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Archival Report

Circadian Disruptions in the Myshkin Mouse
Model of Mania Are Independent of Deficits in
Suprachiasmatic Molecular Clock Function

Joseph W.S. Timothy, Natasza Klas, Harshmeena R. Sanghani, Taghreed Al-Mansouri,
Alun T.L. Hughes, Greer S. Kirshenbaum, Vincent Brienza, Mino D.C. Belle, Martin R. Ralph,
Steven J. Clapcote, and Hugh D. Piggins

ABSTRACT

BACKGROUND: Alterations in environmental light and intrinsic circadian function have strong associations with

mood disorders. The neural origins underpinning these changes remain unclear, although genetic deficits in the

molecular clock regularly render mice with altered mood-associated phenotypes.

METHODS: A detailed circadian and light-associated behavioral characterization of the Na1/K1-ATPase a3 Myshkin

(Myk/1) mouse model of mania was performed. Na1/K1-ATPase a3 does not reside within the core circadian

molecular clockwork, but Myk/1 mice exhibit concomitant disruption in circadian rhythms and mood. The neural

basis of this phenotype was investigated through molecular and electrophysiological dissection of the master

circadian pacemaker, the suprachiasmatic nuclei (SCN). Light input and glutamatergic signaling to the SCN were

concomitantly assessed through behavioral assays and calcium imaging.

RESULTS: In vivo assays revealed several circadian abnormalities including lengthened period and instability of

behavioral rhythms, and elevated metabolic rate. Grossly aberrant responses to light included accentuated resetting,

accelerated re-entrainment, and an absence of locomotor suppression. Bioluminescent recording of circadian clock

protein (PERIOD2) output from ex vivo SCN revealed no deficits inMyk/1molecular clock function. Optic nerve crush

rescued the circadian period of Myk/1 behavior, highlighting that afferent inputs are critical upstream mediators.

Electrophysiological and calcium imaging SCN recordings demonstrated changes in the response to glutamatergic

stimulation as well as the electrical output indicative of altered retinal input processing.

CONCLUSIONS: The Myshkin model demonstrates profound circadian and light-responsive behavioral alterations

independent of molecular clock disruption. Afferent light signaling drives behavioral changes and raises new

mechanistic implications for circadian disruption in affective disorders.
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Bipolar disorder (BPD) is a debilitating mental health condition

that affects approximately 0.7% to 0.9% of the population of

Western societies (1). BPD is characterized by episodes of

depression, euthymia, and mania, but its etiology and neural

substrates remain poorly understood (2). Disruption of sleep

and circadian rhythms is prevalent in many mental health

diseases, including BPD, and as such, underlying circadian

systems are implicated within BPD pathophysiology (3).

Indeed, treatment of circadian rhythm abnormalities can alle-

viate symptoms of affective disorders (4,5), while circadian

clock gene polymorphisms represent risk factors across

neuropsychiatric conditions (6). Therefore, studying the circa-

dian system may provide insight into the mechanisms and root

causes of BPD.

Coordinated circadian rhythms in mammals, including

humans, originate from the master circadian clock located in

the hypothalamic suprachiasmatic nuclei (SCN) (7). SCN

neurons contain an intracellular gene–protein transcription–

translation feedback loop (TTFL) that is the molecular basis

of circadian timekeeping, and the Period1/2 (Per1/2) genes and

their protein products PERIOD1/2 (PER1/2) are key compo-

nents of this intracellular molecular clock (8). The TTFL drives

the SCN neural network to exhibit electrically excited states

during the day and relatively quiescent states at night (9). Such

variation is key for individual SCN neurons to coordinate their

internal clocks, as well as for the SCN to signal and exert

temporal control on behavior and physiology (10). Consistent

alignment of these central circadian rhythms to the external

environmental light/dark (LD) cycle is important for health and

well-being (11). Light information signaled directly from intrin-

sically photosensitive retinal ganglion cells to the SCN is crit-

ical in this process (12). This non–image-forming light input

pathway, the retinohypothalamic tract, uses the excitatory

neurotransmitter glutamate to activate SCN neurons, resetting
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the phase of the TTFL and ultimately the timing of behavioral

and brain states such as sleeping and waking (13,14). Further,

both SCN-dependent and SCN-independent actions of light

exert a powerful influence on mood pathology (15).

Intriguingly, in mice, targeted disruption of core TTFL

components alters circadian rhythms and consistently elevates

the expression of aberrant behaviors resembling those of

human affective disorders (16,17). However, because circadian

clock genes are also expressed in mood-regulating brain

centers (18,19), it is challenging to ascribe behavioral deficits

directly to specific brain loci (20). Further, in human BPD, it is

unclear whether sleep and circadian disruption arise as etio-

logical drivers or as a consequence of wider pathophysiology.

To gain insight into these problems, we used the Myshkin

(Myk/1) mouse, which possesses a heterozygous inactivating

mutation in the neuron-specific Na1/K1-ATPase (NKA) a3

subunit, encoded by Atp1a3, and models the manic phase of

BPD with face, construct, and predictive validity (20,21).

