
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 1

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

I know what you did last summer: New
persistent tracking mechanisms in the wild

Stefano Belloro1, and Alexios Mylonas1, Member, IEEE
1 Department of Computing and Informatics, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, United

Kingdom

Corresponding author: A. Mylonas (e-mail: amylonas@bournemouth.ac.uk).

ABSTRACT As the usage of the web increases, so do the threats an everyday user faces. One of the most pervasive

threats a web user faces is tracking, which enables an entity to gain unauthorised access to the user’s personal data.

Through the years many client storage technologies, such as cookies, have been used for this purpose and have been

extensively studied in the literature. The focus of this work is on three newer client storage mechanisms, namely Web

Storage, Web SQL Database and Indexed Database API. Initially, a large-scale analysis of their usage on the web is

conducted to appraise their usage in the wild. Then, this work examines the extent they are used for tracking purposes. The

results suggest that Web Storage is the most used among the three technologies. More importantly, to the best of our

knowledge this work is the first to suggest web tracking as the main use case of these technologies. Motivated by these

results, this work examines whether popular desktop and mobile browsers protect their users from tracking mechanisms

that use Web Storage, Web SQL Database and Indexed Database. Our results uncover many cases where the relevant

security controls are ineffective, thus making it virtually impossible for certain users to avoid tracking.

INDEX TERMS web tracking, web security, privacy, indexed database, indexedDB, web storage, web

SQL database

I. INTRODUCTION

As of April 2018, the digital population has reached 4087

million users [1]. Most users access the web on a daily basis

for the most diverse array of tasks, from sending emails and

reading the news to browsing social media and accessing any

kind of content. The usage of the Internet has improved the

quality of our lives and provided us with opportunities and

information, which were previously accessible only to a

small percentage of people.

Nonetheless, such advantages do not come without a price.

While users navigate the web, they expose themselves and

share, willingly or not, personal information. Indeed, users

are exposed to different threats, such as tracking and

behavioural profiling, which directly violate their privacy.

Many websites deploy a variety of technologies to track the

users or profile them. These practices are used for a number

of reasons [2]. For instance, identifying the user and knowing

their characteristics enables a website to provide a more

personalized user experience. While this may sound innocent

and even desirable, the same techniques can be used to

profile a possible target of a social engineering attack, gather

personal information to either sell it, use it for advertising or

for any other kind of surveillance [3]. Many client storage

technologies have been used for tracking purposes over the

years; the most famous of all is HTTP cookies.

Almost a decade ago, the web community was galvanised

by the advent of HTML5 and the myriad of new primitive

APIs associated to it. Among them, client-side storage APIs,

such as Web Storage, Web SQL Database and Indexed

Database API, were bound to revolutionise the web and

eventually narrow the differences between web applications

and native apps. Since then, the web has certainty evolved,

but web applications are far from replacing native mobile

apps. Moreover, in some instances, trackers have adopted

client-side storage techniques as a way to enhance the

capabilities of HTTP cookies, as shown by [35], but until

now their use has been considered very limited.

In this context, this work focuses on Web Storage, Web

SQL Database and Indexed Database API and investigates

the usage of these client-side storage APIs as a tracking

vector. Contrary to previous results in the literature, our

results suggest that tracking is a major use case for these

APIs. Moreover, we investigate the user control over the data

that the aforementioned client-side technologies store on the

user’s device. Our results uncover multiple cases where the

users are exposed to privacy violations, as: a) they are unable

to delete data created by the API of Web Storage, Web SQL

Database or Indexed Database API even though they are

attempting to clear locally stored data of their browsing, and

b) they unknowingly store potentially tracking data created

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/161338188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

by these APIs while browsing the web in a private session.

These findings have serious privacy implications, as they

highlight that it is virtually impossible for certain users to

avoid web tracking.

 Our contributions include:

 We perform a large-scale analysis of the usage of Web

Storage, Web SQL Database or Indexed Database APIs

on the web. We quantify their pervasiveness in the

context of tracking code and find that these technologies

are mostly used by trackers. To the best of our

knowledge, we are the first to uncover that the main use

case of these technologies is web tracking.

 We investigate the capability of modern, popular

browsers for desktops and mobile devices to delete data

that can be stored locally via these APIs. Moreover, we

examine if data from these APIs remain after a private

browsing session. In both cases, we find instances where

the users would be exposed to privacy violations if a

tracker uses Web Storage, Web SQL Database or

Indexed Database APIs as the tracking vector, as we

identified many cases that the relevant security control

has questionable effectiveness.

The rest of the paper is organized as follows. Section II

briefly provides the required background in client storage

technologies. Section III investigates how frequently and for

which purpose these APIs are used in the wild. Section IV

reviews the controls offered to the users over these APIs.

Finally, Section V presents the related work and Section VI

concludes the paper and discusses future work.

II. BACKGROUND

Since the early days of the Web, HTTP cookies have been

used as a client-side storage mechanism. As the web evolved,

a desire for different and more capacious ways to store

structured data on the web client started to emerge. Over the

years, several client-based storage technologies appeared.

Most of them, such as Local Shared object of Adobe Flash

[10], Oracle Java [11], Microsoft Silverlight [12] and Google

Gears (Google Code, 2008), were made available through

third-party plug-ins. However, with the advent of HTML5,

browsers started to support native functionalities that could

replace these third-party plug-ins. Client-side persistent data

storage technologies were introduced, such as Web Storage

[13], Web SQL Database [15] and Indexed Database API

[20]. This section briefly introduces the aforementioned three

technologies, as well as cookies.

A. COOKIES

An HTTP cookie is a short piece of data (typically with

size 4K) that a website sends to a client, either via HTTP

response headers or by using client-side scripting. The client

is expected to save this data and send it back to the server in

subsequent HTTP requests. Each cookie is associated to an

origin, i.e., a combination of the hostname, the port number

and the protocol used by the web application [5]. This is

based on a concept known as ‘same-origin policy’, which has

been the cornerstone of browser security since the early days

of the web [6].

For performance reasons, web browsers limit not only the

length of HTTP cookies, but also apply constraints to their

quantity, allowing only a few dozens per origin. Several

online studies provide an overall view of the limits that

different web browser vendors set to HTTP cookies [8], [9].

Since a webpage can contain resources from multiple

origins, HTTP cookies are often used to identify and track

users, not only across different browsing sessions, but also

across different websites. Over the years, both Internet users

and legislators have become more aware of the privacy

implications of third-party tracking [7].

B. WEB STORAGE

Web Storage [13] is a specification that allows web

applications to create a persistent key-value store in the

browser, the content of which is maintained either until the

end of a session (i.e., sessionStorage), or beyond (i.e.,

localStorage). This technology enables web applications to

store a much greater amount of data compared to HTTP

cookies. Specifically, the storage capacity provided by web

storage varies from 5MB to 25MB, depending on the

browser. An innovative feature of Web Storage is that a web

application can use a client-side JavaScript API to retrieve

locally stored data, even when the browser is offline. Web

Storage is in fact completely based on client-side scripting

and, unlike HTTP cookies, data cannot be sent via HTTP

headers.

Similarly to HTTP cookies, the security model of Web

Storage is based the same-origin policy. This means that each

origin has a unique storage object assigned to it. For this

reason, the specification does not recommended using this

technology on websites that use a shared host name or do not

use HTTPS. Otherwise, information leakage or spoofing may

happen, as for example in the case of DNS spoofing attacks.

