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ABSTRACT 

Cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality. 

Strategies to predict development of CVD are therefore key in preventing and managing CVD. 

One stratergy in predicting CVD is by examining the role of traditional risk factors for CVD (e.g. 

age, sex, weight, blood pressure, blood lipids, blood glucose, smoking and physical activity). 

Although these measures are non-invasive and simple to perform, they provide limited information 

of CVD prediction. Directly examining functional characteristics of arteries that are involved in 

the pathophysiological changes that contribute to the development of CVD improve prediction of 

future CVD. Nevertheless, examining the function of arteries susceptable to atherosclortic 

changes, such as the coronary arteries, is invasive, expensive, and associated with high risk for 

complications. More accessible arteries can be used as a surrogate measure of coronary artery 

function. For example, the carotid artery may be a superior surrogate measure of coronary artery 

function given that, the carotid artery represents a central vessel that shows similarities in 

vasomotor function and anatomical structure with coronary arteries. This review summarises the 

similarities between the carotid and coronary arteries, describes how both arteries respond to 

specific vasoactive stimuli, and discusses if the easily assessible carotid artery can provide 

information about vascular function (e.g. vasomotor reactivity to sympathetic stimulation) which 

is prognostic for future cardiovascular events. Finally, the impact of older age and lifestyle 

interventions (e.g. exercise training) on carotid artery function will be discussed. 

 

KEYWORDS: carotid artery; coronary artery endothelial function; atherosclerosis; 

cardiovascular disease   



Peace et al.  Carotid artery to predict coronary artery disease 

 

    

 3 

 

INTRODUCTION 

Cardiovascular disease (CVD) is an umbrella term which describes disease of the heart and blood 

vessels, and remains the world’s leading cause of morbidity and mortality (1), accounting for 

approximately 31% of all deaths (2). In addition to the significant healthcare costs, CVD affects 

socio-economic costs through loss of productivity. Improvements in clinical management has 

contributed to a reduction in CVD and stroke-related mortality by 3.7% and 4.5%, respectively. 

(3) Nonetheless, given the ageing population and increased prevalence of established risk factors 

(e.g. obesity, diabetes), the prevalence of CVD is likely to continue to increase (3) .  This highlights 

the importance of predicting the risk of future development of cardiovascular events and/or CVD. 

 

Traditionally, predicting future cardiovascular events and/or CVD is based on the evaluation of 

risk factors, such as age, sex, family history of premature CVD, blood pressure, cholesterol, body 

weight, and glucose homeostasis (4, 5). Despite their simplicity and non-invasive nature, these risk 

factors provide limited predictive capacity. Based on the central role of the endothelium in the 

process of atherosclerosis, direct measures of coronary artery endothelial function may improve 

prediction of future CVD  (6, 7). Indeed, endothelial health is involved in the progression of CVD, 

which is supported by the finding that endothelial dysfunction precedes the development of 

atherosclerosis (8-11). Furthermore, measures of coronary artery endothelial function 

independently predict future CVD (12). Given the invasive and expensive nature of assessment of 

coronary artery function, studies have searched for alternative tools and largely focused on 

assessment of peripheral arteries. This review specifically focuses on the easily accessible carotid 

artery. The carotid artery is a central artery which is similar to coronary arteries in anatomical 
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properties and vasomotor control. In this review, we explore whether the carotid artery can be used 

as a surrogate measure for coronary artery vascular function. For this purpose, we will provide a 

brief overview of the role of endothelial function in the process of atherosclerosis, leading to CVD 

events. Subsequently, we will discuss similarties in carotid and coronary artery function, and also 

highlight approaches to assess carotid artery vascular function and examine if these approaches 

can predict future CVD. Finally, we will discuss the impact of older age and lifestyle interventions 

on carotid (and coronary) artery function. 

 

ENDOTHELIAL FUNCTION AND ATHEROSCLEROSIS 

What is the role of the endothelium in atherosclerosis? 

