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Joint Models for longitudinal and time-to-event data have gained a lot of attention in the last few years
as they are a helpful technique to approach common a data structure in clinical studies where longitudi-
nal outcomes are recorded alongside event times. Those two processes are often linked and the two out-
comes should thus be modeled jointly in order to prevent the potential bias introduced by independent mod-
elling. Commonly, joint models are estimated in likelihood based expectation maximization or Bayesian
approaches using frameworks where variable selection is problematic and which do not immediately work
for high-dimensional data. In this paper, we propose a boosting algorithm tackling these challenges by be-
ing able to simultaneously estimate predictors for joint models and automatically select the most influential
variables even in high-dimensional data situations. We analyse the performance of the new algorithm in a
simulation study and apply it to the Danish cystic fibrosis registry which collects longitudinal lung function
data on patients with cystic fibrosis together with data regarding the onset of pulmonary infections. This is
the first approach to combine state-of-the art algorithms from the field of machine-learning with the model
class of joint models, providing a fully data-driven mechanism to select variables and predictor effects in a
unified framework of boosting joint models.

Key words: Boosting; Joint Modelling; Longitudinal Models; Time-to-event Analysis; Variable
Selection; High-dimensional Data;

1 Introduction

The terms “joint models“ or “joint modelling“ have been used in various contexts to describe modelling
of a combination of different outcomes. This article deals with joint models for longitudinal and survival
outcomes, in which the predictors for both are composed of individual as well as shared sub-predictors
(i.e. a part of the predictor which is used in both, the longitudinal and the survival part of the model) .
The shared sub-predictor is scaled by an association parameter which quantifies the relationship between
the two parts of the model. This type of model was first suggested by Wulfsohn and Tsiatis (1997) in
order to prevent the bias resulting from the independent estimation of the two entities, and this approach
has been modified and extended subsequently in various ways. Simulation studies comparing results from
separate and joint modelling analyses of survival and longitudinal outcomes were undertaken by Guo and
Carlin (2004). The simplest formulation possible is the shared random effects model, where the shared
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2 Elisabeth Waldmann et al.: Boosting Joint Models

sub-predictor consists of random effects. Choosing a random intercept and slope model, the resulting joint
model looks like this:

yij = ηl(xij) + γ0i + γ1itij + εij ,

λ(t|α, γ0i, γ1i, xi) = λ0(t) exp(ηs(xi) + α(γ0i + γ1it)),

(1)

where the yij are the longitudinal measurements recorded per individual i, i = 1, . . . , N at time points
tij with j = 1, . . . , ni, where ni is the number of observations recorded for individual i. The hazard
function λ(t|α, γ0i, γ1i) evaluated at time t is based on the baseline hazard λ0(t). The coefficients γ0i and
γ1i are individual-specific random intercept and slope while ηl(xij) and ηs(xi) are the longitudinal and the
survival sub-predictor respectively. Both are functions of independent sets of covariates, possibly varying
over time in the longitudinal sub-predictor. The association parameter α quantifies the relationship between
the two parts of the model. This type of model has been used in many biomedical settings, see for example
Gao (2004) or Liu et al. (2007). For a critical review on shared random effects models in multivariate
joint modelling see Fieuws and Verbeke (2004). Many extensions have been suggested for model (1) as
well as a general approach with a universal shared sub-predictor. Ha et al. (2003) used a generalized
model for the longitudinal component, while Li et al. (2009) suggested an approach for robust modelling
of the longitudinal part and included competing risks in the survival part. Chan (2016) recently included
binary outcomes modeled by an autoregressive function, while the model proposed by Armero et al. (2016)
accounts for heterogeneity between subjects, serial correlation, and measurement error. Interpretation of
the separate parts of the model was simplified by the work of Efendi et al. (2013). A computationally
less burdensome approach has recently been suggested by Barrett et al. (2015). For theoretical results
on approximation and exact estimation, see Sweeting and Thompson (2011) and for an overview of the
development up to 2004 see Tsiatis and Davidian (2004). Since then Rizopoulos (2012) has substantially
contributed to the research field with the R add-on package JM (for an introduction to the package see
Rizopoulos, 2010).
One of the main limitations of classical estimation procedures for joint models in modern biomedical
settings is that they are unfeasible for high-dimensional data (with more explanatory variables than pa-
tients or even observations). But even in low-dimensional settings the lack of a clear variable selection
strategy provides further challenges. In order to deal with these problems, we propose a new inferential
scheme for joint models based on gradient boosting (Bühlmann and Hothorn, 2007). Boosting algorithms
emerged from the field of machine learning and were originally designed to enhance the performance of
weak classifiers (base-learners) with the aim to yield a perfect discrimination of binary outcomes (Fre-
und and Schapire, 1996). This was done by iteratively applying them to re-weighted data, giving higher
weights to observations that were mis-classified previously. This powerful concept was later extended for
use in statistics in order to estimate additive statistical models using simple regression functions as base-
learners (Friedman et al., 2000; Friedman, 2001). The main advantages of statistical boosting algorithms
(Mayr et al., 2014a) are (i) their ability to carry out automated variable selection, (ii) the ability to deal
with high-dimensional p > n data and (iii) that they result in statistical models with the same straightfor-
ward interpretation as common additive models estimated via classical approaches (Tutz and Binder, 2006;
Bühlmann and Hothorn, 2007).
The aim of this paper is the extension of statistical boosting to simultaneously estimate and select multi-
ple additive predictors for joint models in potentially high-dimensional data situations. Our algorithm is
based on gradient boosting and cycles through the different sub-predictors, iteratively carrying out boosting
updates on the longitudinal and the shared sub-predictor. The model variance, the association parameter
and the baseline hazard are optimized simultaneously maximizing the log likelihood. To the best of our
knowledge, this is the first statistical-learning algorithm to estimate joint models and the first approach
to introduce automated variable selection for potentially high-dimensional data in the framework of joint
model.