Importantly, this mouse has no known TTFL deficit. We report

that Myk/1 animals exhibit behavioral circadian rhythm

disruption as well as unusually heightened behavioral

responses to light and enhanced activation of SCN neurons

in vitro to a neurochemical mimic of light input. Intriguingly, we

also found that the Myk/1 SCN TTFL rhythms are intact, while

the electrophysiological output of the Myk/1 SCN neural

network was damped. Critically, we show that period-

lengthening effects on behavior of the Myshkin mutation are

ameliorated through removal of the light input pathway.

Circadian abnormalities in the Myk/1 mice arise through

alterations in light signaling and processing by the SCN. This

model provides new insights into the etiological mechanisms

of circadian disruption in animal models of affective disorders

that are independent of core circadian clock gene perturbation.

METHODS AND MATERIALS

Animal Housing and Breeding

Adult congenic Myk/1 and wild-type (1/1) animals (2–6

months of age) used in this study were bred from pairs (male

Myk/1 3 female 1/1) of animals that had been backcrossed

on to the C57BL/6NCr strain for 20 generations (20). Pilot

investigations revealed no obvious sex differences in behav-

ioral measures in either genotype, so the data from male and

female mice were combined (see also Supplemental Figure S1).

To generate mice in which the dynamic activities of the mo-

lecular clock can be monitored in tissues ex vivo, Myk/1 mice

were crossed with mPer2Luc mice bearing a knock-in PER2-

luciferase (LUC) construct (referred to here as PER2::LUC

mice) (22). Congenic1/13 PER2::LUC (1/1PER2) andMyk/1

PER2::LUC animals were generated through crosses of het-

erozygous male Myk/1 and female PER2::LUC animals. All

behavioral and in vitro studies of mice on the PER2::LUC

background were performed on filial 1 generation animals. See

Supplemental Methods for further details.

For assessment of daily rhythms in locomotor activity (with

or without a running wheel), ingestive behavior (feeding and

drinking), and metabolic activity, animals were housed singly

as previously described (23,24). Most studies were conducted

under 12-hour LD conditions; however, in some instances

animals were assessed under a day-length (16-hour light/

8-hour dark cycle) condition or in constant dark (DD) or con-

stant light (LL). These in vivo investigations were conducted

using previously established protocols (23,25); see the

Supplement for study-specific details.

For in vitro assessments of electrophysiological activity,

calcium transients, and bioluminescence rhythms in PER2::

LUC, SCN-containing brain slices were made from adult mice

using previously published protocols (26). Whole-cell current-

clamp recordings and assessment of calcium transients were

performed as previously described (9,26). Rhythms in whole

SCN slice PER2::LUC expression were assessed using lumin-

ometry, while single cells in SCN slices were visualized and

imaged using a Hamamatsu Image EM9100-13 electron-multi-

plying-CCD (Hamamatsu, Welwyn Garden City, UK) (27,28).

Data Analysis and Statistics

Unless stated otherwise, genotype comparisons were made

using two-tailed Student t test or by two-way analysis of

variance with Sidak post hoc comparisons. For within-

genotype comparisons, a one-way analysis of variance was

applied with Sidak corrections unless otherwise stated.

Nonparametric equivalents and corrections for unequal vari-

ances were utilized where appropriate and are detailed in figure

captions. The threshold for statistical significance was set at

p , .05. See the Supplement for further details.

RESULTS

Circadian mechanisms as well as visual and non–image-

forming light pathways influence normal and pathophysiolog-

ical states including metabolism and mood behaviors (15). As

such, we sought to determine if and how murine daily and

circadian rhythms are influenced by the Myshkin mutation.

When singly housed under standard 12-hour LD conditions,

the mania phenotype of Myk/1 mice was characterized by an

inability to restrict the normal nocturnally elevated wheel-

running activity to the dark phase. Instead, Myk/1 animals

sustained vigorous activity into the first 3 to 4 hours of the

lights-on phase (Figure 1A). Consequently, in comparison with

1/1 animals, the duration of the daily active (alpha) phase was

significantly lengthened by w2.1 hours (Figure 1B), with the

percentage of wheel running occurring during the day elevated

by w6.9% (Figure 1C) in Myk/1 mice. Some Myk/1 animals

also showed unstable LD rhythms, with activity onsets variably

preceding the initiation of the dark phase (Figure 1A). The

effects did not rely on the provision of a running wheel,

because monitoring of general locomotor activity via infrared

detector indicated near-identical disruption in Myk/1 animals

(Supplemental Figure S4A–D). Similar effects of the Myshkin

mutation on wheel-running activity were observed in a sepa-

rate cohort of female mice (Supplemental Figure S1A–E).

In humans, extending daily exposure to light (.14 hours per

24 hours) associated with summer months can exacerbate the

symptoms of mania (29,30). When transferred into longer day

length (16 hours light/8 hours dark), Myk/1 mice exhibited

longer alpha, weaker rhythms, and w40% higher wheel

running in the light phase than 1/1 mice (Supplemental

Figure S2A–D). This reveals that the Myshkin mutation com-

promises behavioral consolidation and that increasing the
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duration of the lights-on phase overtly disrupts rhythmic con-

trol of behavior.

