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Abstract

The creation of computer models is often driven by the need to make predictions in regions where there is

no data (i.e. extrapolations). This makes validation challenging as it is difficult to ensure that a model will

be suitable when it is applied in a region where there are no observations of the system of interest. The

current paper proposes a method that can reveal flaws in a model which may be difficult to identify using

traditional approaches for model calibration and validation. The method specifically targets the situation

where one is attempting to model a dynamical system that is believed to possess time-invariant calibration

parameters. The proposed approach allows these parameters to vary with time, even though it is believed

that they are time-invariant. The of such an analysis is to identify key discrepancies - indications that a

model has inherent flaws and, as a result, should not be used to influence decisions in regions where there

is no data. The proposed method isn’t necessarily a predictor of extrapolation performance, rather, it is a

stringent test that, the authors believe, should be applied before extrapolation is attempted. The approach

could therefore form a useful part of wider validation frameworks in the future.
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1. Introduction

Computational models are crucial to many fields of science and engineering. Before being used to influ-

ence decision-making, such models must be validated; it must be established that the model can represent

the real world with a level of accuracy sufficient for its intended purpose. Model validation is, as a result,

an active research area.

In a broad sense, the current paper considers the situation where:

1. There may be several competing model structures that can, potentially, be employed by a user to

simulate a quantity of interest.

2. Each model structure features a set of parameters that will need to be calibrated during the validation

process.
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3. A set of observations, from the system of interest, are available to the user (such that this data can

be used to help infer parameter estimates and/or facilitate model selection).

While such scenarios are considered by much of the literature, the current paper differs from most in that

it explicitly considers the issues associated with extrapolation. Here, ‘extrapolation’ refers to a situation

where a model will be used to make predictions in a region that, according to a form of distance metric,

is ‘very far’ from current experimental observations. Using the terminology given in [1], the current work

considers the situation where a model must be applied outside of its ‘domain of applicability’.

Validating models that will be used to extrapolate is often confounded by the fact that, in the regions

where measurements are available, calibration can mask model error. In other words, a model’s parameters

can often be tuned such that the model appears to be sufficiently valid compared to the available data,

even if the model will be a poor extrapolator (this is illustrated in Section 4.2 of the current paper). The

current work presents an approach that can, in such a scenario, illustrate the flaws in a model; providing a

warning that the model should not be used for extrapolative predictions.

The proposed approach focuses on situations where it is believed that the model of interest’s parameters

are time-invariant. A calibration procedure is then employed that deliberately treats the model’s parameters

as being time-varying, even though this is not believed to be the case. It is by observing that a model’s

parameters must vary with time if it is to replicate a set of measurements with a high level of fidelity that

one can identify key discrepancies in the model that may be hidden by other calibration procedures. The

approach is demonstrated on applications from the field of structural dynamics.

2. Literature Review

The idea that statistical models can be used to emulate model discrepancy (see [2] and[3] for example)

has influenced a large body of work. Such an approach accepts that there will always be a discrepancy

between a model that is formulated on the understanding of the system of interest (a model that is based

on physical laws, for example) and the system’s true response. A purely data-based model is then trained

and used to realise predictions of this discrepancy. Subsequent to calibration, then, predictions are made

using a combination of the model that is based on an understanding of the system and the data-based

discrepancy model1.

One of the best-known implementations of this approach is that of Kennedy and O’Hagan [2], where

Gaussian Processes (GPs) were used to create statistical models of model discrepancy (as well as emulators,

1This type of approach is sometimes called grey-box modelling, as it utilises a combination of a ‘white box model’ (model

based on an understanding of the system) and a ‘black box model’ (a model that is purely data-based).
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for the cases where simulations of the system of interest are computationally expensive). This idea has

contributed to many works in the field of model validation, including generalised validation frameworks

[4][5][6], model validation metrics that consider model discrepancy [1], metrics to establish when sufficient

experimental data has been gathered in the model validation process [7] and approaches for resource allo-

cation (between code development and experimental testing [8] or the development of substructures within

a model [9]).

While undoubtedly a useful contribution, employing data-based models of discrepancy cannot help im-

prove extrapolations that are far from the training data (GPs, for example, will typically return very quickly

to predictions based only on prior knowledge of the discrepancy if extrapolated to a region where there is

no data). This issue is highlighted by a number of authors. In [10] it is stated that ‘the primary use of

engineering models is to extrapolate to a system with new nominals when there are no new field data’ but

that extrapolation, using the approach described in [2], can only be performed if there is a ‘modest’ change

in the inputs. The authors of [11] note that ‘such a statistically adjusted engineering model lacks predictive

power in the sense that it can be used only in the experimental conditions identical or very similar to those

under which the statistical model was fitted’ and in [12] it is stated that ‘...the discrepancy representation

... is highly dependent on calibration against observables and, hence, should not be used in situations in

which it cannot be trained and tested’.

It is important to note that the above discussion isn’t a direct criticism of [2] - the authors of [2] did

not claim that the method will provide reliable extrapolations. A discussion of the Kennedy and O’Hagan

approach is given by BrynjarsdÃşttir and O’Hagan in [13], which considers how the use of GP emulators of

model discrepancy can (1) aid the identification of a system’s ‘true’ parameter values and (2) aid extrapola-

tions. It is concluded that true parameter values can only be uncovered if realistic prior information about

the model discrepancy is available and that, even if realistic prior information is available, extrapolation is

not advisable. [13] highlights these two issues using a simple case study.