The endothelium represents a single layer of cells on the inner side of all vessels that fulfils various 

important actions (13). In addition to the regulation of vascular tone, the endothelium also affects 

platelet aggregation, leukocyte adhesion and vascular smooth muscle cell migration and 

proliferation. Endothelial dysfunction seems an important contributor to the process of 

atherosclerosis (14). Presence of endothelial dysfunction facilitates increased lipoprotein 

permeability and oxidation, enhanced mononuclear leukocyte adhesion and intimal accumulation, 

and dysregulation of the hemostatic-thrombotic balance (15). Various stimuli contribute to the 

development of endothelial dysfunction, including hemodynamic factors, proinflammatory 

cytokines, bacterial products, hypercholesterolaemia and oxidized lipoproteins (6, 15-17). Indeed, 

the presence of hypercholesterolaemia, hypertension, smoking, ageing and obesity are all 

associated with impaired endothelial function (18). Similarly, oxidative stress (19, 20) and 

inflammation (21) lead to lower NO-bioavailability and, consequently, impaired endothelial 
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function. Moreover, studies in humans using in vivo techniques found that the pre-clinical stage of 

atherosclerosis is linked to presence of endothelial dysfunction (22, 23). These studies suggest that 

impaired endothelial function contributes to the process of atherosclerosis and, eventually, CVD.  

 

Can coronary artery endothelial function predict future CVD? 

Coronary artery endothelial function may be a useful predictor of CVD development. To test this 

hypothesis, Schächinger et al. examined coronary artery responses to endothelium-dependent (i.e. 

acetylcholine, sympathetic activation, shear stress) and –independent stimuli (i.e. glyceryl 

trinitrate), in 147 patients at risk for coronary artery disease across a mean follow-up of 6.7 years 

(12). They reported that impaired endothelium-dependent and -independent coronary artery 

responses were independently related to higher incidence of CVD events (12). Similar findings 

were reported by Suwaidi et al., who found that coronary artery endothelial dysfunction (using 

coronary artery angiography combined with acetylcholine infusion) in 157 patients with coronary 

artery disease were associated with an increased risk of CVD events across a 28-month follow up 

(24). One may question if the prognostic capacity of coronary vascular endothelial dysfunction is 

also found in those with angiographically normal coronary arteries. Halcox and colleagues found 

that coronary artery endothelial dysfunction (i.e. examined using acetylcholine infusion) holds 

independent predictive capacity for future CVD events in both subjects with (n=132) and without 

(n=176) coronary artery disease across 46 month follow-up (25). Therefore, these data support the 

independent prognostic value of coronary artery endothelial dysfunction for future CVD events.  
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Use of surrogate measures of coronary artery endothelial function? 

The current gold standard for examining coronary artery endothelial function involves invasive 

assessment using quantitative coronary angiography combined with graded intracoronary infusion 

of endothelium-dependent vasodilators (e.g. acetylcholine). In addition to high patient burden and 

costs, this procedure is associated with significant health risks (26). These limitations have driven 

the development of surrogate measures of coronary endothelial function. For example, venous 

occlusion plethysmography combined with intra-arterial infusion of acetylcholine is often used to 

assess peripheral resistance artery endothelial function (27). Although this procedure resembles 

the procedure of intra-coronary infusion of drugs (28) and independently predicts future CVD (29), 

this procedure is invasive, time-consuming, expensive and has therefore predominantly been used 

in smaller, laboratory-based research studies (30). A more frequently used, non-invasive technique 

to assess peripheral artery vascular function is the flow-mediated dilation (FMD). The brachial 

artery is imaged using ultrasonography before and 3-minutes following a 5-minute cuff-induced 

occlusion of the forearm (31), which leads to a largely NO-mediated dilation (32). The FMD shows 

good correlation with coronary artery dilator responses (28) and independently predicts CVD 

events (33, 34). This work indicates that a simple (surrogate) measure of coronary artery 

endothelial function has potential clinical importance in predicting risk for future CVD events.  