c© XXXX WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal X (XXXX) XX 3

We apply our new algorithm to data on repeated measurements of lung function in patients with cystic
fibrosis in Denmark. Cystic fibrosis is the most common serious genetic disease in white populations.
Most patients with cystic fibrosis die prematurely as a result of progressive respiratory disease (Taylor-
Robinson et al., 2012). Loss of lung function in cystic fibrosis is accelerated for patients who are infected
by pulmonary infections such as Pseudomonas aeruginosa. However it may also be the case that more
rapid lung function decline pre-disposes patients to infection (Qvist et al., 2015). We thus aim to model
lung function decline jointly with the onset of infection with Pseudomonas aeruginosa and select the best
covariates from the data set in order to better understand how lung function impacts on risk of infection.
This example is suited for a joint modelling approach to provide a better understanding of how lung func-
tion influences risk of infection onset, whilst taking into account other covariates such as sex and age that
influence both processes.
The remainder of the paper is structured as follows: In the second section we present a short introduction in
joint modelling in general and describe how we approach the estimation with a boosting algorithm. In the
next section we conduct a simulation study in order to evaluate the ability to estimate and select effects of
various variables for both low-dimensional and high-dimensional data. In the fourth section we apply our
approach to cystic fibrosis data with a focus on variable selection. Finally we discuss further extensions of
joint models made possible by boosting.

2 Methods

In this section we describe the model and the associated likelihood as used in the rest of the paper. There
are two different dependent variables: a longitudinal outcome and the time of event for the endpoints of
interest. The predictor for the longitudinal outcome yit divides into two parts:

yij = ηl(xij) + ηls(xi, tij) + εij ,

where i = (1, . . . , N) refers to the i-th individual, j = (1, . . . , ni) to the j-th observation and εij is the
model error, which is assumed to follow a normal distribution with zero mean and variance σ2. The two
functions ηl(xij) and ηls(xi, tij), which will be referred to as the longitudinal and the shared sub-predictor,
are functions of two separate sets of covariates: xij are possibly time varying covariates included only in the
longitudinal sub-predictor; xi are covariates varying over individuals yet not over time and are included in
the shared sub-predictor. In the setup we are using throughout this paper, the shared sub-predictor will also
include a random intercept and slope, denoted by γ0 and γ1 respectively. The shared predictor ηls(xi, tij)
reappears in the survival part of the model:

λ(t|α, ηls(xi, t)) = λ0(t) exp(αηls(xi, t)),

where the baseline hazard λ0(t) is chosen to be constant (λ0(Ti) = λ0) in this paper. The sub-predictor
with subscript ’ls’ refers to both the longitudinal and survival part of the model, whereas it is assumed that
the covariates in ηl(xij) only have an impact on the longitudinal structure. The relation between both parts
of the model is quantified by the association parameter α. Consequently, the two predictor equations can
be summarized in the joint likelihood:

N∏
i=1


ni∏
j=1

f(yij |ηl(xij), ηls(xi, tij), σ
2)

 f(Ti, δi|ηls(xi, Ti), α, λ0), (2)

where Ti is the observed time of event for individual i and where the distribution for the longitudinal part
is the Gaussian error distribution. The parameter δi is the censoring indicator for the i-th individual, taking
the value 0 in the case of censoring and 1 in the case of an event. The likelihood for the survival part is:

f(Ti, δi|α, ηlsi(Ti), λ0) = [λ0(Ti) exp(α(ηlsi(Ti)))]
δi exp

[
−λ0

∫ Ti

0

exp(αηls(xi, u)) du

]
.
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Algorithm 1 Component-wise gradient boosting

Initialize the additive predictor with a starting value, e.g. η̂[0] := (0)i=1,...,n. Specify a set of base-
learners h1(x1), . . . , hp(xp).
for m = 1 to mstop do

Fit the negative gradient
Increase iteration counter m := m+ 1
Compute the negative gradient vector u[m] of the loss function evaluated at current η:

u[m] =
(
u
[m]
i

)
i=1,...,n

=

(
− ∂

∂η
ρ(yi, ηi)

∣∣∣∣
ηi=η̂[m−1](xi)

)
i=1,...,n

Fit the negative gradient vector u[m] separately to every base-learner:

u[m] base-learner−−−−−−→ ĥ
[m]
j (xj) for j = 1, . . . , p.

Update one component
Select the component j∗ that best fits u[m]:

j∗ = argmin
1≤j≤p

n∑
i=1

(u
[m]
i − ĥ[m]

j (xj))
2

Update the additive predictor with this base-learner fit,

η̂[m] = η̂[m−1] + ν · ĥ[m]
j∗ (xj∗)

where ν is the step-length, a typical value in practice is 0.1 (Hofner et al., 2014).
end for m = mstop

2.1 Component-wise gradient boosting

In the following section we shortly highlight the general concept of boosting before we will adapt it to the
class of joint models. The basic idea of statistical boosting algorithms is to find an additive predictor η for
a statistical model that optimizes the expected loss regarding a specific loss function ρ(yi, ηi). The loss
function describes the type of regression setting and denotes the discrepancy between realizations yi and
the model ηi = η(xi). The most typical example for a loss function is the L2 loss for classical regression
of the expected value.