The current paper considers the situation where there is no data in the region one wishes to make pre-

dictions. This separates it from [1] and [7] which (respectively) describe a ‘predictive maturity index’ and a

‘forecasting metric’, as these two approaches utilise hold-out experiments (experimental observations, in the

application domain, that are deliberately removed from the training data so that they can be used to aid

validation at a later stage). The proposed method is designed to reveal additional engineering knowledge

about a particular system and, as a result, form part of the frameworks described in [11] and [12], both of

which specifically consider extrapolation.
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3. Methodology

3.1. General Framework

The current work specifically concerns the analysis of dynamical systems. Using xi to represent a

system’s state at time i∆t then, generally, it is assumed that the system’s state evolves according to

xi = f(xi−1,ui) + vi−1, vi−1 ∼ N (vi−1;0,Qi−1) (1)

where ∆t is a fixed time increment, ui is a system input, f is a model that predicts the next system state

given (xi−1,ui) and vi−1 is a noise term that reflects the uncertainties involved in predicting the system’s

next state (arising because f is an approximation of the true system). Equation (1) is typically referred to

as the ‘prediction equation’.

Likewise, using zi to represent an observation of some aspect of the system at time i∆t, it is also

supposed that measurements are made according to

zi = hi(xi) + ni, ni ∼ N (ni;0,Ri) (2)

where h is a (potentially nonlinear) function of the system’s state and ni is used to capture uncertainty

in the observation process (measurement noise). Equation (2) is typically referred to as the ‘observation

equation’. It is noted that, in the literature, the prediction and observation equations are often written as

potentially nonlinear functions of their noise terms (vi−1 and ni respectively) - this has not been done here

for the sake of notational simplicity later in the paper.

3.2. Extended Kalman Filter

The extended Kalman filter is one of a collection of methods that target situations where the aim is

to probabilistically ‘track’ how the state of the system of interest changes, as more observations arrive

over time. If, in the prediction and observation equations, f and h are linear functions of xi−1 and xi

respectively then it is possible to realise closed-form solutions for this problem. These solutions form the

well-known Kalman filter. If f and h are nonlinear then, generally, such closed-form solutions are unavail-

able. One way to address this is to approximate f and h using linear functions (via first-order Taylor series

expansions), before applying the ‘standard’ Kalman filter equations to the new, linearised relationships.

This linearised approach is called the extended Kalman filter (EKF)2.

2There are many other ways in which this problem could be tackled. One of the most well-known is the particle filter

- a numerical method that is fundamentally based on importance sampling (see [14] for a tutorial). Here, however, it was

found that an extended Kalman filter performed acceptably well and that the prediction and measurement equations were not

sufficiently nonlinear to warrant use of a particle filter.
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The following text gives a brief description of an extended Kalman filter, to establish notation used later

in the paper. Considering the situation where

p(xi−1 | z1:i−1) = N (xi−1;mi−1|i−1,P i−1|i−1) (3)

(such that the probability density function (PDF) of xi−1 given z1:i−1 is Gaussian with mean mi−1|i−1

and covariance matrix P i−1|i−1) then, with an EKF, the linearised prediction equation is used to predict

the next system state. This yields the PDF

p(xi | z1:i−1) = N (xi;mi|i−1,P i|i−1) (4)

Once a new observation arrives (zi) then, through the observation equation, the current estimate of the

system’s state can be updated to obtain:

p(xi | z1:i) = N (xi;mi|i,P i|i) (5)

where the parameters of the PDFs in equations (3), (4) and (5) are as follows:

mi|i−1 = f(mi−1|i−1) (6)

P i|i−1 = Qi−1 + Fmi−1|i−1
P i−1|i−1F

T
mi−1|i−1

(7)

mi|i = mi|i−1 +Ki(zi−h(mi|i−1)) (8)

P i|i = P i|i−1 −KiHmi|i−1
P i|i−1 (9)

and the following definitions have been employed:

Ki = P i|i−1H
T
mi|i−1

S−1
i (10)

Si = Hmi|i−1
P i|i−1H

T
mi|i−1

+Ri (11)

F x̂ ≡
[
∂ f

∂ x

]
x=x̂

(12)

H x̂ ≡
[
∂h

∂ x

]
x=x̂

(13)
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3.3. Application to the 4th order Runge-Kutta integration scheme

The following examples consider dynamical systems that may be subjected to a time history of known

excitations: δ1, δ2, .... Throughout the paper, the state of these systems is calculated recursively using the

4th order Runge-Kutta numerical integration scheme. To help relate this scheme back to the general pre-

diction equation (equation (1)), some additional notation is required. Specifically, the following definitions

are employed:

ui =

 δi−1

δi

 (14)

ẋ(xi, δi) ≡
[
∂ x

∂t

]
x=xi,δ=δi

(15)

k1 = ẋ(xi−1, δi−1) (16)

k2 = ẋ

(
xi−1 +

∆t

2
k1, δint

)
(17)

k3 = ẋ

(
xi−1 +

∆t

2
k2, δint

)
(18)

k4 = ẋ (xi−1 +∆tk3, δi) (19)

where ∆t is the time-step of the integration scheme and δint = 1
2 (δi−1 + δi). Using this notation, the

function f that maps xi−1 to xi can be written as

xi = xi−1 +
∆t

6
(k1 +2k2 +2k3 +k4) (20)