Circadian disruption andmental illness can alter body weight

regulation (31–33). Indeed, bipolar patients with mania can

exhibit elevated basal metabolic rate (34), so we subsequently

profiled metabolic activity in Myk/1 and 1/1 mice. Using indi-

rect calorimetry andmonitoring of ingestion activity for 6.5 days

under a 12-hour LD cycle,Myk/1 animals were found to exhibit

elevated basal metabolic rate, heat production, and drinking

activity (Figure 2A–C, E). The duration of their elevated meta-

bolic activity was sustained into the lights-on phase (Figure 2A,

F); ingestive behavior was increased during the lights-on phase

but was reduced over 24 hours (Figure 2D, G).

In nocturnal rodents, light exposure typically suppresses

locomotor behaviors (negative masking), but when exposed to

1-hour or 8-hour pulses of light during the night, Myk/1 mice

maintained activity or increased wheel-running behavior during

the pulses, while 1/1 animals reduced locomotor activity

(Figure 1D–F). Further, when released into an illuminated

(w1.5 mW/cm2) open-field test arena for 15 minutes during the

early night (Zeitgeber time 15–18 [ZT15–18]), hyperlocomotor

activity (as assessed by distance traversed) was marked in

Myk/1 but not in 1/1 mice (Supplemental Figure S3). There-

fore, unlike other nocturnal rodents such as the Syrian hamster

(35) as well as mice with TTFL mutations (36), Myk/1 mice do

not exhibit pronounced negative masking, an effect overtly

manifested in wheel running during the day.

Because Myk/1 mice exhibited disrupted rhythms under LD

conditions, their intrinsic circadian rhythms in wheel-running

behavior were initially assessed over 14 days in the absence

of light (DD). Consistent with a previous report (20), behavioral

rhythms ofMyk/1mice differed significantly from those of1/1

animals. Myk/1 mice displayed a lengthened period

(Figure 3A–D; w24.2 hours vs. w23.5 hours) and an unusually

elongated active phase (Figure 3E: alpha; w19.0 hours vs.

w13.1 hours), while the amplitude, or strength (percent vari-

ance as measured by chi-square periodogram), of their

behavioral rhythms was also markedly reduced (Figure 3F). In a

separate all-female cohort, Myk/1 animals also showed similar

changes in circadian rhythms of wheel running in DD

(Supplemental Figure S1A, B, F–H). These effects of the

Myshkin mutation were not dependent on the provision of a

running wheel (37,38), as similar changes in general locomotor

activity rhythms were exhibited by animals monitored with a

passive infrared system without a functioning running wheel

(Supplemental Figure S4A, B, E, F).

When assessed for an additional 14 to 21 days in DD, all

1/1 animals sustained rhythmic wheel-running activity,

whereas that of some Myk/1 mice (n = 3 of 38; 8%) weakened

and they became circadianly arrhythmic (Figure 3C). Addi-

tionally, some Myk/1 animals (but no 1/1 mice) exhibited

gradual unusual changes in free-running period (n = 8 of 38;

21%) either spontaneously or following transfer to a clean cage

(Supplemental Figure S5A–C). Because rhythm amplitude and

free-running stability are metrics for the output strength of the

circadian system, this indicates that Myk/1 animals possess

diminished and unstable central circadian regulation of

behavior and physiology.

Figure 1. The Myshkin mutation alters the

suppression of wheel-running behavior by light.

(A) Example double-plotted actograms from wild-

type (1/1) (n = 37) and Myk/1 (n = 38) mice main-

tained under 12-hour light/dark conditions. Red

boxes indicate typical region when “tails” in Myk/1

light-phase activity occur. Gray-shaded areas of

actograms delineate lights off (dark). Zeitgeber time

0 (ZT0) = lights on; ZT12 = lights off. (B) Alpha

duration under these 12-hour light/dark conditions is

elongated in Myk/1 animals (1/1: 11.95 6 0.12

hours, Myk/1: 14.07 6 0.32 hours; p , .0001).

(C) Percentage of total daily activity in the lights-on

phase is increased by the Myshkin mutation (1/1:

5.8 6 1.2%, Myk/1: 12.7 6 2.7%; p = .043).

(D) Example single-plotted actograms showing the

presence (1/1 mice) and absence (Myk/1 animals)

of negative masking responses to 1-hour or 8-hour

light pulses given during the lights-off phase.

(E) Wheel revolutions per hour exhibited during

these 1-hour or 8-hour light pulses are increased by

the Myshkin mutation (1/1: 45 6 13 revolutions/

hour21 (rev h21), Myk/1: 239 6 62 rev h21; p = .005).

(F) Locomotor activity during light pulse (running

wheel revolutions) normalized to each animal’s daily

mean is higher in Myk/1 mice (1/1: 0.13 6 0.05

relative wheel revolutions, Myk/1: 0.52 6 0.12 rela-

tive wheel revolutions; p = .002). Data are plotted as

mean 6 SEM. *p , .05; ** p , .01; ***p , .001.
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For rodents in DD, light exposure during the night shifts

subsequent onsets of activity; early night exposure (circadian

time 14–18 [CT14–18]) delays circadian rhythms, while light

given later in the night (CT20–24) advances rhythm onsets (39),

so we next sought to determine if the Myshkin mutation

affected photic resetting of the circadian system. Mice were

released from 12-hour LD conditions into DD and, after 14

days, were exposed to a 1-hour light pulse either late

(CT20–21; Figure 4A, B) or early (CT14–15; Figure 4C, D)

in their active subjective night (an Aschoff type I protocol).

