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ABSTRACT

This thesis is divided into three peurts. In part I some

theoretical au^ numerical processes are cc»isidered which aurise

v^ien modelling the flow of a fluid through a pipe bend or

deflector nozzle. These numerical processes include a new form

of numerical integraticMi amd a finite element formulaticMi vhich,

it is suggested, could readily be extended to hamdle further

realistic problems baised cxi the pseudo three dimensional model

chosen here. An introduction to nonlinear dynamics is included

in part II leading towards a classification of bifurcational

events in the light of recent advamces in dynaurdcs reseaurch.

Host of the dynamical systems considered aure dissipative such

that the dynaunic behaviour of the system decays onto a final

steaKly state moticxi %hich may be modelled by a low order system

of equaticxis. In this v/ay any resulting instability will

adequately be described, qualitatively at least, by the lew

order bifurcation classified in paurt II.In paurt III the
gecDBtzlcal theccy

application of the /  of dynamical systems is used to study 

the wave driven motions of specified compliant offshore 

facilities with real data provided from structures currently in 

use in the offshore industry. In particular predictions aure 

sought of any incipient junps to resonance of the systems which 

might lead to potentially dangerous loads in the mooring lines 

or excessive displaicements. Tlirouchout the dynaunics work stable 

steaidy state paths aure closely followed and monitored so that 

amy resulting bifurcation, including the possibility of chaotic 

b^iaviour, can be auialysed %dth a view to its subsequent

prediction.
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PREFACE

Certain changes in the circumstances of the author meant 

that the intended rese£u:ch did not proceed as was originally 

proposed. As a consequence it was decided that a statement 

detailing the work reported within this thesis should be 

included in the form of a preface.

The work reported in this thesis was carried out under the 

sv;^)ervision of Dr.D.Payne at the Polytechnic of North Lcxidon. 

Much of the early research efforts in part I were directed 

towards the writing of finite element codes for the general 

solution of partial differential equations since no such 

software was avadlable on the coirputing facilities at the time, 

•nie precise details of this programming and the subsequent 

flexibility and adaptability of the software produced will not 

be fully r^xorted here; the interested reader may consult the 

internal reports written by the author [Bishc^ (1982)]. 

Similarly to employ a scheme of numerical interpolation and 

integration required during the design of a general pipe bend a 

suite of programs %«as written inplementing popular interpolation 

routines and also a piecewise rational quadratic approximation, 

but again this shall only be mentioned briefly in this thesis 

(see Bishop (1983a,1983b,1984a) ]. These programs formed part of 

a leurger effort to model the steady flow of a fluid round a pipe 

bend and certain oompariscxis are favourably made %d.th existing 

methods for a two dimensional approximation. ’Oie main motivaticxi 

for a finite element/multigrid approach that is advocated %d.thin



this thesis was to present a method that could readily be 

extended to cover a fully three dimensional flew. This hopefully 

has been achieved but sadly constraints iirposed by a change in 

the type and place of eirployment did not allow sufficient time 

or the necess2ury facilities to put into effect the ideas that 

shall be introduced.

On the positive side this enforced diange in career has 

enabled the author to be aware of the need for a wider 

integrated e^roach to design in v ^ c h  dynamics must also play a 

vital role. As a ccxisequence to this in parts II and III some 

aspects of dynamic modelling of certain offshore structures 

shall be reported, the study of vhich was carried out v ^ l s t  the 

author was working at University College Lcxidon in the Civil 

Engineering Department with Professor J.M.T.Ihoirpson FRS.

The similarities between the introductory remarks in part 

II and the recent book by Thoirpson and Stewart (1986) is not 

coincidental. In fact the author of this thesis collaborated in 

the development and writing of the draft versicxis of several 

chapters of the book and is acknowledged as such.

No particular originality is therefore claimed for the %#ork 

reported in ch£^>ters 1-4 of part II, but ch2^>ter II.5 does 

contain some new ide£is. Similarly the nonlinear ph^iomenon of 

chaos is not new but its study until now h£is been restricted to 

those cases arising in Duffing type of equations or in simple 

naps. In part III several new areas of chaotic motions shall be



investigated which naturally arise when modelling the wave 

driven motions of certain offshore structures, chapter III.5 

being peu:t:icularly state of the art. The overall underlying new 

£ispect of the dyn£unics work reported here is the classification 

and prediction of bifurcaticxial events emd, although not 

exhaustive within this thesis, this does provide a fraunework on 

which greater coirplexity may then be added.

Some of the work reported in part III was caunried out in 

collaboration with Professor Ttwirpson and colleagues at 

University College London; the author is particularly grateful 

¿uid acknowledges their cooperation. Where such collaboraticxi has 

occured cleeu: indication of the origin of the work is included 

throughout the text, some of the work has been published as 

cited but has not previously been submitted for any other degree 

at any other institution.



NUMBERING SYSTEM

The figures and equations within a "part" of this thesis 

are referred to sequentially %^thin the ch£^>ter in vAiich they 

a{^)ear; for example figure 2.3 refers to the third figure of 

chapter 2 or similarly equatl(xi (1.2) would be the second 

equation of chapter 1. Where a figure or equation is 

referred to which appears outside the current chapiter th^, to 

prevent any ambiguity, the "part" in %*iich it appears is also 

stated; e.g. figure III.5.3 etc.. The figures themselves appear 

at the end of the chapter in which they are originally referred 

to.





CHAPTER I.l

THE FLOW EQUATIONS AND THEIR SOLUTION

1.1.1 Motivatioi and IntroductiCTi

Hie main motivation for this work stems from the necessity 

to design a deflector nozzle used in vectored thrust vertical 

take off aircraft. Hie modelling of the fluid flow through such 

a veuieless deflector nozzle is effectively the same as the flow 

that would have to be considered vhen modelling the passage of a 

fluid along any pipe undergoing a bend and thus the general 

£^licatic»is of the ideas developed here may be much wider. Hie 

essential features of the deflector nozzle currently in use 

dictate the basic form of the nozzle; namely it should have a 

circular inlet to allow for rotation of the nozzle during 

fli^t, particularly take-off, and the outlet is usually 

elliptical in s h e ^  in order to reduce drag at h i ^  speeds.

Hius the purpose of this study is then to develop a method 

of mathematical constiuction of a pipe bend from a known two 

dimensional channel flow. Hie s h £ ^  of the two dimensional 

channel is obtained by considering a prescribed distribution of 

the velocity along the chauinel walls, this ^lamnel then being 

embedded in a three dimensional streeun tube. Hie flow in the 

streeun tube is then known auid choosing this eis a first 

eqpproximation to the rotational flow a method shall be discussed



to cc»ivect the upstream vorticity throuc^iout the stream tube euid 

the resulting vorticity distributicxi can then be used to provide 

a better understanding of the complete rotaticxial flow.

The flow of a rotaticmal fluid throughout a pipe bend is 

governed by the Navier-Stc^es equations, but it is not feasible 

to solve these equaticxis in a design environment. We therefore 

seek an approximate solution to the flow throu^ a relatively 

low cost design method. One such e^roximation is to consider a 

potential or primary flow which, together with a boundary layer 

produce a parabolic profile in the pipe. This effectively means 

that we shall be ocxisidering an upstream rotaticxial flow model 

in vhich the directicxi of the vorticity is orthogcxial to the 

stream flow. The difference between a potential flow and the 

actual flow of the fluid is called the seccxidary flow %diich 

necessarily includes the effects due to viscosity and vorticity. 

Thus if Me neglect any effects due to viscosity in the 

mainstream the secondary flow will cxxisist of velocities 

perpendicular to the potential moticxi of the fluid.

The Helmholz vorticity laws tell us that the directicxi and 

magnitude of the vorticity vector change in the same way as the 

directicxi and magnitude of a material line vihich was, at some 

instant, parallel to the local vorticity. That is a vortex tube 

moves with the fluid and furthermore the tube strength remains 

the same. Consequently the vorticity is finite and the inviscid 

flow together %d.th the deformation, or drift, of material 

surfex:es due to the primary flow may be carried downstream to



produce a stream^dse vortlclt^ oonponent, the so called 

secondary vortlcity. Hius the problem is then equivalent to a 

bound£u:y value problem in an Inviscld flew together with a bound 

vorticity. It should be said that flow past an isolated body 

presents certain paradoxes of drift surfaces; for exaumple 

ccxisider the flow past a cylinder given w=l-l/z* which has 

singuleurities at x=tl> A drift line approaching a cylinder in 

such a flow would become stretched around the cylinder, the 

stagnaticxi points acting rather like a saddle point in dynamics 

with the drift line taking an infinite time to reach the leeKling 

stagnaticxi point. However, in this %#ork for the design of pipe 

bends and deflector nozzles no such problems arise in the 

abscence of any stagnation points.

In a two dimensional approximation we are linearising a 

nonlinear mixed partial differential equation of plane 

compressible flow. Ihis 1 inearisaticxi has been shown [Payne 

(1969)] to )3e valid in compressible flow for Mach numbers 

M<0.85. Ohe important aerodynamic features are the maximum speed 

and the maximum diffusion gradients, to prevent shock losses or 

cavitation, and the prediction of ar^ boundary layer s^>araticxi. 

The solution procedure is the so called prescribed velocity 

distributicxi (PVD) method and is used to design a nozzle s h e ^  

by choosing an aerodynamical ly suitable variation of pressure 

and speed without ar^ a priori knowledge of the actual s h a ^  of 

the nozzle. The implied flow directions determine the sha^)e of 

the nozzle as %#e may consider the streamlines to be solid 

boundaries since no fluid may cross them. Thus the %«alls are

8



taken to be calculated streamlines naking amy adjustment to the 

prescribed velocity distributicxi during the construction stage 

for engineering demands v^iilst retaining the overall aierodyn£unic 

features.