To find an expression for F x̂ (equation (12)) it is noted that

F x̂ = I +
∆t

6


[
∂ k1

∂ xi−1

]
xi−1=x̂︸ ︷︷ ︸

Term 1

+2

[
∂ k2

∂ xi−1

]
xi−1=x̂︸ ︷︷ ︸

Term 2

+2

[
∂ k3

∂ xi−1

]
xi−1=x̂︸ ︷︷ ︸

Term 3

+

[
∂ k4

∂ xi−1

]
xi−1=x̂︸ ︷︷ ︸

Term 4

 (21)

Evaluation of terms 1-4 in equation (21) essentially requires the application of some straightforward vector

calculus. For the sake of completeness, the required derivatives are shown in detail in Appendix Appendix

B. Ultimately, it can be shown that

[
∂ k1

∂ xi−1

]
xi−1=x̂

= F̃ (x̂, δi−1) (22)

[
∂ k2

∂ xi−1

]
xi−1=x̂

= F̃

(
x̂+

∆t

2
k1(x̂, δi−1), δint

)(
I +

∆t

2

[
∂ k1

∂ xi−1

]
xi−1=x̂

)
(23)
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[
∂ k3

∂ xi−1

]
xi−1=x̂

= F̃

(
x̂+

∆t

2
k2(x̂, δint), δint

)(
I +

∆t

2

[
∂ k2

∂ xi−1

]
xi−1=x̂

)
(24)

[
∂ k4

∂ xi−1

]
xi−1=x̂

= F̃ (x̂+ ∆tk3(x̂, δint), δi)

(
I + ∆t

[
∂ k3

∂ xi−1

]
xi−1=x̂

)
(25)

where F̃ (x, δ) represents the Jacobian of ẋ, with respect to xi−1, evaluated at the points x and δ.

4. Example 1: Numerical Case Study

4.1. Description

Example 1 considers modelling a single degree of freedom nonlinear dynamic system whose equation of

motion is

ẍ+ cẋ+ kx+ k∗x3 = δ(t) (26)

In equation (26) x is displacement, c is a linear damping coefficient, k is a linear stiffness coefficient and k∗

is a nonlinear stiffness coefficient that controls the strength of the system’s hardening stiffness nonlinearity.

δ(t) is a random excitation that, in this case, consists of samples drawn from a zero-mean unit-variance

Gaussian.

To generate a set of observation data, the nonlinear system was simulated using a time step of ∆t = 0.01s.

Observations were created by taking the resulting displacement time history and corrupting it with zero-

mean Gaussian noise (variance equal to 1 × 10−5). The model’s parameters were k = 10 N/m, c = 0.1

Ns/m and k∗ = 50 N/m3. Observation data was generated over a time period of 200 seconds. The full set

of observation data is shown in Figure 1 while a zoomed-in portion is shown in Figure 2.
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Figure 1: 200 seconds of displacement time history observations from the numerical case study. Black shows the

true response of the system while red shows noisy observations.
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Figure 2: Numerical case study. A close-up view of the data shown in Figure 1.

The following considers the case where one is attempting to fit a linear model to data that is obtained

from the nonlinear system. It is also considered that, after calibration, the model will be used to predict

the response of the system to a much greater amplitude excitation than that used to generate the data in

Figure 1. It is noted that the excitation used to generate the observation data is relatively low, such that

the nonlinearity is difficult to detect.

4.2. Highlighting the Problem

This section illustrates that, by tuning its parameters, it is possible for the linear model to represent

observations of the nonlinear system fairly accurately in the low amplitude regime where there is data,

potentially giving false confidence in the model’s ability to extrapolate. Specifically, a common Bayesian

approach (that assumed time-invariant parameters) is adapted to the calibration of the model. The approach

begins with Bayes’ theorem:

p(θ |D) ∝ p(D|θ)p(θ) (27)

where θ is a vector of parameters to be calibrated and D represents training data (in this case D is a time

history of the excitation and the observed displacement response of the system). The likelihood, p(D|θ), is

defined based on the assumption that each observation is equal to the response of the model, corrupted by

the addition of Gaussian noise. This noise is assumed to be zero-mean, have variance R and be indepen-

dent of the noise that corrupted previous observations. In the following, R is treated as a time-invariant

parameter that also requires calibration such that θ = (k, c, R)T .

Defining the likelihood in this way treats any differences between observations and model response

(i.e. errors that arise because of both measurement noise and model discrepancy) as independent Gaussian

noise3. Moreover, by allowing R to be calibrated, the variance of this noise can be tuned at the same time as

3This assumption is often justified by the principle of maximum entropy [15], although [16] highlights examples where

prediction errors can be spatially and/or temporally correlated.
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the model’s stiffness and damping parameters. This framework means that the maximum likelihood set of

model parameters are those that make the discrepancy between the model and the observations most closely

approximate a Gaussian distribution with variance R. This way of treating uncertainty in the calibration

procedure has been applied by many (including the author’s of the current manuscript) and is referred to

in [13] as a ‘traditional approach’.