 

CAROTID VERSUS CORONARY ARTERY FUNCTION  

Carotid and coronary arteries represent large vessels, often referred to as “elastic arteries” or 

“conducting arteries”. Both arteries transport large volumes of blood away from the left ventricle 

to perfuse vital organs, the brain (i.e. carotid artery) and cardiac muscle (i.e. coronary arteries). To 
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fulfill these tasks, the walls of both arteries are resilient against the large fluctuations in blood 

pressure. The tunica media of coronary and carotid arteries contain a higher density of elastic fibers 

and fewer smooth muscle cells compared to peripheral, muscular arteries (Figure 1). The relatively 

high amount of elastin in the arterial wall stores elastic energy during systole, which is released 

during diastole to contribute to a constant flow of blood towards peripheral arteries (i.e. the 

Windkessel-effect) (35, 36). The tunica media also contain collagen fibrils that form a slack 

network and provide a physical guard against over-distension. Not surpisingly, carotid artery 

structure (i.e. wall thickness, plaque presence, calcification) shows close correlation to coronary 

artery structure. In addition to these similarities in carotid and coronary artery structure, both 

arteries may also share similar pathways to regulate vascular health and vasomotor control. For 

these reasons, the carotid artery may offer an easy accessible central artery that may serve as a 

surrogate marker for coronary artery vascular health. In this part of the review, we will describe 

the regulation of vascular tone of central arteries, followed by tests of carotid artery function with 

specific focus on their relation to coronary arteries and ability to predict future CVD events.  

 

How is vascular tone regulated in central arteries? 

Assessment of central artery blood flow has primarily focused on coronary arteries, with little work 

in humans focusing on the carotid arteries. As a result, the majority of our understanding around 

the regulation of central artery vascular tone relates to studies examining coronary arteries. These 

studies adopt invasive or non-invasive techniques (MRI, CT and PET) to examine changes in 

(regional) myocardial blood flow in response to pharmacological (e.g. adenosine, acetylcholine) 

or physiological stimuli (cold pressor test, exercise). It is the response of myocardial blood flow 
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to these stimuli that can reveal the regulation of vascular health in humans in vivo. Based on this 

work, it is demonstrated that (coronary) arteries regulate blood flow through: 1. (local) metabolic 

control, and 2. neurally mediated vasoreactivity. Moreover, an intact endothelium seems essential 

to enable these stimuli to contribute to the regulation of blood flow. Previous work found that in 

cerebral (37) and coronary arteries (38), autoregulation contributes to acute regulation of vascular 

tone to ensure sufficient perfusion during fluctuations in blood pressure. This involves a complex 

feedback loop matching perfusion driven by metabolic requirement. However, it is currently 

unknown to what extend carotid artery vascular tone is regulated through such mechanisms.  

 

What is the role of metabolic control of vascular tone in central arteries? 

Changes in metabolic demand of the myocardium represents an important stimulus for changes in 

myocardial perfusion. An increase in myocardial work and thus metabolic demand, for example 

during exercise,  will be accompanied by proportionate changes in coronary blood flow. Using 

non-invasive PET measurements it was demonstrated that 2.8-fold elevation in cardiac work 

(derived from the rate pressure product) is matched by a 2.2-fold increase in myocardial perfusion 

(39). Similarly, subsequent studies from the same research group consistently found that elevations 

in myocardial demand are matched by comparable elevations in myocardial perfusion (39, 40). 

This demonstrates a central role of myocardial oxygen consumption in mediating coronary flow 

(41, 42). The increase in myocardial perfusion is initiated by a metabolically-mediated decrease in 

microvascular resistance, most likely involving adenosine as a key metabolite causing vascular 

smooth muscle relaxation.  
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It is currently unknown to what extend cerebral metabolic control contributes to the regulation of 

carotid artery vasomotor function. Cerebral metabolic demand may influence upstream vascular 

regulation, especially since cerebral metabolic demand is strongly dependent on neural activation 

(43). In addition, changes in end-tidal CO2, representing an indirect measure of metabolism, is 

found to be a potent stimulus for intra- and extra-cranial artery vasomotion (44, 45). More 

specifically, increases in end-tidal CO2 are related to a dose-dependent increase in internal carotid 

artery diameter, most likely mediated through elevations in shear stress (46). Importantly, although 

the common carotid artery also dilated during an increase in end-tidal CO2, distinct regulatory 

processes seem present contributing to the dilation (46). These differences are important to take 

into consideration when examining vasomotor responses of the carotid artery.  

 

What is the role of neutrally mediated control of vascular tone in central arteries? 