For a given set of observation y1, . . . , yn, the algorithm searches for the best solution to minimize the
empirical loss (often referred to as empirical risk) for this sample:

η̂ = argmin
η

1

n

n∑
i=1

(ρ(yi, η(xi))) .

In case of the classical L2 loss, the empirical risk simply refers to the mean squared error. While there exist
different approaches for statistical boosting (Mayr et al., 2014a), we will focus in this work on component-
wise gradient boosting (Bühlmann and Hothorn, 2007). The main concept is to iterative apply base-learners
h1(x1), . . . , hp(xp), which are typically simple regression type functions that use only one component of
the predictor space (i.e., one covariate xj). The base-learners are fitted one-by-one (component-wise), not
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on the observations y1, . . . , yn but on the negative gradient vector u1, . . . , un of the loss

u[m] =
(
u
[m]
i

)
i=1,...,n

=

(
− ∂

∂η
ρ(yi, ηi)

∣∣∣∣
ηi=η̂[m−1](xi)

)
i=1,...,n

,

at the m-th iteration step. In case of the L2 loss, this means that the base-learners in iteration m are
actually fitted on the residuals from iteration m − 1. The algorithm descents the empirical risk step-by-
step; a behaviour that has been described as gradient descent in function space (Friedman, 2001).
In classical boosting algorithms from the field of machine learning, base-learners are simple classifiers
for binary outcomes. In case of statistical boosting, where the aim is to estimate additive predictors, the
base-learners itself are regression models: The base-learner hj(xj) represents the potential partial effect
of variable xj on the outcome. Examples are simple linear models (hj(xj) = βj · xj) or smooth non-
parametric terms estimated via splines.
In every boosting iteration, only the best-performing base-learner is selected to be updated in the additive
predictor (see Algorithm 1). Typically, one base-learner is used for each variable. The specification of the
base-learner defines the type of effect the variable is assumed to have in the predictor. For linear effects one
could for example use simple linear models (Bühlmann, 2006) or P-splines for non-linear effects (Schmid
and Hothorn, 2008).
The stopping iteration mstop is the main tuning parameter as it controls variable selection and shrinkage
of effect estimates. If the algorithm is stopped before convergence, base-learners that have never been
selected for the update are effectively excluded from the final model. Higher numbers of mstop hence lead
to larger, more complex models while smaller numbers lead to sparser models with less complexity. In
practice, mstop is often selected via cross-validation or resampling methods, by selecting the value that
leads to the smallest empirical risk on test data (Hofner et al., 2014).
For theoretical insights on the general concept of boosting algorithms, we refer to the work of Zhang
and Yu (2005) who studied the numerical convergence and consistency with different loss functions. For
the L2-loss, Bühlmann (2006) proved the consistency of gradient boosting with simple linear models as
base-learners in the context of high-dimensional data (cf., Hepp et al., 2016).

2.2 Boosting for multiple dimensions

The general concept of component-wise gradient boosting was later extended to numerous regression set-
tings (for a recent overview, see Mayr et al., 2014b). Some of these extensions focused on loss functions
that can be optimized with respect to multiple dimensions simultaneously (Schmid et al., 2010; Mayr et al.,
2012). This can refer either to regression settings where multiple distribution parameters θ1, . . . , θK should
be modelled, e.g., ηθ = (ηθ1 , . . . , ηθK ) like in distributional regression (Rigby and Stasinopoulos, 2005),
or settings where in addition to the main model η some nuisance parameter (e.g., a scale parameter φ for
negative binomial regression) should be optimized simultaneously.
Boosting the latter model can be achieved by first carrying out the classical gradient-fitting and updating
steps for the additive predictor (see Algorithm 1) and second by updating the nuisance parameter φ, both in
each iteration step. Updating the nuisance parameter is done by optimizing the loss function with respect
to φ, keeping the current additive predictor fixed:

φ̂[m] = argmin
φ

n∑
i=1

ρ(yi, η̂
[m]
i , φ) . (3)

A typical example for a regression setting where various parameters θ = (θ1, . . . , θK) should be mod-
eled simultaneously by K additive predictors are generalized additive models for location, scale and shape
(GAMLSS, Rigby and Stasinopoulos, 2005). The idea is to model all parameters of a conditional distribu-
tion by their own additive predictor and own associated link function. This involves not only the location
(e.g., the mean), but also scale and shape parameters (e.g., variance, skewness).
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Algorithm 2 Component-wise gradient boosting for multiple dimensions

Initialize additive predictors for parameters θ1, . . . , θK with starting values, e.g. η̂
[0]
θk

:= (0)i=1,...,n

for k = 1, . . . ,K. For each of these K dimensions, specify a set of base-learners hk1(·), . . . , hkpk(·),
where pk is the cardinality of the set of base-learners specified for θk, typically this refers to the number
of candidate variables. Initialize nuisance parameter φ̂[0] with offset.
for m = 1 to m ≥ mstop,k for all k = 1, . . . ,K do

for k = 1 to K do
if m > mstop,k set η̂[m]

θk
:= η̂

[m−1]
θk

and skip this iteration.
Fit the negative gradient

Compute the negative gradient of the loss evaluated at current η[m−1]
i = (η̂

[m−1]
θ1

, . . . , η̂
[m−1]
θK

)

and φ = φ̂[m−1]:

u
[m]
k =

(
− ∂

∂ηθk
ρ(yi,η

[m−1]
i , φ)

)
i=1,...,n

Fit the negative gradient vector u[m]
k separately to every base-learner defined for dimension k:

u
[m]
k

base-learner−−−−−−→ ĥ
[m]
kj (·) for j = 1, . . . , pk.