For the academic example discussed in the current section, prior distributions over the calibration

parameters were chosen to be

p(k) = N (k; 10, 32), p(c) = N (c; 0.1, 0.12), p(R) = Gamma(R; 1, 100) (28)

such that the prior over R is a Gamma distribution whose shape and rate parameters are equal to 1 and

100, respectively. Using the first 50 seconds of data for training, the Markov chain Monte Carlo (MCMC)

algorithm detailed in [17] was used to generate 1000 samples from the posterior, p(θ |D).

Histograms of the resulting samples are shown ‘close up’ in Figure 3 while, in Figure 4, histograms are

plotted alongside the true parameter values. These figures highlight two observations. Firstly the posterior

distribution over k is concentrated over values that are larger than the true stiffness. This illustrates how

k has been calibrated to overcome the model discrepancy (the lack of the nonlinear term). Secondly, the

distribution over R is also concentrated on values that are larger than the true measurement noise variance,

highlighting that this particular approach has attempted to describe the model discrepancy present in the

problem as additional noise on the observations (in other words, the errors present in the model have in-

creased the most probable value of R, given the available training data).
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Figure 3: Histograms of samples from the posterior parameter distribution of the linear model in the numerical case

study. All parameters in SI units.
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Figure 4: Histograms of samples from the posterior parameter distribution of the linear model in the numerical case

study. True parameter values are marked by red lines. All parameters in SI units.

An illustration of the problem that motivates the current paper comes when the MCMC samples are

used to propagate these parameter uncertainties into future model predictions. Recalling that there is only

training data in a relatively low amplitude regime, Figure 5 shows the model’s predictions relative to (1)

the training data and (2) data that was ‘held back’ for validation purposes. Figure 6 shows a close-up of the

model’s ability to replicate the validation data. These results illustrate that, for low amplitude excitations,

the model is able to closely replicate data that was not used in training; the model has been tuned to work

effectively in the region where we have data, despite lacking the nonlinear stiffness term. Subsequently,

the model was used to predict the response of the system to a higher amplitude excitation, whereby δ(t)

consisted of samples drawn from a zero-mean Gaussian whose standard deviation was equal to 2. Figure 7

illustrates that, for this higher amplitude excitation, the model is not able to accurately replicate the re-

sponse of the system (or accurately quantify the uncertainties involved in the predictions). This numerical

example highlights how, without the data from the high amplitude case, it can be difficult to infer that the

model would be a poor extrapolator.
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Figure 5: Propagating parameter uncertainties of the linear model into predictions (numerical case study). Blue

represents training data, black represents previously unseen data and red represents the average model predictions.

Bounds on model predictions are 3 standard deviations from the mean.
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Figure 6: Propagating parameter uncertainties of the linear model into predictions of previously unseen, ‘low

amplitude’ data (numerical case study). Bounds on model predictions are 3 standard deviations from the mean.
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Figure 7: Propagating parameter uncertainties of the linear model into predictions of previously unseen, ‘high

amplitude’ data (numerical case study). Bounds on model predictions are 3 standard deviations from the mean.

To further illustrate the problem, model selection is now considered. Specifically, two potential models
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are now considered: model 1 (M1) is the linear model that was used in the previous analysis while model 2

(M2) includes the nonlinear stiffness term. Model 2 has the same structure as equation (26) and therefore

represents a scenario where there is no model error. The following analysis illustrates how, even if a model

whose structure was exactly correct is included in the analysis, well-known model selection criteria, based

on the available data, may still lead to the selection of the incorrect model.

The calibration parameters ofM1 andM2 are now written as θ1 and θ2 respectively, such that

θ1 = (k, c, R)T , θ2 = (k, c, k∗, R)T (29)

Here, for illustrative purposes, Bayes factor is used as a model selection indicator.4 Evaluating Bayes factor

involves computing the relative probability of the two model structures, given the available measurement

data:

Pr(M1|D)

Pr(M2|D)
=
p(D|M1)Pr(M1)

p(D|M2)Pr(M2)
(30)

where

p(D|Mi) =

∫
p(D|θi,Mi)p(θi |Mi)dθi, i = 1, 2 (31)

In this case, equal prior probability mass was assigned to each model such that Pr(M1) = Pr(M2).

The integrals shown in equation (31) can be estimated using a variety of numerical methods ([19][20][21]

for example). Here, Bayes factor was estimated using Laplace’s method, which employs Gaussian approxi-

mations of the posterior parameter PDFs of the two models (see appendix Appendix A for details). It was

found that:

log

(
Pr(M1|D)

Pr(M2|D)
≈ 5622

)
(32)

Consequently, according to this particular model selection criterion, the incorrect linear model is viewed as

preferable relative to the nonlinear model. This is despite the fact that the nonlinear model is actually a

perfect representation of the system of interest. The results reflect that, in this low amplitude region where

the effects of the nonlinearity is relatively small, the chosen model selection criterion views the nonlinear

model as overly complex (indeed, in the region where data is available, the linear model does appear to

perform well).

4The authors acknowledge that many different model selection criteria exist and that the question of how model selection

criteria should be defined is still widely debated (as illustrated in [18], for example). The authors do not intend to critique

these criteria here, except to say that the majority of model selection criteria (1) penalise overly complex models (as these are

more prone to overfitting) and (2) define ‘model complexity’ as a function of the number of tunable parameters that are in a

model. Bayes’ factor is an example of such a criterion that is used relatively frequently in the literature.
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The next section (Section 4.3) illustrates the application of the proposed approach to the same situation,

using the same set of observation data.