The subsequent phase of the onset of their wheel-running

rhythms was then measured (23). When exposed to light

pulses at CT14, Myk/1 mice showed much larger phase

delays than 1/1 mice (w22.32 hours vs. w21.6 hours,

p = .008; Figure 4C–E). Light pulse treatment at CT20 evoked

phase delays in Myk/1 activity that were unusual, as they were

of the opposite direction to typical advances elicited at this

time in 1/1 mice (w21.3 hours vs. 10.5 hours, p # .02;

Figure 2. Altered metabolic rhythms in Myk/1 mice. (A) Smoothed traces of wild-type (1/1) mice (blue; n = 10) and Myk/1 mice (red; n = 12) maximal

oxygen consumption (Vol O2) over 6.5 days. Gray-shaded columns delineate lights off (dark). (B)Mean Vol O2 consumption is elevated in Myk/1 animals (1/1:

2.91 6 0.14 L/kg/hour, Myk/1: 3.86 6 0.13 L/kg/hour; p , .0001). (C) Mean hourly heat production is elevated in the Myk/1 mice (1/1: 0.0148 6

0.0007 kcal/g/hour, Myk/1: 0.196 6 0.0008 kcal/g/hour; p = .0003). (D) Altered ingestive behaviors in Myk/1 animals. Mean hourly food hopper visits were

reduced by the Myshkin mutation (1/1: 92.6 6 4.3 visits, Myk/1: 64.6 6 5.1 visits; p = .0005). (E) Mean hourly visits to drinking spout were increased by

the Myshkin mutation (1/1: 90.0 6 13.2 visits/hour, Myk/1: 172.6 6 31.7 visits/hour; p = .03). (F) Altered duration of daily peak (1/1: 10.37 6 0.23 hours,

Myk/1: 13 6 0.75 hours; p = .003) and nadir (1/1: 8.59 6 0.30 hours, Myk/1: 5.05 6 0.75 hours; p = .0004) in Vol O2 activity. (G) The Myshkin mutation

increases percentage of daily feeding occurring during the lights-on phase (1/1: 25.0 6 1.9%, Myk/1: 36.3 6 1.3%; p , .0001). Data in panels (C–G) are

plotted as mean 6 SEM. *p , .05, **p , .01, ***p , .001. LD, light/dark.

Figure 3. Altered free-running rhythms in Myk/1

mice. (A–C) Example double-plotted actograms of

wild-type (1/1) and Myk/1 animals released into

constant dark (indicated by gray shading) following

entrainment to 12-hour light/dark cycle. Most Myk/1

mice maintained rhythms in constant dark (B), but

exceptionally, some (C) became arrhythmic. Red

rectangles delineate timing of typical elevated wheel

running in the Myk/1 mice. (D) The Myshkin muta-

tion lengthened free-running period (1/1: 23.72 6

0.03 hours, Myk/1: 24.22 6 0.02 hours; p , .0001)

and (E) alpha duration (1/1: 13.14 6 0.26 hours,

Myk/1: 18.99 6 0.37 hours; p , .0001). (F) The

amplitude of daily wheel-running rhythms is reduced

by theMyshkinmutation (as measured by chi-square

periodogram; 1/1: 43.8 6 3.1% variance, Myk/1:

27.7 6 2.4% variance; p = .001). Data in panels

(D–F) are graphed as scatter plots with mean 6

SEM. ***p , .001.
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Figure 4A, B, E). No genotype differences were found with a

light pulse given near the subjective night-day transition (CT23;

Figure 4E). This experiment was repeated with 1-hour light

pulses given within 48 hours following release from 12-hour LD

into DD (an Aschoff type II protocol) with similarly altered

resetting patterns observed (Figure 4F–H). This indicates that

the altered phase shifts to light observed in Myk/1mice do not

emerge as a consequence of long-term adaptation to DD.

Thus, the Myshkin mutation both accentuates and alters the

temporal pattern of the resetting effects of light on murine

rhythms in behavior.

We next assessed if the Myshkin mutation influenced how

mice respond to simulated jetlag. Jetlag and other external

disruptors to normal activity rhythms are associated with the

presentation of episodes in BPD, and therefore sensitivity to

external perturbation represents an important measure (40,41).

In response to the 8-hour advance (Figure 5A–D) or delay

(Supplemental Figure S5D, E) of the LD cycle, Myk/1 mice

rapidly altered their daily pattern of wheel running within 2 to 4

days, whereas 1/1 animals took 6 to 8 days to resynchronize.