A pseudo three dimensicvial nodel of a pipe bend or nozzle 

may then be generated by imbedding a circuléu: streamtube in the 

known two dimensional channel flow upstream, from which it 

follows that streamlines will trace out a streamtube throughout 

the complete flow field, see figure 1.1. From these streamtubes 

a nozzle may be constructed such that all the points on the 

streamlines are elevated through a constant height above the 

design plane, lilis model will have a fully three dimensional 

appearance yet with the special feature that a uniform flow 

approaching it will proceed through the nozzle in a two 

dimensional manner and the flow conditions will remain constant 

along normals to the design plane. Alternatively the mass flow 

through pl£unes normal to the chaunnel flow may be eunalysed isee 

Dyer (1979)1, the third dimension in this case may then be 

derived by ratios of the streamtube heights along streamlines to 

the upstream values maintaining continuity of mass flow.

Having obtained a two dimensional potential flow and 

constructed a three dimensional nozzle in the manner described 

above known velocity eund vorticity distributions upstreaun may be 

used through the Helmholz laws to give a first approximation to 

the complete vorticity distribution throughout the flow field.



After 1 inearisaticm the equations of motion and cx»itinuity 

conditions together with the associated bound£u:y ccxiditiOTis are 

formulated in the design space in %4iich the nozzle is 

treuisformed into a cizoul£u: tube or cylinder, see figure 1.2. 

The numerical process to ¿proximate these equaticxis will be 

based on the finite element method as introduced by Davies

(1980) and put into practice by Bishop (1982). Ihe nature of the 

s h £ ^  of the tube in the design space allows for an autcxnatic 

mesh generation algorithm to be applied % ^ c h  would enable the 

ecjuaticxis to be solved using a relatively sirnple discretisation 

scheme.

This wor)c could then be extended to use the secendcury flew 

as a first approximaticxi in a cjuasi-iteratlve scheme which would 

be able to include the effects due to viscosity in the boundary 

layer. To efficiently perform these iteraticxis a system of 

nested levels or grids of finite element spacres it is suggested 

cxxild be set in a manner simileu: to the multi-level adaptive 

technique of Breuidt (1977).

1.1.2 Flow Equaticxis

Initially %#e shall restriert our investigations to that of a 

fluid flow with a low viscx>sity then, according to Prandtl, the 

effeert of the internal friertion is only appreciable in a narrow 

region surrounding the bcxindary. From this hypothesis the flex«/ 

cxitside this narrow region may be cxxisidered to act as an ideal

10



fluid. Ttius if we consider adiabatic flow in which no heat is 

transferred then this boundary layer remains thin émd the ideal 

fluid flow results may be used as an approximation to the true 

fluid flow. It should be said though that if the fluid undergoes 

a rapid deceleraticxi the boundary layer may eaqierience some 

separation.

Since we are for the time being considering a two 

dimensional flow then accordingly any velocity w  can be written 

in terms of the separate coirponents u and v in the x and y 

directions respectively. Steady flow occurs v*ven conditicxis at 

each point does not change %^th time, i.e.

6 w ^  6p „ 6 p ^  6 t——  = 0 , “7—  ~ 0 , ——  = 0 , “  - O f6t 6 t  6 t  6 t (1.1)

v^ere p , p, and T are the density, pressure, and temperature 

respectively and t is the time. If we further make the 

substitutions

u = qcos^ (1.2)

£UX3

V = qsin^ (1.3)

then it is possible to show that

6>y 6 ^
6<p * q

(1.4)
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and

li

-1 6<pq) _ 6{y
p2q 6ip 6(|>

(1.5)

where ^ is the potential and the stream function [as 

verified in the standard texts such as Batchelor (1967) or see 

Payne (1969)].

i J

To sinplify these equations still further we make the 

substituticxi

dL = - - d q
q

Then equations (1.4) and (1.5) become

(1.6)

I
6L (1.7)

and

1 6(pq) 6l
p3 6 q 6\p

6 ^ (1.8)

Payne (1969) has shown that for subsonic flow this latter 

equaticxi may be closely a^roximated by

(1.9)

Ihis substitutim in turn allows L to be w i t t ^  as am explicit

12



function of q since, for adiabatic flew, the density-speed 

relaticmship is given 1:̂

. 1/(Y-1)p = [l-(Y-l)q /2] (1. 10)

vrfiere for a hot gas the coefficient Y  is taken to be 4/3. That

IS

p = (l-qV6) . (1. 11)

Tlierefore L may be explicitly written as

L = -logq ♦ q^/4 - q ^ 4 8  ♦ q^/1296 (1.12)

Ulus under these assumptions Isoth L and ^ satisfy the 

Cauchy-Ri^nann equations and hence Laplace's equaticxi. However 

for the prc^l^ under ccxisideration here the speed q may be 

prescribed on part of the boundary walls so that L is also ioiown 

there and we shall attempt to solve

«it ♦ . 06ipi 64>> '
(1.13)

with the a^ropriate boundary conditions defined 1:̂  this 

prescribed velocity distributicxi alcxig the channel walls. In the 

physical (x,y) plane the velocity q is given together vdth the 

value ^ which is the difference between the avereige flow angle 

on inlet and outlet, see figure 1.1. The aim is thus to 

determine the sh2^  of the channel %«alls and the internal flow

13



by solving equation (1.13) for L in the flow function pleuie, 

i.e. the plauie, in v^ich the flew field becomes a

rectangle.

Having found L the corresponding values of the speed q can 

be found by inverting the L-q relaticxiship such that

q = f(L) . (1.14)

This can be achieved by approximating the inverse function f, 
and in peurticular here we use functions f a n d  in the form

f^(L) = e' (1.15)

£md

f2(L) = (1.16)

where )c is a constant and the functicxi | is given by

n
S .

j=0
(1.17)

Data was generated and the inverse functions were obtained by 

fitting the data in a least squares sense using the statistical 

paeJeage GLIM. After a thorough investigation for the range of 

values which arise in this particular problem it was 

ascertained that the best results were obtained by using the 

function f 2 (L) when )c*-1.7, the least squares error being given

14



by E=0.4xl0 . Ttie coefficients of the polynomial in this case

eure given, with n=8, by

aQ=0.35 , aj^=2.91 , a2=-1.43 , a3=5.32 , a^=-3.80

aj=2.21 , ag=-0.45, a^=0.12 , ag=0.01 . (1.18)

If further restrictions are made on the variation of the speed 

then the GLIM package allows for a fast solution to find the 

best alternative functicxi f (L).

It is then possible to find the value of ^ at any point 

required by numerical integration of L with respect to first 

and then <p using the Cauchy-Ri«nann equaticxis.

This type of £^)proach to the prc^l^ of nozzle design was 

used Frost (1976) to calculate the flow for a two dimensional 

channel using a finite difference scheme but an extension to 

three dimensions using this method wsis not deemed to be viable 

due to the leurge aunount of coirputational time necesscury. 

Consequently in this thesis a finite element idealisaticxi of the 

prcAilem is proposed whic^ vdll allow flexibility of the method 

to cover flow in general pipe bends iDy reducing the cocrputer 

time with the application of efficient algorithms. This finite 

element approach, it is suggested, can readily 1» extended to 

cover a three dimensional flow in a way vhich could conceivably 

be feasible given m o d e m  computer technology.

15



1.1.3 Boundary Conditions

In the flow function pl2uie the flew field is a rectangle 

eUKi without amy loss in generality we may choose (j* to lie 

within the range Tl/2> >0. In the »p direction the flow is 

bounded by two equipotential lines at »P=U and <p=D denoting the 

upstream and downstream boundaries, Ihe range of tp such that 

A< <p <F is determined by the distribution of q on the channel 

walls and to distinguish between the two walls the subsripts p 

and s are used to denote the pressure and suction surfaces 

respectively, see figure 1.1.

Now since L and ^ satisfy the Cauchy-Riemann equations if 

we consider the conplex function F (w) =L+i ̂ , viiere w= vp ♦ i , 

then F(w) is analytic and by Cauchy's theorem

F(w)dw = 0 (1.19)

for any closed contour C taken to lie within the flow field. 

Then equating real peurts of equaticxi (1.19) gives

Jlidip - ^d(|> = 0 . 
C C

(1.20)

If we now COTisider C to lae the contour round the flow domain 

this yields

r 'Pd

/ - JV
%

^  * J L ay  ♦ Y  D 0 , (1. 21)
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v^ere

L = L ( ) = L( vprO)s s
L ~ L =L(vp»TC/2) t

P P

and where r^resent the average flow cuigle an inlet 

and exit respectively. Itiese integrals may be divided into 

separate integrals along the channel walls and since the 

velocity is prescribed for A>^p>F, q elsewhere chosen to be a 

constant such that the speed is ccxitinuous throughout, if we let

= L(ip,0) -  L(<p, Tl/2) ;

L = L(vp,0) -L{0),Tl/2) ;2

then it can be shown that

r“’?
(VLp)d<P Tl

' V ^ d ’ ■ '•’A h  * '
<P,

Furthermore if we nake the change of variable

(1.22)

then this leads to the expression

i

--Pa ' / < V Lp)d« T ' W - ' P aV " P d- V ^ 2

17



Ttiis last change of vauria^jle is performed since the velocity 

distribution is usually given in the form of a graph of q 

plotted against ip . For a given q the corresponding value of L 

may be found using the relaticHiship of equatic»i (1.5) and hence

from this latter equation the interval^) -<P may be calculated.F A
Once the interval in \4iich the speed has been prescribed has 

been found L may be calculated throughout the flow field by 

solving the boundary value problem by using the finite element 

method, subsequently being evaluated by numerical

differentiation and integration of the Cauchy-Riemann equation. 