4.3. Proposed Approach

In the proposed approach, to treat a model’s parameters as time-variant, the parameters are included in

the definition of the system’s state. This allows them to be ‘tracked’, alongside the system’s displacement

and velocity, using the EKF (see [22] for a similar approach that utilised particle filtering techniques). Here

it is illustrated how the approach can be implemented forM2 (the model that includes the nonlinear stiff-

ness term), where numerical integration is conducted using the RK4 integration scheme. Implementation

of the approach toM1 is very similar and, as such, is not discussed in detail here.

The state ofM2 at time i∆t is now defined as xi = (xi, ẋi, ki, ci, k
∗
i )T . In order to implement the EKF,

one must hypothesise how the model’s parameters vary through time i.e. a definition for f in equation (1)

must be realised. As with [22], the chosen prediction model assumes that each system parameter is equal

to its preceding value, such that

ẋ =



ẋ

δ − kx− cẋ− k∗x3

0

0

0


(33)

Consequently, the Jacobian F̃ is given by

F̃ (x, δ) =



0 1 0 0 0

−(k + 3k∗x2) −c −x −ẋ −x3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(34)

One must also quantify the uncertainty in this predictive model (in other words, the covariance matrix

Qi−1 in equation (1) must be defined). Here, Qi−1 is defined as follows

Qi−1 =

 02×2 02×3

03×2 Gi−1

 (35)

where Gi−1 is a diagonal matrix that, for modelM2, is of size 3× 3. The approach assumes that there is

zero uncertainty associated in the prediction of displacement and velocity, and that all of the uncertainty

is manifested in the forward prediction of the model’s time-varying parameters. This is deliberate - the

intention is that, by tracking the parameter estimates as they vary with time, it will be possible to infer

indications of model error. Following on from [22], the diagonal elements of G were chosen such that the

coefficient of variation in the drift of each parameter is fixed. For the numerical case study shown here
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the coefficient of variation was set equal to 0.1 % (note that the influence of this term is investigated more

thoroughly in Section 5).

0 20 40 60 80 100 120 140 160 180
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12

Predicted

True

0 20 40 60 80 100 120 140 160 180

0.05

0.1

0.15

Figure 8: Tracking time varying parameters for the linear model (numerical case study). Black lines show true

parameter values, red lines show estimated parameter values. Bounds on parameter estimates are 3 standard

deviations from the mean.

Figure 8 shows the results that were obtained when the parameters of the linear model were treated as

being time-variant, and tracked using the EKF. As one would expect, this method allows the displacement

and velocity to be tracked very accurately - a comparison between the observed and predicted is not shown

here because the two are essentially indistinguishable. Figure 8 shows that, relatively speaking, the system’s

damping value converges while the linear stiffness varies with time.
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Figure 9: Numerical case study. Tracking time varying parameters for the nonlinear model. Black lines show

true parameter values, red lines show estimated parameter values. Bounds on parameter estimates are 3 standard

deviations from the mean. Blue axes show a ‘close up’ view of results relating to k, the linear stiffness.
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Figure 10: Numerical case study. Tracking the stiffness for the nonlinear model (red) and linear model (blue).

Bounds on parameter estimates are 3 standard deviations from the mean.

To aid comparison this analysis was repeated for the nonlinear model. These results are shown in Figure

9 while Figure 10 shows a comparison between the stiffness values that were identified, as a function of time,

for both the linear and nonlinear models. To achieve an excellent fit to the observation data it can be see

that the stiffness of the linear model had to vary significantly more than the stiffness of the nonlinear model.

Recalling that the analysis is (deliberately) applied to systems whose parameters, it is believed, should

not be varying with time the important question is: can the results in Figure 10 be used to infer that the

linear model would extrapolate poorly if used at high amplitudes? The authors concede that the answer is
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not straightforward and it is clear that these results would require a significant amount of interpretation,

however, it is also argued that allowing the parameters to vary with time provides a different type of infor-

mation relative to the more traditional approach shown in Section 4.2. It is certainly conceivable that, by

studying the results in the current section, a practitioner may lead to a different set of conclusions about

the suitability of the linear model for extrapolations compared to if they had studied the results in Section

4.2 (i.e. the more traditional approach).

A more in depth discussion of how such results could be utilised in a general setting is postponed until

Section 6. First, in Section 5, it is illustrated how the approach may be applied to an experimental case study.

5. Example 2: Experimental Case Study

5.1. Description

This section analyses the dynamics of the two storey aluminium structure shown in Figure 11. Testing

was conducted whereby lateral vibrations were induced by a shaker at the base of the structure. Measure-

ments were obtained from 3 triaxial accelerometers that were placed at the base, first floor and second

floor of the structure. The structure was excited sinusoidally at a frequency close to its first linear natural

frequency, at a variety of amplitudes. The full set of resulting observation data is shown in Figure 12.

Figure 11: Test rig for the experimental case study.