Comparable rapid resynchronization to an 8-hour advance in

the LD cycle was also observed in a separate cohort of female

Myk/1 mice (Supplemental Figure S1A, B, I, J). To directly test

if the Myshkin mutation enhances the photic resetting capa-

bilities of the neural circadian system, animals were next

subjected to a transient 7-hour advance of the LD cycle for

2 days then released into free-running DD conditions

(Figure 5E, F). Again,Myk/1mice demonstrated unusually large

advances in the new phase of their activity onsets, and on the

first day in DD these were of much greater magnitude (w8.3

hours vs. w2.2 hours) than were those shown by 1/1 animals

(Figure 5G, H). This finding indicates that mechanisms that

normally brake the circadian system to prevent extraordinarily

large resetting are dysfunctional in Myk/1 animals (42,43).

In rodents, exposure to LL suppresses wheel-running

behavior and lengthens the period of circadian rhythms (24,44),

so we next assessed how Myk/1 mice adapt to LL. Consistent

with previous research, all 81/1 animals showed a suppression

ofwheel running inLL (reducedbyw90%fromLD) andexhibited

free-running rhythms with a period ofw25 hours (Supplemental

Figure S1A, B, K). Myk/1 animals also showed longer period

rhythms in LL (w25 hours), but most (5 of 7) exhibited markedly

elevated wheel running in LL (w403% increase from LD).

Therefore, while the period-lengthening effects of LL are

observed inMyk/1 animals, some individuals sustain increased

rather than decreased locomotor activity.

The NKA a3 pump is localized to several central nervous

system structures, including retinal ganglion cells whose axons

project along the optic nerve (45,46), so we next investigated if

retinal input to the SCN contributed to the altered circadian

rhythms of Myk/1 mice. To do so, mice free running in DD

either underwent a sham surgical procedure or had their optic

nerves crushed (see the Supplement for procedural details).

Optic nerve crush in Myk/1 mice markedly shortened their

circadian period by w20.7 hours to w23.6 hours, while 1/1

animals showed no obvious change in circadian period

(Figure 6A–C). Similarly,Myk/1mice undergoing sham surgical

procedure showed no change in free-running period

(Figure 6C). This indicates that aberrant intrinsic activity of the

light input pathway to the SCN contributes to the period-

lengthening effect of the Myshkin mutation.

Glutamate is the main neurochemical of the retinal input

pathway to the SCN, and stimulation of the alpha-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)–type

Figure 4. Enhanced circadian resetting responses

to light in Myk/1 mice. (A, B) Example double-

plotted actograms showing resetting effects of a

1-hour light pulse (Aschoff type I protocol) given

under constant dark conditions to wild-type (1/1)

and Myk/1 animals (white boxes indicate light pulse)

during the late subjective night (circadian time [CT]

20). Note the opposing direction (delay) of the phase

shift in Myk/1 activity onset compared with the

advance in activity onset of the 1/1 animal. (C, D)

Example double-plotted actograms illustrating the

shifting effects of a 1-hour light pulse (Aschoff type I

protocol) given early in the subjective night (CT14) on

the free-running rhythms of 1/1 and Myk/1 ani-

mals. Myk/1 animals exhibited larger phase delays

at CT14. (E) Individual responses to 1-hour light

pulses given under Aschoff type I protocol (CT14,

1/1: 21.6 6 0.1 hours, Myk/1: 22.3 6 0.1 hours,

p = .008; CT20, 1/1: 0.5 6 0.1 hours, Myk/1: 21.3

6 0.4 hours, p = .002; CT23, 1/1: 0.6 6 0.1 hours,

Myk/1: 0.2 6 0.2 hours, p = .14). (F, G) Double-

plotted actograms showing the phase resetting re-

sponses of 1/1 and Myk/1 mice to 1-hour light

pulse given early in the subjective night (CT14)

following transfer from light/dark to constant dark

conditions (Aschoff type II protocol). Animals were

exposed to a 1-hour light pulse within 48 hours

following release into constant dark. (H) Individual

responses to 1-hour light pulses presented under Aschoff type II protocol (CT14,1/1:21.16 0.1 hours,Myk/1:21.86 0.2 hours, p = .03; CT20,1/1: 0.766

0.08 hours, Myk/1: 20.48 6 0.18 hours, p = .0001). Panels (E) and (H) are graphed as scatter plots with mean 6 SEM. *p , .05, **p , .01, ***p , .001.
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glutamate receptors excites SCN neurons, elevates intracel-

lular Ca21, and can shift the phase of behavioral rhythms

(47,48). To determine if acute responses of SCN neurons to

glutamate were altered by the Myshkin mutation, the actions of

AMPA (5–20 mM) on intracellular Ca21 were assessed in 1/1

and Myk/1 hypothalamic SCN brain slices. Neurons were

loaded with the fluorescent calcium indicator dye Fura-2-

acetoxymethyl ester to enable recording of somatic intracel-

lular Ca21 changes across populations of single SCN cells

(Supplemental Figure S6A).

During the day (ZT4–10), AMPA treatments evoked changes

in intracellular Ca21 of similar magnitude and duration in

both genotypes (Supplemental Figure S6B, C). However, with

applications made during the night (ZT14–18), AMPA elicited

increases in intracellular Ca21 that were significantly larger

in Myk/1 neurons compared with 1/1 SCN neurons

(Figure 6D, E). At this time, response magnitude was dose

dependent (5 and 10 mM), with baseline recovery from the 10-

mM application taking significantly longer in the Myk/1 SCN

neurons (Figure 6F). Such changes in AMPA responses indi-

cate that, in addition to altering retinohypothalamic tract

activity, the Myshkin mutation enhances the processing of a

neurochemical mimic of this light input pathway to the SCN.