The sympathetic nervous system contributes to the regulation of vascular tone in central arteries. 

One of the first studies that provided evidence for the role of the sympathetic nervous system in 

the regulation of central artery vascular tone found that, in the absence of myocardial metabolism, 

a significant change was present in coronary sinus oxygen tension during sympathetic stimulation 

(47). The contribution of adrenergic receptors in mediating coronary perfusion was subsequently 

confirmed by Mohrman et al. who found that α-blockade caused a decrease in coronary oxygen 

uptake (48). In a study including cardiac transplant patients, both denervation and regional re-

innervation of cardiac segments were studied simultaneously, demonstrating increases in coronary 

flow in response to sympathetic stimulation were larger in re-innervated areas. This finding 

suggests that coronary flow is regulated to larger extent by adrenergic mechanisms than via 
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metabolic regulation during sympathetic stimulation (15, 49). Since it is challenging to study these 

factors independently, it remains unclear to what extent the metabolic and adrenergic components 

interact and contribute to coronary vasomotion during sympathetic activation (50) 

 

Coronary responses to sympathetic stimulation is highly dependent on both the integrity (51-53) 

and function (54) of the endothelium (see also next section). The importance of the endothelium 

is in part explained through the presence of adreno-receptors on both the endothelium and smooth 

muscle cell, which respond to regional and systemic sympathetic stimuli. For example, local 

release of norepinephrine from adrenergic nerve terminals in the coronary arteries (abluminal) and 

release of catecholamines from the adrenal glands into the circulation during sympathetic stress or 

physical exercise all influence coronary vasomotion through stimulation of adrenergic receptors 

(55). Both α- and β-adrenergic receptors are involved in coronary vasomotion in response to 

activation of the sympathetic nervous system (50). Whilst β-receptors induce vasodilation, 

activation of the α-receptors concurrently induces vasoconstriction (Figure 2). Nevertheless, 

differences in adrenoreceptor subtypes are present, which ultimately contribute to a delicate 

balance between α-mediated vasoconstriction and β-mediated dilation.  

 

α1-adrenoreceptors. On the vascular smooth muscle cells, α1-adrenoreceptors have been identified, 

which are typically activated through local norepinephrine release from the adrenergic nerve 

terminals during sympathetic stimulation. Stimulation of α1-receptors leads to vasoconstriction of 

coronary arteries (50, 56, 57). Indeed, infusion of α1-agonists in patients with coronary stenosis 

demonstrated augmented coronary artery vasoconstriction (50, 52, 53). However, infusion of α1-
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agonists in healthy individuals does not alter coronary vascular tone (58). The absence of a 

vasoconstrictor response in healthy individuals is most likely the result of simultaneous (mild) 

activation of β-receptors on the endothelium that counterbalances the α1-mediated constriction.  

 

α2-adrenoreceptors. In addition to stimulation of α1-receptors, stimulation of the α2-receptors on 

the vascular smooth muscle cells mediate neurally-mediated constriction. However, stimulation of 

α2-adrenoreceptors located on the endothelium cause dilation through NO-release (50, 58-60). 

Indeed, several studies using selective stimulation found that α2-adrenergic agonists cause 

endothelium-dependent relaxation in coronary arteries of healthy individuals (61), whilst 

concurrent stimulation of α2-receptors located on the smooth muscle cells mediate coronary artery 

constriction (58, 60). Interestingly, intracoronary infusion of selective α2-agonists induced a 

paradoxical vasoconstriction in patients with atherosclerotic coronary arteries. This observation is 

likely explained through the loss of endothelial α2-receptors in atherosclerotic coronary arteries, 

which under physiological conditions mediate coronary artey vasodilation. Consequently, α2-

agonists bind to the α2-receptors located on the smooth muscle cells, facilitating coronary artery 

vasoconstriction. Therefore, the ultimate effect of α2-receptor stimulation depends on the net result 

of both the endothelium- and smooth muscle cell-located receptors and the functional integrity of 

the endothelium (58, 62-64).   