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2018                   doi:10.20944/preprints201809.0389.v1

http://dx.doi.org/10.20944/preprints201809.0389.v1


0 50 100 150 200 250 300
-2

0

2
Base

0 50 100 150 200 250 300
-5

0

5

A
c
c
e
le

ra
ti
o

n
 (

m
/s

2
)

Floor 1

0 50 100 150 200 250 300

Time (s)

-5

0

5
Floor 2

Figure 12: Time history of acceleration measurements for the experimental case study.

In the following, measurements of the system’s dynamic response are used to infer a model of the

structure. Again, the situation where the model must be used to extrapolate far beyond available data is

considered (for example, the model may be needed to predict the response of the structure to excitation

levels far higher than those shown in Figure 12).

A 2DOF shear-storey model of the building was developed. Defining x1 and x2 as the displacement of

floors 1 and 2 respectively, the dynamic model is based on the following:

ẍ1 =
1

m1
[k2(x2 − x1) + c2(ẋ2 − ẋ1)− c1(ẋ1 − ẋbase)− k1(x1 − xbase)] (36)

ẍ2 =
1

m2
[−c2(ẋ2 − ẋ1)− k2(x2 − x1)] (37)

where xbase is the displacement of the base, k1 and c1 are the stiffness and damping between the base

and floor 1, k2 and c2 are the stiffness and damping between floor 2 and floor 1 and mi is the mass of

the ith floor. Measurements of base displacement and velocity were obtained via numerical integration of

the observed acceleration time histories (after the appropriate signals had been passed through a low-pass

butterworth filter). The two masses, m1 and m2, were measured directly (with, it was assumed, a sufficient

degree of accuracy) thus leaving the parameters k1, k2, c1 and c2 to be calibrated.

In the next two sections two different approaches to the calibration and validation of this model are

illustrated. The first shows the results of a Bayesian analysis where it is assumed that the parameters

do not vary with time (this is the same ‘traditional approach’ that was demonstrated in Section 4.2 of

the numerical case study). The second is the proposed approach, whereby the calibration parameters are

treated as being time-variant. It is important to emphasise that, in the subsequent analyses, the aim is

not necessarily to identify a model which could be relied upon for extrapolations. Rather, the intention is

to illustrate how the proposed approach can reveal useful information that, after interpretation, helps to

establish a model’s validity outside of the region where data is available.
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5.2. Time-invariant parameters

Here, the first 20 seconds of the data shown in Figure 12 were used for training. The observations

of base excitations were treated as an input to the model while acceleration measurements from the two

floors were used to infer parameter estimates. Fundamentally, the analysis proceeded in the same manner

as described in Section 4.2 (the ‘traditional approach’). To formulate the likelihood it was assumed that,

at each floor, the acceleration observations were equal to the response of the model plus the addition of

independent Gaussian noise. The variance of the noise that corrupts observations for floors 1 and 2 was

defined as R1 and R2 respectively. In the following, the masses of the floors are assumed known while the

remaining stiffness and damping terms were treated as calibration parameters alongside R1 and R2. Prior

distributions were as follows:

p(k1) = p(k2) = N (1500, 3002), p(c1) = p(c2) = N (10, 22),

p(R1) = p(R2) = Gamma(1× 10−3, 1) (38)

(noting that, to help form p(k1) and p(k2), initial estimates of the inter-storey stiffnesses were realised by

modelling each column as a cantilever beam). Once again, MCMC was used to generate 1000 samples

from the posterior parameter distribution. Histograms of these samples are shown in Figure 13. Using the

samples to propagate parameter uncertainty into model predictions, the ability of the model to replicate

data that was not used for training is shown in Figure 14. It can be seen that the model appears to perform

relatively well and that the observed response stays within three standard deviations of the mean prediction.
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Figure 13: Histograms of samples from the posterior parameter distribution (experimental case study). All param-

eters in SI units.
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Figure 14: Propagating parameter uncertainties of the linear model into predictions (experimental case study).

Black represents previously unseen data and red represents model predictions. Bounds on model predictions are 3

standard deviations from the mean.

5.3. Time-variant parameters

This section describes the application of the proposed approach to the experimental case study. To

track how the model’s parameters vary with time, the system’s state was defined as

[
x1 x2 ẋ1 ẋ2 k1 k2 c1 c2

]T
(39)

while the derivative of the state with respect to time was

[
ẋ1 ẋ2 ẍ1 ẍ2 0 0 0 0

]T
(40)

where ẍ1 and ẍ2 are defined by equations (36) and (37) respectively. The matrices F̃ andH that correspond

to this system are shown in Appendix Appendix C.

The matrix Q was defined as described previously, such that the coefficient of variation in the drift of

each parameter was set equal to 0.1%. Defining z1 and z2 as the observed acceleration of floors 1 and 2

respectively, the full set of parameter tracking results are shown in Figure 15. It was observed that, once

again, the acceleration predictions made by the EKF were almost indistinguishable from the observed. Note

that, in the following figures, uncertainty bounds are omitted for the sake of clarity.
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Figure 15: Experimental case study. Panels 1 and 2 show the observed acceleration of floors 1 and 2 respectively.

Remaining panels show the tracked values of the model’s parameters (mean values only). Red, blue and green

portions are shown close-up in Figures 16, 17 and 18 respectively. SI units used throughout.

The red, blue and green portions of Figure 15 are shown close-up in Figures 16, 17 and 18 respectively.