Moreover, the specification recommends treating persistently

stored data as potentially sensitive, as they could contain

email addresses or calendar appointments, etc.

 As with HTTP cookies, a third-party tracking agent could

use Web Storage to profile users across multiple sessions

[13]. The specification recommends browser vendors to treat

web storage content in the same manner as they treat HTTP

cookies. In particular, vendors are encouraged to organise the

user interfaces for clearing data in a way that allows users to

clear all different types of persistent data simultaneously. It is

also important to point out that, while Web Storage is a much

lesser known technology than HTTP cookies, its usage is not

exempt from regulations around personal user data [14].

C. WEB SQL DATABASE

Web SQL Database [15] is a deprecated specification,

which allows web applications to store large amounts of data

in the browser, using client-side transactional databases that

can be queried using SQL. The specification is based on

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

SQLite, an embedded relational database management

system developed by D. Richard Hipp [17]. Since the

beginning of 2010, a few browser vendors started

implementing experimental versions of the Web SQL

database API [18]. This was not a complete novelty for some

of them; Web SQL Database stores data in a very similar

way to Google Gears and both technologies are based on

SQLite. Other browser vendors like Mozilla [19], instead,

decided to avoid Web SQL database completely. In

November 2010, the W3C announced the decision to

abandon the Web SQL Database draft lamenting the lack of

multiple independent implementations. Web SQL Database

was deprecated in favour of Indexed Database API. Despite

the deprecation by the W3C, three major browser vendors

(Chrome, Safari and Opera) have continued supporting Web

SQL Database and have not yet announced any plan of

discontinuing it.

D. INDEXED DATABASE API (INDEXED DB)

The first draft of this specification was initially published

as WebSimpleDB API and it was renamed to Indexed

Database API the following year [16]. It defines a JavaScript-

based interface for an embedded transactional database

system. Similarly to Web Storage and Web SQL Database,

IndexedDB allows storing structured data in the browser and

the API provided is the only interface a web application

needs to access and manipulate them. The main difference

with Web Storage is in the scale and structure of the data that

can be stored. In fact, Web Storage provides a basic key-

value store that can be useful when dealing with simple

datasets. On the other hand, Indexed Database API enables

the storage of larger amounts of structured data and provides

advanced features, such as in-order key retrieval and storage

of duplicate values for a key. Fig. 1 includes a snapshot from

the console of Chrome that shows the client-side storage

mechanisms, namely Web storage, IndexedDB, Web SQL

and cookies, which are used by a Twitter Web application. It

can be noted that IndexedDB can store data in a much more

structured way compared to cookies and Web Storage,

having several databases associated to the same origin. Each

database has one or more object stores and their content can

be sorted through one or multiple keys. Unlike Web SQL

Database, IndexedDB is an object-oriented database. The

interface for adding and retrieving data does not use SQL

queries, but keys and indexes instead. The security

recommendations for the usage of Indexed Database API are

not different to those for Web Storage. The security model of

IndexedDB still gravitates around the principles of the same-

origin policy. A web application is allowed to access locally

stored data as long as the request’s origin matches the local

database’s origin. Unlike HTTP cookies, a maximum storage

duration does not have to be specified.

III. EXPLORING THE USAGE OF CLIENT-SIDE
STORAGE IN THE WILD

This section discusses the methodology for investigating

the usage of Web Storage, Indexed Database API and Web

SQL Database as a tracking mechanism in the wild. In doing

so, we first investigate the frequency of the usage of these

technologies on a large-scale sample of the World Wide

Web. Then, we quantify their pervasiveness in the context of

third-party tracking code.

A. METHODOLOGY

In this subsection, we perform an analysis of a large-scale

dataset, which contains snapshots of client-side scripts used

by websites. The aim of our analysis is to demystify the

pervasiveness of Web Storage, Indexed Database API and

Web SQL Database in the web and study their use as a

tracking vector. To this end, we perform static analysis on the

dataset to identify instances of client-side scripts that make

use of any of the three APIs by searching for code constructs

that read and write data in the client. We then identify which

of the abovementioned scripts belong to well-known tracking

domains. Fig. 2 shows a high-level diagram of our test

environment.

The dataset in use comes from the HTTP Archive project

created by [21]. Every fortnight, it crawls a list of webpages,

FIGURE 1. Representation of client-side stored data provided
by the console of Chrome.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

which is loosely based on the Alexa Top Sites [22]. HTTP

Archive collects data, such as the payload content and logs

the interaction between the browser and the crawler. It also

captures the body of the responses for each subresource (i.e.

any file that is fetched by an HTML page such as scripts,

stylesheets) used by the website. Since the size of the dataset

generated by HTTP Archive can be up to several hundreds of

gigabytes, Google BigQuery [23] was used for its processing.

For each of the three client-storage APIs one matching rule

was used to create a series of SQL queries, which run against

the HTTP Archive dataset using Google BigQuery. These

rules, which are summarised in Table I, were defined by

using constructs required to perform basic operations, such as

creating a data store, reading and writing data. Appendix A

lays out the constructs that have been identified in this work

in our matching rules.

In order to identify whether a subresource belongs to a

tracker, we created a database of tracking domains by

aggregating three well-known tracking blacklists, namely:

Disconnect (2017), No Track [26] and Easy List (2017). To

this aim, we have developed scripts that combine the

domains that are listed in the aforementioned blacklists after

their files have been properly parsed and sanitised.

We run our experiments against: a) the whole dataset

provided by HTTP Archive on the 15th of May 2018 and b)

the Alexa top 10,000 sites. Table II summarises the number

of websites, subresources and truncated or empty

subresources in our experiments. We highlight the low

percentage of truncated or blank subresources, since on those

the matching rules are not applicable.

TABLE I

MATCHING RULES USED FOR EACH OF API ANALYSED

Primitive Matching rule

Web Storage “localStorage” AND (“setItem” OR “getItem”)

IndexedDB “indexedDB” AND “transaction” AND “objectStore”

Web SQL “openDatabase” AND “transaction” AND “executeSql”

TABLE II
DATA USED FROM HTTP ARCHIVE

Whole Dataset

(May 2018)
Data matching

Alexa’s 10K sites

Number of websites in the

dataset

460099 9020

Total number of

subresources in the dataset

18860393 505745

Truncated or empty

subresources (%)

3.15 5.26

B. EXPERIMENTAL RESULTS

Table III shows the usage of the primitives considered, on

the whole dataset provided by HTTP Archive for the 15th of

May 2018. An interesting result is that more than two thirds

of the websites analysed contain Web Storage related

constructs. Another result worth noticing is that the

constructs analysed are very often found on third party

subresources. Similarly, Table IV, shows the results for the

Alexa’s top 10,000 sites. It is interesting to notice that in this

case, the values for the usage of the Indexed Database API

are almost double compared to the whole dataset. The use of

Web SQL remains low in our experiments, which is expected

as this API is deprecated.

