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Abstract

This paper introduces an improved version of a novel inverse approach for the

quantification of multivariate interval uncertainty for high dimensional models

under scarce data availability. Furthermore, a conceptual and practical compar-

ison of the method with the well-established probabilistic framework of Bayesian

model updating via Transitional Markov Chain Monte Carlo is presented in the

context of the DLR-AIRMOD test structure. First, it is shown that the pro-

posed improvements of the inverse method alleviate the curse of dimensionality

of the method with a factor up to 105. Furthermore, the comparison with the

Bayesian results revealed that the selection of the most appropriate method de-

pends largely on the desired information and availability of data. In case large

amounts of data are available, and/or the analyst desires full (joint)-probabilistic

descriptors of the model parameter uncertainty, the Bayesian method is shown

to be the most performing. On the other hand however, when such descriptors

are not needed (e.g., for worst-case analysis), and only scarce data are available,
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the interval method is shown to deliver more objective and robust bounds on the

uncertain parameters. Finally, also suggestions to aid the analyst in selecting

the most appropriate method for inverse uncertainty quantification are given.

Keywords: Multivariate interval uncertainty, Uncertainty Quantification,

DLR-AIRMOD, Bayesian model updating, Limited data

1. Introduction

In general engineering practice, the knowledge on a structure is usually in-

complete, be it due to inherent variable model parameters or a lack of knowledge

on the true parameter values [1, 2]). Hence, representing these model param-

eters as deterministic quantities might prove to be inadequate when a reliable5

and economic design is pursued, as a large degree of conservatism is needed to

prevent premature failure and corresponding maintenance or insurance costs.

This over-conservatism not only impairs the economic cost of producing the

component; it also leads to unnecessary weight increase, which is impermissible

in high-performance sectors such as machinery design, aerospace or automotive.10

In the last few decades, highly advanced techniques including probabilistic [3],

possibilistic [4] or imprecise probabilistic methods [5] have been introduced to

include non-determinism efficiently in these design models.

In order for these tools to deliver a realistic quantification of the non-

determinism in the responses of the design model, the description of the non-15

deterministic parameters of the model should be made objectively and accu-

rately. Since not all parameters (such as e.g. connection stiffness values or

heterogeneous material properties) are trivial to measure directly, inverse uncer-

tainty quantification (UQ) techniques have been introduced. Following inverse

UQ, the responses of the structure are measured and used to infer knowledge20

on the non-determinism in the model parameters. As concerns inverse UQ in

a probabilistic sense, the class of Bayesian methods is considered the standard

approach [6], even for random fields [7]. However, in the context of limited,

insufficient, vague or ambiguous data, the prior estimation of the joint proba-
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bility density function of the non-deterministic parameter values is subjective.25

Moreover this estimate influences the quantified result to a large extent when

insufficient independent measurement data are available.

Inverse UQ methods for the identification and quantification of multivariate

interval uncertainty usually minimise a squared L2-norm over the difference

between the interval boundaries of respectively a measurement data set and the30

prediction of the FE model [8, 9]. Application of most of these techniques is

prone to ill-conditioning and non-uniqueness when no special care is taken in

the definition of the identification problem [10]. Also alternative approaches

using Kriging predictor models were introduced recently [11] and compared to

stochastic model updating [12].35

Recently, a novel methodology for the identification of multivariate interval

uncertainty was introduced by some of the authors in [13], with an extension

to interval fields in [14] and [15]. This method is based on the convex hull

concept for the representation of dependent uncertain output quantities of an

interval FE model, and iteratively minimises the discrepancy between the convex40

hull of these uncertain output quantities with the convex hull over a set of

replicated measurement data. However, since the computation of a convex hull

follows an exponential time complexity with its dimension, the dimension of

these convex hulls should be reduced as to allow for applying this method to

large-scale problems. Dimension reduction is a topic that is quickly emerging in45

the fields of big data and machine learning, where datasets are often too high-

dimensional to be handled directly. In this context, a broad range of techniques

based on for instance covariance matrix decompositions [16], manifold learning

approaches [17], or active subspace methods [18] have been introduced in recent

years. In the context of the inverse quantification of multi-dimensional interval50

uncertainty, the application of such dimension reduction methods is an under-

explored domain.

Finally, whereas the literature on comparing forward UQ in a probabilistic

and non-probabilistic context is abundant (see e.g., [19] or [20] for a more re-

cent treatment), such a practical comparison for inverse approaches is severely55
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lacking in literature. The objective of this paper is therefore twofold. First,

an improved version of a recently proposed interval method [13, 14] is presented

in the sense that by reducing the dimension of the corresponding convex hulls,

more challenging problems can be tackled. In addition, an objective comparison

of Bayesian uncertainty quantification methods [21], which are most commonly60

applied in a probabilistic context is provided and suggestions for choosing the

most appropriate technique based on the data are made.

The paper is structured as follows. Section 2 introduces the extensions

to the novel method for the identification and quantification of multivariate

interval uncertainty. It is illustrated that the exponential time complexity of65

computing the objective function is relaxed by projecting the convex hull onto

lower-dimensional subspaces of an orthogonal basis with a dimension equal to

the effective dimension of the convex hulls. Section 3 presents the reader with the

concept of Bayesian uncertainty quantification. Both techniques are critically

compared and a conceptual comparison is given in section 4. Section 5 presents70

a case study comparing the applicability of both methods to the well-known

DLR-AIRMOD [22] case. Specifically, it is studied how both methods perform

in terms of obtained information, computational cost and accuracy, depending

on the size of the dataset. Finally, section 6 lists the conclusions of this work.