To gain further insight into the etiology of circadian distur-

bances arising from the Myshkin mutation, we next investi-

gated the anatomy and TTFL molecular pacemaking of the

Myk/1 SCN. The SCN exhibit characteristic, spatially distinct

neuropeptide topography. Immunohistochemical staining for

major SCN neuropeptides, vasoactive intestinal polypeptide

and arginine vasopressin, showed no overt genotype differ-

ences in the pattern of expression (Supplemental Figure S7).

Molecular clock activity was then tracked through expression

Figure 5. Rapid adaptation to simulated jetlag in Myk/1 mice. (A, B) Double-plotted actograms of mice exposed to simulated jetlag protocol; here the light/

dark (LD) cycle was advanced by 8 hours. Red boxes indicate the time point at which the animals were designated as having re-entrained to the new LD cycle.

Gray-shaded areas in actograms and in panels (C) and (G) delineate lights off (dark). (C) Myk/1 mice readjust their daily onset in wheel-running activity to the

new LD phase more rapidly than do wild-type (1/1) mice. Note the large readjustment in the onset of daily wheel running observed in theMyk/1mice on day 1

following the advance in the LD cycle. (D)Myk/1mice take fewer days to re-entrain their wheel-running activity to the new LD cycle than do1/1 animals (1/1:

6.5 6 0.7 days vs. Myk/1: 3.6 6 0.6 days; p = .006). (E, F) Double-plotted example actograms of 1/1 and Myk/1 animals responding to transient jetlag. To

validate resetting of the circadian system to simulated jetlag seen in panels (A, B), mice were exposed to a 7-hour advance of the 12-hour LD cycle for 48 hours

and then released into constant dark. Myk/1 animals show a large magnitude advance in the timing of their wheel-running activity. (G) The larger readjustment

of the onset in daily wheel running ofMyk/1mice is sustained in constant dark, indicating that the circadian system of these animals has reset to a much larger

extent than 1/1 mice. (H) Mean phase shift on first 24 hours in constant dark is significantly larger in Myk/1 mice (1/1: 2.2 6 0.5 hours, Myk/1: 8.3 6 0.8

hours; p , .0001). Data in panels (C, D, G, H) plotted as mean 6 SEM. **p , .01, ***p , .001.
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of the circadian clock protein PER2 via PER2::LUC expres-

sion in SCN explants (Supplemental Figure S8). The charac-

teristics of circadian rhythms in wheel running seen in Myk/1

mice (increased circadian period and alpha) were maintained

in Myk/1PER2::LUC mice (Supplemental Figure S8A–E).

Surprisingly, in SCN explants cultured ex vivo, no overt

genotype differences were found in period or amplitude of

whole-tissue PER2::LUC expression (Figure 7A–C). Similarly,

in SCN explants imaged at single-cell resolution, neither the

period nor the damping rate of single-cell rhythms nor the

intercellular synchrony within SCN slices differed between

the genotypes (Figure 7D–F). The persistence of 1/1PER2-

like rhythms ex vivo indicates that, in isolation, the Myk/1

SCN is a stable pacemaker. Together with the findings from

the optic nerve crush experiment, this reinforces the idea

that, in vivo, afferent signals such as those coming from the

eye act to diminish the Myk/1 SCN’s control of physiology

and behavior.

Neurons of the SCN control behavior and physiology in part

by varying their spontaneous firing rate (SFR), with higher

frequency discharge during the day than at night (49). Because

neurophysiological studies suggest that the NKA pump in-

fluences SCN neurons (50), and because NKA a3 subunits

affect membrane excitability (51,52), we next made whole-cell

electrophysiological recordings and assessed the electrical

activity of 1/1 and Myk/1 SCN neurons maintained in brain

slices. SCN neurons exhibit distinct electrophysiological states

(9,53) and these were evident in both 1/1 and Myk/1 SCN

recordings, but no genotype differences were detected in most

passive properties of these neurons (Supplemental Table S1).

However, comparison of the SFR of Myk/1 and 1/1 SCN

neurons based on the time of recording indicated clear

genotype-related differences. Unexpectedly, the mean SFR of

Myk/1 SCN neurons did not differ from day to night re-

cordings, whereas 1/1 SCN neurons had significantly higher

SFR during the day as compared with the night (Figure 7G).

Day/night variation in SFR is a key characteristic of the SCN

network both in vitro and in vivo, and because the TTFL

appears to be intact in the Myk/1 SCN, this damping in Myk/1

SCN neuronal activity most likely arises from exposure to

altered photic afferent signals.

