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On Radio Frequency Fingerprint Identification for
DSSS Systems in Low SNR Scenarios

Yuexiu Xing, Aiqun Hu, Junqing Zhang, Linning Peng, and Guyue Li

Abstract—Radio frequency fingerprint (RFF) is an intrinsic
hardware characteristic and has been employed for device
identification. Its application in low signal-to-noise-ratio (SNR)
has never been explored because its identification performance
is greatly affected by the received signal quality. This paper
proposes a novel RFF identification scheme for spread spectrum
systems in low SNR scenarios. In the scheme, a signal pre-
processing method, information data estimation based stacking
(IDES) algorithm, is proposed, which leverages the repeated
spreading sequences and stacks them together to eliminate the
noise and interference effect. Simulation results demonstrate that
the proposed scheme can achieve 98% identification rate when
the received signal SNR is - 15 dB and the length of spreading
sequence is 1023.

Index Terms—Radio frequency fingerprint, spread spectrum,
low SNR, device identification

I. INTRODUCTION

RADIO frequency fingerprint (RFF) is an intrinsic char-
acteristic of wireless device itself, which is caused by

hardware imperfection resulted from the manufacturing pro-
cess [1]. The RFF features, e.g., clock skew [2], cannot be
tampered and has become an emerging device identification
technique. Numerous RFF identification prototypes have been
implemented with WiFi, ZigBee, Blutooth [1].

The performance of the RFF-based identification is greatly
affected by the SNR of the received signals [3]. The work
in [4] achieved an identification rate of about 100% for ZigBee
device when the SNR is 30 dB. However, the identification in
low SNR is very challenging because of the inaccurate estima-
tion of the RFF features. For example, work [5] only achieves
no more than 5% identification rate when the SNR is 0 dB.
The performance can be improved by using a smarter classifier.
Work [6] employes non-parametric random forest and multi-
class adaboost ensemble classifier and identifies 40% ZigBee
devices correctly when SNR = 0 dB. Multiple RFF features
can also be leveraged to improve the performance [3].

The SNR of received signals can be very low in some
scenarios, e.g., in satellite communications with extreme long
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communication distance. Direct sequence spread spectrum
(DSSS) is able to work in very low SNR situations, e.g., as
low as - 15 dB. While the DSSS receiver can identify different
transmitters by detecting their particular spreading sequences
in normal situations, the rogue devices can initiate attacks by
spoofing and jamming [7]. RFF-based device identification
scheme for DSSS systems is thus strongly required and its
application in low SNR scenarios becomes essential.

This paper proposes a novel and robust RFF identification
scheme for DSSS systems which can achieve a good identifi-
cation performance even in low SNR scenarios. This scheme
is consisted of three parts, including RFF model for DSSS
systems, information data estimation based stacking (IDES)
algorithm, RFF extraction and identification. The main contri-
bution of this paper is that for the first time it proposes a signal
preprocessing method, namely IDES algorithm, to improve the
SNR of received signal without destroying RFF features. It
utilizes the repeatability of spreading sequences to eliminate
the noise and interference. Therefore, this scheme can be
extended to other systems which have the same sequences in
each frame signal, e.g., WiFi systems with preambles. The
simulation results show that our scheme can achieve 98%
identification rate when the signal SNR is as low as -15
dB, with the scheme configured with the length of spreading
sequence as 1023 and number of stacked periods as 900.

II. RFF MODEL OF DSSS SYSTEMS

We investigated an DSSS system modulated with offset
quadrature phase shift keying (OQPSK) as a case study which
is common in satellite and mobile communications because of
its strong anti-interference capability.

DSSS employes a spreading sequence, C(t), to modulate
the information data, D(t). The spreading sequence has Nc

chips per period and each chip has a duration of 2Tc . The
sequence usually uses pseudorandom code and has a good
autocorrelation property, i.e., RC(τ) = 0 when τ = 0 and
RC(τ) = −

1
Nc

when τ , 0. The duration of the information
data, Td , is equal to 2NcTc .