Table V summarises the number of domains that include at

least one tracking subresource, which is using one of the

three client-side storage APIs. As it can be seen, there is a

FIGURE 2. Architecture of the test environment

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

TABLE III
RESULTS FOR THE WHOLE DATASET

Client-side storage API

Websites with

construct in

subresource (%)

Websites with
construct in 3rd

party

subresource
(%)

Web Storage 71.66 65.39

IndexedDB 5.56 5.15

Web SQL DB 1.34 1.18

TABLE IV

RESULTS FOR THE ALEXA TOP 10K

Client-side storage API

Websites with

construct in

subresource (%)

Websites with

construct in 3rd

party

subresource
(%)

Web Storage 83.09 77.08

IndexedDB 11.39 9.89

Web SQL DB 2.12 1.61

TABLE V

WEBSITES AND TRACKING SUBRESOURCES

API / Websites with at least

one tracking subresource

using API (%)

Whole Dataset
(May 2018)

Data matching
Alexa’s 10K sites

Web Storage 57.72 67.21

IndexedDB 1.68 3.99

Web SQL DB 0.76 0.88

TABLE VI

TRACKING SUBRESOURCES AND PRIMITIVES

API/ Subresources using the
API that are flagged as

‘tracker’ (%)

Whole Dataset

(May 2018)

Data matching

Alexa’s 10K sites

Web Storage 71.18 63.88
IndexedDB 31.87 36.14

Web SQL DB 53.59 39.90

high percentage of websites containing at least one tracking

subresource where constructs that belong to Web Storage

(localStorage) can be found. The figures are much smaller

for Indexed Database API and considerably smaller for Web

SQL Database.

Finally, Table VI highlights the usage of the client-side

storage techniques in the context of tracking from a different

angle. It shows amongst all the subresources that have been

analysed, the percentage of them containing the constructs

for the API considered that are used by a tracking domain. In

other words, this table answers the question: “how frequently

are those storage techniques used as tracking vectors?”. In all

cases, the frequencies are surprisingly high, starting from

around 30% for Indexed Database API to more than 70% for

Web Storage (localStorage). This significant finding suggests

that currently user tracking is a major use case for the APIs

that have been examined. Surprisingly, this is also the case

for a deprecated standard, i.e., Web SQL DB.

C. DISCUSSION

This section has shown that a significant number of the

websites analysed contains at least one tracking subresource

having code constructs that belong to at least one of the three

APIs considered. More importantly, it has shown that

tracking scripts seem to currently be the major use case of the

three storage APIs considered. Indeed, in many cases,

subresources that contain the analysed APIs are often

identified as trackers. As our experiments used a dataset that

represents a significant portion of the World Wide Web, we

consider that our results shed some light on the usage of Web

Storage, IndexedDB and Web SQL in user tracking.

However, the usage of HTTP Archive as the dataset for

our experiments introduces a number of limitations to our

work. HTTP Archive can only provide snapshots of front

pages of openly available websites. The scanning engine

does not perform operations such as user log in or following

links on a menu. Considering that primitives such as the

Indexed Database API are designed to support advanced web

applications, it is reasonable to assume that there are cases of

websites in which those storage techniques are used only

once the user is logged in. However, this is an accepted

limitation, especially considering that in order to quantify the

usage of client-side storage techniques in the context of user

tracking, it is far more important to focus on the large-scale

adoption of the technologies in question rather than on

specific use cases.

Another limitation of our work stems from the scanning

engine of HTTP Archive, as it truncates payloads that are

greater than 2 MBs. This means that if the constructs defined

in the matching rules happen to be in the part of the payload

that HTTP Archive could not capture, they will not be found

by our queries. However, as shown in Table II truncation and

empty subresources seldom appear in our dataset. Moreover,

their absence does not invalidate our findings. On the

contrary, their successful capture from HTTP Archive might

provide additional subresources that match our rules, thus

reinforcing our results.

In addition, HTTP Archive does not contain snapshots from

each one of the Alexa Top one million sites. The set of

websites scanned is loosely based on the Alexa list, but any

private individual could send a request to HTTP Archive to

add or remove sites to the dataset. The actual number of

websites included in each scan is specified in the results

section.

Finally, this work suffers from a limitation that is common

in any static analysis approach. Our work verifies the

presence of certain constructs in client-side scripts, but

cannot verify the actual usage of the primitives unless the

actual web application is executed in the browser, which falls

outside the scope of our work. For example, a website could

include a JavaScript library that relies on Web Storage, but

never execute its code in the browser. Moreover, some

websites include third-party libraries that perform a set of

basic operations using a given primitive with the sole

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

purpose of assessing browser capabilities. This practice is

known as ‘feature detection’ and one of the most well-known

libraries used for this purpose is Modernizr [27].

IV. USER CONTROL OVER LOCALLY STORED DATA

The previous section uncovers that currently Web Storage,

Indexed Database API and Web SQL Database are

frequently used as a tracking vector. In this context, this

section examines: i) whether popular desktop and

smartphone browsers support the three aforementioned APIs,

ii) the effectiveness of the deletion of the data stored by them

as part of the mechanism that clears browsing data, and iii) if

data remain when they are created in private browsing mode.

A. METHODOLOGY

As mentioned previously in section II.B, the specifications

recommend browser vendors to treat the data removal of

various client-side persistent data features in the same way as

HTTP cookies. This means that browsers are expected to

make it easy for users, or at least possible, to remove all

locally stored user data. In addition, nowadays all browsers

offer to their users the functionality to browse the web

through a private session (often referred to as private or

incognito mode). The primary aim of the private session is to

allow users to browse the web without the browser saving

data regarding the ‘private’ browsing history.

We built a simple web application, called Storage Watcher1,

in order to verify the: a) level of API support in a given

browser, and b) effectiveness of data deletion.

The tests were performed in June 2018, on a broad

selection of desktop (Windows, Mac OS) and smartphone

(Android, iOS, Windows Phone) browsers. These include the

most popular browsers in these platforms, such as Firefox,

Chrome, Safari, Opera, and Edge/Internet Explorer. Tables

XI and XII in Appendix B include the details of the browsers

that were analysed and the results of the abovementioned

experiments.

B. EXPERIMENTAL RESULTS

Our results uncover inconsistencies with regards to the

support of the client-side storage APIs by the different

browsers (see Tables XI and XII in Appendix B). For

example, amongst the desktop browsers, Firefox and Edge,

disable the IndexedDB API when used in private browsing

mode. In both cases, the other two storage APIs remain

available. In contrast, certain versions of iOS WebKit-based

browsers (Safari, Chrome and Firefox for iOS) and Firefox

for Android, seem to do the exact opposite, as they disable

the Web Storage and Web SQL Database APIs when in

private mode, but not the IndexedDB API. It is, however,

worth mentioning that more recent versions of iOS-WebKit-

based browsers have introduced a more consistent approach

1 Available at: https://github.com/stefano-belloro/storage-watcher

on which all the three APIs are disabled on private browsing

mode.
TABLE VII

RESULTS FOR USER CONTROL OVER LOCAL STORED DATA

Issue OS Browser APIs

Data persists after

clearing local data

iOS 10.2.1 Safari, Chrome

62.0

IndexedDB

Android 6 Firefox 57,
Firefox 60

IndexedDB

MiuiBrowser

9.1.3

LocalStorage,

IndexedDB

Android 7 Firefox 54,

Firefox 57

IndexedDB

Android 8 Firefox 60 IndexedDB

Data deletion
requires extra step

in the UI

Windows Phone

8.10 by HTC

Internet

Explorer

IndexedDB

Mac OS 10.12.5 Firefox 57.0

(quantum),

Firefox 56.0

IndexedDB

Windows 10 Firefox 56 IndexedDB

Windows XP Firefox 47 LocalStorage,
IndexedDB

Firefox 56, 57 IndexedDB

Data persists after
closing private

session

iOS 11.1.2 Opera 16 LocalStorage

Android 6 Opera 43.0 IndexedDB, Web
SQL

MiuiBrowser

9.1.3

LocalStorage,

IndexedDB

Android 7 Opera 42.7,

Opera 43.0

IndexedDB, Web

SQL

Android 8 Opera 46.3 IndexedDB, Web
SQL

Values from non-

private session are
leaked

Android 6 MiuiBrowser

9.1.3

IndexedDB

Data stored in

guest mode is

deleted only after
quitting the

browser

Mac OS 10.10.5,

Windows 10

Chrome 62 localStorage,

IndexedDB, Web

SQL

Our results also uncover multiple cases in which current

popular browsers cannot protect the privacy of their users, as

they fail to delete or isolate data stored via the API of Web

Storage, Web SQL DB or IndexedDB. As summarised in

Table VII our results suggest that: a) the process of removing

private data from a browser does not always delete data

stored in all of the three client-side storage APIs or requires

an extra step in the browser’s user interface and b) some

browsers do not fully isolate client-side stored data when

used in private mode.