2. Multivariate interval quantification75

This section introduces the interval finite element method and the method

used for the identification and quantification of multivariate interval uncertainty

based on indirect measurement data. In the following, a model parameter θ

having interval uncertainty is denoted θI . Vectors are expressed as lower-case

boldface characters θ. Interval parameters are either represented using the80

bounds of the interval θI = [θ; θ] or the centre point θ̂ = θ+θ
2 and the interval

radius rx = θ−θ
2 .
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2.1. The interval finite element method

LetM be a deterministic Finite Element model that is used to solve a (set of)

differential equations for zm ∈ Rd through the vector valued function operator

g:

M(θ) : zm = g(θ), g : Rk 7→ Rd (1)

with θ ∈ F ⊂ Rk the vector of model parameters and F the sub-domain of

feasible parameters (e.g., non-negative contact stiffness).85

The uncertainty that is attributed to θ is modeled as an interval vector

θI ∈ FI ⊂ IRk, with IRk the space of k-dimensional interval vectors. Note

that due to the orthogonality of all θi, i = 1, ..., k, all model parameters are

considered independent by definition. Therefore, θI can also be represented as

a k-dimensional hypercube.90

The interval FE method generally aims at finding a solution set z̃ containing

the extreme realizations of zm given the hyper-cubic parameter uncertainty. In

general, z̃ is not hyper-cubic, but spans a non-convex region in Rd, since M

provides coupling between zmi , i = 1, ..., d. Therefore, it is commonly approxi-

mated by an uncertain realization set z̃m, which is obtained by propagating q

well selected deterministic realizations zmj of the hyper-cubic uncertain input

parameters θI :

z̃m =
{
zmj | zmj =M(θi);θi ∈ θI ; i = 1, . . . , q

}
(2)

In general, z̃m u z̃ when q is taken sufficiently large, or sampled intelligently

(e.g., following the Cauchy deviates method [23]). When M is a strictly mono-

tonic FE model, the Transformation Method [24] provides an exact mapping

from θI to z̃, albeit needing 2k deterministic model evaluations for the solution

of a single interval problem.95

A mathematical handle to the boundaries of z̃m is provided by the convex

hull Cm of the realization set z̃m. Cm can be considered as a set of vertices
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bounding the uncertain realization set:

Cm =


q∑
j=1

βjz
m
j | (∀j : βj ≥ 0) ∧

q∑
j=1

βj = 1 ; zmj ∈ z̃m
 (3)

with β a vector of weighting factors, such that all elements βj are non-negative

and sum to one. Such convex hull has also a multi-dimensional volume Vm.

Alternatively, Cm can also be represented as a set of hm d-dimensional linear

inequalities that describe the boundaries of Cm :

Cm ≡ [f1, ..., fhm
]T ≡ Am(zm)T − bm ≥ 0 (4)

with Am ∈ Rhm×d, bm ∈ Rhm and hm the number of half-spaces fi, i =

1, ..., hm. An illustration of such convex hull over 12 arbitrary realisations zmj100

of two responses z1 and z2 is given in figure 1.

Figure 1: Convex hull and bounding halfspaces over 12 realisations zm
j of two arbitrary

responses z1 and z2 using five half-spaces fi.

2.2. Multivariate interval quantification

This section presents an improved version of the method presented in [13,

14]. Specifically, the reduction of the computational expense is extended as to

accommodate high-dimensional FE models. First the basis method is introduced105

for the readers convenience.

As a basis for the inverse quantification of multivariate interval uncertainty,

experimental data D of the model responses z are obtained by experimentally
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testing t times a physical replica of the numerical model. These measurements

are then used to construct a measurement set z̃e, and the non-determinism110

that is present in these replicated measurements is bounded by its convex hull

Ce and corresponding d-dimensional volume Ve in analogy to eq. (3). These

computations are performed using the QuickHull algorithm [25].

A specific issue arises when d becomes large (say d > 10). In that case,

computation of a single convex hull might take prohibitively long since the

worst-case time complexity QuickHull is:

O
(
bv

d
2
c c/b

d

2
c!
)

(5)

with vc the number of vertices of Cm [25].

To accommodate this, the dimension of the vector space Rd in which these

convex hulls are computed, is reduced using the method presented in [14]. This

method is briefly recalled in the following paragraphs. Specifically, an orthog-

onal basis B is constructed in Rdr , with dr << d. This basis is defined as:

B = span{φe,d−dr ,φe,d−dr+1, ...φe,d} (6)

with dr chosen such that all non-zero dimensions are included in B, and φe

the eigenvectors corresponding to the dr largest eigenvalues of the covariance

matrix Ξe of the measurement data set z̃e. These eigenvectors are obtained by

following singular value decomposition:

Ξe = ΦeΛeΦ
T
e (7)

with Λe ∈ Rd×d the diagonal matrix of the ordered eigenvalues λ1 ≤ λ2 ≤

· · · ≤ λd of Ξe, and Φe ∈ Rd×d a matrix containing the orthogonal eigenvectors

φe,j ∈ Rd, j = 1, . . . , d. Standard Matlab routines are used to perform the

decomposition, which make use of Blas and LAPACK libraries. Note that since

Ξe is symmetric and positive definite by definition, the result of eq. (7) is exactly

the same as when performing an eigenvalue decomposition. The covariance
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matrix Ξe is specifically constructed as:

Ξe =


var(zte1) cov(zte1, z

t
e2) . . . cov(zte1, z

t
ed)

cov(zte2, z
t
e1) var(zte2) . . . cov(zte2, z

t
ed)

...
. . .

...

cov(zted, z
t
e1) cov(zte1, z

t
e2) . . . var(zted)

 (8)

with ztej ∈ Rt, j = 1, ..., d a vector containing all measured replica for a single

response, and t the number of replicated measurements. Finally, the number of

needed eigenvectors dr is then selected as:

dr∑
i=1

λe,i
tr(Ξe)

≥ 1− ε (9)

with ε the reduction error, which is selected based on its convergence (see [14]).115

The quantity dr is defined as the effective dimension of the convex hull. The

underlying idea of this concept is that the combination of d system responses not

necessarily represents a d-dimensional manifold in Rd, e.g. due to a high degree

of dependence. In that case, dr is lower than d and a reduction of the dimension

is obtained. Note that it is not the statistical correlation between the measured120

replica that is decomposed, but rather the dependence between the model re-

sponses. Obviously, when all model responses are completely independent, this

reduction does not decrease the dimension of the problem.