Finally the L-q relationship can be inverted to give values for 

q throughout the flow field.

Now since it our intention to assume that the walls of the 

streamtube are in fact streamlines we need to be able to 

calculate their shape. The function ip is such that

dip = qcos•^dx •»qsin'iydy . (1.23)

If we let s be the arc length measured alc»ig a streamline then

dip « qds , (1.24)

and similarly if we let h represent the arc length measured 

al(X)g an equipotoitial line then

d(|) « ^  qdh (1.25)
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with the ccinplete distribution of q and ^ now known it is 

possible to integrate the equations

dx = cos<&d(p / (kq) (1.32)

and

dy = sin‘i^dO/(kq) (1.33)

along the streamlines to evaluate their shape in the physical 

pl£uie.

1.1.4 The Finite Element Method

a) Introduction

The finite element method is now a standard numerical 

procedure for the solution of partial differential equations and 

is adequately detailed in ai^ number of text b o c ^  including 

Davies (1980), Bathe and Wilson (1976), with many programming 

hints given in such texts as Hinton and 0#en (1977). As 

explained in the preface the finite element codes %#ritten for 

the specific purpose of the boundary value problem in this part 

of the thesis were in fact more general but this adaptability 

shall not be reported here, the interested reader should consult
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the Reports by the author [Bishop (1982)1. However in this 

sectic»! some ideas shall be laid out in the light of the authors 

oxperience to clarify some of the points of interest that arise 

when creating any finite element software.

Tiie idea of setting \ip a finite element pac)cage to solve 

any nuirber of problems is a massive undertaking. At the outset 

it may be best to construct the program in modular form so that 

initially a simple case may be solved and thereafter subroutines 

added to increase the conplexity of approximations possible. Hie 

following remarks aoce merely to be borne in mind when developing 

a program which might act as a general finite element solver.

For greater versatility the finite element codes should be 

based on a general weak formulation so that problems for which a 

variational does not exist may still be solved using the same 

method (the term 'weak' originates from the process of choosing 

an approximate finite dimensional subspace and does not indicate 

the numerical solutions inability to mirror the true solution). 

Since the conpleted code or package may be used by someone who 

may not be conversant with the finite element terminology it is 

preferable to require as little apriori information as is 

possible. Thus having input the differential equation to be 

solved and the geometry of the problem the code should 

automatically produce a mesh viiich gives optimal accuracy vdthin 

a prescribed conputational cost. If possible error estimates 

should be given, although it should be pointed out that the 

error of the corplebe solution nust be sought since the error in
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the numerical calculaticMis may be small vAien conpared with 

errors introduced by an oversinplistic model.

In order to solve many given problems it soon becomes 

necessary to develop a subroutine for the efficient soluticxi of 

the resulting equations. This is mainly due to the storage 

restrictions of most conputers and thus to reduce the storage 

the solution subroutine should only store the non-zero 

coefficients and the process of elimination should produce as 

little 'fill-in' as possible. If this is done then the method so 

produced will be of use to those small users who previously 

were unable to attenpt such airbitious problems.

b) Solution Routine

f-^nite element method usually produces a set of linear 

equati(xis %diose matrix of coefficients is large and sparse. 

There are several solution routines, both direct and 

i^0 rative, for such systems %«rtiich attenpt to minimise the amount 

of overall conputation emd storage required. Direct corpariscxis 

of the vaurious methods is not strai^tforward due to the 

coitplexity of the algorithms and perhaps the only real test 

would be to conpare CPU times for the different methods. The 

matrix involved is usually banded such that if a i s  an

element of the matrix then a^j-O when |i-j|>M, say. The position 

in the natrix corresponding to a particular point of the defined 

problem depends on the nodal ordering so that if D is the
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maximum difference between amy two such nodal numbers within the 

element discretisation chosen then the bandwidth M is given by 

M=D+1. Thus cleaurly nodal ordering is of prime importance and it 

is not a trivial prcAjlem to decide on a mesh for a particular 

prc^lem.

Various methods of solution are discussed in Barker (1977) 

and one such method particulary efficient is the so called 

frontal solution method originated by Irons (1970). In this 

method the fact that the input of the coefficients to the system 

of eguations is element by element is utilised so that the 

system need not be constructed esgjlicitly but elemental 

coefficients au:e assembled into the system and modified as socxi 

as is possible. If an equation is conpletely formed then the 

corresponding variable is eliminated and the reduced equation is 

then stored on a backup file until it is required in the 

backward substitution process. This method then uses less 

storage than typical banded solvers but it does involve a 

certain amount of programming details ('housekeeping'). At any 

pgy^iculsur tims the core wily contains the coefficients of any 

equations still being formed, this core being referred to as the 

'frait'. When a new element is to be caisidered its local 

stiffness matrix is read from a disc file of data and summed 

either into existing equations or forms a new equation if the 

node is appearing for the first time. If a node has appeared for 

the last time and the corresponding equation is fully formed 

then it may be eliminated and transferred to disc leaving space 

in the front for further equations. Thus the size of the front
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changes during the process up to a maximum depending on the 

bemdwidth M.

Clearly the actual elimination is not performed like 

strai^tforward Gaussian elimination, i.e. sequentially, 

equations 2u:e not physically sws^jped but instead pointer vectors 

are utilised. Furthermore if the matrix is symmetric savings are 

made by only storing the upper triangulau: portion in vector 

form. Itie interested reader should consult the v#ork of Irons 

(1970) or perhaps see the book of Hinton and O æ n  (1977).

In the frontal solution method the last appearance of a 

nodal number in the front depends on the order in which the 

elements are summed. Wius the nodal numbering is of little 

consequence, an advantage here being that automatic mesh 

generators to give optimal elemental ordering take less time 

than optimal nodal ordering since the number of nodes may be 

considerably more than the number of elements. Also if a local 

mesh refinement is required there is no need to renumber the 

nodes. Despite the obvious tedious housekeeping required to 

iitpliment this method those concerned with future developments 

should note that full indexing in the innermost loops of the 

method makes it possible that the method is capable of 

vectorisation.

It should also be noted that the routine need not 

necessarily be restricted to symnetric systems however for 

particularly large problems iterative schemes may have to be
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enployed.

c) Essential Boundary Conditions

When a boundary node has a Dirichlet or essential boundary 

condition at which the solution is given, i.e. u(Zj^)=p say, p 

known, then the global stiffness matrix becomes singular. This 

then requires the routine to either to enforce this condition 

and solve the resulting equations or it is also possible to 

calculate the reaction necessary to counterbalance this effect. 

For a typical problem

Lu = f (1.34)

in which L is a symmetric, positive definite, linear operator, 

then after the essential boundary condition has been taken into 

account the resulting global stiffness matrix will also be 

syitmetric and positive definite. These properties can lead to a 

more efficient solution routine but only if the kth row and 

column of the global stiffness matrix are not formed. Thus a 

certain amount of reordering is necessary but the final matrix 

will at leeist be of minimal size.

Alternatively the reaction at ẑ  ̂can be calculated and the 

method can wor)c with the full sized matrix, as does the frontal 

method. It is also possible to set the kth row and oolunti to 

zero except the diagonal element v*iich is set to unity, the
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corresponding term in the load vector would be set to p. One 

further possibility is to multiply the diagcxial element aj^ by a 

large number ̂ 1 0 * say^ and the load vector term would then be 

multiplied by a xlO^^xp* It is then envisaged that with this 

procedure the rounding error during backwEurd substitution 

remains small and the numerical solution gives U(:^)=u(^)=p 

(note though that this system will not be positive definite) •

d) Mesh Generation and Multigrid Methods

With regards to the prc^lem of the discretisatiwi of ar^ 

particular problem there are two questions that need to be 

answered. What is the best mesh for the problem at hand? and 

given such a mesh what is the best elemental or nodal ordering?. 

Vaurious schemes have been developed to reduce the storage 

required in different ways? see Cuthill and Mclcee (1969) for a 

minimal bandwidth algorithm, or AJcin and Pardue (1976) for a 

minimal frontwidth algorithm, but the first question provides 

the most fundamental problem.

For certain problems an experienced finite element wor)cer 

may be able to heuristically decide cxi a mesh needed to achieve 

a required aocuraicy. This is not always possible and the mesh 

description, being at the pre-processing stage, can very easily 

lead to gross inefficiencies. Either a mesh will be chosen which 

is too coarse and the approximations vdll be poor resulting in 

the need for a second discretisation, or too fine involving
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excessive corputational costs. Hius it would seem that the only 

realistic vgay of formulating a general purpose solver would be 

in terms of an adaptive scheme which requires little a priori 

information of the solution. In such an adaptive scheme, besides 

the basic geometry, the mesh would become an integral part of 

the numerical solution process producing optimal results within 

a prescribed computational cost (Achi Brandt's 'Golden Rule').

Multigrid methods are not an entirely new concept [see 

Southwell (1946)1 but the application to the finite element 

method is not trivial and owes much to the pioneering work of 

Brandt (1977), and the worlc of Banlc and IXpont (1978) is also 

worthy of mention. In most numerical procedures set up to solve 

continuous partial differential equations the region in vihich 

the solution is required is first discretised. Approximating 

algebraic equations are then expressed in a finite dimensional 

subspace and a numerical routine is then developed to solve the 

resulting system of equatiOTis. Usually no interplay between the 

discretisation and the solution routine is allowed leading to an 

inefficient overall method as previosly explained. Ihe main idea 

of a multi-level adaptive scheme is that an efficient 

discretisation depends on the solution v4iich of course is not 

known. A smooth solution can be approximated by a coarse grid 

whereas an oscillatory solution, or one that contains 

singularities, can only be solved using a finer mesh or grid. It 

being quite conceivable that the solution varies considerably 

within the region which thus requires coarse and fine grids in 

different parts of the domain of flow. The problem can then best
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be solved iteratively varying the mesh at relevant stages to try 

and match the solution. In fact the mesh need not be changed at 

each stage but relaxation schemes can be used to locally smooth 

out the error in the numerical solution. Hence a nultigrid 

method uses a sequence of approximating levels with decreasing 

mesh size rather similar to standard mesh refinement. Hie 

difference being that new levels viien introduced can interact 

with the previous coarser levels with relaxation sweeps and 

interpolations between levels. Hiis not only forms an efficient 

fast solver but also forms a natural flexible way of producing a 

discretisation.
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Figure 1.1 (a) Two dimensional channel flew in the (x,y) plane.