Specifically, certain versions of iOS-WebKit-based

browsers (Safari2 and Chrome for iOS3) and some Android

2 Reported: https://bugs.webkit.org/show_bug.cgi?id=188164
3Reported

https://bugs.chromium.org/p/chromium/issues/detail?id=868857

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

browsers (Firefox for Android4 and MiuiBrowser) retain

IndexedDB API content even after a user requests data

deletion. In all the cases considered, the user interface not

only does not make clear that IndexedDB API content will

persist, but also gives the impression that all ‘offline web site

data’ will be deleted (Fig. 3). Furthermore, in MiuiBrowser

v.9.1.3, Web Storage (localStorage) content is also

maintained, after a user requests the deletion of private data.

Fortunately, in the case of iOS browsers, this issue seems to

be resolved in the latest version of the software considered in

this work. However, this behaviour can still be seen on other

recent browsers (i.e., Firefox 60 on Android 8).

It is also worth pointing out that some browsers require the

user to perform an extra action in order to include

IndexedDB API content to the process of clearing private

data. As a matter of fact, on all the desktop versions of

Firefox5 in scope of this work, whilst the user interface

allows deleting data stored via IndexedDB API using the

same panel used to remove HTTP cookies, this option is

disabled by default. This means that users would have to

expand the ‘details’ dropdown menu and manually add

4 Reported: https://bugzilla.mozilla.org/show_bug.cgi?id=1479403
5 Reported: https://bugzilla.mozilla.org/show_bug.cgi?id=1479414

‘offline website data’ if they wish to remove IndexedDB API

content. On an earlier version of Firefox analysed (Firefox 47

on Windows XP), this was also the case for Web Storage

(localStorage). This default setting could be misleading for

an inexperienced user and give a sense of anonymity that

cannot be guaranteed, especially considering that the

IndexedDB API could be used as a backdoor to reinstate

content of HTTP cookies [35].

Similarly, Internet Explorer for Windows Phone 8.10 by

HTC requires a separate action to remove IndexedDB API

content. In this case, the user needs to navigate to a different

menu item called "advanced settings" and choose the option

"manage storage".

Furthermore, Opera 43 on Android allows the persistence

of data stored using IndexedDB API and Web SQL Database

across different private browsing sessions6. Similarly, Opera

for iOS exhibits the same behavior for Web Storage

(localStorage) and MiuiBrowser 9.1.3 for both Web Storage

(localStorage) and IndexedDB API.

Moreover, in Google Chrome’s guest mode, content stored

in each of the three APIs persists across different windows

opened in guest mode7. This means that a user would need to

quit Chrome completely in order to discard locally stored

data accumulated in a guest browsing session. This behaviour

might be misleading for certain users who might assume that

simply closing the browsing window but not the application

might be enough to remove locally-stored private data.

Lastly, when running the experiment on MiuiBrowser

9.1.3, it was noticed that the browser carries over the values

of IndexedDB API content created while using the

application on normal browsing mode. As a result, if a

private browsing session is preceded by a regular usage of

the browser in its normal mode, MiuiBrowser allows a third

party tracker to resume and recreate tracking values set while

the user was browsing on previous non-private sessions and

identify them even if they are browsing in private mode.

C. DISCUSSION

Our findings suggest that in many cases web users are

exposed to privacy violations if the website they visit or any

of its 3rd party subresources use Web storage, IndexedDB

and Web SQL DB as a tracking vector. This holds true as our

experiments uncovered instances in which: a) data persists

after clearing local data or after closing a private session, b)

data persists unless the user configures the browser

appropriately, c) persistent data from a non-private session

are leaked to the private session, and d) data stored in guest

mode is deleted only after quitting Chrome. It is worth

stressing, that non security and technically savvy users are

more likely to use the default settings of the data clearing,

6 Reported: Bug reference: DNAWIZ-38391
7Reported:

https://bugs.chromium.org/p/chromium/issues/detail?id=868870

FIGURE 3. Firefox 57 on Android 6.0. The user interface
suggest that offline data will be removed.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

thus failing to delete data that potentially violate their privacy

in the cases that are describe in Table VII.

Our work also uncovers inconsistencies with regards to

disabling certain client-storage APIs in private mode. If the

reasoning for disabling the APIs is to prevent user tracking, it

should be noted that advanced tracking mechanisms employ

multi-tier approaches based on a combination of various

storage vectors [35]. Therefore, blocking certain APIs whilst

allowing the usage of others might not produce the desired

level of privacy. Another interesting aspect is the way that

browsers have implemented the security controls that handle

the data of the APIs, namely private browsing and data

clearing, is inconsistent across different versions of the same

browsers and across different platforms (c.f. Table XI and

submitted bugs).

Moreover, our experiments include a) the most popular

browsers of the popular operating systems for desktops (i.e.,

Windows, Mac OS) and b) the most popular mobile

browsers, which can be found in different types of mobile

devices, such as smartphone and tablets, for the most popular

platforms (i.e., Android, iOS, Windows Phone). As these

browsers currently hold the majority of the user share, we

consider our results representative. Furthermore, as

summarised in Table VII, it is worth noting that the majority

of our findings concern popular mobile browsers, such as

Chrome, Firefox and Safari. Given the popularity of these

browsers and the fact that mobile devices are nowadays the

primary vector to access the web [28], this increases the

impact of our findings.

VI. RELATED WORK

A.Client-side storage systems as tracking vectors

Krishnamurthy and Wills [29] studied the diffusion of

private user information performed by third-party trackers

that use a combination of HTTP cookies and other elements

of the DOM. The authors analysed a selection of 1200

popular websites and collected statistical data over a period

of four years. The results showed that the collection of user

data increased over time, even in websites where the user is

expected to provide confidential information such as medical

or financial details. More specifically, during the latest period

that was analysed, September 2008, the penetration was 70%.

Furthermore, it was discovered that 52% of the websites

considered, contained code from at least two third-party

tracking entities.

Gonzalez et al. [30] performed a large-scale study on the

usage, content and format of HTTP cookies in the wild. Their

work analysed a large dataset of network data that comprised

of 5.6 billion HTTP requests. The authors determined the

reach of cookies by measuring the number of referrers that

generate an HTTP request to the same cookie-setting

endpoint. They found that, while the vast majority of cookies

relate to a unique referrer domain, there is a long tail of

cookies whose originating requests come from a significantly

high number of different domains. Moreover, the authors

analysed the names of the cookies and found instances of

websites that use cookies whose names include a unique

identifier of the user. Finally, they discovered instances of

cookies values containing personal identifiable information

such as users’ IP and email address, which, represent a

serious breach of privacy.