As such, instead of computing the convex hulls Ce and Cm directly in Rd, the

constituting sets z̃e and z̃m are first projected onto B, and the reduced convex125

hulls Ce,r and Cm,r are computed in that basis. Since the quantification is based

on minimising the discrepancy between these convex hulls, all computations for

the quantification are performed in B.

However, when realistic numerical models containing thousands of degree’s-

of-freedom and/or measurement sets consisting of numerous responses are con-

sidered, the effective dimension dr still might be prohibitively large (i.e., dr >

10). Therefore, as an extension to this previously presented dimension reduction

method, it is proposed to further reduce the dimension of the vector space Rdr

in which both convex hulls are defined. Specifically, both z̃rm and z̃re are fur-
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ther projected onto d+r -dimensional subspaces, defined by a lower-dimensional

orthogonal basis B+i ⊂ B, i = 1, . . . ,
(dr
d+r

)
, constructed as a subset of B, with

d+r << dr and
(dr
d+r

)
the binomial coefficient. Specifically, the ith orthogonal

subspace basis B+i is defined as:

B+i = span{φm,Ii(1),φmIi(2), . . .φm,Ii(d+r )} (10)

with Ii an index set containing the d+r indices for the ith, i = 1, ...,
(dr
d+r

)
subspace

of B. Then, the reduced sets z̃re and z̃rm are projected on these subspaces, i.e.

z̃eB+
i

and z̃mB+
i

, and their respective convex hulls CeB+
i

and CmB+
i

with corresponding

d+r -dimensional volumes Ve and Vm are computed using the functionality of the

QHULL library. By applying this reduction scheme, the time complexity of

the computation of the convex hull, which is originally defined as in eq. (5),

becomes:

O
(
bv

d+r
2
c c/b

d+r
2
c!×

(
dr
d+r

))
(11)

Therefore, as long as d+r is a very small number, the computational cost of

calculating
(dr
d+r

)
d+r dimensional convex hulls is considerably smaller than com-130

puting a single dr dimensional convex hull. This projection however only retains

the d+r − 1 order interactions between model responses. Herein, d+r = 1 is the

limit case where only the hyper-cubic approximation of z̃rm and z̃re is retained.

This however does not limit the accuracy of the method as long as d+r ≥ 2,

since by considering only the convex hulls all higher-order interactions between135

model responses are already linearised. Therefore, no further approximation of

the dependence structure is made.

Finally, the multivariate interval uncertainty in θI is obtained by minimizing

following objective function:

δ(θI) =

(
dr

d
+
r

)∑
i=1

(
∆V 2

m,i + wo∆V
2
o,i + ∆c2i

)
(12)
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with:

∆Vm,i = 1− Vm,i(θ
I)

Ve,i
(13a)

∆Vo,i = 1− Vo,i(θ
I)

Ve,i
(13b)

∆ci =
∥∥∥ce,i − cm,i(θ

I)
∥∥∥
2

(13c)

where Vm,i and Ve,i are the d+r -dimensional volumes of respectively CmB+
i

and

CeB+
i

, Vo,i is the volume of the overlap of both convex hulls, and ce,i and cm,i

are the centres of gravity of respectively CeB+
i

and CmB+
i

. Note that for notational140

simplicity, the subscript B+i is simplified to i.

The advantage of this methodology for reducing the dimension over selecting

a smaller value for dr, is that more information on the dependence and non-

determinism that is present in the model quantities is retained in the analysis.

Instead of allowing a larger ε, and hence more loss of information, this method145

decomposes the convex hull into lower-dimensional subsets, and quantifies the

interval uncertainty based on a combinatorial combination of the discrepancy of

those subsets. As a final note, it should be stressed that also other, non-linear,

manifold learning techniques such as kernel principal component analysis [26],

isomaps [27], or local linear embedding [28] have been presented in literature.150

These methods usually provide a better estimate of the ”effective” manifold

spanned by the measurement data, however at a higher computational cost.

Nonetheless, since only the convex hull of the data is considered, application of

these techniques is not expected to improve the quantification.

Finally, due the construction of the objective function, it jointly tries to min-155

imise the difference between the multidimensional volumes between the convex

hull of the measurement data set and the convex hull resulting from the interval

FE analysis, as to maximise the overlap between these convex hulls. As the

set of measurement data generally does not contain the same extreme vertices

as contained in the interval model, the volumes cannot be matched exactly.160

Therefore, a trade-off is found by the optimiser, where the volume of the convex

hulls is matched at the price of losing some overlap. Increasing the factor wo
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alleviates this problem, however at the cost of increasing the over-conservatism

of the prediction (see e.g., [14]) and making the optimisation problem harder

to solve due to the barrier-function like behaviour of the term describing the165

overlap.

3. Bayesian model updating

The use of Bayesian methods for uncertainty quantification is largely founded

on the the pioneering work of Beck and Katafygiotis [6, 21] in the late 1990s.

Following the Bayesian interpretation of probability, the probabilistic nature of170

an uncertain parameter is interpreted as the degree to which it is believed that

each possible value of this parameter is consistent with the available information

(e.g., the response of a high-fidelity model or measurement data). Following

Bayes’ rule, this degree of belief is adjusted using independent information. As

such, the Bayesian methods translate this prior knowledge on the uncertainty175

corresponding to the parameter values to an updated posterior knowledge, based

on experimental data.