( b ) Flow domain in the design plane.
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CHAPTER 1.2

TWO DIMENSIONAL FLOW

1.2.1 Test Cases

In order to form a useful test for the proposed solution 

routine two test cases have been constructed based on the 

hyperbolic tangent v*iich produce a suitable variation of 

parameters. Hie function tanh ( ̂  +iU/ ) has singularities when 

0  =0 and V|/ = (2n+l) Tl/2 ; n=0 ,^l,+2 ,.. but to remove these

singulaurities from the flow reuige 0<M/<lI/ 2  the functicxi is 

shifted by Tl/4. It is also worth noting that as 0-— ioo the 

function tanhCO-’-iU/-i TC/4) tends to ± 1 independently of the 

value of V  » thus in general we ccxisider a function of the form

L+i-iy = A+iB*»-(C+iD)tanh(0+iU^“i ̂ /4) (2.1)

^o ascertain the unknown cwistants we use the following boundary 

conditions to produce angles of deflection just over 57° and 80° 

respectively.

L at 0  * - 00 

L  at 0  * 00

Case 1 Case 2

1.5 2 . 0

1 . 0 0 . 6
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^  at 4> = - oo 

-jy at ^  = 00 - 1.0

Case 2
0.0

-1.4

New L and ^ are given explicitly by

L = A ♦ CsinhOcoshO - DsinU/cosU< 
cosh* ̂  - sin* l|/

ai)d

(2.3)

= B + DsinhOcoshO CsinU) cosW 
cosh*^ - sin*vy

(2.4)

Then if the pipe turns through an angle r radians during the 

flow passage and if we assume that the flow approaches parallel 

to the <p axis then

l i m a s  4)— ►-oo = B - D = 0 , (2.5)

so that B=D and also, considering the value of ^ as 0  — ► oo, it 

cam he seen that

B « D = -r/2 . (2 .6)

If the approach and exit angle are further denoted by and Lj, 

respectively then by considering the limiting values of L yields

A - (Lg*L^)/2 (2.7)

32



and

C = (L - L ) /2 . E A
(2 . 8 )

•mese cxjnditions lead to the following functions to be used

as test cases

= 1.25-0.5i-(0.25-*-0.5i)tanh( ♦•^i\y-iTC/4) , (2.9)

euid

F = 1.3-O.7i-(O.7+O.7i)tanh(0+iU)-in/4) . (2.10)
2

The range of 0  may also be further restricted so that L on the 

upstream boundary is 99% of the value of L when ^ =-oo, 

simileirly for the downstream bound£UT^. With this restricti<»i the 

range can be limited such that —2.5<0<2.5.

Although alternative test functicxis can easily be defined 

these particular test cases have been set up to have typical 

variations of L, and hence the speed, along the boundaries 

\|)=0 , Tl/ 2  usually associated with chamnel flow see figure 2 .1 .

1.2.2 Calculation of L

Finite element programs v»ere written to solve the boundary
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value prc^lem for the speed related variable L using a variety 

of elements, rectangular and triangulan:, as well as using 

differing a^)proxiinating trial functions. Ihe decisic»i to use a 

paurticular element is often related to ones background; 

engineers choosing rectangular elements v ^ l s t  mathematicians 

favour triangular elements. Tiie actual numerical difference 

between the two sha^)es is small for the problem at hand since 

the region is regular but if this %#ere not the case perhaps 

triangular elements have the edge being able to match a boundary 

more closely. Once the dioice of element sh^ie has been decided 

there still remains the questiwi of vAiat a^jproximating function 

to use within the element. TO provide a guide for the answer to 

this question the program was executed using three different 

trial functions with approximately the same number of unknowns 

in each case, the numerical results being given in table 2.1. As 

might have been envisaged the quadratic approximation produces a 

closer fit to the true solution than the linear trial functions. 

The choice between the 8 noded and the 9 noded quadratic 

elements is much harder to decide. Typically the 8 noded element 

gives a closer approximation, a surprising result perhaps and 

from whence it gets its name the 'serendipity' element with a 

Euclidean error norm calculated by evaluating the residuals at 

each node given by 4.9xl0"^. However, since for the particular 

problem at hand the values of L obtained by the finite element 

program will be subsequently used in further numerical processes 

the presence of the centre node vdll prove useful and prevent 

the need for interpolation at this point. Higher order elements 

were not utilised at this stage bearing in mind the overall need
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for sinplicity, and the proposed esctension to three dimensional 

design.

Ihe error in the a^roximatiai could naturally be reduced 

still further increasing the number of unknowns, i.e. 

considering a smaller mesh, but if the number of unknowns 

exceeds 500 the frontal solution would have to be employed in 

the solution of the resulting equations. As is always the case 

in numerical work the gain in accuracy of the solution must 

always be compared with the extra work time and effort required 

to do so. In other words, except in certain one off calculations 

where accuracy is of vital importance, the amount of 

coirputational work should be proportional to the amount of real 

physical change in the corputed system.

1.2.3 Calculation of

In order to determine shape of the channel walls the value 

of is required, and particularly the results along the

streamlines vy= 0 and ly = H / 2 . This then requires the integration

of the Cavx:hy-Riemann equations . Firstly the derivative

6 L / 6  4) is calculated at each node using standard numerical

differentiation schemes using the fact that L satisfies I^laces 

equation on the boundary. Ihe value of is then found by 

numerically integrating along the streamlines. Although there 

exists several schemes for numerical integration the input to 

any surtí program to perform this task depends on the mesh chosen
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during the discretisation. This mesh may not be conpletely 

regular throughout the domain and hence subsequently discounts 

some of the integraticMi routines which require equally spaced 

data etc.. For this reascxi a new scheme is proposed based cwi the 

interpolation to the data using piecewise rational quadratic 

functicxis.

The problem is thus how do we integrate a function given by 

a data set which might not be equally spaced?. The use of siirple 

schemes, such as the trapezoidal and Sinpson rules, may also 

prove to be over simplistic especially as the function we are 

trying to integrate may cc»itain re^id variations. TO arrive at a 

more accurate solution it would seem appropriate, at first, to 

use an interpolation routine to produce an approximation to the 

function which is sufficiently accurate, in some sense. Clearly 

with no knowledge of the function itself the measure of error 

becomes somewhat heuristic but it is felt interpolation to any 

set of data provided by a piecewise rational quadratic function 

is particularly 'close*, by eye at least, and so this will form 

the basis of the numerical integratiOTi routine.

Vfe shall thus COTisider an interpolating polynomial which 

approximates the data (x^,f^)? i=l,2,...,n given by

s(x)

P4 (y)/Q.<y) t A > o

Í A ^ - 0

(2. 11)

v4>ere
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hi = Xi^i-Xi

y = (x-Xi) /hi

and

P i(y)/Q i(y) = f i+  ( f i^ i - f i>  i A iy *+d iy (l-y )l , (2.12)

Ai + (di^i+d^-2Ai)y(l-y)

in which are approximations to the derivative of the function 
f (x) at x̂ . Full det£dls of this method can be found in Gregory 
and Delbourgo (1981) or alternatively in the report by the 
author Bishop (1984b).

When integrating this approximating function there are 

initially two C£ises to be ccxisidered, either Ai=0 or not as the 

case may be. If A i = 0  then

Js{x)dx. = hifi (2.13)
*i

and %ihen Aĵ  ̂ 0 we consider the integral
1
V i L d y .  (2.14)

^ Qi(y>
* 1  0

■men from the definition of the interpolating polynomial we see
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where

I = h.f, ♦ h,R/C 1  i i
+ N

^ A+2By+Cy* 
0

dy (2.18)

M = T-2RB/C 

N = -RA/C .

There are then three different solutions depending on the value 

of the terms A,B and C as follows (see Gradstein and I^shik 

(1980)1:

A O B

I = h^(f^+R/C) ♦ h^ l^logl (A+2B+C)/A| 

+ h^)c(tan"^^ - tan“^2 (2.19)

in which

y(AC-B ) 

(NC-MB)/(9C) 

(C+B) /S 

B/S .

AC<B

hi(f^^R/C) ♦ h^|^log|(A+2B+C)/A| j
♦ h^Klog (C*B-S) (B^S) 

(C+B^S) (B-S)
(2.20)
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v^ere

S = y (B -AC)

K = (NC-MB)/(2CS)

AC=B

I = h^(f^+R/C) + h^|-^log| (a -̂ 2b -k :)/a | I

h^(NC-BM)/[B(BC)] (2.21)

A program was written to employ this approximate

integration scheme and various tests were performed comparing

its performance with other forms of numerical integratici

schemes the results of which are reported in Bishop (1984b).

Hence utilising this scheme of numerical integration ^ can be

calculated at each point in the flow field producing results
—4with comparable accuracy as those obtained for L, i.e. 0(10 ).
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Figure 2.1 Speed variation along the channel vails in the design

plane for the test functions (a) and (b) F2 -
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CHAPTER 1.3

THREZ: DIMENSIONAL FLGW

1.3.1 Secondary Flow

Tto obtain a soluticm to the flow of a fluid in a pipe the 

flow passage is divided into a thin boundary layer near the wall 

and an inviscid potential flow outside this region. In some 

cases this division is not always possible and the effective 

boundary layer covers most of the flew region. For an inviscid 

fluid conditions when this separation is possible can be put 

into three categories; an irrotational potential flow, 

rotational flow but with a uniform stagnation pressure, and a 

flow with a non-uniform stagnation pressure.