 

β-receptors. The β-receptors are predominantly present on the coronary endothelium, causing 

vasodilation during sympathetic activation. There are 3 subtypes (β1, β2, β3), located on either the 

endothelium or the vascular smooth muscle cells (Figure 2), but the β2-receptor being the most 
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abundantly present and most frequently studied. In healthy participants, infusion of a β2-receptor 

agonist (salbutamol) induces coronary vasodilation, suggesting a role for β2-receptors to lower 

resistance. Interestingly, administration of propranolol (i.e. a non-selective β-receptor blockader), 

partly inhibited the coronary artery vasodilator responses to sympathetic stimulation (51). Since 

β2-receptors are more strongly antagonised by propranolol than β1-receptors, the β1-receptor 

activation contributed to the remaining dilation in healthy individuals (49). In individuals with 

coronary artery disease, sympathetic stimulation leads to a paradoxical vasoconstriction during 

sympathetic stimulation. Possibly, this vasomotor response results from impaired β-receptor 

activation. To support this idea, intracoronary infusion of a β2-receptor agonists (i.e. salbutamol) 

resulted in impaired vasodilator responses in atherosclerotic coronary arteries (51). At least, these 

data support a role for β-receptors to contribute to coronary artery vasodilator responses. 

 

The majority of the work in understanding the role of adrenoreceptors in mediating central artery 

responses were performed in coronary arteries. Recently, Van Mil and colleagues examined 

common carotid (duplex ultrasound) and left anterior descending coronary artery (Doppler 

ultrasound) responses to sympathetic stimulation (using the cold pressor test and lower body 

negative pressure), both with and without α1-receptor blockade (65). They found carotid and 

coronary artery dilation during the cold pressor test, with α1-receptor blockade leading to an 

attenuated dilator response in both arteries. In contrast, carotid and coronary arteries demonstrated 

constriction in response to lower body negative pressure, which was not affected by α1-receptor 

blockade. Although further work is required, these data indicate similarity between carotid and 

coronary responses to sympathetic tests (with the direction of these responses being dependent on 
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the type of sympathetic stimulation), but also similarity in the involvement of α1-receptors 

mediating these responses. 

 

What is the role of the endothelium to regulate vascular tone in central arteries? 

Changes in myocardial microvascular resistance will subsequently lead to changes in upstream 

blood flow. For example, an increase in local myocardial metabolism will lower resistance, leading 

to an increase in blood flow in the supplying coronary artery. This elevation in shear stress will 

further augment myocardial perfusion by endothelium-dependent factors; higher flow velocities 

exert greater shear-stress upon the endothelium with stimulation of the endothelial nitric oxide 

synthase (eNOS) and release of the smooth muscle nitric oxide (NO). In addition, the marked 

elevation in shear stress in coronary arteries also leads to the endothelium-dependent release of 

prostacyclin, bradykinin and angiotensin II. The release of these vasoactive substances contribute 

to a further localized dilator response (66). The ability to regulate vascular tone through the local 

release of vasoactive substances is highly dependent on an intact and healthy endothelium. In his 

Nobel-prize winning experiments, Furchgott demonstrated in isolated preparations of (central) 

blood vessels the importance of the endothelium (67). More specifically, he revealed that 

relaxation of arteries in response to acetylcholine was reversed to a constrictor response upon 

removal of the endothelium. Similar findings have been reported by various other laboratories, 

including Berdeaux et al. who found that the dose-dependent dilation of dog coronary arteries 

during exercise is reversed to marked vasoconstriction upon removal of the endothelium (68). 
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The integrity of the (coronary) endothelium also seems important in mediating the vasomotor 

responses in response to sympathetic stimuli. A previous study examined the response to cold 

pressor test (CPT) using quantitative angiography and Doppler flow velocity measurements in 

patients with angiographically normal coronary arteries, patients with mild coronary 

atherosclerosis and those with advanced coronary stenosis  (51). Interestingly, a marked 

vasodilation was found in normal coronary arteries, whilst paradoxical vasoconstrictor responses 

were found in the clinical groups with visible presence of atherosclerosis. Zeiher and colleagues 

confirmed these findings (52), but also reported that the dilation of normal (healthy) and the 

constriction of atherosclerotic coronary arteries with cold pressor testing exactly mirrored the 

response to the endothelium-dependent dilator acetylcholine. This finding demonstrates that 

coronary vasomotion of large epicardial arteries in response to sympathetic stimulation by the cold 

pressor test in humans is intimately related to the integrity of endothelial function (52). A final 

study explored, more directly, the coronary artery responses to adrenergic stimulation and the role 

of the endothelium (53). In this study, it was found that vasomotor responses to intracoronary 

acetylcholine mirrored the responses to phenylephrine (i.e. adrenergic stimulation) in both 

coronary arteries with (i.e. constriction) and without (i.e. dilation) atherosclerosis. These results 

further suggest the importance of (an intact) endothelium to mediate vasomotor responses to 

adrenergic stimulation. 