As a first step in the uncertainty characterisation, a prior probability distri-

bution p(Θ|M), conditioned upon a chosen mathematical modelM, is assigned

to a set of uncertain parameters Θ. These distributions represent prior informa-

tion on the uncertain parameters, stemming from e.g., expert opinions, lab-scale

specimen testing, previous quantification of the uncertainty, etc. Then, exper-

imental data D are used to update this prior knowledge by means of Bayes’

theorem, yielding the posterior distribution p (Θ|D,M):

p (Θ|D,M) =
p (D|Θ,M) p(Θ|M)

p (D|M)
(14)

where p (D|Θ,M) is the likelihood of obtaining the data D, given the value

of the uncertain parameters Θ and a specific model M. The denominator of

eq. (14), also commonly referred to as evidence, ensures that the posterior180

distribution p (Θ|D,M) integrates to one.

In the context of structural dynamics, the data D usually consists of the

residuals between experimental measurements and predictions of the model M
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as:

εi = zei − zmi (Θ), i = 1, . . . , n (15)

where zei = ω2
i is the square of the i-th measured response, zmi (Θ) = λi(Θ) is

the i-th predicted response of a finite element model and n the number of consid-

ered responses. In the specific context of parameter uncertainty quantification

using experimental modal analysis data, zei and zmi correspond to measured and185

predicted eigenfrequencies of M.

In practice, the likelihood function is often chosen to be a zero-mean multi-

variate normal distribution [29]:

p (D|Θ,M) =

N∏
i=1

1

(2π)n/2|Σ|1/2
exp

(
−1

2
εTi (Θ)Σ−1εi(Θ)

)
(16)

where N denotes the number of data points in D. The solution to eq. (14) is

commonly approximated by sampling from a Markov Chain that is ergodic and

stationary with respect to p (D|Θ,M). In this paper, the transitional Markov

Chain Monte Carlo (TMCMC) method, as introduced by Ching and Chen [30],190

is applied for the computation of the posterior distribution.

4. Conceptual comparison of Bayesian and interval methods for in-

verse UQ

The methods presented in section 2 and 3 can both be used for inverse un-

certainty quantification, but the underlying philosophy differs greatly. Similarly195

to forward uncertainty quantification, probabilistic and interval approaches are

complementary, and the most appropriate method given an inverse UQ prob-

lem is highly case dependent. Important contrasts, next to the obvious philo-

sophical differences, include the availability of objective and informative prior

information, and even more so, measurement data of the model responses and200

the desired information content on the uncertain model parameters. This sec-

tion aims at guiding the analyst through the selection of the most appropriate

method.
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Interval methods are based on the idea that the possible values of the un-

certain parameter are located between two crisp boundaries, without making205

inference on the likelihood of each value within that interval. As such, interval

UQ methods approach the problem from the outside, as they usually aim to

bound all possible response of the model in an objective sense following a set-

theoretical approach. Consequently, only a worst-case inference is attainable

based on the obtained information. Bayesian methods on the other hand start210

from assigning a degree of plausibility to each value of the uncertain parame-

ters within a range and employ independent data to infer the most plausible

parameter values based on Bayes’ theorem. Therefore, Bayesian methods ap-

proach the uncertainty from the inside by searching the most probable point,

and specifying how the plausibility of obtaining that specific value decreases for215

other parameter values.

4.1. Criticism on the Bayesian approach

When applying Bayesian techniques, a full description of the joint degree of

plausibility of each parameter over a range is obtained, even when such param-

eter is modelled by a random field. Also the selection of the most appropriate220

covariance function is possible in this context [31]. However, in order to obtain

an objective quantification of the parameters and their correlation, a sufficiently

accurate prior estimate of the uncertainty is needed in conjunction with suffi-

cient and informative experimental data. When only scarce, limited or vague

experimental data are available, as is usually the case in realistic experimental225

cases, the prior distribution influences the obtained quantification to a large ex-

tent. The obtained results are in this case highly subjective, which limits their

credibility. This effect is further amplified when the prior is highly biased with

respect to the actual parameter values [32]. The effect of adding more data to

the quantification method in order to minimise the effect of the prior can be230

understood from the following simple example. Consider the tossing of a biased

dice that favours the numbers 4 and 5. The analyst, not knowing about the bias

on the dice, has a prior assumption that the probability of rolling one of each
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number in the set {1, 2, 3, 4, 5, 6} is equal. When the analyst starts rolling the

biased dice, more and more data come available showing the bias of the dice to-235

wards 4 and 5. As such, the effect of the prior assumption is counteracted. One

can see that the posterior information will tend to the true biased distribution

of the dice when more data becomes available.

In order to obtain a more objective prior, techniques such as the maximum

entropy principle have been introduced. However objective and based on a solid240

mathematical foundation, it is not guaranteed that the maximum entropy prin-

ciple also yields the physically most probable prior distribution. For example,

when only information on the range of the uncertain parameter is available,

the maximum entropy principle yields the uniform distribution as being most

appropriate as this distribution has the highest information entropy given the245

available data. However, given only information on the range of the measured

responses, there exists no physical guarantee that each point between the prede-

fined bounds is indeed equally probable. Therefore, while being objective, the

obtained posterior distribution will not necessarily correspond to reality.

4.2. Criticism on the Interval approach250

Interval quantification methods on the other hand deliver crisp bounds be-

tween which the uncertain parameter is believed to lie. The main advantage

hereof is that each data-set can be uniquely described by an interval. Therefore,

this method is inherently objective as no subjective estimates and approxima-

tions on the underlying probabilistic nature of the non-determinism are made255

to steer the quantification process. However, it is not possible to asses the re-

liability of the designed structure using purely interval-based methods, as no

information on the relative likelihood of different parameter or response values

is given. Moreover, intervals are by definition not capable of describing depen-

dency between different variables. As such, the identified non-determinism is260

inherently decoupled as well, and thus no information on the dependence can

be obtained from the analysis. Finally, as long as the measurement data are ob-

tained in an optimized way (i.e., such that they completely capture the needed
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scatter in the responses that results from the uncertainty that is studied), in-

terval methods provide sufficient information for worst-case analysis.265

4.3. Bayesian or interval?

In case large data sets are available or the analyst has need for quantifying

the relative likelihood of several parameter values being realised, including their

(joint)-plausibility, correlation and multi-modal descriptors, Bayesian methods

have the upper hand over interval approaches, but the analyst should ensure270

that sufficient informative data are available as discussed in section 4.1. On the

other hand, when data are vague or scarce, interval methods are expected to

provide a more objective and accurate quantification of the uncertainty, as less

a priori assumptions on the underlying likelihood structure are needed. This

however is achieved at the cost that only worst-case information is delivered to275

the analyst. This information is summarised in figure 2.