If we assume an irrotational flow then the curl of the 

velocity vector is zero from which the potential function may be 

found. This irrotational assuirption is equivalent to the 

stagnation pressure being the same along all streamlines but in 

practice this stagnation pressure varies from one streamline to 

another. We may define the secondary flow to be the difference 

between the actual flow and the potential flow and consequently 

the secondary flow must contain vorticity as well as including

the effects due to viscosity.
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Now since the vorticity is the curl of the velocity 

vector then this vorticity must arise from a velocity gradient. 

A non-uniform velocity distribution in a strai^t pipe will 

already contain vorticity in the flow and if this flow passes 

through a bend the vorticity will still be present, i.e. any 

vorticity need not necessarily be due to the bend itself. To 

study the effect of the bend cxi the flow v#e assume a small inlet 

vorticity and the secondary flow a^roximation is then found by 

considering the secondary flow to be a linear perturbation of 

the potential flow, neglecting any second order effects.

If we further assume the fluid to be continuous and 

homogeneous then the flow of the whole fluid is characterised by 

the flow of a small elemental volume. Each fluid particle cannot 

be treated as a solid body as it is continuously being deformed 

and influenced by neighbouring particles. However, as this 

element of volume passes round a curved path the force acting 

upon each particle within the element is proportional to its 

velocity squared and inversely proportional to the radius of the 

path of curvature. Hence the particles on the inside of the 

element, with respect to the bend, will experience a greater 

force than those on the outside, away from the bend, and these 

are consequently forced towards the outside so that particles 

with a higher stagnation pressure also migrate towards the 

outside of the bend. These forces act perpendicular to the 

lof^itudinal axis of the bend itself and create a motion in that 

plane. The presence of a secondary flow represents a loss of
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energy since Kinetic energy of the axial fluid has been used to 

produce this perpendiculeu: moticwi auid a better understanding of 

this flow could be used to good effect in reducing any such 

energy losses.

Veurious authors have allied a seconcUury flow aipproximtion 

to different situaticxis and Hawthorne (1965) has produced an 

excellent sunmary of nany of the relevamt pe^iers. However, for 

conpleteness and to put into perspective the new method 

introduced here we shall discuss some of these in more detail.

Squire and Winter (1951) used a approximation to calculate 

the secondary flow in a bend where the potential flow was 

approximated by a free vortex flow with outlet flow far 

downstream. In this paper and in the paper by Detra (1953) 

restrictions are placed on the ratio of the cross sectional 

width of the diannel flow to the radius of curvature of the 

bend. Eichenberger (1953) applied similar techniques but used 

two coaxial cylinders to produce the required flow while 

Lighthill (1956) was the first to offer a more rigorous approach 

for the flow past an isolated obstacle. In the wor)c by Lighthill 

he cOTisidered lines or surfaces of material, drift lines or 

drift surfaces, and applied the Helmholz vorticity laws to 

establish how these lines might move with the fluid and hence 

calculated the convectiai of the upstream vorticity by the 

potential flow. A further assumption made was that the shear was 

small, hence the vorticity was small, so that the vorticity is 

convected by the potential flow. The secondary flow is then the
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s€une orc3er of nagnitucJe as the sheau: 2uid any change in vorticity 

due to a ccxivecticxi by the sec<»idary flow will be of seccaid 

order and hence may be neglected.

Ttius in order to investigate the coirplete vorticity 

distribution for the design of a nozzle we shall use the 

Helmholz vorticity laws amd a method aJcin to that used by 

Lighthill.

1.3.2 Vorticity

For an inviscid fluid the vorticty can be thought of as 

being coventrated on sheets or along lines. Kelvin s Theorem

states that

^ r = r<
d t ' d t  J

q d X  = 0 (3.1)

r  is the circulation and d/dt is the material derivative 

which includes the change in positioi as well as the c^iange in 

time. More precisely the value of the integral does not diange 

during the motion if the curve C is carposed of the same 

particles so that the circulation has a constant value for each 

curve. Thus the continuity equation, divq«0 for an

inconpressible fluid, together with Kelvin's Theorem describes 

the motion of a perfect fluid with pressures being evaluated by 

the use of Bemouilli's equation.
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If Vie divide the area enclosed by the curve C into small 

elements then by Stokes' Theorem

dA (3.2)

where U) is the vorticity. This integral gives the relationship 

between the vector field of velocity, q, and the deduced 

vorticity field so that at each point in the fluid we have q and 

U) . A vortex line is defined to be a line such that at each 

point in the fluid its tangent line coincides with the vector 

0) at that point. All vortex lines through a closed curve 

say, give a vortex tube.

Ccxisider a curve cxi the surface of a vortex tube on

which the local vorticity component normal to dA is zero so that 

r  =0. At some time later the vortex tube will be in a different 

position and the particles that formed the curve will now 

form a new curve say. By Kelvin's Theorem T  =0 on € 3  and

since was arbitrarily chosen this means that T  = 0 and o) =0  

at any point on the new tube surface implying that the new tube 

is also a vortex tube. Thus fluid particles coinciding with a 

vortex tube at any instant must do so permanently. By

considering a cross sectional area of a tube that tends to zero 

we have also shown that a vortex line remains a vortex line.

The integral in equation (3.2) has the same value for any
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cross sectic»! of the vortex tube; this fact leads to the second 

Theorem of Helmholz, namely that the vorticity of any vortex 

tube is unchanged during any motion.

The proofs of both of the Helmholz laws hold for steady and 

unsteady flow, corpressible or inconpressible, the cwily 

restriction being that the relationship between the density and 

the pressure is a sinple one with the density independent of the 

tenperature, i.e. baratropic.

A COTisequence of these Helmholz laws is that if a material 

line coinciding with a vortex line is extended over a portion of 

its length the ¿issociated cross sectional area of the vortex 

tube must decrease to satisfy the conservation of mass and thus 

the vorticity must increase. Ihe length of a line element and 

the magnitude of the local vorticity thus remains in the same 

ratio. Hie magnitude and the directicMi of U) in a material 

element change in the same way as that of the vector 6 X  of a 

material line element which was coincident to the local 

vorticity at t^, say, and as 6 X — ► 0

u) (t) 6 X(t) (3.3)

|w(t,)| l6X(t^)|

Hiis relationship linics the vorticity at any point in the fluid 

to the vorticity on the upstream boundary. Hiis introduces the 

concept of how a line or surface of particles moves through the 

fluid and how it changes with time. Similar ideas were first
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introdvx:ed by Darwin (1953) ani developed by Lighthill (1956) to 

calculate the vorticity distribution so that lines of ccxistant 

tine t can be described throu^out the flow field and it is 

suggested here that a similar approach could be used in the 

design of a general pipe bend at nozzle.

1.3.3 The Construction of a Three Dimensional Flow Model

The mathematical construction of a streamtulDe may be 

achieved by intoedding the kncMn two dimensional channel flow 

jjito a pseudo three dimensional model. We consider a flow with 

a circular inlet whose plane is perpendicular to the (x,y) 

upstream plane with the upstream boundary of the flow forming a 

diéuneter of the circle. The streamlines intersecting this circle 

will traKre out a streauntube throu^xxit which the carplete flow 

is )cnown. This mathematical construction results in a nozzle 

which has a general three dimensional appearance but it is 

peculiar in that a uniform flow approaching the tube will then 

proceed through it in a two dimensional manner with flow 

conditions constant along normals to the design plane. With this 

)cind of construction if we let Z= Tl/2z then the ordered triple 

( 0  rU) rZ) form a system of orthogonal curvilinear coordinates in 

which the flow tube is transformed into a cylinder. Thus any 

calculations perfomed in this new design space have the 

advantage that mesh generation for any finite element schemes 

will be able to utilise this simple geometry to produce optimal 

element or nodal ordering %dth only a relatively small
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conputatiOTial cost. Detailed evidence of these calculatic»is 

shall not be produced here but it is thought that this 

integrated approach to the coitplete calculatiai of the flow 

vd.thin a general pipe could feasibly be £K:hieved, particularly 

with the use of full multigrid finite element routines as 

suggested in the previous chE^»ter.
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CHAPTER II.1

AN INTROiXXmON TO NONLINEAR DYNAMICS

II.1.1 Background

An n dimensional dynamical system is one which can be 

described by a system of n ordinary differential equations;

~ F^(x^fX2 ».. »X /t) t i=lf2 f..n n (1.1)

A dot denotes differentiation with respect to the time variable 

t and if t does not ¿^;pear ejq)licitly in the nonlinear functions 

then the system is said to be autonomous. Many texts are 

available for the study of such systems (Jordan and Smith (1977) 

and Nayfeh and Moo)c (1979) to name but two) but it is the 

classification of bifurcations and the field of chaotic dynamics 

that aure of most recent interest (see Abraham and Marsden

(1978), Guc)cenheimer and Holmes (1983) and Thompson and Stewart 

(1986)1.

Originally the use of such systems was restricted to the 

field of celestial mechanics but today the study of periodic 

processes and oscillations is of a wider inportance to engineers 

and scientists alDce, for instance to predict fluctuations in 

concentrations of white blood cells or to reduce destructive
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vibraticMis of offshore platforms [Lighthill (1986)1. Following 

wor)c by the e¿u:ly astronomers Poincare e^lied his ccMisiderable 

intelectual weight to the subject with an abundance of papers 

(Poincare (1892)1 in the hope of answering such questions as

••Will one of the bodies (planets) always remain in the region 

(space) or can it escape to infinity?"

or more qualitatively

"Does the system (describing planetary motion) posses integral 

curves which form closed paths which perhaps correspond to a 

given equilibrium state, stable or unstable?"

