM1 sequence and the other two putative tail fiber proteins are towards
the N-terminus, very little similarity is seen at the C-terminus.
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Figure 2. Alignment of putative tail fiber protein sequences of C. difficile phages CDHM1, CDHM3 and
CDHM6. The alignment tool MUSCLE was used and gaps in the sequence are indicated with dashed
lines and numbers above mark the amino acid number. The length of each sequence was 267, 368 and
368 amino acids for phages CDHM1, CDHM3 and CDHM6 respectively. The color of the amino acid
represents its percentage identity to the consensus sequence, where the darker the color the higher the
percentage identity.

3.6. Phylogentic Analysis of Putative Tail Fiber Proteins of C. diffiicle Phages

To analyze the evolutionary relationship of the putative tail fiber protein sequences of CDHM1,
CDHM3 and CDHM6, they were compared to 15 other C. difficile myoviruses. The 18 putative tail
fiber protein sequences were used to construct a phylogenetic tree using the NJ method (Figure 3 and
Supplementary Table S1). Only C. difficile myoviruses were used in this study as CDHM1, CDHM3 and
CDHM6 all belong to Myoviridae family. Furthermore, previous phylogenetic analyses of C. difficile
siphoviruses based on their protein sequences showed they are very diverse [15,21]. Two distinct
clades were identified, and the three phages discussed in the present study were all part of clade
1. Phages CDHM3 and CDHM6 grouped together into one tight subclade with C. difficile phages
CDHM15, CDKM9 and phiCD505, with 90% bootstrap value. The putative tail fiber protein sequence
of CDHM1 was more diverse and was part of a different subclade. Unlike the putative tail fiber proteins
of CDHM3 and CDHM6, CDHM1 did not form a tight subclade with other C. difficile phages. However,
CDHM1 was most closely related to a cluster of four C. difficile phages: phiCD48.1, phiMMP04,
phiCDHM11 and phiCDHM13. Clade 2 only included C. difficile phage phiCDHM14, isolated in a
previous study.
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Figure 3. Evolutionary relationship of putative tail fiber proteins of C. difficile phages was constructed
using the Neighbor-Joining method. The bootstrap consensus tree was inferred from 500 replicates
was taken to represent the evolutionary history of C. difficile phage putative tail fiber proteins and
bootstrap values are shown next to the branches. The tree is drawn to scale and the scale bar represents
the relative genetic distances. The evolutionary distances were computed using the p-distance method.
All positions that contained gaps and missing data were eliminated from the analysis. The analysis
involved 18 protein sequences, which included 15 annotated C. difficile myovirus tail fiber proteins
available on NCBI (listed in Supplementary Table S1) and myovirus CDHM1, CDHM3 and CDHM6
from the present study (highlighted in red). Evolutionary analyses were conducted in MEGA7.

4. Discussion

Phages offer a natural and effective alternative to antibiotics for the treatment of bacterial
infections. However, to most efficiently utilize phage therapeutics, phage-host interactions need
to be understood. No studies to date have extensively investigated the initial interactions of C. difficile
phages to their hosts. Here, we present the first data on the adsorption and irreversible binding of
three C. difficile phages with the view to gaining insights into their infectivity on ten clinically relevant
C. difficile strains. Comparing the adsorption dynamics to phage host range is an important first step to
understanding the barriers to successful infection and subsequent lysis of bacteria by phages.

Phages CDHM1, CDHM3 and CDHM6 could only lytically infect two of the ten C. difficile strains
tested. On the remaining eight strains either no infection or partial and turbid clearing was observed
and the latter is likely due to the phages being temperate [15]. The host range of CDHM1, CDHM3
and CDHM6 is very similar to C. difficile myoviruses in our collection CDKM15 and CDKM9 [21],
this could suggest the phages may be all binding to the same bacterial surface receptor. The receptor
for the three phages used in this study has not yet been identified but it has been hypothesized the
phages could be binding to the S-layer of C. difficile, which is a paracrystaline layer that surrounds the
bacterial cells and varies between ribotypes [50].

The phages bound by different adsorption efficiencies to all strains and adsorption was phage-host
specific. The adsorption profile of CDHM1 was very different to CDHM3 and CDHM6 but similar to
the two other C. difficile phages tested in this study: CDHM2 and CDHM5. For this group of phages
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it was consistently observed that high percentages of phage bound to strains they could lytically
infect and the phages bound by a lower percentage to strains they do not infect [25]. This pattern is
consistent with other C. difficile phages described in the literature, such as phages phi41, phi56 and
phiCD140 that bind by ~70, 99 and 90% respectively to their propagation hosts after 30 min [25,51].
In comparison CDHM3 only bound by a high adsorption percentage to its propagation host but poorly
to ATJ, which it infects and CDHM6 bound by low percentages to all strains regardless of whether the
phage was able to infect the strain or not. The adsorption profiles of CDHM3 and CDHM6 highlight
infection did not necessarily correlate with high adsorption efficiency. Similarly phage phiHISC binds
to its host Listonella pelagia by less than 5% after 26 min but still is able to infect and replicate within
the host [52].