Figure 2: Selection flowchart to aid the analyst choosing the most appropriate method

5. Application: the DLR-AIRMOD test structure

5.1. Introduction

The first goal of this case study is to validate the novel reduction method that

is presented in the context of the multivariate interval quantification. Secondly,280
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it also aims at providing an in-depth discussion concerning the applicability

of Bayesian and interval methods on a realistic dataset. The DLR-AIRMOD

structure, with corresponding dataset (see [22]) is selected due to its challenging

nature and the elaborate literature on the subject. Both presented techniques

are applied to this case, and the results are compared in terms of obtained in-285

formation and accuracy. The inverse UQ is first performed using the complete

experimental data set containing 86 measured eigenfrequencies. Then, to illus-

trate the performance of both methods under scarce data, the inverse UQ is also

performed using only 5 measured replica that were randomly selected from the

full dataset. Note that, since both methods are conceptually very different, a290

quantitative comparison of the accuracy of the obtained results is not possible.

Therefore, the comparison is made qualitatively in terms of conservatism with

respect to the measurement data set.

Finally, since both methods require a large number of function evaluations,

Artificial Neural Networks are used as surrogate models. Specifically a set of295

2-layer (18:16:14:1) Neural Networks that map each vector of uncertain model

parameter to one eigenfrequency of the FE model is constructed using state-of-

the art ANN tools and ensuring proper performance (see also [33] or [34] for a

discussion of the training and validation).

5.2. Model introduction300

The DLR AIRMOD structure, as shown in figure 3, is a scaled replica of the

GARTEUR SM-AG19 benchmark airplane model [22]. The physical AIRMOD

structure is constructed from six aluminum beams that are connected by five

bolted joints and weighs approximatly 40 kg to represent the fuselage, wings,

winglets, vertical tail plate (VTP) and horizontal tail plate (HTP). It has a305

wing span of 2.0 m, the fuselage length is 1.5 m and the height is 0.46 m. The

complete FE model, constructed in NX Nastran, consists of 1440 CHEXA, 6

CPENTA and 561 CELAS1, 55 CMASS1, 18 CONM2 and 3 CROD elements,

and is constructed after [22].

A set of 18 parameters including support and joint stiffness values, as well as310
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mass parameters are selected for the identification (see table 1), in correspon-

dence with literature on the subject [12]. The locations of these parameters are

indicated in figure 3.

Figure 3: Illustration of the AIRMOD test structure (adapted after [22])

Table 2 lists the eigenmodes and eigenfrequencies that are obtained by solv-

ing the deterministic model (denoted as fFE,init). From this table, it can be315

noted that the model indeed exhibits some challenges for uncertainty quantifica-

tion procedures such as asymmetric modal behaviour and closely spaced modes.

To prevent that perturbations in the model parameters lead to eigenmode veer-

ing or cross-over, MAC-based mode tracking with respect to the reference solu-

tion is applied in each stage of the quantification. From this set, the 1st − 8th,320

10th − 12th, 14th, 19th and 20th mode are selected for the identification. These

14 modes are selected to be consistent with literature on the subject [12].

It can be shown that the eigenfrequencies predicted by a linear numerical

model are a strict monotonous function of the uncertain model parameters [35].

In this case, the reduced transformation method [24] yields the exact bounds325

on the eigenfrequencies. However, the number of necessary function evaluations

for the propagation scales exponentially with the number of uncertain model

parameters. For the multivariate interval quantification method, it is therefore

assumed that the masses at both wing-tips (i.e. θ9 and θ10) and the stiffness
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Table 1: Parameters that are used in the identification

Type Description Orientation Deterministic value

θ1 Stiffness Support stiffness y 1.80 · 1003 N/m

θ2 Stiffness Support stiffness y 7.50 · 1003 N/m

θ3 Stiffness Cables y 1.30 · 1002 N/m

θ4 Stiffness Cables y 7.00 · 1001 N/m

θ5 Stiffness Cables y 7.00 · 1001 N/m

θ6 Stiffness Joint stiffness x, y 1.00 · 1007 N/m

θ7 Stiffness Joint stiffness z 1.00 · 1009 N/m

θ8 Mass Cables / 2.00 · 10−01 kg

θ9 Mass Screws / 1.86 · 10−01 kg

θ10 Mass Screws / 1.86 · 10−01 kg

θ11 Mass Cables / 1.50 · 10−02 kg

θ12 Mass Cables / 1.50 · 10−02 kg

θ13 Mass Cables / 1.50 · 10−02 kg

θ14 Stiffness Joint stiffness x 2.00 · 1007 N/m

θ15 Stiffness Joint stiffness y 2.00 · 1007 N/m

θ16 Stiffness Joint stiffness z 7.00 · 1006 N/m

θ17 Stiffness Joint stiffness x 5.00 · 1007 N/m

θ18 Stiffness Joint stiffness y 1.00 · 1007 N/m

introduced by the cables at the top and the bottom of the structure (θ4 and330

θ5) are completely dependent, reducing the number of uncertain parameters to

16. Hence, the number of necessary function evaluations for a single interval

computation reduces from 262144 to 65536 which makes it computationally

more tractable. The validity of this assumption will be estimated based on

the obtained results. This assumption is not made for the Bayesian method,335

as the Monte Carlo sampling that underlies the applied TMCMC approach is

dimension-independent.
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5.3. Measurement data set

A measurement data set containing 86 measurements of the 30 eigenmodes

and -frequencies, as explained in detail in [22], is applied for the inverse UQ.340

For a complete explanation of the experimental campaign that was followed to

construct this dataset, the reader is referred to [22]. The measured eigenfre-

quencies and their variability are shown in Table 2. In this table µf and σf

denote respectively the mean and standard deviation of the measurement data.