Poincare was particularly interested in the t^)ological 

structure of dynamical trajectories in the phase plane described 

Ijy the variables and t.

For simple physical situations we may use a system of 

linear ordinary differential equations as a mathematical model, 

but for more conplex arrangements nonlinearity is unavoidable. 

As a cœîsequence the behaviour of such nonlinear systems can be 

extremely complicated and it is instructive to consider the 

typical instabilities that they might undergo or exhibit during 

the course of dynamic motions. It may also be that the problems 

of physical interest have parameters which appear in the 

defining system of equations and, as these control parameters 

are varied, changes occur in the qualitative structure of the
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solutions, in which case the system is said to have undergone a 

bifurcation. It is our intention in this work to look at such 

typical or generic events by restricting our attenticHi to the 

study of two dimensicxial {^lenomena.

11.1.2 Centre Memifold Theorem

Fortunately to help justify such a sinplification to two 

dimensional systems the Centre M£mifold Theorem provides a means 

of reducing the dimension of the state space which needs to be 

considered when analysing certain bifurcational events [Carr

(1981)1. The theorem is akin to the method of reducing passive 

coordinates often used in the general concepts of catastrophe 

theory [Zeeman (1977), Thompson and Hunt (1984) or see Hunt 

(1986)1; the kasic idea is to effectively isolate the 

complicated asymptotic iDehaviour of a system by locating an 

invauriant manifold (space, surf ace or line) which characterises 

the eigenvalues of the system which are approacliing a state of 

instability.

This idea can easily be viewed in dissipative système in 

that the volume that the enseirble of states occupies decreases 

%^th time so that the topological structure of the trajectories 

in the phase space is much simplified. In other words the motion 

of a complex system sometimes settles down to a final motion 

which may be described by only a few dimensions and any subtle 

or drastic change in the qualitative behaviour of such a system
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caul be chauracterised by low order bifurcational theory.

II.1.3 Bifurcations of Steady State Attractors

Often a bifurcation in the flew of a dynamical system, or 

as we shall see later in the corresponding Poincaire map, can 

cause motions to increase in amplitude or alternatively the 

system may become unstable such that trajectories diverge. As a 

consequence of this latter fact the terms bifurcation and 

instability are sometimes used synonomously.

Now although it is well understood that certain high order 

bifurcations require the coupling of more than one mode or 

control parameter in order that they might occur, it is the goal 

of this work to investigate the simplest models that display 

typical bifurcations, in an engineering or physical sense. In 

this way it is hoped that our increased understanding of the way 

in which such sinple, low order systems become unstable or 

bifurcate will prove a useful guide to the behaviour of more 

conplex dynamical systems. With this newfound knowledge in part 

III we shall experimentally and computationally study the 

dynamic behaviour of certain physical compliant systems taken in 

the main from the offshore industry.

With the aidvent of current m o d e m  computer technology time 

integrated solutions can now be obtained to even the most 

conplicated equations whereas previously only limited analytic

55



closed form solutions were available once a physical system had 

been modelled. The response or solution to such nonlinear 

systems depends intimately upon the initial conditic»is inparted 

to the system. For certain prcA>lems these initial conditicwis may 

be precisely defined however, in other more general fields 

encompassed by dynaunical systems, such as atmospheric air flow 

or the roll motions of a ship, such precision is uncommon. 

Consequently when modelling such a system a study nwst be made 

of all the different possible starting conditions that the 

particulau: system can attain. Usually dissipative dynamical 

systeiTB exhibit a transient motion due to these initial 

conditions after which the motion settles down to some form of 

long term recurrent bdiaviour, called an attractor. In simple 

terms if the motion developing from adjacent starts converges to 

a particular attractor then it is said to be stable. The 

sinplest form of an attractor is the point attractor, otherwise 

known as a fixed point, at which all motion has ceased and the 

system is said to be in a state of equilibrium. A periodic 

attractor is one vjhich characterises a steady state periodic 

oscillation of the system. Such periodic motion can be self 

induced, in which case it is often referred to as a limit cycle, 

or due to some external forcing of the system; in which case the 

motion might either be harmonic, i.e. at the same frequency as 

the excitation, suMiarmonic vdth a period that is a imiltiple of 

the forcing period, or superhaunnwiic which repeats itself in a 

fraction of the forcing period. Chaotic motion is a form of 

stochastic motion %<hic^, despite the fact that it can develop 

from purely deterministic equations, produces 'random' responses
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which have am underlying order described by a strange or chaotic 
attractor (termed 'stramge' since originally the behaviour did 
indeed appeau: to be stramge before both the term amd the 
phenomenon chaos was universally accepted). Chaotic motions 
eadiibit sensitive dependence an initial conditions so that two 
almost identical starts may eventually diverge from one another. 
Althou^ the majority of reseaurch into chaos has so fau: been 
confined to simple mathematical models, experimental examples 
are becoming increasingly common (Moot) .

Equations v^se coefficients are lineau: posses unique 
solutions but the same is not true for nonlinear systems and 
thus the possibility arises of the existence of more than one 
attractor for given fixed values of the coefficients of an 
equation in such a way that the final motion of the system 
depends on the particular chosen initial conditions.

Tto put into perspective just how complicated the motiOTS of 

nonlineaur equations cam be it is instructive at this point to 

consider a form of Duffing's equation and review its behaviour 

as exaunined by Hayashi (1964) amd subsequently by Ueda (1980); 

namely

X )cx x^ * Bcost . ( 1. 2)

Despite the apparent simplicity of this equation the subsequent 
dynamical behaviour of the trajectories is far from trivial and 
as yet is not fully understood %#ith new events even now only
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just cx3ming to light [see Abraham auid Stewart (1986) or Ueda 

(1986)1.

With B zero a stable equilibrium point exists at the origin 

2ux3 trajectories decay cwito this point with a transient motion 

that depends on the level of the d£urping value )c, see figure 

1.1. Thus the origin is a point attractor for all trajectories 

in the phase pl£u>ef here given by (x^x). LiJcewise for 

different values of the coefficients stable periodic motions 

also attract nearby trajectories and shown here in figure 1.2 

are five stable coexisting periodic motions of the system when 

)c=0.08 and B=0.2. This figure shows the periodic steady state 

time history as well as the corresponding phase portrait which 

is the projection of the flow onto the (x»x) plane. The points 

A,B^C marked on this figure are called Poincare points 

cliaracterising the motion, these will be explained in detail in 

chapter II.3.

The set of points in the phase plane that decay onto a 

pgufticulfiur attractor form the domain of attraction or the 

catchment region for that attractor. These regions need not be 

sinply defined in fact the reverse is usually true; to 

appreciate this wie only has to loo)c at the figure drawn by 

Hayashi (1964) which maps out the domains of attraction for 

harmonic motion and subharmonic motion of order 3 (order 1/3 in 

the notation of Hayashi) included here as figure 1.3.

Further to these periodic solutions, rtiaotic motions are
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visible at a variety of values for the parameters k emd B. One 

such motion is shown in figure 1.4 as a time history v*ien k=0.05 

and B=7.5; also shown in this figure in the bottom r i ^ t  hand 

co m e r  is the chaotic attractor (often new referred to as Ueda's 

attractor following the pioneering work of Ueda). Although 

certain sections of the waveform of this figure are similar 

there is never exact repetition and the motion is truly 

non-periodic. It is the mixing and folding of the chaotic 

attractor as the phase angle of the Poincare section is varied 

that leads to the divergence of aKljacent starts as illustrated 

in figure 1.5.

Thus for each different set of values for the parameters k 

and B it is necessary to search the phase plane to establish the 

possible existence and vAiereabouts of the different stable 

attractors. For this particular equation, although quite simple, 

this study forms a mammoth investigaticxi; the main part of vhich 

has been carried out by Ueda (1979) and is summarised here in 

figure 1.6. The five periodic soluticxis of figure 1.2 correspond 

to the region (a) in this diagram while the chaotic response 

considered is in the region (k).

This figure shows a vdde variety of possible final motions 

of this so called 'simple equation' and alarmingly, after over 

20 years of study of this particular equation. Professor Ueda 

still privately admits that some of the areas of this figure 

have not been thorouc^ly explored. It seems very likely that 

such rich complicated bdiaviour would exist in most nonlinear
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equations ¿md the laurge aureas of chaotic solutions in this last 

figure indicate that this E^ienomenon is not an untypical event 

indigenous to this equation and consequently chaos should not be 

flippamtly discaurded as a purely pathological feature.

The type of notion that this equation (1.2) esdiibits thus 

depends on the position in the ()c,B) space that the paurameters 

happen to lie, together with the initial ccMiditions impaurted to 

the system. If k and B are now allowed to vary, modelling some 

variability or evolution of the physical system, then the path 

taicen by the parameters can cross one of the arcs in the (k,B) 

space delineating the regions of the paurticulaur solutions. If 

this were to happen then the motion of the system will settle 

down onto a qualitatively different behaviour; and such change 

is called a bifurcation (i.e. a more general definition than the 

word suggests).