The complex form of the baseband OQPSK symbols in 2Tc

duration can be described as

X(t) =


AI (t) sin

( πt
2Tc

)
+ j AQ(t) cos

( πt
2Tc

)
, 0 ≤ t ≤ Tc

AI (t) sin
( πt
2Tc

)
− j AQ(t + Tc) cos

( πt
2Tc

)
, Tc < t ≤ 2Tc

(1)

where AI (t) = CI (t)DI (t), AQ(t) = CQ(t)DQ(t), the super-
script I and Q represent the real and imaginary part of the
signals, respectively, and j is the imaginary multiplexing.
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Algorithm 1 IDES Algorithm
Input:

The received signal after carrier wipe-off, Y (t);
The spreading sequence, C(t);
The number of spreading sequences used in stacking, M;

Output:
The stacked signal in expected SNR, Yb(t);

1: Estimate code phase offset τd and frequency offset ∆ f of
Y (t) with the help of C(t);

2: Estimate the information data D(t) of Y (t) with help of
C(t), τd , and ∆ f ;

3: Stack M spreading sequences with the same polarity;
4: return The signal after stacking, Yb(t);

We chose three features as the transmitter’s RFF, namely I/Q
phase mismatch, I/Q DC offset, and I/Q gain imbalance. These
features are generally considered constant [8] and stable [9]
over the signal bandwidth. The baseband of the transmitted
signal with RFF can be given as

T(t) =
(
αX I (t) + λI

)
+ j

(
βXQ(t |φ) + λQ

)
, (2)

where α and β are the coefficients of I/Q gain, λI and λQ are
the coefficients of I/Q DC offset, XQ(t |φ) = AQ(t) cos

(
πt

2Tc +φ
)

and φ is the normalized coefficient of I/Q phase mismatch.
It is common to use the same receiver to identify different

devices, which means the receiver’s RFF has the same influ-
ence to different devices and is not considered for simplicity.
Therefore, the received signal after carrier wipe-off is

Y (t) =
( (
αX I (t − τd) + λI

)
+ j

(
βXQ(t − τd |φ) + λQ

) )
exp(− j2π∆ f t) + n(t), (3)

where τd and ∆ f are the code phase offset and frequency
offset between the received signal and the transmitted signal,
respectively, and n(t) is the additive white Gaussian noise with
mean of 0 and variance of N0/2. Assuming the signal power
is 1, then SNR of the received signal is γs = 1

N0/2 .

III. IDES ALGORITHM

The received DSSS signal is buried in noise when the
channel condition is bad. We proposed the IDES algorithm to
improve the received signal SNR γs without destroying RFF
features, which is explained in Algorithm 1.

A. Code Phase Offset and Frequency Offset Estimation

This section shows the estimation of τd and ∆ f of the in-
phase of DSSS signal as an example. The correlation of one
period Y (t) and the spreading sequence CI (t) can be given as

ρ =

∫ t+2NcTc

t

Y (τ) cos(2π∆̂ f (τ))CI (τ − τ̂d − t)dτ (4)

where τ̂d = τ0, τ1, · · · , τNc , ∆̂ f = fmin, fmin + fstep, · · · , fmax .
The two-dimensional and serial search method are used to
realize the synchronization of code phase offset and frequency
offset. When ρ is larger than a threshold, τ̂d and ∆̂ f are taken
as the estimated values of τd and ∆ f , respectively. After the

compensation of τ̂d and ∆̂ f , the in-phase of DSSS signal can
be written as

Ŷ I (t) = αX I (t) + λI = αCI (t)DI (t) sin
( πt
2Tc

)
+ λI . (5)

B. Information Data Estimation

In order to get the polarity of spreading sequences, we first
correlate Ŷ I (t) with CI (t) to estimate the information data,
which can be given as

ρ̂ =

∫ t+2NcTc

t

(
αCI (t)DI (t) sin

( πt
2Tc

)
+ λI

)
CI (τ−t)dτ. (6)

When t = iTd, i = 0, 1, 2, · · · , CI (τ) aligns with CI (τ − t) and
ρ̂ will reach peaks and troughs, given as

ρ̂′ = αDI (t)
4NcTc

π
. (7)

We can get the values of DI (t). Same approach can be applied
to get the values of DQ(t).

C. Stacking

Finally, we choose M spreading sequences with the same
polarity from the received signal, and stack them together. The
signal after stacking is given in (8) and nM (t) is the noise after
stacking. The equivalent SNR of the stacked signal is

γe =
M2

MN0/2
= M

1
N0/2

, (9)

which increases M times compared to the received signal SNR
γs . This scheme utilizes the repeatability of spread sequences
which is irrelevant of modulations.