To assess the robustness of both methods against the size of measurement data,345

both the full measurement data set and a subset of 5 arbitrarily drawn replica

were employed for the UQ of the 18 parameters.

5.4. Multivariate interval quantification

5.4.1. Response set dimension reduction

The number of considered model responses proves to be challenging in the350

application of the interval analysis due to the exponential time complexity of

the applied QuickHull algorithm. The computation of a convex hull over all

14 pre-selected resonance frequencies, would therefore make the identification

computationally intractable, as this computation has to be performed numer-

ously during the quantification procedure. Therefore, this dimension is reduced355

following the method presented in section 2.2. In this context, application of

equations (8) to (9) indicates that the effective dimensionality is equal to 13

when an approximation error ε below 0.1% is desired. This also can be seen in

figure 4, which plots the reduction error ε as a function of the reduced dimension

dr for the first 18 λe,i.360

Based on the singular value decomposition of the covariance matrix (see eq.

(8)) of the pre-selected 14 eigenmodes, an orthogonal basis B ∈ R13 is con-

structed according to eq. (6), and these 14 eigenmodes are projected onto this

basis. This dataset is further projected onto lower-dimensional bases, in accor-

dance with eq. (10). The computational gain of applying d+r = 2 dimensional365

sub-bases of B is illustrated in figure 5. This figure shows the wall-clock time that

is needed to compute 1 dr-dimensional convex hull, as well as the time needed
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Table 2: eigenmodes and corresponding initial FE estimate of the corresponding eigenfre-

quency, as well as the statistics of the measured eigenfrequencies. The eigenmode naming

convention is as follows. The letter before the dash − denotes the considered part, the letters

after the dash the deformation mode. RB denotes the rigid body modes, W denotes the wing,

Wl the winlets, F the fuselage, VTP the Vertical Tail Piece and HTP the Horizontal Tail

Piece. B denotes horizontal bending, T torsion, FAB denotes fore-after bending, LB lateral

bending, BL bending left, BR bending right and VB vertical bending.

No Mode fFE,init µf (Hz) σf (Hz) f(Hz) f(Hz) nsam

1 RB-Yaw − 0.23 0.006 0.22 0.24 41

2 RB-Roll 0.56 0.65 0.019 0.6 0.68 81

3 RB-Pitch 0.82 0.83 0.017 0.8 0.88 83

4 RB-Heave 2.14 2.17 0.024 2.11 2.22 86

5 2nd W-B 5.65 5.5 0.004 5.49 5.52 86

6 3rd W-B 15.11 14.91 0.017 14.88 14.94 86

7 1st assym. W-T 31.31 31.96 0.02 31.92 32.01 86

8 1st sym. W-T 33.62 32.33 0.017 32.29 32.38 86

9 1st VTP-B 35.39 34.38 0.081 34.23 34.54 86

10 4th W-B 44.66 43.89 0.015 43.85 43.92 86

11 1st W-FAB 47.21 46.71 0.149 46.27 46.99 86

12 2nd W-FAB 52.91 51.88 0.012 51.84 51.91 86

13 5th W-B 60.59 58.59 0.075 58.33 58.76 86

14 1st VTP-T 67.69 65.93 0.274 65.46 66.33 86

15 2nd F-LB 102.59 100.05 0.28 99.38 100.48 86

16 2nd VTP-B 128.62 124.56 0.356 123.85 125.1 86

17 6th W-B 132.08 129.38 0.107 129.12 129.66 86

18 7th W-B 145.91 141.47 0.347 140.79 142.76 85

19 2nd HTP-B 206.73 205.59 1.023 203.24 206.87 86

20 1st HTP-FAB 225.73 219.07 1.663 216.29 221.3 86

21 1st W-BR 261.53 254.73 0.557 253.41 256.48 70

22 1st W-BL 262.64 255.02 0.575 253.84 256.27 81

23 3rd W-FAB 278.71 272.08 0.374 271.17 272.89 86

24 1st Wl-BL 320.15 303.96 1.115 301.52 306.5 82

25 1st Wl-BR 321.64 304.32 2.138 301.17 310.27 83

26 3rd F-LB 324.12 313.68 1.218 309.38 314.76 86

27 2nd sym. W-T 336.31 328.55 0.448 327.03 330.21 85

28 2nd assym. W-T 341.15 331.18 0.528 329.64 332.95 86

29 4th W-FAB 343.55 336.21 0.647 330.88 337.41 86

30 2nd F-VB 359.54 348.68 1.141 346.75 350.3 86
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Figure 4: Reduction error ε as a function of the reduced dimension dr, applied to the AIRMOD

data set.

to compute
(
dr
2

)
2-dimensional convex hulls. The computations are made using

the measurement data set with the 14 pre-selected Eigenmodes, containing a

selection of either 25, 50 or 86 replica (i.e., the full dataset). All computations370

are made using a single-thread of an Intel Xeon E5-1620 @ 3.70 GHz with a

total 32Gb of RAM as to prevent swapping. As can be seen, the projection

method is very effective in reducing the computational burden of obtaining the

convex hull. Specifically, when considering a 14-dimensional convex hull, the

computational cost is reduced with a factor up to 1 · 1005 when compared to375

the computation of the full-dimensional convex hull for dr = 14. Finally, the

influence of the measurement data size is considerably smaller when d+r = 2,

which is very relevant for reducing the result of the interval FE model, which

contains 216 = 65536 responses.