Update one component
Select the component j∗ that best fits u[m]

k :

j∗ = argmin
1≤j≤pk

n∑
i=1

(u
[m]
ik − ĥ

[m]
kj (·))2

Update the additive predictor with this base-learner fit:

η̂
[m−1]
θk

:= η̂
[m−1]
θk

+ ν · ĥ[m]
kj∗(·)

Set η̂[m]
θk

= η̂
[m−1]
θk

end for k = K
Update nuisance parameter

if φ is a nuisance parameter, that should not be modelled, find the optimal scalar:

φ̂[m] = argmin
φ

n∑
i=1

ρ(yi, η̂
[m]
i , φ)

end for m ≥ mstop,k for all k = 1, . . . ,K

In case of boosting GAMLSS, the algorithms needs to estimate K statistical models simultaneously. This
is achieved by incorporating an outer loop that circles through the different distribution parameters, always
carrying out one boosting iteration and updating them one by one (see Algorithm 2 for details). As a result,
the algorithm can provide intrinsic shrinkage and variable selection for K models simultaneously.

2.3 Boosting Joint Models

The algorithm we suggest for estimating the sub-predictors for joint modelling is based on the boosting
algorithm for multiple dimensions as outlined in the previous part of this section, but it differs in a range
of aspects from Algorithm 2. The main reason for those differences is that the additive predictors for the
two dependent variables (the longitudinal outcome and the time-to-event) are neither entirely different nor
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completely identical. While the longitudinal outcome is modelled by the set of the two sub-predictors ηl
and ηls, the survival outcome in our model is solely based on the shared sub-predictor ηls and the corre-
sponding association parameter α. It is hence not possible to construct the algorithm circling between the
two outcomes yij and λ(t) as for the components θk in the preceding section. Translating the joint likeli-
hood to one empirical loss function poses difficulties, since the losses of the different observations differ
highly in their dimensionality. We therefore suggest an updating scheme at predictor stage (i.e. ηl(xij) and
ηls(xi, tij)) rather than at the level of the dependent variables. More specifically, we define an outer loop
that cycles in every boosting iteration through the following three steps:

(step1) update ηl(xij) in a boosting iteration

(step2) update ηls(xi, tij) in a boosting iteration

(step3) update α, λ0 and σ2 by maximizing the likelihood.

We omit the arguments of the sub-predictors to ensure readability in the following sections. The longi-
tudinal sub-predictor will hence be denoted by the indexed values: ηlij for the longitudinal and ηlsij for
the shared sub-predictor. The derivation of the parts necessary for the three steps will be described in the
following, with exact calculations in Appendix A. In the tradition of the shared random effects models we
will consider a setup including random effects in the shared sub-predictor and furthermore allowing for a
fixed effect linear in time. The structure of ηls is hence

ηlsij = η̃lsi + βttij + γ0i + γ1itij ,

where η̃lsi can include various different non time dependent covariate functions.

(step1) Boosting the exclusively longitudinal predictor: The optimization problem of the longitudinal
predictor ηl(·) is straight-forward, since it is basically the same as for a quadratic loss function. The
gradient vector at iteration m hence consists of the differences (residuals) from the iteration before:

u
[m]
li =

1

σ2

(
yij − η[m−1]lsij − η[m−1]lij

)
,

The vector ul has the same length as the vector y, including all longitudinal measurements before the
event/censoring. Note that there is a slight difference to the gradient vector for classical Gaussian regres-
sion: the variance σ2 has to be included to ensure that the weighting between the two parts of the model is
correct.

(step2) Boosting the joint predictor: The optimization problem for the joint predictor ηls(·) is more
complex. To account for the different scales of the different outcomes, we construct a loss function in such
a way that there is an entry for each individual rather than for each observation. This leads to n entries in
the vector of loss functions that consist of two parts for each individual i. The entries of the loss vector
hence are:

1

2σ2
(yij − ηlsij − ηlij)

2
+ (− log(f(Ti, δi|α, ηlsijλ0))),

with i = 1 . . . n, j = 1, . . . , ni. The resulting entries of the gradient vector uls at iteration m, after the
update of ηl(·), are:

u
[m]
lsij =

1

σ2

(
yij − η[m]

lij − η
[m−1]
lsij

)
+ δiα

[m−1] −
λ
[m−1]
0 (exp(α[m−1]η

[m−1]
lsij )− exp(α[m−1]η

[m−1]
lsij−t ))

β
[m−1]
t + γ

[m−1]
1i

,

where βt and γ1 are the coefficients for fixed time-effect and random slope in the shared sub-predictor ηls
and ηls−t is the part of the sub-predictor not depending on time. For the complete derivation of this result
see Appendix A.
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Algorithm 3 Component-wise gradient boosting for Joint Models

Initialize ηl and ηlswith starting values, e.g. η̂[0]l = η̂
[0]
ls := (0)i=1,...,n. Specify a set of base-learners

(hl1(·), . . . , hlpl(·)) and (hls1(·), . . . , hlspls(·)) where pl and pls are the cardinality of the set of base-
learners. Initialize baseline hazard and association parameter with offset values e.g., λ[0]0 := 0.1 and
α[0] := 0.1.
for m = 1 to m ≥ mstop,l and m ≥ mstop,ls do

step1: Update exclusively longitudinal predictor in a boosting step
if m > mstop,l set η̂[m]

l := η̂
[m−1]
l and skip this step.