 

CAROTID ARTERY FUNCTION TO PREDICT CARDIOVASCULAR EVENTS 

In contrast to the wealth of studies examining carotid artery structure (e.g. intima media thickness), 

relatively few studies have examined the functional characteristics carotid artery. Several 
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(pre)clinical studies have examined arterial compliance as a non-invasive test of central artery 

function which involves assessing the carotid artery (66, 69). Although such measures may posses 

independent prognostic value for future CVD (66), these ‘functional’ measures  depend on 

structural characteristics of the arterial wall. Assessment of carotid artery vascular function is 

importantly limited by practical concerns and limitations. For example, pharmacological 

substances are commonly applied in coronary arteries to directly examine vascular function, but is 

contra-indicated for the carotid artery. Alternatively, studies have also examined coronary artery 

responses to physiological stimuli, such as exercise or sympathetic stimulation using the cold 

pressor test. The cold pressor test may be relevant in the carotid artery given its simplicity, 

reproducibility, frequent use, and since it represents a valid test to stimulate the sympathetic 

nervous system.  

 

How do carotid and coronary arteries respond to sympathetic stimulation? 

Sympathetic stimulation leads to a dilator response of the coronary arteries, whilst this is attenuated 

or even reversed to constriction in individuals with CVD. Rubenfire and colleagues were the first 

to describe similar vasomotor responses in the carotid artery (70), which was referred to as carotid 

artery reactivity (CAR). For this purpose, CAR was measured using non-invasive ultrasound to 

assess carotid artery diameter changes in response to the cold pressor test (i.e. submersion of a 

limb in 4°C water (71). They reported that carotid dilation was present in individuals with no 

previous history of cardiovascular disease or significant clinical risk factors for cardiovascular 

disease, whilst this response was attenuated in high-risk group and vasoconstriction occurred in 

the group of individuals with coronary artery disease. The carotid artery response to the 
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endothelium-independent vasodilator glyceryl trinitrate was comparable across groups, suggesting 

that the distinct vasomotor responses reflect endothelial function. Following the mechanisms of 

central artery vasomotor function (see above), the vasoconstrictor effects of local noradrenaline 

release on α-receptors on the smooth muscle cells are overruled by the dilator effects of circulating 

catecholamines via adrenoreceptors on the endothelium. In indiviudals  with (increased) CVD risk, 

these opposing dilator effects are less effective or even absent, subsequently leading to an 

attenuated dilation or even constriction.  

 

Based on the between-study observation that sympathetic stimulation can lead to comparable 

responses in carotid and coronary arteries, Van Mil et al. explored this concept in more detail. 

Ultrasound was used to measure resting and peak carotid artery diameters during the cold pressor 

test, whilst transthoracic Doppler was used to examine left anterior descending (LAD) artery 

velocity in 33 healthy individuals (71). A moderate correlation was found between changes in 

carotid diameter and velocity versus LAD velocity (r=0.486 and 0.402, respectively). This 

correlation between carotid and coronary artery responses to the sympathetic stimulation was 

recently confirmed in another study by the same authors (r=0.66), where carotid and coronary 

artery responses were explored during various sympathetic stimuli (i.e. cold pressor test, lower 

body negative pressure) (65). These data indicate similarities between carotid and coronary 

responses to sympathetic tests and suggest that CAR may represent a surrogate marker of coronary 

artery vascular function. 