Note that this does not limit the accuracy of the method since quadratic380

and higher order interactions between responses are already linearised by con-

sidering only the convex hull of the set. All interval quantification compu-

tations are therefore performed using 91 2-dimensional projections of the full

14-dimensional convex hull, where an equal weight is attributed to each projec-

tion.385
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Figure 5: Wall-clock time that is needed to compute 1 dr-dimensional convex hull, as well as

the time needed to compute
(dr
d+r

)
d+r dimensional convex hulls

5.4.2. Uncertainty Quantification

The objective function presented in eq. (12) is in general not convex and

should be solved in 32-dimensional space. Therefore, eq. (12) is solved using a

hybrid Particle Swarm Algorithm (PSA). A swarm size of 100 particles is used,

and the optimization is considered to be converged when it reached 15 stalling390

iterations. These settings are found in a heuristic approach and based on prior

experience with PSA. In a second step a sequential quadratic programming

approach is followed until converged, starting from the estimate of the global

minimum of eq. (12) obtained by the PSA. The optimality of this solution

can be verified by qualitatively comparing cross-sections of the convex hulls of395

the measurement data set and the result of the interval FE model. For the

quantification of the multivariate interval uncertainty the weighting factor wo

in eq. (12) is set to unity, meaning that equal priority is given to maximising

the overlap and matching the multidimensional volumes. Given the already

challenging nature of the optimisation, this weight value prevents the encounter400
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of instabilities. These would inevitably appear in the case a large wo is selected

due to the then discontinuities behaviour of eq. (12) as a result of the barrier-

function like influence term wo∆V
2
o,i.

5.5. Bayesian model updating

The Bayesian uncertainty quantification was performed using 18 uncorre-405

lated marginal uniform prior distributions. The range of the distribution of

each parameter has been selected spanning an interval from 5% to 200% of the

parameter nominal value. The likelihood, as introduced in eq. (16), is con-

structed under the assumption independence of the data.

5.6. UQ with full data set410

Figure 6 illustrates the marginal posterior distributions of the model param-

eters obtained via Bayesian updating, and the corresponding quantified interval

bounds. For the sake of comparison, the parameters θ are here normalised

by their initial nominal values. The colour coding represents the normalised

height of the histogram of each normalised θi value according to the obtained415

marginal posterior. On the other hand, the upward and downward facing tri-

angles denote respectively the lower and upper interval bounds, as obtained by

the multivariate interval quantification method. The correlation matrix of the

Bayesian result is illustrated in figure 7.

First, a large conceptual difference between both methods can be noted. On420

the one hand, the intervals provide the analyst with crisp bounds for the possible

parameter values, on the other hand, the marginal posterior distributions assign

a non-zero plausibility to a large range of responses. Note that the range of

illustrated values is limited due to the finite data set that is used to plot the

normalised histograms. Nevertheless, the most probable point in the Bayesian425

analysis is still clearly identifiable in most cases. It should be noted that the

Bayesian analysis predicts a multi-modal plausibility distribution for θ1, θ2,

θ4, θ5, θ7, θ8, θ9, θ10, θ12 and θ15. The multi-modality can be interpreted as

slight changes in the test conditions that were not noted during the experimental
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Figure 6: Normalised histograms of the posterior distribution samples, indicated as colour

coded bar graphs, and interval bounds, indicated as triangles that are obtained by performing

respectively Bayesian inference and Multivariate interval quantification on the full AIRMOD

data set.

campaign (see e.g. [33]). This multi-modal behaviour cannot be captured by the430

interval UQ. By comparing the results for those parameters with multi-modal

posteriors, the interval analysis either encompasses all modal peaks (e.g., θ7),

or just the most probable one (e.g., θ12 or θ15).

Qualitatively, the predictions of both methods correspond rather well, as the

interval method usually bounds the same area in parameter space to which the435

Bayesian method assigns the highest degree of plausibility. Exceptions hereto

exists for θ6, θ8, θ16, θ17 and θ18. These differences are due to a variety of

factors, such as the difficulty in finding the exact global minimum in a 18-

dimensional uncertain space in case of the interval method, a highly peaked

marginal distributions in the case of Bayesian UQ, or a low-importance input440

that cannot be effectively updated with the available experiments. As a last

remark, the assumption that parameters 4 − 5 and 9 − 10 are dependent to
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reduce the number of uncertain parameters in the case of the interval analysis

is proven to be reasonable, as the marginal posteriors obtained by Bayesian

UQ show similar plausibility distributions and they were found to be highly445

correlated.

Figure 7: Correlation matrix, obtained by the Bayesian analysis on the full dataset.

From the point of view of the updated model outputs, Figure 8 shows

all combinations of the pre-selected eigenfrequencies, obtained by propagat-

ing the quantified intervals and Bayesian posterior distribution through their

corresponding ANN surrogates of the AIRMOD FE model. As an additional450

comparison, the measurement data set is also shown.

Marginally, the results obtained by the multivariate interval quantification

method predict a wider range of possible responses for f5, f7, f8, f10 and f12 as

compared to the samples from the Bayesian posterior distribution. Note that

these bounds, as opposed to the ones predicted by these Bayesian samples, are455

considered strict. For e.g., f19 and f20, it is shown that some of the experimental

responses are not encapsulated within the convex hull. This is a direct result of

the construction of the objective function for the quantification, as elaborated

in the final paragraph of section 2.2. This effect is clearly visible in this case

since wo = 1 to smooth the objective function.460
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As concerns the combination of the 5-8, 7-8 and 8-12 eigenmodes, the mutual

dependence is not predicted correctly by the quantified interval model. The

interval model in fact predicts these responses to be highly dependent, whereas

the measurement data show otherwise. Keeping in mind that the 7th, 8th and

12th eigenmode correspond to respectively anti-symmetric torsion, symmetric465

torsion and wing fore-after bending modes, the inaccurate prediction of their

dependence in the interval model is a direct cause of the assumption that θ4 -

θ5 and θ9 - θ10 are fully dependent.