Compute u[m]
l as

u
[m]
l =

(
u[m]
ηli

)
i=1,...,n

=
1

σ2

(
yi − η̂[m−1]

lsi − η̂[m−1]
li

)
i=1,...,n

.

Fit the negative gradient vector u[m]
l separately to every base-learner specified for ηl:

u
[m]
l

base-learner−−−−−−→ ĥ
[m]
lj (·) for j = 1, . . . , pl.

Select the component j∗ that best fits u[m]
l :

j∗ = argmin
1≤j≤pl

n∑
i=1

(u
[m]
li − ĥ

[m]
lj (·))2

and update this component: η̂[m]
l = η̂

[m−1]
l + ν · ĥ[m]

lj∗ (·) .
step2: Update joint predictor in a boosting step

if m > mstop,ls set η̂[m]
ls := η̂

[m−1]
ls and skip this step.

Compute u[m]
ls as

u
[m]
ls =yij − η[m]

li − η
[m−1]
lsi

σ2
+ δiα

[m−1] −
λ
[m−1]
0

(
exp

(
α[m−1]η

[m−1]
lsi

)
− exp

(
α[m−1]η

[m−1]
lsi−t

))
β
[m−1]
t + γ

[m−1]
1i


i=1...,N,j=1,...,ni

Fit the negative gradient vector u[m]
ls separately to every base-learner specified for ηls:

u
[m]
ls

base-learner−−−−−−→ ĥ
[m]
lsj (·) for j = 1, . . . , pls.

Select the component j∗ that best fits u[m]
ls

j∗ = argmin
1≤j≤pls

n∑
i=1

(u
[m]
lsi − ĥ

[m]
lsj (·))2 ,

and update this component η̂[m]
ls = η̂

[m−1]
ls + ν · ĥ[m]

lsj∗(·).
step3: Update σ2, α and λ0 by maximizing the likelihood
σ2[m]

:= argmax
σ2

∏
i,j f

(
yij , Ti, δi|α[m−1], η

[m]
lsi (·), η[m]

li (·), λ[m−1]
0 , σ2

)
if m > mstop,ls set α̂[m] := α̂[m−1] λ̂[m] := λ̂[m−1] and skip this step:
(α[m], λ

[m]
0 ) := argmax

α,λ0

∏
i,j f

(
yij , Ti, δi|α, η[m]

lsi (·), η[m]
li (·), λ0, σ

2[m]
)

end for m ≥ mstop,l and m ≥ mstop,ls
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(step3) Estimating the association parameter, the baseline hazard and the variance: In order to
estimate α, λ0 and σ2, we maximize the likelihood (2) simultaneously in every iteration.

(α[m], λ
[m]
0 , σ2[m]

) := argmax
α,λ0,σ2

f
(
yij , Ti, δi|α, η[m]

lsij , η
[m]
lij , λ0, σ

2
)

This third step is carried out after every boosting iteration for the joint predictor (step 2), even if boosting
the longitudinal predictor was already stopped and the corresponding steps were hence skipped.

The complete proposed algorithm for boosting JM is presented as Algorithm 3 and its implementation is
provided with the new R add-on package JMboost (CITATION) which source code is hosted openly on
http://www.github.com/XXXX/JMboost.

Model tuning: Tuning of the algorithm is similar to the classical boosting algorithms for multidimen-
sional loss functions: In general, both the step-length ν and the different stopping iterations mstop have an
influence on the variable selection properties, convergence speed and the final complexity of the additive
predictors. However, in practice, there exists a quasi-linear relation between the step-length and the needed
number of boosting iterations (Schmid and Hothorn, 2008). As a result, it is often recommended to use a
fixed small value of ν = 0.1 for the step-length and optimize the stopping iteration instead (Mayr et al.,
2012; Hofner et al., 2014).
In case of boosting JM, where two additive predictors are fitted and potentially two boosting updates are
carried out in each iteration of the algorithms, it is hard to justify why both predictors should be optimal
after the same number of boosting iterations (mstop,l = mstop,ls). This special case was referred to as
one-dimensional early stopping in contrast to the more flexible multi-dimensional early stopping, where
instead of one single mstop value, a vector of stopping iterations (mstop,l,mstop,ls) has to be optimized via a
grid (Mayr et al., 2012). This computationally burdensome issue is necessary to allow for different levels
of complexity for the additive predictors. The range of the grid (minimum and maximum mstop) has to be
specified ad-hoc, however it might be necessary to adapt it based on the results (adaptive grid search).
For a more detailed discussion on how to select this grid in practice, we refer to Hofner et al. (2016).
Finally, the combination of stopping iterations from the grid is selected, which yields the smallest empirical
risk on test-data (e.g., via cross-validation or resampling procedures).

3 Simulations

To evaluate the performance of the new boosting algorithm, a generic simulation setup was created to
mimic a typical joint modelling situation, and will be described in the following. The technical details
for the complete simulation algorithm are explained in depth in Appendix B, the underlying R-Code to
reproduce the results is included in the Supporting Information.

3.1 Simulation Setup

The purpose of the simulation study is threefold:

(i) evaluate estimation accuracy,

(ii) test variable selection properties, and

(iii) determine the appropriate stopping iterations mstop,l and mstop,ls.