 

Is carotid artery reactivity to sympathetic stimulation related to carotid structure? 
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The question whether CAR-response is related to carotid artery structural characteristics is relevant 

because previous work has found strong correlations between peripheral artery structural and 

functional characteristics. For example, we previously found that a larger wall-to-lumen ratio is 

related to exaggerated responses to vasodilator stimuli, including shear stress and glyceryl trinitrate 

(72). In addition, several previous studies have found a strong relationship between peripheral 

artery diameter and the magnitude of the vasomotor response (73, 74). Independent of the 

magnitude of the shear rate response, a smaller diameter was related to a larger dilator response of 

the flow-mediated dilation (75-77). The presence of such a relationship is important to understand 

the mechanisms contributing to the dilator response, but also to statistically correct for such 

relations using allometric scaling (78). For this purpose, previous studies have explored the 

possible relationship between between carotid artery wall thickness or diameter and CAR, but 

found no evidence of correlation (66, 70, 79). This observation suggests that CAR, a measure of 

carotid artery function, possesses distinct information from measures of carotid artery structure 

(i.e. wall thickness and diameter) and allometric scaling is not required for the analysis of the CAR. 

 

Is carotid artery reactivity related to older age? 

As vessels age, the stiffer collagen fibrils increasingly dominate the tunica media within arteries 

thereby reducing rebound capacity of elastic arteries, which impairs the ability to dampen the blood 

pressure fluctuations (80). There is convincing evidence for the presence of an age-related increase 

in carotid wall thickness, whilst similar age-related increases in wall thickness are found in 

coronary arteries (81). Since carotid artery reactivity provides information distinct from structural 

measures, one may question the impact of older age on carotid artery reactivity. In a previous 
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study, it was reported that older age is associated with an impaired carotid artery reactivity (70), 

although future studies are warranted to better understand this relation and the role of (age-related) 

factors. These observations in the carotid artery fit with other studies who examined coronary 

artery function, which found a lower (endothelium-dependent) response in coronary arteries of 

older participants (82, 83). The age-related attenuation in artery health may be due to impaired 

NO-pathway (83), but could also relate to dysfunction of vasoconstrictor pathway (84, 85). 

 

Is carotid artery reactivity to sympathetic stimulation related to CVD risk? 

Some previous studies have also explored the relation between CAR and traditional CVD risk 

factors. Rubenfire and coworkers examined CAR in 93 men and women at average risk, high risk 

and with coronary artery disease (70). They found that the marked dilator response in individuals 

with average risk was markedly attenuated in those with high risk and even reversed to 

vasoconstriction in individuals with coronary artery disease. Importantly, traditional 

cardiovascular risk factors (e.g. systolic pressure, triglycerides and high-dendity lipoprotein) 

correlated well with the CAR response (70). Similarly, we recently found a relation between 

traditional CVD risk factors and CAR . More specifically, we found that an increasing number of 

CVD risk factors were related to a progressively attenuated CAR response (79). These studies 

suggest that CAR is strongly related to (the number of) CVD risk factors. 

 

Can carotid artery reactivity to sympathetic stimulation predict future  CVD events? 

Recently, we were the first to explore the potential clinical value of CAR. In a group of 172 patients 

with peripheral arterial disease the CAR was assessed, with a 1-year follow-up of occurrence of 
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cardiac and cerebrovascular events, mortality and clinical progression to angioplasty or loss of 

patency.  Based on the CAR, individuals were dichotomized into carotid constriction (n=82) or 

dilation (n=90). After correction for CVD risk factors (including carotid artery wall thickness), 

individuals with constriction had more cardiovascular events, with a 4.1-fold increased risk for 

future cardiovascular events and a 2.0-fold increased risk for clinical deterioration (Figure 3). 

Since this work represents the first study in the literature, future studies are warranted to better 

understand the potential clinical value of CAR, including in other patient groups as well as the 

ability to correctly reclassify individuals at increased risk for future events. A key consideration is 

that whilst there are both structural and function similarities in the carotid and coronary arteries, 

there are differences in the shear stress experienced by both vessels. As the heart is a dynamic 

beating organ, this greatly affects shear stress on the walls of the coronary arteries. Although the 

carotid arteries does experience shear stress, this is different than that of the coronary arteries.  

 

Can exercise training affect carotid artery reactivity? 