II.1.4 The Analysis of Nonlinear Systems

The analysis of nonlinear systems is in some repects 

similar to that of linear systems (Luenkierger (1979)), for 

exanple when approximating a nonlinear system by a linear system 

to establish the stability of a fixed point. Differences arise 

though in that new phenomena exist, li)ce chaos, a junf) to 

resonance or a limit cycle, that are not possible in a linear 
system.
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The object of nonlinear analysis is not to be over rigorous

in seeking detailed solutions but rather to discover certain

events or jrfienomena that characterise the behaviour of the

system. Generally we seek a suimarizing function that si:ppresses

detail providing a reflection of the broad outline of the

critical aspects of the system. A summarizing function is a

function of the state parameters x .x .... x ,t and as the1 2  n
system evolves this function takes on vaurious values conveying 

certain information 2dx)ut the system. It may be that it is 

possible to write down simple low order equations that resemble 

this summarizing function so that an analysis of these simpler 

equaticxis in some sense gives a summary of the auialysis of the 

entire system. This idea was first systematically introduced by 

Lyapunov (1949) and as a consequence summarizing functions are 

often called Lyapunov functions.

The main criteria for a summarizing function is that the 

function must decrease continuously towards a mininwm as the 

system evolves, though this minimum need not necessarily be 

zero. In general there is no easy way to find such a Lyapunov 

function, and it need not be unique, however often a function 

which has a significance within the physical situation can be 

taken to be a Lyapunov functicwi.

Now in mecheuiical systems the dynaunic b^iaviour of the 

system is governed ly Newtwi's second law of motion and the %#ork 

done by a force is the change in Kinetic energy. If the total
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work done round any closed path is zero then the system is said 

to be ccwiservative. When the force is conservative it is always 

possible to define a potential energy function V  so that if V is 

set to zero at some point then the potential at any other point 

is defined as the negative work done in moving to that point. 

However in many p^iysical situations a system is subjected to 

frictional or other nc»i-conservative forces in such a nanner 

that the total mechanical energy decreases with time and the 

system is dissipative. Thus because of this decreasing property 

the total mechanical energy can be considered as a Lya^junov 

function for that particular system.

A simileu: alternative approach is to consider the motion to 

be within a potential field governed by the potential V, thus 

equivalently we can use the governing potential energy of the 

system to summarise its behaviour [see Hunt (1986)1.

Wë can check the robustness of the phase portrait of the 

system by perturbing the vector field via a 

perturbation of the defining differential system. A system is 

said to be structurally stable if for any sufficiently small 

alteration to the defining equations the resulting flew is 

topologically equivalent to the initial flow. Ihus while 

Lyapunov functi^is may be used in the stability analysis related 

to the robustness of a single point in the (4iase space» 

structural stability relates to the robustness of a single point 

in the vector field. The mathematical study of structural 

stability was initiated 1:̂  Andronov and Pontriagin (1937) but
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CHAPTE31 II.2

AUTONOMOUS SYSTEMS

II.2.1 Introduction

An autonorous system is one in v^ich the time variaúDle does 

not feature explicitly and following the discussion in the 

previous chapter reg£u:ding the use of the Centre Manifold 

theorem to reduce the number of dimensicxis necessary to describe 

the qualitative topological behaviour of a system approaching an 

instability, we shall restrict our attention here to two 

dimensional systems. Now given emy second order ordinary 

differential equation, by the use of the substitution x=y, it is 

always possible to write this equation in the more general form

X = F(x,y) 

y = G(x,y) , (2 . 1)

which is equivalent to the single first order equaticxi

dy G(x,y) 
dx F(x,y)

(2 . 2)

(see Braun (1983)1, where without loss of generality the fixed 

point is ta)cen to be at the origin. The (x,x) or (x,y) plane is
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called the phase plane solutions of equation (2.2) au:e

called trajectories. Any point (x®,y®) such that

F(x®,y®) = G(x®,y®) = 0 (2.3)

is called an equilibrium or fixed point (a singular point in the 

terminology of the more claissical mathematical texts) 

correspcxvding to a point attractor. Any other point is termed an 

ordinary point through which must pass only one trajectory, thus 

for autonomous systems trajectories on the ( ^ s e  plane do not 

cross CMieeuiother except at an attr£K:tor.

The differential system is said to be stable at a fixed

point if every trajectory in a neighbourhood of the fixed point

at t=t ronains near the point for all t>t . The system is said 0 0
to be strictly or asymptotically stable if furthermore the 

trajectories eipproeKrh the fixed point as time adveuices. If the 

system is neither stable nor strictly stable then it is said to 

be unstable.

Accordingly strictly stable systems ensure that all motion 

dies down, which generally occurs under damped motion and the 

syst&n is called a dissipative system in which energy is lost.
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II.2.2 Linearisation and the Stability of Equilibria

Hie linecu: analysis that shall follow is quite 

straightforward emd explained in most texts on differential 

equations but is included here for two reasons; Firstly, the 

form of the solution gives a guide to the behaviour of the 

system approaching an equilibrium point and secondly it is 

useful here to introduce some of the new terminology either 

recently universally accepted or merely defined here by the 

author.

If we suppose that the functions F and G have Taylor series 

expansions in the form

F(x,y) = ax + by + f(x,y) 

G(x,y) = cx ♦ dy + g(x,y) , (2.4)

where f(x,y) and g(x,y) are nonlinear containing terms of x”*/*; 

m+n>2, then Poincare has shown that provided that ad-bc#0 then 

the strict stability of the linear system

X = ax ♦ by 
y = cx + dy (2.5)

inplies strict stability of the nonlinear system of equation 

(2.1). Thus we expect the solutions of the linear system to be 

geometrically similar to that of the n^linear system. (In 

general this is true for a focus or saddle point to be defined 

later, but not necessaurily true if the f i ; ^  point is a c«itre, 

i.e. we require strict stability; e.g. consider the system
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x = - y - x ; t x ^ + y ^
0 0y = X - yy(x̂  * yn .

The linear systen has a centre at the origin but the nonlinear 

system has a focus at this point. [Taken from Jordan and Smith 

( 1977) 1) .

For this reason we shall for the moment discuss the form of 

the solution and the stability of the linear system which may be 

written in the matrix form

= A , A =

(2. 6)

The loehaviour of the solution is now governed by the trace and 

determinant of the matrix A or its eigenvalues as given by the 

ch£u:acteristic equaticwi

X -  T X  - D = 0 , ( 2. 7)

where the tr£K:e and the determin2uit 2u:e found lay 

T » a ^ d ,  D * a d - b c .

For reasons that shall be explained later the eigenvalues are 

often referred to as the Lyapunov characteristic exponents.
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Since later we shall assume that the coefficients of the matrix 

A are defined in terms of a control parameter ^ that is allowed 

to vaury auxl evolve, then accordingly it is necessary to consider 

the possible forms of the solution as T and D take cxi different 

values.

In the following discussions k and K au:e constants 

determined by the initial conditions given to the system, the 

behaviour of the trajectories being dieigrauratically illustrated 

in figure 2.1.

(a) Case 1 ; D=0

This case is of little importance with the solutions of 

the form

X = k + KeTt (2. 8)

Thus for stability we require T<0 so that solutions decay with 

time. Trajectories aure given by strai^t lines with the limit 

point depending on the ccaistauit k, which need not necessaurily be 

the origin, hence the system would be sta^jle but not strictly 

stable.

(b) Case 2 ; T«0, I> ii/>0

The solutions under these conditions aure given in the form
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X = kcos(*)t * KsinCA)t , (2.9)

v^ich are again stable but not strictly so as they £u:e periodic 

£uid the equilibrium point is called a centre.

(c) Case 3 ; T=0, D=-U)^<0

Ihe soluticwis are in the form

X = kcoshO)t ♦ Ksinhoat , (2. 10)

which are unstable corresponding to em unstable saddle point.

(d) Case 4 ; T»0, T >4D

If and X 2 are the eigenvalues of the system that 

satisfy the characteristic equation (2.7) then the solutions 

take the e;qx>nential form

X = kexp(Xj^t) ♦ Kexp(X 2 ^) • (2 . 11)

From this we can see that solutions are strictly stable if X^<0 

and X2<0, i.e. T<0 and D<0 since ^  X^X^'D. The 

^Tase trajectories are 'quasi—parabolic' or 'quasi—hyperbolic' 

depending on whether the eigenvalues have the same or opposite 

sign. In this case the equilibrium point is either an unstable 

or a stable node respectively.
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(e) Case 5 ; T#Oy T <4D

This case corresponds to so called wecUc damping when the 

roots of the characteristic equation are now complex such that

X = a + ip , (2. 12)

2 2v ^ r e  2 a  =T and a  + P =D. The soluticxis may be written in the 

form

X = e*^ ksin( pt ♦ K) , (2.13)

and for stability of the fixed point we require a  <0, i.e. T<0. 

The pdiase trajectories will now spiral in towards the 

equilibrium point forming a stable focus.

(f) Case 6 : T*0, T =4D

Wie system in this situation is said to have critical 

damping and the eigenvalues are now coincident, with 2X=T. The 

solutions of the linecu: system are now given by

X = ()c Kt)eXt (2.14)

For strict stability we again require X<0, i.e. T<0 and here 

the trajectories in the phase plane vrould have a point of 

inflection with a common gradient at the fixed point vhich is 

referred to as a stable inflected node.
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II.2.3 Instabilities of Equilibria

If we now inegine that the cofficients of this linear 

system, equation (2.6), are modelling a physical situation such 

that they depend on some ccmtrol paramieter pi, then eis pi is 

varied the point in the (T,0) plauie characterising the stability 

of the system moves. Furthermore if this movement was such that 

the point crosses <»ie of the stability boundauries of the 

previous sectiwi then a bifurcation would result and an 

instability would have occured. This instability is usually best 

seen as a bifurcation of an equilibrium path in the displacement 

control parameter space.

If this trauisitic»! is such that the determinant becomes 

negative then the bifurcation is referred to as divergence (see 

figure 2.2 and also note the form of the solution in the 

previous section). This particular bifurcation is sometimes also 

called the static fold or saddle node bifurcation. This 

instability is basically a static event, examples of which c£m 

be seen when an eleistic structure, such as a si^jported arch, is 

loaded to ¿md beycxid its critical load so as to induce buc)cling. 