The evaluation of estimation accuracy has to be done for both, the coefficients of the sub-predictors as well
as the association parameter, which plays a crucial role in the interpretation of the model. Three different
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Setup β̂l (sd) βl β̂ls (sd) βls TPl FPl TPls FPls α̂ (sd) α

2.025(0.015) 2 0.989(0.008) 1 1.00

S1 0.998(0.009) 1 −1.991(0.009) −2 1.00 0.782 1.00 0.015 0.520(0.076) 0.5

−1.998(0.008) −2 0.929(0.031) 1 1.00 1.00

2.031(0.018) 2 0.987(0.009) 1 1.00

S2 0.984(0.011) 1 −1.99(0.009) −2 1.00 0.004 1.00 0.008 0.521(0.077) 0.5

−1.986(0.011) −2 0.915(0.038) 1 1.00 1.00

2.037(0.018) 2 0.985(0.009) 1 1.00

S3 0.982(0.012) 1 −1.986(0.009) −2 1.00 0.001 1.00 0.002 0.522(0.077) 0.5

−1.985(0.011) −2 0.898(0.037) 1 1.00 1.00

Table 1 Estimates for the coefficients and selection proportions of the variables in the three simulation
setups for 100 simulation runs. Estimates of coefficients from informative variables are displayed individ-
ually and coefficients corresponding to non-informative variables in an overall average. TP stands for true
positive and indicates the percentage, with which the informative variables were selected for each variable
individually. Intercepts are in the model automatically, hence no selection frequency is reported. FP stands
for false positive and denotes the over all percentage of selected non-informative variables per model.

setups were chosen to give insight in all three questions. We will first describe the basis for all three models
and then point out the differences in the simulation concepts. All three models are based on the following
sub-predictors:

ηlij = x
>
lijβl and ηlsij = x

>
lsiβls + βttij + γ0i + γ1itij .

The matrices X l and X ls are the collections of the standardised covariates, βl = (2, 1,−2,0)> and βls =
(1,−2,0)> the corresponding linear effects with sub vectors 0 of different lengths, βt = 1 is the impact
of time t, γ0 the random intercept and γ1 the random slope. In all three setups N = 500 individuals were
generated. For each individual, we drew five time points which were reduced to less than five in cases with
events before the last observation. If there was no incident for any of the simulated individuals the number
of observations would thus be 2500. However the simulations are constructed in a way that this case never
occurs. The first of the three setups (S1) was constructed to mimic the data situation of the application
in Section 4 more closely and to thus better demonstrate the ability of the algorithm to perform variable
selection in a lower dimension. S1 had four non informative covariates in each predictor. In the second
simulation setup (S2) we used 600 non informative covariates, 300 for each sub-predictor. In this case the
number of covariates exceeds the number of individuals. In the third of the three setups (S3) we chose the
number of non informative covariates to be 2500 over both sub-predictors, i.e. 1250 each, the theoretical
maximum number of observations is hence exceeded by the number of covariates. Please note that we first
simulated a genuine informative part of the model, and afterwards drew the non informative covariates for
each setup individually. The three setups are hence based on the same data and the informative covariates
of the three models are the same. In all three setups the association parameter was chosen to be 0.5.

3.2 Results

We ran 100 models of each setup; results are summarized in Table 1 and will be described in detail in the
following.

c© XXXX WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal X (XXXX) XX 11

S1 S2 S3
ηl 160.2 187.8 187.2
ηls 154.8 48.6 30.6

Table 2 Median, minimum and maximum number of stopping iterations for all three simulation setups
listed separately for the two different sub-predictors.

(i) Evaluation of estimation accuracy As can be seen in Table 1 estimation for the coefficients of
the sub-predictors were very close to the true values. Standard deviations were small, except for the
estimation of the time effect, where the variation between the simulation runs is slightly higher. A graphical
illustration is provided in Figure 1, which displays boxplots of the resulting coefficients for S3 (the results
for the other setups only differs slightly). The slight tendency of underestimation can be attributed to the
shrinkage behavior of boosting algorithms in general. This underestimation can be observed in all three
models in both parts. The estimation of the crucial association parameter α was also very close to the true
value in all setups (see the last column of Table 1 and Figure 2). The slight tendency to overestimate α can
be contributed to the compensatory behaviour of the association parameter. This is due to the fact that α is
estimated via optimisation and hence not subject so shrinkage but adapting directly to the data.

(ii) Variable selection properties All informative variables were selected in 100% of the runs in all three
setups. In S1, more non-informative variables (76.8%) were selected in the longitudinal predictor than in
the shared predictor (1.5%). Boosting tends to select a higher percentage of non-informative variables in a
small setup, which explains the high selection rate in the longitudinal component. The fact that the shared
part is less prone to this greedy behaviour of the algorithm can be contributed to the option to chose the
random effect over one of the non-informative variables. In the high-dimensional setups non-informative
effects are selected in very few of the runs in both setups. The longitudinal sub-predictor does even better
than the shared sub-predictor in this case. There are slight differences, which can be attributed to the
smaller number of runs it required(see paragraph below). Overall the selection property works very well
for both parts of the model, especially in high-dimensional scenarios.

(iii) Stopping iterations The two (possibly different) stopping iterationsmstop,l andmstop,ls were selected
by evaluating the models run on adaptively adjusted 10× 10 grids on an evaluation data set with 1000 in-
dividuals. In all setups the grid ran through a sequence from 30 to 300 in both directions – for mstop,l and
mstop,ls. Based on these results, in setup S2 and S3 it was consequently adapted such that mstop,l was cho-
sen from an equally spaced sequence from 95 to 140, while the grid for mstop,ls ran from 130 to 220. The
optimal stopping iterations were chosen such that the joint log likelihood was maximal on the patients left
out of the fitting process (predictive risk). For an overview over the resulting stopping iterations see Table 2.

