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Abstract. We consider a game-theoretic setting of contention in commu-
nication networks. In a contention game each of n ≥ 2 identical players
has a single information packet that she wants to transmit in a fast and
selfish way through one of k ≥ 1 multiple-access channels by choosing a
protocol. Here, we extend the model and results of the single-channel case
studied in [2] by providing equilibria characterizations for more than one
channels, and giving specific anonymous, equilibrium protocols with finite
and infinite expected latency. For our equilibrium protocols with infinite
expected latency, all players, with high probability transmit successfully
in optimal time, i.e. Θ(n/k).
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1 Introduction

The need for multiple channels in communications has become clear in today’s
technologies. Robustness and high throughput are two main goals that multiple-
channels communication systems try to achieve, since dependence from a small
group of nodes in a network as well as collision of packets that are transmitted on
the same node are the issues from which single-channel broadcast communications
suffer. Many works in the Electrical and Electronics Engineering community have
so far considered multi-channel medium access control (MAC) protocols (e.g. [6])
which have been shown to achieve higher throughput and lower delay than the
single-channel MAC protocols. The limited feedback in such systems is caused
by the multi-channel hidden terminal problem ([7]). To the authors’ knowledge,
strategic behaviour in such multi-channel systems is limited to the Aloha protocol
([5]), contrary to the case of single-channel systems (e.g. [1]).

For equilibrium protocols, a desired property is anonymity, that is, protocols
which do not use player IDs. If a players’ protocol depended on her ID, then
equilibria are simple, but can be unfair as well; scheduling each player’s trans-
mission through a priority queue according to her ID is an equilibrium. The only
works on acknowledgement-based, equilibrium protocols, is by Christodoulou et
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al. [2,3] which consider only a single channel. Among other results, they give
the unique, anonymous, equilibrium protocol with finite expected latency for 2
players, and an efficient protocol with infinite expected latency for at least 3
players. The existence of a symmetric equilibrium with finite expected latency
remains an open problem, even for three players. However, for the settings with 2
and 3 transmission channels, we manage to present simple, anonymous protocols
for up to 4 and 5 players respectively.

In this short paper, we examine the problem of strategic contention resolution
in multi-channel systems, where obedience to a suggested protocol is not required.
We provide two types of equilibrium protocols. The first type (Sect. 3) describes
an anonymous, equilibrium protocol that yields finite expected time of successful
transmission to a player. Similarly, the second type (Sect. 4) describes an anony-
mous, equilibrium protocol which yields infinite expected latency to a player
but is also efficient, that is, all players transmit successfully within Θ( #players

#channels )

time with high probability. The latter result makes clear the advantage (with
respect to time efficiency) that multiple channels bring to a system with strategic
users, which is that the time until all players transmit successfully with high
probability is inversely proportional to the number of available channels.

2 The Model and Definitions

Game structure. We define a contention game as follows. Assume a set of players
[n] = {1, 2, . . . , n} and a set of channels K = {1, 2, . . . , k}. Each player has a
single packet that needs to be sent through a channel in K, without caring
about the identity of the channel. All players know n and K. Time is discrete,
i.e. t = 1, 2, . . . . The players that have not yet successfully transmitted their
packet are called pending and initially all n players are pending. At any t, a
pending player i has a set A = {0, 1, 2, . . . , k} of pure strategies: a pure strategy
a ∈ A is the action of choosing channel a ∈ K to transmit her packet on, or no
transmission (a = 0). At time t, a (mixed) strategy of a player i is a probability
distribution over A that potentially depends on information that i has gained
from the process based on previous transmission attempts. If exactly one player
transmits on a channel in a given slot t, then her transmission is successful, she is
no longer pending, and the game continues with the rest of the players. However,
whenever two or more players try to transmit on the same channel at the same
time slot, a collision occurs and they remain pending. The game continues until
there are no pending players.