D. Discussion

The estimation of τd and ∆ f affect the synchronization,
which is a general step in RFF extraction. Information data
estimation is a new and essential step to get the signal polarity
because if the stacked signals do not have the same polarity,
some RFF features would be damaged, such as I/Q DC offset.
Stacking of spreading sequences is a new signal preprocessing
operation to boost the signal quality without destroying RFFs.

Those steps mainly involve correlation and addition opera-
tions. Correlation is a cost effective operation in the hardware
as it can be implemented by multipliers and addition is
a simple operation. Therefore, the algorithm complexity is
low. In addition, this algorithm exploits the existing repeated
sequences, which does not require to generate spread spectrum
signals.

IV. RFF EXTRACTION AND IDENTIFICATION

There are many RFF extraction methods. This paper adopted
the differential constellation trace figure (DCTF) based-
method as a case study, because DCTF has been demonstrated
good identification performance [3]. A brief introduction is
given below and a detailed description can be found in [10].
A blind differential process is performed with a differential
interval of one chip duration of C(t), which is given as

S(t) = Yb(t)Y ∗b (t + 2Tc), (10)
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Yb(t) =


M

[(
αAI (t) sin

( πt
2Tc

)
+ λI

)
+ j

(
βAQ(t) cos

( πt
2Tc
+ φ

)
+ λQ

)]
+ nM (t), 0 ≤ t ≤ Tc

M
[(
αAI (t) sin

( πt
2Tc

)
+ λI

)
− j

(
βAQ(t + Tc) cos

( πt
2Tc
+ φ

)
+ λQ

)]
+ nM (t), Tc ≤ t ≤ 2Tc

(8)

where (·)∗ is the conjugate operation.
When the bits of [AI (t), AI (t + 2Tc), AQ(t), AQ(t + 2Tc)]

belongs to the following four groups:

G11= [1, 1, 1, 1], [1, 1,−1,−1]; G12= [−1,−1, 1, 1], [−1,−1,−1,−1];
G21= [1,−1, 1,−1], [1,−1,−1, 1]; G22= [−1, 1, 1,−1], [−1, 1,−1, 1],

the expectations of each groups are

G11 : E(S11(t))=M2(λ2
I + λ

2
Q +

α2 + β2

2
+

8Tc

π
αλI ) + N0M,

G12 : E(S12(t))=M2(λ2
I + λ

2
Q +

α2 + β2

2
−

8Tc

π
αλI ) + N0M,

G21 : E(S21(t))=M2(λ2
I + λ

2
Q −

α2 + β2

2
−

8Tc

π
αλQ j)+N0M,

G22 : E(S22(t))=M2(λ2
I + λ

2
Q −

α2 + β2

2
+

8Tc

π
αλQ j)+N0M .

There are four gathering centers in DCTF for groups G11,
G12, G21 and G22. I/Q gain imbalance, α and β, and I/Q DC
offset, λI and λQ, will change the coordinates of those gath-
ering centers. However, the I/Q phase mismatch φ influences
the deviations but not the expectations at I channel.

The DCTF can be obtained by plotting S(t) and an example
is given in Fig. 1. Image processing algorithms can be used to
analyze the features of the DCTF and the k-means clustering
algorithm is used here. The RFF feature vector is given as

®F =
[
E

(
S11(t)

)
, E

(
S12(t)

)
, E

(
S21(t)

)
, E

(
S22(t)

) ]
. (11)

RFF identification usually involves a training stage and an
identification stage. During the training stage, the RFF feature
library is established by obtaining reference RFF features,
®Fref, for verified devices. The channel SNR of obtaining the
library is denoted as γl . The library can be obtained with
high SNR, e.g., trained by the manufacturer. Low SNR in this
paper means that the SNR of received signals in identification
stage is low but the γl can be high. During the identification
stage, the system will return the corresponding features, ®F. A
minimum distance classifier is designed as

arg min
di,d j

| ®Fref(di) − ®F(dj)|, (12)

when a device dj needs to be identified and di is the device in-
dex if it is correctly identified. When di , dj , an identification
error happens.

V. SIMULATION RESULTS AND DISCUSSION

The scheme was evaluated by Matlab simulation and charac-
terized by the identification rate σ in different SNR scenarios.
Ten devices were simulated by adding a set of different RFF
features. In this paper, I/Q gain imbalance, I/Q DC offset and
I/Q phase mismatch randomly locates in 0.85 ∼ 1, 0.01 ∼ 0.28,
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Fig. 1. DCTF with different stacked periods. γs = 5 dB.
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Fig. 2. Distances between device 1 and others devices

and 0.01 ∼ 0.09, respectively. In addition, frequency offset
ranges from 2 kHz to 2.9 kHz, with a jitter of 40 Hz.