4 Cystic Fibrosis data

Cystic fibrosis is the most common life-limiting inherited disease among Caucasian populations, with
most patients dying prematurely from respiratory failure. Children with cystic fibrosis in the UK are
usually diagnosed in the first year of life, and subsequently require intensive support from family and
healthcare services (Taylor-Robinson et al., 2013). Though cystic fibrosis affects other organs such as the
pancreas and liver, it is the lung function that is of most concern, with gradual decline in function for most
patients leading to the necessity of lung transplantation for many. Lung function decline in cystic fibrosis
is accelerated if patients become infected with a range of infections (Qvist et al., 2015). However, the
direction of causation is unclear. It may also be the case that accelerated lung function decline predisposes
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Figure 1 Boxplot representing the empirical distribution of the resulting coefficients for simulation set-
ting S1 over 100 simulation runs: on the left side coefficients for the longitudinal sub-predictor are dis-
played, on the right side coefficients for the shared sub-predictor. The black solid lines indicate the true
values. The narrow boxes display the estimation for the effects of the non-informative variables
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Figure 2 Boxplot of the resulting estimates of the association parameter α over all three simulation setups
and 100 simulation runs. The black solid lines indicate the true parameter.

patients to risk of lung infection. There is thus utility in analyzing lung function decline, and time to lung
infection in a joint model in order to gain more insight in the structure of the process.
We analyzed part of a dataset from the Danish cystic fibrosis registry. To achieve comparability between
patients we chose to use one observation per patient per year. Lung function, measured in forced expiratory
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Figure 3 Coefficient paths for the fixed effects in the cystic fibrosis model. The graph on the left shows
the coefficient paths for the longitudinal sub-predictor (displaying the influence on to the patients lung
function), the graph on the right the coefficient paths of the shared sub-predictor (incorporated both in the
longitudinal model for the lung function and the survival model for the Pseudomonas infection).

volume in one second (FEV1), is the longitudinal outcome of our joint model. The event in the survival
part of the model is the onset of the pulmonary infection Pseudomonas aeruginosa (PA). After selecting
the patients that have at least two observations before the infection, the data set contained a total of 5425
observations of 417 patients of which 48 were infected with PA in the course of the study. The mean
waiting time until infection was 19.86, hence the mean age of infection was 24.86 years, since patients
are included at the age of five into the study. The covariates for the longitudinal predictor were height and
weight of the patient as well as two binary indicators: one states if the patient had one of three different
additional lung infections and a second indicates if the patient had diabetes. The covariates possibly having
an impact on the shared part of the model were time (i.e. age of the individuals), pancreatic insufficiency,
sex, and age at which cystic fibrosis was diagnosed. Covariates were standardized to have mean zero and
standard deviation one, except for age, which was normed on an interval from zero to one.
We then ran our boosting algorithm on the data set in order to simultaneously estimate and select the
most influential variables for the two sub-predictors while optimizing the association parameter α. As
recommended, we used a fixed step length of 0.1 for both predictors and optimized mstop instead. The
stopping iterations (mstop,l = 420 and mstop,ls = 30) were chosen based on tenfold cross validation via
a two-dimensional 15 × 15grid, sequencing in equidistant steps of 30 from 30 to 450. The resulting
coefficient paths for both sub-predictors are displayed in Figure 3.
The selected variables chosen to be informative for the joint model were height, weight, (additional) infec-
tion, age, pancreatic insufficiency and diabetes. Age of diagnosis and sex did not show to have an impact
and were not selected. Being diabetic results to have a negative impact on the lung function, the same holds
for having an additional lung infection or pancreatic insufficiency. The negative impact of age on the lung
function was to be expected since lung function typically declines for patients getting older. The result-
ing negative impact of height and the positive impact of weight indicate, that following our joint model,
underweight has a negative influence on the lung function.
The association parameter α is negative with a value of −0.520. The risk of being infected is hence
implicitly – i.e. via the shared predictor – associated negatively with the value of the lung function. Lower
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lung function thus leads to a higher risk of being infected with pseudomonas emphasizing the need to
model both outcomes simultaneously in the framework of joint models.

5 Discussion and Outlook

Joint modelling is a powerful tool for analysing longitudinal and survival data, as documented by Rizopou-
los (2012). It is increasingly applied in biomedical research, yet it was unfeasible for high-dimensional
data and there have been no suggestions for automated variable selection until now. Statistical boosting
on the other hand is a modern machine-learning method for variable selection and shrinkage in statistical
models for potentially high-dimensional data. We present a possibility to merge these two state of the art
statistical fields. Our suggested method leads to an automated selection of informative variables and can
deal with high-dimensional data and, probably even more importantly, opens up a whole new range of
possibilities in the field of joint modelling.
Boosting algorithms utilizing the underlying base-learners are very flexible when it comes to incorporating
different types of effects in the final models. Due to the modular nature of boosting (Bühlmann et al., 2014),
almost any base-learner can be included in any algorithm – although the regression setting defined by the
underlying loss function might be extremely different. In our context, the proposed boosting algorithm
for joint models could facilitate for the construction of joint models including not only linear effects and
splines, but for example, also spatial and regional effects.
A second area in which the suggested model calls for extension is variable selection itself. While informa-
tive variables are selected reliably in most cases, also non informative variables are included in too many
iterations. With this being a structural problem of boosting algorithms (Bühlmann and Yu, 2007) in low-
dimensional settings, the solution could be stability selection (Meinshausen and Bühlmann, 2010; Shah
and Samworth, 2013), as shown to be helpful in other cases (Hofner et al., 2015; Mayr et al., 2016). The
difference in the proportion of falsely selected variables between longitudinal and shared sub-predictor
however, could be a joint modelling inherent problem and should be subject of future analysis. Further
research is also warranted on theoretical insights, as it remains unclear if the existing findings on consis-
tency of boosting algorithms (Zhang and Yu, 2005; Bühlmann, 2006) hold also for the adapted version for
boosting joint models.
We plan to extend the model by incorporating a predictor ηs, i.e. including covariates which only have an
impact on the survival time and are independent of the longitudinal structure. Once this is incorporated,
we can make even better use of the features of boosting and implement variable selection and allocation
between the predictors. The latter is especially useful if no prior knowledge on the structure of association
exists, because covariates can be suggested for all three sub-predictors and the algorithm automatically
assigns the informative covariates to the appropriate sub-predictor.
In conclusion we propose a new statistical inference scheme for joint models that also provides a starting
point for a much wider framework of boosting joint models, covering a great range of potential models and
types of predictor effects.
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A Gradient of the shared predictor