Soltani et al. [31] conducted a study on the usage of Flash

Local Shared Object, often referred to as ‘Flash cookies’, as a

tracking vector. They analysed the top 100 domains ranked

by QuantCast. On 31 of them, they found at least a case of

data overlap between HTTP cookies and Flash cookies,

meaning that the same value appeared on the data stored in

both technologies. Moreover, they found several occurrences

of what they defined as “cookie respawning”, in which the

value of a deleted HTTP cookie is restored in the

background, taken from a Flash cookie that keeps its back

up. On a follow-up study, Ayenson et al. [32] observed the

emerging usage of Web Storage (localStorage) as a tracking

vector. While the authors did not find if this storage system

was directly employed as part of respawning mechanisms,

they noticed several cases of matching values among HTTP

cookies and Web Storage data, which they named ‘HTML5

cookies’.

Roesner et al. [33] presented an in-depth investigation of

web tracking performed by third-party actors. The work

analysed a corpus of around 1000 websites, spanning from

very popular to lesser-used websites, and found the presence

of over 500 unique trackers. The authors proposed a

classification of trackers that goes beyond the usual notion of

first-party and third-party trackers. Instead, they introduced a

classification system based on the tracking behaviour that is

observable from the client. This system challenges the

significance of classifying cookies as either third-party or

first-party. In fact, all cookies could be classified as first-

party in the context of their own origins and often users visit

those origins as ‘first-party clients’, such as in the case of

social networks. For this reason, the authors suggested the

usage of terms like “tracker-owned” cookies and “site-

owned” cookies. The work also documented the occurrence

of “cookie leaks”, in which the contents of a cookie

associated to a given origin are passed as parameters in a

request to another origin, with the purpose of circumventing

the browser’s same-origin policy. Furthermore, the authors

attempted to quantify the usage of alternatives to HTTP

cookies. The authors found “remarkably little use” of Web

Storage (localStorage). In fact, out of the 524 trackers

identified, this storage mechanism was used in only 8 cases.

Moreover, only 5 of them were found to contain unique

identifies. All of those 5 cases were instances of cookie

respawning, meaning that the user identifiers were copies of

the values found on HTTP cookies. Finally, Flash LSOs were

used by 35 trackers, but only 9 of them were identified as

instances of cookie respawning.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

Acar et al. [34] performed a large-scale analysis of a

selection of advanced persistent tracking mechanisms. They

reported the usage of Indexed Database API as a storage

mechanism of tracking data, albeit in a small number of cases

(20 out of the 100 000 analysed - 0.02%). The authors

claimed to be the first to document evidence of the usage of

IndexedDB as an evercookie vector. “Evercookie” is a

technique that significantly increases the resilience of

tracking HTTP cookies [35]. The mechanism consists of a

client-side API that replicates the HTTP cookie data across

several types of client-side storage systems.

Derksen et al. [36] also discussed the usage of Web

Storage (localStorage) and Indexed Database API for

tracking. The authors analysed the behaviour of twenty

popular tracking services on a selection of about a thousand

websites. They found that localStorage was used by 15% of

the trackers analysed. Moreover, none of the websites

analysed showed the usage of Indexed Database API as a

tracking vector. The authors also studied the implementation

of data deletion. They found that the browsers they analysed

allowed the deletion of both Web Storage (localStorage) and

IndexedDB data, via the same mechanism that removes

cookies. Similarly, Bujlow et al. [37], seem to imply that the

content of data stored using these techniques is automatically

emptied when the cookies are cleared. However, as this work

uncovers currently in some popular browsers, data deletion

requires either an extra step by the user in order to include

HTML5-related client-side storage techniques or does not

happen at all.

Another known practice used by trackers is cookie

matching (or cookie syncing). This technique is used in real-

time advertising bidding, allowing trackers to associate

different tracking profiles that relate to the same user. Olejnik

et al. [38] quantified both the frequency and the breadth of

data leakage related to cookie matching. They analysed a

sample of 100 user profiles and found that 91 of them were

subject to cookie matching, showing instances of trackers

leaking 27% of a user’s browsing history. Moreover, they

showed that the market value of parts of a users’ browsing

history can be as low as a fraction of a US dollar cent.

Englehardt [39] also discussed cookie-syncing, warning

that it can allow the sharing of personal data between

different tracking servers, without the user’s direct consent.

Cookie syncing can also further enhance the impact of cookie

respawning. In fact, while most major trackers do not use

mechanisms such as the aforementioned evercookie, they

might share user information with trackers that do use

techniques of cookie resurrection.

B.Preventive measures against user tracking

The ‘Do Not Track’ header was proposed by [40] as a

measure against undesired user tracking. Compliant tracking

agents are expected to refrain from identifying users and

perform their usual activities according to the preference

expressed by the user through the header. This proposal was

extremely impactful and most major browser implemented

the Do Not Track (DNT) header by the following year.

Moreover, in 2015, the W3C started the work of formalising

this feature into a web standard called Tracking Preference

Expression (DNT) [41].

However, according to Roesner et al. in [31], the ‘Do Not

Track’ header does not seem to have any visible effect in

preventing tracking, as it is a policy that relies on the

goodwill of the tracker. Moreover, it appears that many of the

parties involved with user tracking argue that their behaviour

should not be considered tracking as it is defined by the DNT

specification, and consequentially refuse to implement it.

Furthermore, the authors pointed out that neither blocking

third-party cookies is an effective method as some browsers

only block the writing operation of a cookie, but not the

reading. Therefore, the tracker would still be able to read the

value of a cookie that has been set on a previous visit to

social media sites or by advertising popups. Finally, the

authors mentioned that private browsing mode is not an

effective anti-tracking method because it is primarily

designed to protect users from attackers with physical access

to the machine and not necessarily from remote user

tracking. As a method of protecting users’ privacy, the

authors propose ShareMeNot, a browser extension that limits

third-party tracking code that belongs to social media sites,

while making sure that actual functionality visible to the user

remains unaffected. In practice, the extension allows tracking

requests to be sent only when the user clicks on an embedded

social media button (such as Facebook's “Like”). The

solution proposed by the authors has been subsequently

incorporated into another privacy tool named “Privacy

Badger”, a browser extension that uses algorithmic methods

to decide which resource is tracking the user and verifies

whether scripts that belong to a given domain collect unique

identifiers even after sending a “Do Not Track” message. In

this case, it automatically disallows content from that third-

party tracker [42].

In [43] Mayer studied a series of technologies developed to

protect users from third-party trackers. The author found that

community-maintained blacklists are the most effective way

to prevent undesired user tracking. Those lists mainly consist

of URLs or domains and are generally used in conjunction

with browser extensions, such as AdBlock Plus [44]. The

author also claimed that tracking is often inextricably tangled

with third-party advertising, therefore often blocking trackers

also entails blocking code that provides advertisements.

Mylonas et al. [45] analysed the security controls of

several mobile and desktop browsers. According to their

results, desktop browsers generally provide better protection,

as the controls available on them perform better than those

available on their mobile counterparts. For example, users of

the mobile browsers do not have the option to opt-out of

third-party cookies and in many cases the interface that

allows the user to control security features can be confusing.

Finally, the authors found a number of security issues on two

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

major mobile browsers and also pointed out that in most of

the mobile browsers the ‘Do Not Track’ header is

unavailable.