DISCUSSION

Here we have demonstrated that, in addition to increases in

the period and active phase duration of circadian rhythms in

behavior, the Myk/1 mouse exhibits instability in behavioral

rhythms and unusually heightened circadian resetting/

re-entrainment responses to light. Other mouse models

expressing mania-like states, including ClockD19, Reverba–/–,

and DAT–/– mice, also show heightened phase-shifting re-

sponses to light (54–56). Interestingly, in patients with mania,

locomotor rhythms may also weaken with increasing severity

of manic symptoms (57), and sensitivity to both white and blue

light is heightened during manic episodes (58–60). Similar to

bipolar patients (61,62), Myk/1 mice exhibit both altered sleep

patterns (20) and circadian rhythm disturbance as well as

elevated metabolic activity (34). Notably, the nocturnally

elevated metabolic rate and locomotor activity of Myk/1 mice

were not suppressed by light, indicating the absence of

negative masking. Consistent with this, Myk/1 mice did not

behaviorally adjust to a long day length, and in LL they

increased wheel running, whereas1/1mice markedly reduced

it. Indeed, even in the absence of light, alterations in retinal

afferents were sufficient to drive circadian behavioral disrup-

tion, because removal of afferent photic input to the SCN

in vivo restored the circadian period of behavioral rhythms.

Further, when cultured in vitro and assessed in isolation from

retinal inputs,Myk/1 single-cell PER2 rhythms and whole-SCN

explants behaved as stable pacemakers, comparable to 1/1

SCN tissue. This indicates that the SCN molecular clock is

largely intact in this mouse model of mania, a finding

Figure 6. Altered retinal signals and excitatory

processing within the suprachiasmatic nuclei (SCN)

underlie Myk/1 circadian behavioral phenotypes. (A,

B) Double-plotted wheel-running actograms illus-

trating the effects of optic nerve crush (ONC) in wild-

type (1/1) and Myk/1 animals maintained in con-

stant dark conditions. Red arrows delineate the day

of ONC. Red lines are fitted through activity onsets

pre- and postsurgical intervention. The free-running

period of Myk/1 mice was restored by ONC but

not sham procedure. (C) Mean period of cohorts

undergoing ONC or sham procedure (1/1 ONC

n = 6: w20.1 hours, p = .13; Myk/1 ONC

n = 6: 20.75 hours, p = .025; Myk/1 sham n = 4:

w20.1 hours, p = .12). (D) Example responses of

single SCN neurons loaded with Fura-2 to alpha-

amino-3-hydroxy-5-methyl-4-isoxazole propionic

acid (AMPA) (5 and 10 mM) tested during subjective

night (1/1: n = 88, Myk/1: n = 148). (E) When tested

during the subjective night (Zeitgeber time 14–18

[ZT14–18]), Myk/1 SCN neurons exhibited larger AMPA-evoked cellular increases in intracellular Ca21 than did 1/1 SCN neurons (two-way analysis of

variance: interaction p , .0001; 1/1 5 mM: 0.16 6 0.01 arbitrary units (A.U.), Myk/1 5 mM: 0.22 6 0.01 A.U., Sidak p = .0029; 1/1 10 mM: 0.22 6 0.01 A.U.,

Myk/1 10 mM: 0.356 0.01, p, .0001). (F) During subjective night (ZT14–18), the washout duration following AMPA treatment (10 mM) was longer in theMyk/1

neurons compared with 1/1 SCN neurons (1/1 5 mM: 121 6 4 seconds, Myk/1 5 mM: 121 6 4 seconds, p = .99; 1/1 10 mM: 172 6 4 seconds, Myk/1

10 mM: 209 6 8 seconds, p = .0007). Data in panels (C, E, F) are plotted as mean 6 SEM. *p , .05, **p , .01, ***p , .001.
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concordant with the observation that the molecular clock is

also intact in fibroblasts from patients with BPD (63). However,

Myk/1 SCN slices lacked day/night variation in neuronal firing

rate. Importantly, the low amplitude, long period behavioral

rhythms, and damped SCN electrical activity of Myk/1 mice

resemble similar measures made from 1/1 mice exposed to

long day lengths or LL (44,64–66). These findings reveal an

important role for light inputs to the SCN in this mouse model

of mania.

NKA a3 is localized to central and peripheral neurons,

including retinal ganglion cells (46,67), and glutamate is the

main neurotransmitter of image- and non–image-forming

pathways from the eye (12,49). Both SCN and extra-SCN

sites are implicated in masking effects of light (68,69) and

the absence of negative masking in Myk/1 mice presumably

arises as a consequence of altered glutamatergic signaling at

these sites. Glutamatergic synapses are linked with mood

disorders (70), and it is suggested that measures of glutamate

in the brain vary in BPD, becoming elevated during mania and

reduced in episodes of depression (71). Further, mood stabi-

lizers used to treat BPD, such as lithium and valproate, act to

restore glutamate levels (72,73) and can reduce sensitivity to

light and directly alter SCN function (74,75). Interestingly,

colocalization and functional coupling between NKA a3 and

glutamate transporters has been demonstrated in rat brain,

with a3 having similar neuronal localization to excitatory amino

acid transporter 2/glutamate transporter 1, the most abundant

subtype of glutamate transporter in the central nervous system

(76). Previously, Kirshenbaum et al. (20) found that the duration

of glutamate-evoked [Ca21]i transients was prolonged in

cultured cortical neurons from Myk/1 mice (20), raising the

possibility that this mutation alters glutamatergic signaling in

other brain pathways. Because metabolic rate is elevated

in Myk/1 mice, it is plausible that the Myshkin mutation

influences energy balance centers in the mediobasal hypo-

thalamus (77).