Transmission protocols. Let Xi,t ∈ A be the channel-indicator variable that keeps
track of the identity of the channel where player i attempted transmission at time
t; value 0 indicates no transmission attempt. An acknowledgement-based protocol
uses very limited channel feedback. After each time step t, the information received
by a player i who transmitted during t is whether her transmission was successful
(in which case she gets an acknowledgement and exits the game) or whether there

was a collision. Let
#»

h i,t be the vector of the personal transmission history of
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player i up to time t, i.e.
#»

h i,t = (Xi,1, Xi,2, . . . , Xi,t). A decision rule fi,t for a

pending player i at time t, is a function that maps
#»

h i,t−1 to a strategy, with

elements Pr(Xi,t = a| #»h i,t−1) for all a ∈ A. For a player i ∈ N , a (transmission)
protocol fi is a sequence of decision rules fi = {fi,t}t≥1 = fi,1, fi,2, . . . . When
the context is clear enough we will drop some of the indices accordingly.

Individual utility and equilibria. For a protocol profile
#»

f = (f1, f2, . . . , fn), we

denote the expected latency of player i ∈ [n], given a history
#»

h i,t by C
#»
f
i (

#»

h i,t).

We say that
#»

f is an equilibrium if for any transmission history
#»

h t the players
cannot decrease their expected latency by unilaterally deviating after t.

3 Equilibria with Expected Latency < ∞

Nash equilibria characterization. Here we provide a characterization of
general equilibria (both symmetric and asymmetric) for an arbitrary number of
channels k ≥ 1 and players n ≥ 2.

Let
#»

f = (f1, f2, . . . , fn) be a tuple of acknowledgement-based protocols (not
necessarily anonymous) for the n players. For a (finite) positive integer τ∗, and a
given history hi,τ∗ = (ai,1, ai,2, . . . , ai,τ∗), define for player i the protocol

gi = gi(hi,τ∗) ,

{
(Pr{Xi,t = ai,t} = 1) , for 1 ≤ t ≤ τ∗

fi,t, for t > τ∗.
(1)

We will call a personal history
#»

h i,τ∗ consistent with the protocol profile
#»

f if

there is a non-zero probability that
#»

h i,τ∗ will occur for player i under
#»

f . If hi,τ∗

is consistent with
#»

f we call protocol gi(hi,τ∗) consistent with
#»

f , and when clear
from the context we write gi instead. Also, we denote the set of all gi’s, that is,

all gi(hi,t)’s for all t ≥ 1, which are consistent with
#»

f by G
#»
f
i .

Lemma 1 (Equilibrium characterization). Consider a profile
#»

f = (f1, f2, . . . fn)
of acknowledgement-based protocols. The following statements are equivalent:
(i)

#»

f is an equilibrium.

(ii) ∀ player i ∈ [n]

{
(a) C

(
#»
f −i,gi)
i (

#»

h 0) = C
(

#»
f −i,ri)
i (

#»

h 0) = C
#»
f
i (

#»

h 0), ∀gi, ri ∈ G
#»
f
i , and

(b) C
(

#»
f −i,gi)
i (

#»

h 0) ≤ C(
#»
f −i,ri)
i (

#»

h 0), ∀gi ∈ G
#»
f
i , ri /∈ G

#»
f
i .

Now we are ready to give anonymous, equilibrium protocols for k = 2 and
k = 3. Let us define the following memoryless protocol with parameter k ∈ {2, 3}
which corresponds to the number of channels. Briefly, this protocol dictates to a
player to split probability 1 equally on all channels, in every time-step.

Protocol fk : For any player i, every t ≥ 1, and any transmission history,

fki,t =

(
Pr{Xi,t = 0} = 0, Pr{Xi,t = a} =

1

k
, ∀a ∈ K

)
. (2)
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n players - 2 transmission channels. By employing our characterization,
we show that for k = 2 channels, f2 is an equilibrium protocol for n ∈ {2, 3, 4}
players (Theorem 1). The next two lemmata are easily proved by Markov chain
analysis which is omitted due to lack of space.

Lemma 2. When all n ≥ 2 players use protocol f2 the expected latency of any
player is 2n/n.

Lemma 3. For n ≥ 5 players, f2 is not an equilibrium protocol. In fact, a better
response for any player is to not transmit in t = 1 and then follow f2.