Virvilis et al. [46] compared the different protection

measures against rogue sites offered by desktop and mobile

browsers. According to their results mobile browsers often

offer a lower level of protection compared to their desktop-

based counterparts and in some cases they offer no protection

at all. Furthermore, the authors introduced Secure Proxy, a

new browser-independent countermeasure that overcomes

the technical limitations related to each specific browser

without the need of browser extensions. Secure Proxy

consists of a HTTP forward proxy that operates at network

level to filter content before it reaches the user’s device. The

filtering mechanism is delegated to a third-party service that

assesses the reliability of the content providers, based on the

aggregation of multiple blacklists and Antivirus engines.

Building from the previous work, Nisioti et al. [47] revisit

the anti-phishing mechanisms available for users of mobile

browsers of three popular operating systems. The study

revealed that the protection provided by pre-installed web

browsers is still very poor and in most cases non-existent.

The only browsers that offer an adequate level of protection

are Firefox and Chrome on Android. Moreover, in iOS,

neither the default browser nor any of the third-party

browsers offer any protection against phishing attacks. In this

context, the authors proposed TRAWL (TRAnsparent Web

protection for alL), an extension of ‘Secure Proxy’. Similarly

to ‘Secure Proxy’, TRAWL is implemented outside the

users’ device in order to avoid resource consumption and to

offer cross platform compatibility. The tool provides DNS

and URL filtering based on a collection of curated blacklists,

but instead of delegating the filtering to a third-party service

it performs it locally. In this way, the user’s privacy is

preserved and any third party limitations are overcome.

Similarly, Kontaxis and Chew [48] present a new anti-

tracking mechanism of Mozilla Firefox, called Tracking

Protection. The mechanism is similar to ad-blocking browser

extensions such as AdBlock Plus. It analyses all outgoing

HTTP requests and matches them against a blacklist, which

is based on a curated list of tracking origins. The authors

evaluated their approach against 200 popular news sites and

according to the results there was a 67.5% reduction in the

number of HTTP cookies. Moreover, this approach resulted

on a 44% median reduction in page load time and 39%

reduction in data usage for the testes sites.

VI. CONCLUSION

Online tracking is an everyday practice and, when it is

performed against the user’s will it is a major privacy

violation. While older client-side storage technologies such

as cookies have been studied extensively as tracking vectors,

newer technologies, i.e., Web Storage, Indexed Database API

and Web SQL Database, have not received the same level of

attention. In this paper, we measure the frequency of use of

these technologies on a HTTP Archive dataset, which

constitutes a representative sample of the World Wide Web,

and examine the extent to which they are used for tracking

purposes. As shown by the results, currently there is a large

fraction of websites that utilize the three primitives, with

Web Storage being the most used. However, the most

alarming result is the frequency in which these APIs seem to

used by trackers, which for all three technologies seems to be

higher than 30% and in particular almost 70% for Web

Storage. Finally, we examined whether the current popular

web browsers for desktops and mobile devices can protect

their users from privacy violations that use the

aforementioned three technologies as the tracking vector.

Our results suggest that in many cases the relevant security

controls (i.e., data clearing and private mode) are ineffective

in deleting the relevant data and ensuring isolation of the data

when used in private sessions. The bugs that were identified

in this work have been reported to the relevant browser

vendors as indicated in section 4.B.

APPENDIX A: MATCHING RULES USED IN STATIC
ANALYSIS

The Web Storage API provides two storage mechanisms, one

for handling data within a current session (sessionStorage)

and another one that lasts beyond the current session

(localStorage). In this work, only the constructs used by

localStorage were considered, as content stored using

sessionStorage expires at the end of a browsing session.

TABLE VIII shows the constructs needed in order to read or

write data using localStorage.

TABLE VIII

CONSTRUCTS USED BY WEB STORAGE (LOCALSTORAGE)

Web Storage

constructs
Usage

localStorage Property of the ‘window’ object that needs to be used to
access the Storage assigned to each origin

setItem Method that adds a new item to the storage magnetic

induction
getItem Method that retrieves item to the storage

 The same process was followed for the Indexed Database

API. The constructs mentioned in TABLE IX are part of the

steps necessary to create a local database containing an

object store and to access the store to either read or write

data.
TABLE IX

CONSTRUCTS USED BY INDEXED DATABASE API

IndexedDB

API constructs
Usage

indexedDB Attribute of the ‘window’ object that provides
applications a mechanism for accessing IndexedDB (of

type ‘IDBFactory’)
transaction Method needed to access the object store

objectStore Method that returns an object store in the scope of the

transaction

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

Similarly, TABLE X shows the constructs necessary to

read and write data using the now deprecated Web SQL

Database API.

TABLE X

CONSTRUCTS USED BY WEB SQL DATABASE

Web SQL
Database

constructs

Usage

openDatabase Method that opens a Web SQL database, or creates a
new one if none is found

transaction Method to access the database

executeSql Method that defines the SQL command to perform in a
given transaction

APPENDIX B: FULL RESULTS OF SECTION IV

Tables XI and XII provide all the results from the experiments that were described, summarised and discussed in Section IV.

TABLE XI

API SUPPORT AND DATA DELETION RESULTS IN THE EXAMINED MOBILE BROWSERS

OS Browser Mode API support Data deletion

localStorage IndexedDB Web

SQL

localStorage IndexedDB Web SQL

iOS
10.2.1

Safari

default supported Supported supported data deleted data persists

after clearing

local data

data deleted

private disabled Supported disabled N/A data deleted N/A

Chrome 62.0

default supported Supported supported data deleted data persists

after clearing

local data

data deleted

incognito disabled Supported disabled N/A data deleted N/A

Firefox 10.2

default supported Supported supported data deleted data deleted data deleted

private disabled Supported disabled N/A data deleted N/A

Opera 16

default supported supported supported data deleted data deleted data deleted

private supported supported supported data persists

after closing

private session

data deleted data deleted

Mini not

supported

not supported not

supported

N/A N/A N/A

iOS
11.1.2

Safari

default supported supported supported data deleted data deleted data deleted

private disabled disabled disabled N/A N/A N/A

Firefox 10.3

default supported supported supported data deleted data deleted data deleted

private disabled disabled disabled N/A N/A N/A

Chrome 62.0

default supported supported supported data deleted data deleted data deleted

private disabled disabled disabled N/A N/A N/A

Opera 16

default supported supported supported data deleted data deleted data deleted

private supported supported supported data persists

after closing

private session

data deleted data deleted

Mini not
supported

not supported not
supported

N/A N/A N/A

Windows
Phone

8.10 by

HTC

Internet

Explorer

default supported supported not

supported

data deleted needs extra

step: "advanced

settings" >

"manage

storage"