Figure 16 shows a region where the system transitions from a relatively high amplitude response to

a relatively low amplitude response. When in steady state it is observed that, for all four parameters, a

periodic oscillation is required for the model to fit the training data very precisely (see results between 150

and 152 seconds, for example). This type of behaviour was observed for all steady state portions of the

data. During a transitional period (see between 152 and 154 seconds, for example), as well as relatively

large changes in stiffness, the magnitude of both damping terms approximately doubles. The reasons for

this could be many (for example, from experience, it is known that the response of this system is very

sensitive to the torque used when bolting the columns to the two floors - a possible indication that a linear

damping model may be insufficient). For now this is left as speculation. The authors wish to emphasise

that the current paper is not contributing an overall framework for validation but, instead, is providing a

tool that could form part of such a framework in the future. It is also argued that, relative to the more

traditional approach, this example highlights how treating the parameters as time-varying can lead to a

richer source of information for future model development. At the very least, the results indicate that the

model performs worse in transitional regions and that, before being used for extrapolation, more efforts

should perhaps be diverted towards understanding the damping mechanisms present in the structure. Such

conclusions would have been more difficult to reach using the results presented in Section 5.2.
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Figure 16: Close-up view of the red portion of results in Figure 15 (experimental case study).

Figures 17 and 18 show the results obtained when the system is at steady state, for a relatively low and

high amplitude response respectively. It is interesting to note that, regardless of amplitude, near-periodic

oscillations in all four parameters are required for the model to accurately fit the training data.
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Figure 17: Experimental case study. Close-up view of the blue portion of results in Figure 15.
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Figure 18: Experimental case study. Close-up view of the green portion of results in Figure 15.

6. Discussion and future work

One of the key parameters in the proposed approach is the ‘drift term’, which essentially controls the

magnitude of the diagonal elements of the matrix G in equation (35). Selection of the drift term requires

some thought. If the drift term is large then large variations in parameters become more probable. This

can lead to over fitting, whereby the calibration parameters are varied such that the model begins to fit the

measurement noise in the data. Likewise, if the drift term is small then the parameters cannot vary quickly

enough for the model to fit the observation data.

To illustrate how the drift term may affect results, the experimental case study was revisited using

coefficient of variations in the drift of each parameter set equal to 0.001%, 0.01% and 0.1% respectively.

Figure 19 shows the resulting parameter estimates for these three cases, (specifically focusing on the transi-

tional region shown in Figure 16). As one would expect, larger drift terms leads to larger variations in the

parameters. Figure 19 shows the ability of the model to replicate the observed acceleration data for these

three scenarios. While the closeness of the overlays makes it difficult to see the measurement data, it can

be observed that the red and green lines are almost exactly the same while the blue line, which represents

the lowest drift term, deviates slightly from the others. Figure 19 therefore illustrates how, if the drift term

is too low, the model loses fidelity with respect to the measurement data.
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Figure 19: Experimental case study. Tracking the values of the model’s parameters (mean values only) using different

drift coefficients of variation. All parameters in SI units.
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Figure 20: Experimental case study. Tracking the acceleration of floors 1 and 2 (mean values only) using different

drift coefficients of variation. Acceleration in SI units.

In the simulated case study, model error was deliberately introduced to a well-defined problem. This

was to illustrate how the proposed methodology could behave in such a scenario. For the experimental case

study, where results indicate that the model should be improved before being relied upon for extrapolations,

a similar procedure could be used to aid model development. Specifically, in a similar manner to Section

4.3, numerical experiments could be conducted whereby models with deliberately introduced discrepancies
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could be calibrated against synthetic data until results similar to those obtained from the experiment are

observed (parameters varying periodically with time, large increases in damping in transitional regions etc.)

To this end, the authors revisited the numerical case study in Section 4.3 using a sinusoidal excitation

instead of a random excitation. Interestingly this did not lead to results similar to the experimental case

study - the parameters did not have to vary periodically for an excellent fit to the training data to be

achieved. This, perhaps, indicates that the type of model error being simulated (missing stiffness nonlin-

earity) is not what was witnessed in the experimental case study. Future work may investigate other types

of model error (for example, the errors induced when reducing the system to a 2 degree-of-freedom model).

Whether or not such model error can be ‘reverse engineered’ from such results is an interesting topic for

future work.

Further work will also seek to combine the proposed approach with a sensitivity analysis. This would

help to establish, in a more rigorous manner, whether the witnessed variations in parameter values are truly

significant. Combining the approach with a sensitivity analysis of the model in the region where it is to be

extrapolated could be an important part of an overall validation framework. In particular, a detailed study

concerning the affect of ‘extrapolation severity’ (in other words, the possible consequences of extrapolating

further beyond the available data) should be conducted. Ultimately, the intention is to embed the proposed

approach into validation frameworks that specifically consider extrapolation (see [11] and [12] for example).

7. Conclusions

This paper focuses on the situation where a model of a dynamical system is required to perform extrap-

olations (predictions in regions where there is no data). It considers how such a model could be validated,

given that observation data is only available in a region far from the model’s application domain. Such sit-

uations are often complicated by the fact that, through tuning a model’s calibration parameters, it is often

possible to gain false confidence in a model that will, in reality, perform poorly when used for extrapolation.

Such a scenario is demonstrated using a numerical case study.