Theorem 1. For n ∈ {2, 3, 4} players and k = 2 channels, f2 is an equilibrium
protocol with expected latencies 2, 8/3 and 4, respectively.

Proof sketch. We show that the protocol profile where all n players use protocol
f2 is in equilibrium by showing that the condition (ii) of Lemma 1 holds. Starting
with condition (ii− a), assume a unilateral deviator i and an arbitrary protocol

gi consistent with
#»

f . This protocol would dictate a history of transmissions hi,τ∗

with only “1” and “2” in it for some arbitrary τ∗ ≥ 1, and then continue following
f2. The process of any such protocol, from the perspective of i is modelled as a
Partially Observable Markov Decision Process, which due to the anonymity and
uniformity of f2, reduces to a Markov chain that yields expected latency 2n/n.

For condition (ii−b), suppose i chooses a protocol ri that is not consistent with
#»

f . This means that there must exist some time t <∞ for which Pr{Xi,t = 0} > 0.

Let us focus on the smallest such t, namely t0 , inf{t : Pr{Xi,t = 0} > 0}. Now if
we consider some arbitrary history hi,t0 = (ai,1, ai,2, . . . , ai,t0) and its respective
protocol ri = ri(hi,t0) as in (1), one of two things can be true: either ai,t0 = 0
or for t > t0 protocol ri is not identical to f2. That is, we have the categories
for ri presented in Table 1. Note that the pairs of categories that ri could be

Category 1 at0 6= 0

Category 2 at0 = 0

Category I ∀t > t0: Pr{Xi,t = 0} = 0

Category II ∃t > t0: Pr{Xi,t = 0} > 0

Table 1. The categories of protocol ri(hi,t0).

simultaneously are (1-I), (1-II), (2-I), and (2-II). By checking each of those cases
and letting ri be a best response, we show that no such protocol can yield
expected latency to i lower than 2n/n.

n players - 3 transmission channels. Similarly, in the case with k = 3
channels, we employ our equilibria characterization and show that f3, defined in
(2), is an equilibrium protocol for n ∈ {2, 3, 4, 5} players. However, now we do not
have an expression for the expected latency of a player such as the one of Lemma
2, thus, in order to follow the same method as before, for each n ∈ {2, 3, 4, 5}
under examination we have to find its expected latency individually.
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Theorem 2. For n ∈ {2, 3, 4, 5} players and k = 3 channels, f3 is an equilibrium
protocol with expected latencies 3/2, 15/8, 189/80 and 597/200, respectively.

4 An Efficient Protocol with Expected Latency = ∞

In this section we give an anonymous, equilibrium protocol for the general case
of k ≥ 1 channels and any number of n ≥ 2k+ 1 players. For this, we employ the
deadline idea introduced in [4] and consequently used in [2,3]. Our protocol has
the property that the time until all players transmit successfully is Θ(n/k) with
high probability, even though the expected latency is infinite.

Consider k ≥ 1 transmission channels, n ≥ 2k + 1 players, a fixed constant
β ∈ (0, 1) and a deadline t0 to be determined consequently. The t0− 1 time steps
are partitioned into r + 1 consecutive intervals I1, I2, . . . , Ir+1 where r is the
unique integer in

[
− logβ n/2− 1,− logβ n/2

]
. For any j ∈ {1, 2, . . . , r+1} define

nj = βjn/k. For j ∈ {1, 2, . . . , r} the length of interval Ij is lj = b eβnjc. Interval

Ir+1 is special and has length lr+1 = n/k. We define the following protocol.

Protocol g: Every player among 1 ≤ m ≤ n pending players for t ∈ Ij
assigns transmission probability 1/max{nj , k} to each channel. Right

before the deadline t0 = 1 +
∑r+1
j=1 lj each pending player is assigned to a

random channel equiprobably, and for t ≥ t0 always attempts transmission
to that channel.

The proof of the following theorem is similar to that of Theorem 11 in [2]
which considers the case with k = 1 channel, and is omitted due to lack of space.

Theorem 3. Protocol g for n ≥ 2k + 1 players and k ≥ 1 channels, is an
equilibrium protocol and it is also efficient.
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