Finally, although the Bayesian posterior distributions predict a non-zero

plausibility for a larger range of parameter values as compared to the interval470

model, tighter bounds on the prediction of the uncertain parameters as com-

pared to the measurement data set are obtained. This observation stems from

the low plausibility that is attributed to the tails of the marginal posterior

distributions, combined with the peakedness of the distribution, such that the

moderately small dataset of 500 samples did not sample these tails.475

These results indicate that, in case sufficient data are available, Bayesian

inference outperforms the multivariate quantification method in terms of infor-

mation content (e.g., correlation and multi-modality as compared to purely the

crisp bounds) and accuracy (less over-conservative while still capturing almost

all responses). Note that a part of the discrepancy between the results obtained480

by both methods stems from different assumptions on parameter dependence

that were made. This however does not invalidate this main conclusion.

5.7. UQ with small data set

Figure 9 shows all combinations of considered eigenfrequencies, obtained

by propagating the quantified intervals and posterior distributions through the485

AIRMOD FE model.

Concerning the marginal eigenfrequencies, the bounds predicted by the quan-

tified interval method circumscribe the measurement data set tighter as com-

pared to the Bayesian samples, which are shown to be more over-conservative.

This is e.g., the case for f1, f2, f3, f4, f5, f11, f14 and f19. The only excep-490
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Figure 8: All combinations of considered eigenfrequencies, obtained by propagating the quan-

tified intervals and posterior distributions through the AIRMOD FE model. The quantified

results were obtained by using the full measurement data set.

tion hereto is the 8th eigenmode (i.e. the 1st symmetric wing torsion mode),

which is completely missed by the quantified interval method, as it focussed on

encompassing f7 since both frequencies are equal as can be noted from figure

9. The main reason for this lack of overlap is explained by the assumed perfect

dependence between parameters θ4 - θ5 and θ9 - θ10, combined with the low495

data availability. Ideally, the interval method would try to find a set of intervals

that encompass both f7 and f8 perfectly, but due to the fact that w0 is set to

unity, this did not happen. This is a possible limitation of the method.
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Due to the scarcity of the dataset, none of the methods was able to give an

accurate estimate of the dependence between the eigenfrequencies. However,500

the interval method, apart from the 8th eigenmode, was able to provide tighter

bounds on the uncertainty. The ability to provide a better estimate is caused

by the effect of the prior distribution for the Bayesian UQ on the identified

posterior. To recall, a uniform distribution with very broad basis was selected

as to correspond with no prior knowledge on the uncertainty. Since insufficient505

data are available to compensate for the effect of this prior, the Bayesian method

provides a very broad estimate of possible responses.

Therefore, under scarce data, the interval method outperforms the Bayesian

method since the lack of informative data makes the quantified posterior highly

dependent on the prior knowledge. The interval method on the other hand510

does not need an initial estimate of the parameter uncertainty, since the global

optimisation routine actively searches the space of input parameters for those

intervals that best prescribe the available data.

6. Conclusions

In this paper, an improved version of a novel interval quantification method515

was presented in the context of high-dimensional models, which has been shown

to be able to alleviate the curse of dimensionality that is attributed to the

necessary convex hull computations. The latter is illustrated by the factor 105

gain in computational efficiency for the evaluation of the discrepancy between

the convex hulls.520

The approach has been tested by analysing the DLR-AIRMOD test structure

and compared with results obtained by Bayesian model updating. Concerning

the interval method with the full dataset, the cross-sections of the resulting

convex hull failed to encompass the dataset completely, which is a direct result

of some assumptions that were made in the modelling process. Moreover, prop-525

agation of the Bayesian posterior distribution provided a tighter estimation of

the experimental dataset. The interval method however provides the analyst
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Figure 9: All combinations of considered eigenfrequencies, obtained by propagating the quan-

tified intervals and posterior distributions through the AIRMOD FE model. The quantified

results were obtained by using only 5 measured replica.

with fixed bounds between the uncertainty is believed to be located in contrast

to the possibly infinite support of the posterior distributions stemming from the

Bayesian analysis. In case only limited data are available, the effect of the prior530

distribution dominates the obtained posterior distribution in the Bayesian case.

In this case, propagation of the quantified intervals provides the analyst with a

better representation of the measurement dataset in terms of over-conservatism

and crispness of the model representation. However, the case study illustrates

clearly that it is challenging to perfectly fit a numerically computed convex hull535
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to a convex hull over experimental data. This is a direct result of the fact

that in the context of inverse interval uncertainty quantification, a trade-off

between conservatism and representing the data accurately exists, where some

data points are missed to better represent the full dataset. This was specifically

evident when only 5 data samples are considered, as one eigenfrequency was540

missed by the interval method.

As such, using this challenging high-dimensional example and the presented

theoretical discussion, it is shown that the choice between interval and Bayesian

UQ boils down to some key questions an analyst has to consider:

• what is the desired information on the uncertainty?545

If the analyst is only interested in bounds on the uncertain parameters,

given a set of measurement data, interval analysis has been shown to be

very robust with respect to the scarcity of the measurement data. In

this case no prior, often subjective, knowledge is needed for the analysis.

Should the analyst on the other hand be interested in a complete de-550

scription of the (joint-)plausibility, including correlation and multi-modal

descriptors, a Bayesian approach has to be applied.

• what is the availability of data?

Since the prior distribution influences the posterior distribution in a Bayesian

context under scarce data to a large extent, sufficient informative data555

should be available to perform a Bayesian analysis. If insufficient data are

available, but the analyst requires the information provided by Bayesian

analysis; (s)he should collect more data or take utmost care in construct-

ing the prior distribution. Otherwise, the interval approach was proven to

give more informative bounds in this case.560
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