Few studies have examined the impact of exercise training, as an established and effective lifestyle 

intervention, on central artery function. Hambrecht et al. were one of the first to directly assess the 

impact of exercise training on coronary arteries, and found 4-week exercise training to improve 

coronary endothelial function in 19 participants with asymptomatic coronary artery atherosclerosis 

(86). Specifically, they found that coronary artery vasoconstriction in response to to acetylcholine 

was attenuated after exercise training (86). Similarly, in a recent study, our group found improved 

carotid artery reactivity after 12-weeks exercise training in a group of participants with increased 

CVD risk. More specifically, exercise training reversed carotid artery constriction during the 
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reactivity test. These observations may, at least partly, contribute to the (long-term) 

cardioprotective effects of regular exercise training in patients with symptomatic coronary artery 

disease  (87-89).  

 

CONCLUSION AND FUTURE DIRECTIONS 

Predicting future development and occurrence of CVD events remains a central topic in the area 

of Cardiology, especially if such procedures impact (personalised) treatment and decision-making 

in individuals with (risk for) CVD. This review specifically focused on examining carotid artery 

vasomotor function, based on the assumption that the central carotid artery shares several 

functional and structural characteristics with coronary arteries. Indeed, both arteries show some 

similarity in anatomy, in that both arteries show a relatively high content of elastic fibres and are 

prone to develop atherosclerotic plaques. Similarities were also observed between coronary and 

carotid artery vasomotor function, with both arteries being highly responsive to sympathetic 

stimulation, leading to marked vasodilation in healthy individuals and paradoxical 

vasoconstriction in those with disease.  

 

 

Using this latter observation, studies have explored the potency of carotid artery reactivity (CAR) 

to sympathetic stimulation. This measure shows good relation with coronary responses to 

sympathetic stimulation in healthy individuals and also to CVD risk factors. Moreover, recent 

work revealed the potential predictive capacity of the CAR for future CVD events in individuals 

with peripheral arterial disease. At least, the current work on this novel technique suggests that 
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CAR has potential in pre-clinical and clinical work to better understand the development of CVD. 

Future studies are warranted to further explore these observations, especially related to the 

potential predictive capacity of this reactivity test for future CVD events in symptomatic and 

asymptomatic populations. In addition, this review highlights that distinct arteries (central versus 

peripheral) may respond differently to CVD risk factors (including older age) and/or lifestyle 

interventions such as exercise training. This can be taken into consideration by examining both 

peripheral and central arteries in (clinical) studies, especially when trying to better understand the 

development and prevention of CVD in humans in vivo.  
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FIGURE LEGENDS 

Figure 1. Comparison of anatomical characteristics between eleastic (e.g. coronary and carotid) 

and muscular (e.g. peripheral) arteries. Elastic arteries have a thin tunica adventitia and 

a large tunica media, containing a large amount of eleastic and collagen fibers. Under 

physiological conditions, there are relatively few vascular smooth muscle cells within 

the tunica media of the elastic arteries. Muscular arteries have a larger tunica adventitia 

with a smaller tunica media with few elastic and collagen fibers, but a large vascular 

smooth muscle cell layer. 

 

Figure 2. Balanse in adrenergic receeptors on the endothelium and vascular smooth muscle cells 

of central arteries. During sympathetic stimulation, healthy endothelium will mediate 

vasodilation through the dilator effects of the endothelium-bound β1-, β2-, β3- and α2-

receptors (green boxes), but also the β1- and β2-receptors on the smooth muscle cells 

(yellow boxes). These dilator effects oppose the constrictor effects of the α1- and α2-

receptors on the smooth muscle cells. With progression of atherosclerosis, loss of 

endothelium-bound adrenoreceptors contribute to a reversal towards vasoconstriction 

during sympathetic stimulation (Derived from (49)). 

 

Figure 3. Kaplan-Meier survival curves for adverse events (A), CV events (B), clinical 

progression (C) and all-cause mortality (D) in PAD patients (n=172) across a 1-year 

follow-up. We have dichotomised PAD patients in those who demonstrate coronary 
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constriction (CAR constriction, dotted line) or dilation during the CPT (CAR dilation, 

solid line). P-values relates to a Log-rank test (Derived from Van Mil et al. (90)).   
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