Fig. 1 illustrates the DCTFs with different stacked periods
when γs = 5 dB. Fig. 1(a) is the DCTF of the original signal
whose four clustering centers are blurred into two decentral-
ized signal point areas. However, as shown in Fig. 1(b)(c), the
clustering centers are becoming clearer with the increase of
stacked periods. In other words, the clustering centers can be
extracted more accurately thanks to the IDES algorithm.

Fig. 2 describes the average distances between device d1 and
other devices under different library SNR γl . In order to find
the reasonable γl , Fig. 2 investigated γl ranging from -5 dB to
30 dB. When the γl is lower than 5 dB, the distances are very
small. The DCTF is seriously blurred in low SNR scenarios
and the receiver can hardly extract accurate clustering centers.
Fig. 2 also shows that distances are growing when γl ranges
from 5 dB to 20 dB, and then tend to be stable. Libraries with
high SNR are used in the rest of the paper.

Fig. 3 shows the equivalent SNR γe, and the identification
rate σ with different stacked periods and received signals’
SNR γs . We plotted γe, both from the simulation and the
analytic expression (9), for the scenario when γs = 10 dB.
These results match very well. When the γe of stacked signal
is higher than the library SNR γl , 20 dB in this example
case, the σ will keep steady first but then decrease. It is
more robust when the received signal SNR and library SNR is
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Fig. 3. Identification rate σ and equivalent SNR. γl = 20 dB.
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Fig. 4. The minimum M to achieve a high identification rate σ as 95%.

similar. This phenomenon also has been observed in [11]. On
the other hand, when γe < γl , the σ rises with the increase
of stacked periods because the IDES algorithm improves the
SNR successfully without the destruction of RFF features.
In addition, the σ increases with the γs when the stacked
periods is fixed, because a higher SNR is beneficial to obtain
more accurate RFF features. When M=1, the results in Fig. 3
represent the performance of DCTF based method in [10], i.e.,
without IDES algorithm. It achieved an identification rate of
11% and 72% when γs is -5 dB and 10 dB, respectively.
On the other hand, the identification rate can reach over
98% when IDES was adopted. This demonstrates that the
IDES algorithm can significantly improve the identification
performance, especially in low SNR scenarios.

Fig. 4 shows the minimum number of stacked periods M
required to achieve a high identification rate σ, e.g., 95%,
with different libraries. Less stacked periods are required when
the γl is closer to the γs . For example, when γs is -4 dB,
60 stacked periods are required when γl is 15 dB, while the
required stacked periods increase to more than 140 when γl
is 20 dB or 25 dB. More signal stacking will result in longer
process time and higher computational cost. The selection of
libraries thus should be under very careful consideration with
a tradeoff among the processing time, computing costs and the
stability and accuracy of library.

Finally, Table. I presents the identification rate σ when the
received signals’ SNR γs is very low, i.e., -15 dB. The γl
is chosen as 15 dB, based on the balance of the time and
computing costs and the stability and accuracy of library. The
length of the spreading sequence used is 1023, which has about
30 dB spread spectrum gain. The DSSS system is able to
operate when the SNR is as low as - 15 dB in this case [12].
The obtained result shows that the scheme can achieve 98%
identification rate when M = 900. Our scheme is thus totally

TABLE I
IDENTIFICATION RATE σ. γs = −15 DB AND γl = 15 DB.

M 1 100 200 300 400 500 600 700 800 900
σ(%) 0 0 5.4 32.3 50.6 61.2 78.1 88.7 97.3 98.5

applicable to very low SNR.

VI. CONCLUSION

This paper proposed a novel and robust RFF identification
scheme for DSSS, which is able to operate even in very low
SNR. The proposed IDES algorithm in the scheme leveraged
the repeated spreading sequences and stacked the signals to-
gether to eliminate the noise and interference effect. Extensive
simulation was carried out to investigate the identification
performance. The scheme was demonstrated to be effective in
very low SNR scenarios, which achieved 98% identification
rate when the length of spreading sequence is 1023 and
the stacking period is 900. Our future work will focus on
recognition of unauthorized device, e.g., smart attacker as
investigated in [13].
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