For the situation where it is believed that a model’s calibration parameters should be time-invariant,

a calibration procedure that allows these parameters to vary with time (even though it is believed that,

physically, this should not be the case) is proposed. Results suggest that, by following such an approach,

it is possible to identify important flaws in a model that would otherwise be hidden by more traditional

calibration procedures. This is illustrated by a numerical and an experimental case study.
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Appendix A. Evaluating Bayes factor

Bayesian system identification is first performed onM2 (that is, the situation where there is no model

error). This analysis is performed in a similar manner to that described at the beginning of Section 4.2,

where a prior distribution over k∗ is now introduced:

p(k∗) = N (k∗; 50, 102) (A.1)

The resulting MCMC samples are shown in Figure A.21. It can be observed that the true values of all

parameters lie within the main probability mass of the posterior PDF. This includes the noise term, R.

Such results can be expected because the analysis considers an identification problem where there is no

model error.
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Figure A.21: Numerical case study. Histograms of samples from the posterior parameter distribution of the nonlinear

model (all parameters in SI units.)

Having obtained posterior parameter samples for both model structures, Gaussian approximations of

the two posterior parameter PDFs were realised. The quality of these approximations are shown in Figures

A.22 and A.23.
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Figure A.22: Numerical case study. Gaussian fit to histograms of samples from the posterior parameter distribution

of the linear model (all parameters in SI units.)
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Figure A.23: Numerical case study. Gaussian fit to histograms of samples from the posterior parameter distribution

of the nonlinear model (all parameters in SI units.)

Bayes factor was then estimated using Laplace’s method. Firstly, the product of prior and the likelihood

are written as

p(D|θi,Mi)p(θi |Mi) = exp(−J(θi)) (A.2)

before a first-order Taylor series expansion of J is taken around the most probable parameter vector, θi:

J(θi) ≈ J(θ̂i) +
1

2
(θi−θ̂i)TA(θi−θ̂i) (A.3)

This allows one to write

p(D|θi,Mi)p(θi |Mi) ≈ exp
(
J(θ̂i)

)
N (θi; θ̂i,A

−1) (A.4)

where A is a Hessian matrix, containing second order derivatives of J with respect to θi. The Taylor series

approximation then allows one to write

p(D|Mi) ≈ exp(J(θ̂i))

∫
N (θi; θ̂i,A

−1)dθi (A.5)

and

log p(D|Mi) ≈ J(θ̂i) +
1

2
log
(
(2π)Nθ |A−1|

)
(A.6)

The elements of A can be estimated using finite difference methods, however, as samples from the posterior

parameter distributions of both models were available in this case, the inverse of A was instead be realised

by directly estimating the posterior covariance matrix. For both models the most probable parameter vector

was chosen to be the mean of the MCMC samples.

Appendix B. Evaluating terms 1-4 in equation (21)

[
∂ k1

∂ xi−1

]
xi−1=x̂

=

[
∂ẋ(xi−1, δi−1)

∂ xi−1

]
xi−1=x̂

≡ F̃ (x̂, δi−1) (B.1)
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Defining

s2 = xi−1 +
∆t

2
k1(xi−1, δi−1) (B.2)

then

[
∂ k2

∂ xi−1

]
xi−1=x̂

=

[
∂ẋ(s2, δint)

∂ s2

∂ s2

∂ xi−1

]
xi−1=x̂

(B.3)

=

[
∂ẋ(s2, δint)

∂ s2

]
s2=x̂+ ∆t

2 k1(x̂,δi−1)

(
I +

∆t

2

[
∂ k1

∂ xi−1

]
xi−1=x̂

)
(B.4)

= F̃

(
x̂+

∆t

2
k1(x̂, δi−1), δint

)(
I +

∆t

2

[
∂ k1

∂ xi−1

]
xi−1=x̂

)
(B.5)

Likewise, defining

s3 = xi−1 +
∆t

2
k2(xi−1, δint) (B.6)

allows one to write

[
∂ k3

∂ xi−1

]
xi−1=x̂

=

[
∂ẋ(s3, δint)

∂ s3

∂ s3

∂ xi−1

]
xi−1=x̂

(B.7)

=

[
∂ẋ(s3, δint)

∂ s3

]
s3=x̂+ ∆t

2 k2(x̂,δint)

(
I +

∆t

2

[
∂ k2

∂ xi−1

]
xi−1=x̂

)
(B.8)

= F̃

(
x̂+

∆t

2
k2(x̂, δint), δint

)(
I +

∆t

2

[
∂ k2

∂ xi−1

]
xi−1=x̂

)
(B.9)

Finally, writing

s4 = xi−1 +∆tk3(xi−1, δint) (B.10)

gives

[
∂ k4

∂ xi−1

]
xi−1=x̂

=

[
∂ẋ(s4, δi)

∂ s4

∂ s4

∂ xi−1

]
xi−1=x̂

(B.11)

=

[
∂ẋ(s4, δi)

∂ s4

]
s4=x̂+∆tk3(x̂,δint)

(
I + ∆t

[
∂ k3

∂ xi−1

]
xi−1=x̂

)
(B.12)

= F̃ (x̂+ ∆tk3(x̂, δint), δi)

(
I + ∆t

[
∂ k3

∂ xi−1

]
xi−1=x̂

)
(B.13)
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