In high-firing hippocampal and cerebellar neurons, loss or

reduction of NKA a3 is associated with neuronal hyper-

excitablity (20,51,78,79). Atp1a3 is expressed in the SCN (80),

but Myk/1 SCN neurons that have a reduction in functional

NKA a3 show damped daytime firing rate. To discharge action

potentials, high-firing cells can require considerable adenosine

triphosphate, and a likely consequence of a reduction in NKA

pump activity is ionic imbalance and chronic depolarization

(81). Because individual SCN neurons are comparatively low

firing (typically ,5 Hz), this suggests that their adenosine

triphosphate requirements are low, such that a reduction in

NKA a3 activity does not drive the cell into a chronic

Figure 7. TheMyshkinmutation does not affect bioluminescent rhythms of PER2::LUC in whole suprachiasmatic nuclei (SCN) brain slices or single cells, but

rather damps electrophysiological activity. (A) Example luminometric recordings of rhythms of PER2::LUC output of whole SCN tissue explants from

1/1PER2::LUC (1/1PER2) and Myk/1PER2::LUC (Myk/1PER2). (B) No genotype differences were detected in the period of PER2::LUC oscillations

(1/1PER2: 24.73 6 0.05 hours, Myk/1PER2: 24.82 6 0.09 hours; p = .39). (C) Peak amplitude of PER2::LUC rhythms across the first 5 days (24-hour cy-

cles) in culture did not differ between the genotypes (two-way analysis of variance: genotype p = .78; interaction p = .13). (D) Example of single-cell imaging

from 1/1PER2 (n = 4) and Myk/1PER2 (n = 4) explants at two time points over initial 24 hours ex vivo. (E) The period of single-cell rhythms did not differ

between the genotypes (1/1PER2: n = 140, 23.966 0.06 hours;Myk/1PER2: n = 132, 23.966 0.07 hours; p = .99). (F) The synchrony (R) between single cells

in the SCN slices did not differ between the genotypes at any of the 5 days (5 3 24-hour cycles) ex vivo (two-way analysis of variance: genotype p = .70).

(G) Mean spontaneous firing rate (SFR) from whole-cell current-clamp recordings made over a 24-hour cycle. Day/night variation in SFR is seen across 1/1

SCN neurons but not Myk/1 SCN neurons (two-way analysis of variance: time p = .0079; 1/1 day: 2.0 6 0.2 Hz, 1/1 night: 1.2 6 0.2 Hz, p = .0009; Myk/1

day: 1.6 6 0.2 Hz, Myk/1 night: 1.4 6 0.2 Hz; p = .31). Data in panel (E) graphed as scatter plot with mean 6 SEM. Data in panels (B, C, F, G) plotted as

mean 6 SEM. ***p , .001. A.U., arbitrary units; CT, circadian time.
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depolarized state. Indeed, because some classes of intrinsi-

cally photosensitive retinal ganglion cells can spontaneously

fire at high frequencies (70–90 Hz) (82), it is probable that they

are more readily hyperexcited through the reduction in NKA a3

activity, as is evidenced by the associated changes in retinal

input to the SCN in Myk/1 animals.

NKA a subunits (a1–a3) are associated with BPD, although

subunit-specific roles in pathology remain to be defined

(20,83,84). A heterozygous missense mutation (V129M) in

NKA a3 was identified in a 9-year-old boy with DSM-5

schizophrenia and a clinical presentation including mood

swings (85). Multiple Atp1a3-specific mutant mouse models

exhibit variable presentations of neurological deficits (86,87),

but one key commonality is that all show heightened psy-

chomotor states. Missense mutations in NKA a3 have been

identified in other neurological conditions including rapid-

onset dystonia parkinsonism, alternating hemiplegia of

childhood (AHC), and CAPOS (cerebellar ataxia, areflexia, pes

cavus, optic atrophy, and sensorineural hearing loss) syn-

drome (88,89). Patients with rapid-onset dystonia parkin-

sonism show greater incidence of mood and psychotic

symptoms than control family members (90). AHC patients

are easily aroused and prone to behavioral and psychiatric

symptoms, such as impulsivity, lack of attention control, and

episodes of hyperactivity (H. Rosewich, M.D., personal

communication, July 6, 2016). Clinical presentation of AHC is

sensitive to changes in lighting and sleep induction. Indeed,

acute presentation of AHC symptoms such as hemiplegic

attacks can be triggered by stimulation of the optic system

(H. Rosewich, personal communication) and attenuated

through occlusion of the eyes (91). In addition to circadian-

associated behaviors, therefore, our findings support a

wider role of light and retinal signaling in the pathology of

ATP1A3-related disorders. As the activity of NKA a3 was

recently found to be impaired by its aberrant association with

misfolded and aggregated amyloid-b in Alzheimer’s disease

(92) and a-synuclein in Parkinson’s disease (93), NKA a3

dysfunction may also contribute to the circadian sleep dis-

turbances in these common age-related neurodegenerative

conditions (94–96).
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