N/A

Android

6.0
Firefox 60.0.1

default supported supported not
supported

data deleted data persists

after clearing

local data

N/A

private supported not supported not

supported

data deleted N/A N/A

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

Firefox 57

default supported supported not
supported

data deleted data persists

after clearing

local data

N/A

private supported not supported not

supported

data deleted N/A N/A

Firefox Focus

2.4

default supported supported not

supported

data deleted data deleted N/A

Chrome 66.0

default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Chrome 62.0
default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Opera 46.0

default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Opera 43.0

default supported supported supported data deleted data deleted data deleted

private supported supported supported data deleted data persists

after closing

private session

data persists after

closing private

session

Opera Mini

31.0

default not

supported

not supported not

supported

N/A N/A N/A

Microsoft

Edge Preview

1.0.0

default supported supported supported data deleted data deleted data deleted

inPrivate supported supported supported data deleted data deleted data deleted

MiuiBrowser

9.1.3

default supported supported not
supported

data persists

after clearing

local data

data persists

after clearing

local data

N/A

incognito supported carries over

values from

non incognito

version

not

supported
data persists

after closing

private session

data persists

after closing

private session

N/A

Edge 1.0

default supported supported supported data deleted data deleted data deleted

inPrivate supported supported supported data deleted data deleted data deleted

Android

7.0

Firefox 57
default supported supported not

supported
data deleted data persists

after clearing

local data

N/A

Opera 43.0
private supported supported supported data deleted data persists

after closing

private session

data persists after

closing private

session

Android

7.1

Chrome 65.0

default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Firefox Focus
5

default supported supported not
supported

data deleted data deleted N/A

Opera 42.7

default supported supported supported data deleted data deleted data deleted

private supported supported supported data deleted data persists

after closing

private session

data persists after

closing private

session

Firefox 54.0

default supported supported not
supported

data deleted data persists

after clearing

local data

N/A

private supported not supported not

supported

data deleted N/A N/A

Android

8.0

Chrome

66.0.3

default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Firefox Focus

5

default supported supported not

supported

data deleted data deleted N/A

Opera 46.3

default supported supported supported data deleted data deleted data deleted

private supported supported supported data deleted data persists

after closing

private session

data persists after

closing private

session

Firefox 60.0.1
default supported supported not

supported

data deleted data persists

after clearing

N/A

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

local data

private supported not supported not

supported

data deleted N/A N/A

TABLE XII

API SUPPORT AND DATA DELETION RESULTS IN THE EXAMINED DESKTOP BROWSERS

OS Browser Mode API support Data deletion

localStorage IndexedDB Web

SQL

localStorage IndexedDB Web SQL

Mac OS

10.12.5

Firefox 57.0
(quantum)

default supported supported not

supported

data deleted data deleted only

if 'Offline

website data' is

explicitly

selected by the

user

N/A

private supported disabled not
supported

data deleted N/A N/A

Firefox 56.0

default supported supported not

supported

data deleted data deleted only

if 'Offline

website data' is

explicitly

selected by the

user

N/A

private supported disabled not

supported

data deleted N/A N/A

Mac OS

10.10.5

Chrome 62

guest supported supported supported data deleted only

after quitting

chrome

data deleted only

after quitting

chrome

data deleted only

after quitting chrome

default supported supported supported data deleted data deleted data deleted

incognito supported supported supported data deleted data deleted data deleted

Opera 49

default supported supported supported data deleted data deleted data deleted

private supported supported supported data deleted data deleted data deleted

Safari 10.1.1

default supported supported supported data deleted data deleted data deleted

private disabled supported disabled N/A data deleted N/A

Windows

10

Edge 40

default supported supported not

supported

data deleted data deleted N/A

inPrivate supported disabled not

supported

data deleted N/A N/A

Chrome 62

default supported supported supported data deleted data deleted data deleted

guest supported supported supported data deleted only

after quitting

chrome

data deleted only

after quitting

chrome

data deleted only

after quitting chrome

incognito supported supported supported data deleted data deleted data deleted

Firefox 56

default supported supported not

supported

data deleted data deleted only

if 'Offline

website data' is

explicitly

selected by the

user

N/A

private supported disabled not
supported

data deleted N/A N/A

Opera 49

default supported supported supported data deleted data deleted data deleted

private supported supported supported data deleted data deleted data deleted

Windows
XP

Internet

Explorer 11

default supported supported not

supported

data deleted data deleted N/A

Chrome 62 default supported supported supported data deleted data deleted data deleted

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

incognito supported supported supported data deleted data deleted data deleted

Firefox 47

default supported supported not

supported
data deleted only

if 'Offline website

data' is explicitly

selected by the

user

data deleted only

if 'Offline

website data' is

explicitly

selected by the

user

N/A

REFERENCES
[1] https://www.statista.com/statistics/266835/sharing-content-among-

us-internet-users/
[2] Castelluccia, C., & Narayanan, A. (2012). Privacy considerations of

online behavioural tracking. European Network and Information

Security Agency (ENISA).
[3] Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J.,

Narayanan, A., & Felten, E. W. (2015, May). Cookies that give you

away: The surveillance implications of web tracking. In Proceedings
of the 24th International Conference on World Wide Web (pp. 289-

299). International World Wide Web Conferences Steering

Committee.
[4] Bujlow, T., Carela-Español, V., Solé-Pareta, J. Barlet-Ros, P., 2015.

Web tracking: Mechanisms, implications, and defences. arXiv

preprint arXiv:1507.07872. Vancouver
https://arxiv.org/pdf/1507.07872.pdf

[5] Barth, A., 2011b. The web origin concept, 2011. IETF RFC6454.

https://tools.ietf.org/html/rfc6454
[6] Shepherd, E., 2017, Same-origin policy in MDN Web Docs

https://developer.mozilla.org/en-US/docs/Web/Security/Same-

origin_policy
[7] Kristol, D.M., 2001. HTTP Cookies: Standards, privacy, and politics.

ACM Transactions on Internet Technology (TOIT), 1(2), pp.151-

198.
[8] Manico, J., 2009, Real world cookie length limits, in Manicode,

http://manicode.blogspot.hk/2009/08/real-world-cookie-length-

limits.html
[9] Roberts, I., 2013 Browser Cookie Limits ,

http://browsercookielimits.squawky.net/

[10] Adobe Systems, 2012, What are local shared objects? in Security and
privacy,

http://web.archive.org/web/20121230094342/http://www.adobe.com/

security/flashplayer/articles/lso/
[11] Oracle, 2017, Java Documentation, http://docs.oracle.com/en/java/

[12] Microsoft, 2017, What is Silverlight?

https://www.microsoft.com/silverlight/what-is-silverlight/default
[13] Web Hypertext Application Technology Working Group, 2017, Web

storage in HTML Living Standard.

https://html.spec.whatwg.org/multipage/webstorage.html
[14] European Commission, Cookies European Commission,

http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm

[15] Hickson, I. (2010). Web sql database. W3C, Editor’s Draft.
[16] Mehta, N. R., 2009, WebSimpleDB, A.P.I., in W3C Working Draft.

https://www.w3.org/TR/2009/WD-WebSimpleDB-20090929/
[17] Owens, M., 2006. Introducing SQLite. The Definitive Guide to

SQLite, pp.1-16.

[18] Chromium Blog, 2010, More resources for developers,

https://blog.chromium.org/2010/01/more-resources-for-

developers.html

[19] https://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-
the-road-to-indexeddb/

[20] Alabbas, A., Bell J., 2017, Indexed Database API 2.0, W3C

Proposed Recommendation, 16 November 2017,
https://www.w3.org/TR/IndexedDB-2/

[21] Sounders, S., 2011, Announcing the HTTP Archive, High

performance web sites blog,
https://www.stevesouders.com/blog/2011/03/30/announcing-the-

http-archive/

[22] Alexa Internet, Inc., 2017, Alexa Top 1,000,000 Sites, [online

database] http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

[23] Grigorik, I., 2013, HTTP Archive + BigQuery = Web Performance
Answers, in author’s blog, https://www.igvita.com/2013/06/20/http-

archive-bigquery-web-performance-answers/

[24] Google Cloud Platform, 2017, SQL Reference
https://cloud.google.com/bigquery/docs/reference/standard-sql/

[25] International Organization for Standardization IEC JTC 1/SC 32,

2011, ISO/IEC 9075-11:201, Information technology -- Database
languages -- SQL -- Part 11: Information and Definition Schemas,

(SQL/Schemata). https://www.iso.org/standard/53685.html

[26] Quidsup, 2017, NoTrack, https://github.com/quidsup/notrack
[27] Ateş, F., 2017, What is Modernizr?,

https://modernizr.com/docs/#what-is-modernizr

[28] Rob van der Meulen, Christy Pettey, “Gartner Survey Highlights Top
Five Daily Activities on Media Tablets,” 2012. [Online]. Available:

https://www.gartner.com/newsroom/id/2070515.