To understand the different adsorption patterns in the three phages, the annotated putative tail
fiber proteins were compared on the grounds that they provide the initial contact to their host and
are therefore responsible for phage adsorption [29]. The differences in putative tail fiber proteins is in
part reflected in the variances seen between the adsorption profiles of CDHM1 versus CDHM3 and
CDHM6, whose putative tail fiber protein sequences shared 100% homology. However, this is not the
full story as there were clear differences in the adsorption profiles of CDHM3 and CDHM6. The results
highlight there is no functional link between putative tail fiber sequences and experimental findings,
but this is the first time it has been investigated for C. difficile phages. Our data will add to the growing
field of trying to establish what determines a successful infection.

Interestingly, the putative tail fiber protein sequences of CDHM3 and CDHM6 were also longer in
comparison to CDHM1. It could be possible the extra amino acids present in their tail fibers help to
facilitate less specific, reversible adsorption to strains they are not able to infect, which was observed
in this study. Previous studies have highlighted long tail fibers are responsible for reversible binding,
for example for phage T4 its long tail fibers are responsible for reversible binding to E. coli and short
tail fibers for irreversible binding [30]. Similarly more than one tail fiber may could be involved in
phage binding to C. difficile cells [51,53]. Other studies have shown several different phage proteins are
likely to be involved in phage adsorption, such as receptor-degrading enzymes, which can degrade
the bacterial cell surface to facilitate phage adsorption and are part of the phages’ tail structure [54].
One major group of depolymerases are hydrolases and multiple putative cell wall hydrolases proteins
have been identified in the genomes of phages CDHM1, CDHM3 and CDHM6. Another protein
identified to play a role in adsorption is the tailspike protein, which was recently shown to be involved
in instant phage binding followed by a gradual release [55]. However, tailspike proteins have not been
identified in the phages used in this study but similar proteins could be present within the phages.

Other contributing factors to the differences observed in the adsorption percentages could be
attributed to changes in the expression of phage receptors on the bacterial cells as not all strains
continuously express their phage receptor at a constant rate [47,54,55]. Furthermore, bacteria can
mask the surface of their phage receptor, as was observed with the S. aureus phage where the bacteria
produced a cell wall anchored virulence factor, immunoglobulin G-binding protein A that blocked and
significantly reduced phage adsorption [56]. Similar mechanisms could be in play for C. difficile phages
CDHM1, CDHM3 and CDHM6 but can only be confirmed once the phage receptor has been identified.

The adsorption data showed that the phages bind to strains they could not infect, which could
suggest that phage receptors on the tested C. difficile cells are conserved, but infection is blocked
by downstream processes. To understand why this was the case the proportion of phages that
bound irreversibly was determined and the data highlighted there was a clear relationship between
irreversible phage binding and infection for all three phages, which was also observed for CDHM2
and CDHM5. The general trend was that on strains not infected by the phages, only a small
proportion of phages irreversibly bound and most molecules ~70 to 94% bound reversibly and could
be broken by vortexing. The lack of irreversible binding could explain why phage infection was not
established. On strains where the phages produced turbid clearing ~50% irreversible binding occurred,
which suggests that phages can bind and thus likely eject their DNA into these strains but they cannot
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replicate efficiently. On strains infected by the phages, over 85% irreversible phage binding was
observed regardless of whether total phage adsorption was 75% or 30%. This suggests even minimal
adsorption is sufficient for infection if a high proportion of these molecules are irreversibly bound.
As there is a clear relationship between irreversible binding and infection it could suggest phages are
binding to another receptor on the bacterial surface for irreversible binding. This has also been shown
for phages that infect Bacillus subtilis, who use one receptor for reversible binding and another for
irreversible binding [40,41].

The adsorption dynamics of the phages to common hospital pathogens were also investigated
to E. coli, P. aeruginosa and MRSA strains as they may be found in similar environments as C. difficile.
All three phages bound poorly to these strains, which further highlights phages are specific for
C. difficile. Similar observations were made for another C. difficile phage phiCD140, which only bound
by 1% to C. perfrigens, C. Sordellii, C. bifermentans and Lactobacillus spp [25].

To conclude this is the first study to extensively analyze adsorption dynamics of C. difficile phages,
to determine if poor adsorption to strains impacts host range. The data has shown that low proportions
of phage adsorption does not necessarily equate to no phage infection but over 80% of irreversible
binding is needed for infection. This study has also shown there is no distinct relationship between
infection, adsorption and putative phage tail fiber sequence for C. difficile myoviruses. In future
work we will identify the phage receptors on the bacterial host, characterize other phage proteins
that could be involved in phage binding and define the steps post phage binding that may limit
infection. This work has provided valuable insights into C. difficile phage-host interactions that
are both of fundamental interest and can help with future strategies to designing optimal phage
therapeutic cocktails.

5. Patents

The phages described are part of a Leicester patent, pending. European Patent Application
No. 13759275.4 and US Patent Application No. 14/423284.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/8/411/s1,
Table S1: A list of C. difficile phages used for phylogenetic analyses of their tail fibers and their accession numbers,
Figure S1: The effect of salts on C. difficile phage adsorption and Figure S2: Adsorption and irreversible binding
of C. difficile phages (a) CDHM1, (b) CDHM2, (c) CDHM3, (d) CDHM5 and (e) CDHM6 to ten clinical strains of
C. difficile that are representatives of 10 different ribotypes.
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