In the following we will sketch out the calculus for the gradient of the likelihood of the shared sub-predictor,
indices for individuals/obsevations (i.e. ij will be omitted. Note that the derivation of the first part in
equation (4) with respect to ηls is the same as in the purely longitudinal predictor 1

σ2 (y − ηl − ηls). The
additional part in the likelihood of the shared sub-predictor is simply the one of a pure survival model

f(T, δ|ηls, λ, α) = [λ exp(αηls)]
δ
exp

[
−λ
∫ T

0

exp(αηls) dt

]
.

The formulation of the log likelihood is thus:

log (f(T, δ|ηls, λ, α)) = δ log(λ) + δαηls︸ ︷︷ ︸
(l1)

− λ
∫ T

0

exp(α(ηls))dt︸ ︷︷ ︸
(l2)

.

This again splits into two part (l1) and (l2). The derivation of the first part (l1) is straight forward and
reduces to δα. The part of the likelihood less straight forward to differentiate is the part including the
integral (l2)

d

dηls
λ

∫ T

0

exp (αηls) dt.

Note that ηls is a function of time such that standard derivation cannot be used. To avoid confusion with
the upper integral bound T and the integration variable dt above, we suppress the argument time in the
following. Applying the rules for functional derivatives, we obtain

d

dηls
λ

∫ T

0

exp (αηls) dt = λ

∫ T

0

α exp (αηls) dt.

In the case of interest in this paper, where only the second part of the predictor is time-dependent, i.e.,
ηls = ηls−t + (βt + γ1)t, the functional derivative of the function ηls has the following form:∫ T

0

exp (α(ηls−t + (βt + γ1)t)) dt =

[
α

α(γ1 + βt)
exp(αηls−t + α(βt + γ1)t)

]T
0

=
exp(αηls−t + α(βt + γ1)T )− exp(αηls−t)

γ1 + βt
.

The whole derivation of the likelihood for the shared subpredictor hence is

1

σ2
(y − ηl − ηls) + δα− λexp(αηls)− exp(αηls−t)

γ1 + βt
.

B Simulation

• Choose a number of patients N and a number of observations ni per patient i, i = 1, . . . , n

• Simulate the time points:

– draw n = N · ni days in 1, . . . , 365

– generate the sequence ti of length ni years per patient, by taking the above simulated values as
days of the year
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– to make calculations easier, divide everything by 365
– example: time points for patient i given that ni = 5: t = (.2, 1.6, 2.4, 3.1, 4.8) means the patient

was seen in the first year at day 0.2 · 365, in year two at day 0.6 · 365 and so on

• Generate the longitudinal predictor ηl

– generate fixed effects by choosing appropriate values for the covariate matrixX l

– the covariate matrix can also include the time vector
– and deciding for values for the parameter vector βl

– calculate ηl =X lβl

• Generate the shared predictor ηls outcomes based on the time points (just as in a usual longitudinal
setup):

– generate random intercept γ0 and random slope γ1 by drawing form a standard Gaussian distri-
bution

– generate fixed effects by choosing appropriate values for the covariate matrix X ls (note that the
values are not allowed to be time varying)

– and deciding for values for the parameter vector βls

– calculate ηls =X lsβls + γ0 + γ1t

• draw n values of y from N(ηls(t) + ηl(t), σ
2)

• Simulate event times (based on the above simulated times and random effects):

– choose a baseline hazard λ0 (for simplicity reasons chosen to be constant) and an association
parameter α

– calculate the probability of an event happening up to each time point tij with the formula Ftij =

1− exp
(
−λ0

exp(α(ηls(t)))−exp(αηls−t)

α(βt+γ1)

)
– draw n uniformly distributed variables uij
– if uij < Ftij consider an event having happened before tij
– define time of event si as proportional to the difference of uij and Ftij between tij and tij−1
– for every individual i only the first si is being considered
– define the censoring vector δ of length N with δi = 0 if uij < Ftij for any j = 1, . . . , ni and
δi = 1 otherwise (this leads to an average censoring rate of 83.6%).

• for every individual i delete all y(tij) with tij ≥ si from the list of observations

The probabilities for the events are taken from the connection between the hazard rate and the survival
function.

F (t) = 1− S(t)

= 1− exp(−
∫ t

0

λ(t)) dt

= 1− exp(−λ0
∫ t

0

exp (αηls(t)) dt)

= 1− exp

(
−λ0

exp (αηls(t))− exp(αηls−t)

α(βt + γ1)

)
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