[29] Krishnamurthy, B. and Wills, C., 2009. Privacy diffusion on the web:
a longitudinal perspective. In Proceedings of the 18th international

conference on World wide web (pp. 541-550). ACM.

[30] Gonzalez, R., Jiang, L., Ahmed, M., Marciel, M., Cuevas, R.,
Metwalley, H. and Niccolini, S., 2017, June. The cookie recipe:

Untangling the use of cookies in the wild. In Network Traffic

Measurement and Analysis Conference (TMA), 2017 (pp. 1-9).
IEEE.

[31] Soltani, A., Canty, S., Mayo, Q., Thomas, L. and Hoofnagle, C.J.,

2010, March. Flash Cookies and Privacy. In AAAI spring
symposium: intelligent information privacy management (Vol. 2010,

pp. 158-163).

[32] Ayenson, M.D., Wambach, D.J., Soltani, A., Good, N. and
Hoofnagle, C.J., 2011. Flash cookies and privacy II: Now with

HTML5 and ETag respawning.

https://www.truststc.org/education/reu/11/Posters/AyensonMWamba
chDpaper.pdf

[33] Roesner, F., Kohno, T. and Wetherall, D., 2012, April. Detecting and
defending against third-party tracking on the web. In Proceedings of

the 9th USENIX conference on Networked Systems Design and

Implementation (pp. 12-12). USENIX Association.

[34] Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A. and

Diaz, C., 2014, November. The web never forgets: Persistent

tracking mechanisms in the wild. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (pp.

674-689). ACM.

[35] Kamkar, S., 2010. Evercookie. URL: http://samy.pl/evercookie
[36] Derksen, I., Poll, I.E., van den Broek, F., 2016. HTML5 Tracking

Techniques in Practice.

http://www.cs.ru.nl/bachelorscripties/2016/Ivar_Derksen___4375408
___HTML5_Tracking_Techniques_in_Practice.pdf

[37] Bujlow, T., Carela-Español, V., Solé-Pareta, J. Barlet-Ros, P., 2015.

Web tracking: Mechanisms, implications, and defences. arXiv
preprint arXiv:1507.07872. Vancouver

https://arxiv.org/pdf/1507.07872.pdf

[38] Olejnik, L., Minh-Dung, T. and Castelluccia, C., 2013. Selling off
privacy at auction. <hal-00915249> https://hal.inria.fr/hal-00915249

[39] Englehardt, S., 2014. The hidden perils of cookie syncing. Freedom

to Tinker. https://freedom-to-tinker.com/2014/08/07/the-hidden-
perils-of-cookie-syncing/

[40] Soghoian, C., 2011. The history of the do not track header. Slight

Paranoia. http://paranoia.dubfire.net/2011/01/history-of-donot-track-
header.html Accessed January 2018.

[41] Fielding R., and Singer D., 2017, Tracking Preference Expression

(DNT) https://www.w3.org/TR/tracking-dnt/
[42] Privacy Badger, 2017, https://www.eff.org/privacybadger

https://www.statista.com/statistics/266835/sharing-content-among-us-internet-users/
https://www.statista.com/statistics/266835/sharing-content-among-us-internet-users/
https://tools.ietf.org/html/rfc6454
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://manicode.blogspot.hk/2009/08/real-world-cookie-length-limits.html
http://manicode.blogspot.hk/2009/08/real-world-cookie-length-limits.html
http://browsercookielimits.squawky.net/
http://web.archive.org/web/20121230094342/http:/www.adobe.com/security/flashplayer/articles/lso/
http://web.archive.org/web/20121230094342/http:/www.adobe.com/security/flashplayer/articles/lso/
http://docs.oracle.com/en/java/
https://www.microsoft.com/silverlight/what-is-silverlight/default
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.w3.org/TR/2009/WD-WebSimpleDB-20090929/
https://blog.chromium.org/2010/01/more-resources-for-developers.html
https://blog.chromium.org/2010/01/more-resources-for-developers.html
https://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
https://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
https://www.w3.org/TR/IndexedDB-2/
https://www.stevesouders.com/blog/2011/03/30/announcing-the-http-archive/
https://www.stevesouders.com/blog/2011/03/30/announcing-the-http-archive/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.igvita.com/2013/06/20/http-archive-bigquery-web-performance-answers/
https://www.igvita.com/2013/06/20/http-archive-bigquery-web-performance-answers/
https://cloud.google.com/bigquery/docs/reference/standard-sql/
https://www.iso.org/standard/53685.html
https://github.com/quidsup/notrack
https://modernizr.com/docs/#what-is-modernizr
https://www.truststc.org/education/reu/11/Posters/AyensonMWambachDpaper.pdf
https://www.truststc.org/education/reu/11/Posters/AyensonMWambachDpaper.pdf
http://samy.pl/evercookie
http://www.cs.ru.nl/bachelorscripties/2016/Ivar_Derksen___4375408___HTML5_Tracking_Techniques_in_Practice.pdf
http://www.cs.ru.nl/bachelorscripties/2016/Ivar_Derksen___4375408___HTML5_Tracking_Techniques_in_Practice.pdf
https://arxiv.org/pdf/1507.07872.pdf
https://hal.inria.fr/hal-00915249
https://freedom-to-tinker.com/2014/08/07/the-hidden-perils-of-cookie-syncing/
https://freedom-to-tinker.com/2014/08/07/the-hidden-perils-of-cookie-syncing/
https://www.eff.org/privacybadger

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2869251, IEEE Access

VOLUME XX, 2017 9

[43] Mayer, J., 2011. Tracking the trackers: Self-help tools. The Center
for Internet & Society.

http://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-

help-tools
[44] eyeo GmbH, 2017, Getting started with Adblock Plus,

https://adblockplus.org/getting_started#general

[45] Mylonas, A., Tsalis, N. and Gritzalis, D., 2013, September.
Evaluating the manageability of web browsers controls. In

International Workshop on Security and Trust Management (pp. 82-

98). Springer, Berlin, Heidelberg.
[46] Virvilis, N., Mylonas, A., Tsalis, N. and Gritzalis, D., 2015. Security

Busters: Web browser security vs. rogue sites. Computers &

Security, 52, pp.90-105.
[47] Nisioti, A., Heydari, M., Mylonas, A., Katos, V. and Tafreshi,

V.H.F., 2017, May. TRAWL: Protection against rogue sites for the

masses. In Research Challenges in Information Science (RCIS), 2017

11th International Conference on (pp. 120-127). IEEE.

[48] Kontaxis, G. and Chew, M., 2015. Tracking protection in Firefox for

privacy and performance. arXiv preprint arXiv:1506.04104.
https://arxiv.org/pdf/1506.04104

http://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
http://cyberlaw.stanford.edu/blog/2011/09/tracking-trackers-self-help-tools
https://adblockplus.org/getting_started#general
https://arxiv.org/pdf/1506.04104