During the instability the effective stiffness of the system 

chauiges from positive to negative as characterised by the 

movement of «le of the eigenvalues of the linear system into the 

positive half of the ^nplex plane along the real axis, as
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viewed in the snail inserted diagrauns in figure 2.2. Since this 

instability mechauiisni is a static event it shall not be 

considered here in detail, the interested reaKler is advised to 

CCTisult the paper of Virgin (1985).

Alternatively if the control parameter is veuried so that 

the trace T changes sign and becomes positive then this 

correspc»vis to a dynamic instability as two coirplex conjugate 

eigenvalues attain positive real peurts. This type of instability 

is called a Hopf bifurcation, also Icnown as flutter.

This Hopf bifurcation occurs when an equilibrium point 

becomes unstable so that a trajectory started near the point 

spirals outwards with an oscillatory motion. In the case of a 

linear system the trajectory would merely diverge to infinity, 

however if the full nonlinear equation has certain ncxilinear 

damping terms then for larger displacements these nonlinear 

terms dominate and the growth of the oscillations can terminate 

in a limit cycle, see figure 2.3. The simplest equation which 

displays this limit cycle characteristic is given by

iroc ♦ hx ♦ cx^ ♦ )cx = 0 , (2.15)

in which the linear danping coefficient (b) is allowed to become 

negative. For small amplitudes the term cx^ can be ignored 

yielding an unstable focus with b negative, while for larger 

displacements the dominance of this nonlinear term causes the 

motion to converge to a limit cycle.
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This instability is the sinplest dynamical instability 

under the vau:iatic»i of a single control parameter and gets its 

name following the v#ork of Hopf (1942). In fact there au:e two 

forms of this instability, for both of these forms the 

1 inearisaticHi process produces eigenvalues typified by the Hc^f 

bifurcation as e:q>lained above. Under steady fluid loading am 

elastic structure can exhibit a unimodal version of this 

insta±>ility termed galloping or the bimodal instadDility called 

flutter. Typical examples of the former event include the 

galloping of ice coated transmission cables, or a bluff body in 

a steaidy flow (see Thoirpscwi and Lunn (1981)]. Examples of the 

bimodal form occurs in the flutter of aircraft panels at high 

speeds and, as we shall see later in chapter III.2, in the 

fishtailing oscillations of a moored vessel in a steady current.

In most caises these generic instabilities (typical in the 

engineering sense) posses unstaUDle counterpeurts. A schematic 

diagram of the unstable Hopf bifurcation is shown here in figure

2.4 where the amplitude of oscillation is plotted against the 

control parameter (i representing some sort of fluid loading. A 

conplete claissificati^ of the simplest low order bifurcations, 

both stable and unstable, is given in the text of Thompson and 

Stewart (1986), but in physical systems as indeed in numerical 

simulations the unstable steady state equilibria are by nature 

extremely difficult to locate. As a consequence to this, since 

the third part of this thesis will deal vdth instabilities of 

physical systems, the main enfrfiasis here %rill be directed
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Figure 2.2 Stability region of a continuous linear system 
and associated bifurcations.
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Figure 2.3 A stable limit cycle,
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CHAPTER II.3

FORCED OSCILLATIONS

11.3.1 Intrcxluction

In the previous chapter we considered autonomous systems 

typified by an unforced mechanical system v^K>se f*iase space was 

two dimensicxial spanned by x and x. If we now ccxisider the 

forced non-autonomous counterpart to this equation, namely of 

the type

iTK + f(x,x) = Fsinwt , (3.1)

then the phase space is now three dimensional spanned by x, x 

and t. In this space trajectories of the flow do not cross 

oneanother but spiral round the t axis as time advances, however 

it is convenient to plot the phase projection of a trajectory 

onto the (x,x) plane, on which the trajectory (or rather its 

projecticwi) may now intersect itself.

Equilibrium points are not as a rule associated vdth 

ncxi-aut^iomous equations thou^ they can exist; for example the 

Mathieu equaticxi given by

X ♦( a  ♦ 3 cost)X » 0 (3.2)
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has a fixed point at the origin.

The main theme in part III of this thesis is to point out 

the inadequacies of standard linear vibration analysis in favour 

of nonlinear studies and so it is convenient at this point to 

briefly review some of the linecu: theory for forced systems [as 

in Thomson (1981) for instance].

The simplest forced equation for a general mechanical 

oscillator is defined by the equation

itK bx + )oc = Fsinwt . (3.3)

Since this equaticxi is linear the structure of its solutions is 

relatvely siitple and formed by two parts. The complimentary 

function, or 'free oscillation', decays with time when damping

is present (b#0) and is dependent only upon the initial

conditions. On the other hand the 'forced solution' (the

particular integral) is prc^rtional to the amplitude of forcing 

F. The independence of these two soluticwis allows only a 

restricted range of {^lenomena but nonetheless in certain

situations can provide a useful guide to local behaviour.

The natural frequency of the undamped system is given by

(On = /(Ic/m) (3.4)
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and the danping ratio ^  is defined ty

i = b/b^ , (3.5)

where

b- = 2ma)„ . c n (3.6)

Provided the damping ratio is such that ^ <1 then the 

conplimentary function is given by

u(t) = Yexp(“ 5o)ĵ t) sin(u)j^ t/d-C^) , (3.7)

where Y and are constants determined by the initial

conditions. The amplitude of this solution decays with the 

frequency

U)d = OJn /(1-i )

The particular solution of equation (3.3) is given by the 

e}q>ression

v(t) = Rsin(U)t +<p) , (3.8)

i^iere the amplitude of oscillatiOTis (R) is found from the 

formula
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R = F/k

y((i-(u./u)^)2 * (2C(tai/u)^) / ) (3.9)

and <p is the {4iase angle of the displacement with respect to 

that of the forcing.

In this linear system a plot of non-dimensionalised 

displacement 2igainst frequency ratio U) /U)^ yields a peak at 

U) /(*)̂  =1 which decays monotonically on either side of the 

maximum. Ihe height of the pe£üc increases with decreasing 

damping producing a pair of asymptotes v#ien b=0.

In a nonlinear system this peak bends over introducing a 

phenomenon known as the jump to resonance or the cyclic fold 

corresponding to the possibility of two alternative responses of 

different amplitudes for any one given value of the forcing 

frequency. This situation can be viewed in the small insert 

diagram at the top right hand side of figure 3.1 with the two 

alternative periodic steady states characterised by the points A 

and B.

II.3.2 The Poincare Section

In classical texts the stability of periodic solutions of 

dynamical systems is usually discussed in terms of Floquet 

theory (Jordan and Smith (1977)]. A more general concept which 

has a heuristically geometric viewpoint is the Poincare map 

[Pippard (1985)). This map is obtained by periodically sampling
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the three dimensional (4iase space (x,y,t) / v^ere y=x, of the 

driven oscillator, equation (3.1), and inspecting the projection 

onto the (x,x) plane vAienever t is a multiple of the forcing 

period, here T=2ll/U) , see figure 3.2, in v ^ c h  case these 

samples are referred to as Poincare sections. A complete set of 

starts vrould produce a bundle of trajectories which spiral round 

the t eucis as time advances. However, as we have already seen 

with reference to the Duffing oscillator, steady state periodic 

solutions often exist in forced systems usually coexisting with 

several other periodic motions, so that among this bundle most 

trajectories will represent transient motions while a few will 

correspond to periodic solutions. The periodic path will appeeu: 

to attract the transient trajectories and so is also termed an 

attractor. The simplest periodic attractor is a fundamental n=l 

solution whose notion is harmonic, i.e. the motion repeats 

itself with exactly the same period as that of the forcing. 

Alternatively a trajectory may repeat itself after n sanples 

such that its period is nT. Hiis type of motion is said to be a 

subharmonic of order n (note that some authors refer to this 

type of motion as being of order 1/n, see Hayashi (1964)1. A 

further type of periodic motion that is possible is when the 

trajectory repeats itself once or more within a time interval of 

the forcing period T, e.g. its period will be a fraction of T, 

T/2 say. Such a motion is called superharmonic but since this 

type of motion is not usually visible in most mechanical systems 

it will not be considered in the context of this thesis.

Inspecting the (x,x) plane for a single trajectory by
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taking Poincaure sections produces a sequence of points, Poinc2u:e

points (x ,x ), such that if a transient motion decays onto a 
P P

fundamental harmonic solution then the sequence of points will 

eventually converge onto a single point. Simileurly a suláiarmonic 

solution of order n will be represented by the sequence 

systematically jumping between n points. Hiis situaticxi is 

illustrated in figure 3.2 where the figure shews tramsients 

decaying onto an n=2 solution in the three dimensicxial ( ^ s e  

space amd also the two dimensional projection on the Poinceure 

pl£Uie. Hie relationship v ^ c h  governs the behaviour between 

successive Poincare points belonging to a transient or steady 

state trajectory is called the Poincare map.

Another important class of prc^lems that can be usefully 

studied by the use of the Poincare section is that which is 

governed by a differential equation with periodically varying 

coefficients [see Flashner and Hsu (1983)1.

When ccxisidering an autonomous system which ejdiibits closed 

orbits or limit cycles then the Poincare section is obtained by 

taking a surface such that the flow is everywhere transverse to 

it. The Poinc£ire map is then defined on this surface and links 

the flow to its first return point as illustrated in figure 3.3. 

These apparently distinct definitions of a Poincare section can 

be made to coincide by reducing the non-autonomous system to an 

autonomous one by the introduction of the dumry cyclic variable 

h «1, although of course this is at the expense of increasing 

the dimension of the system by one.
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Hence studying the Poincare map reflects the behaviour of 

the flow of differential equations v^ich may have arisen from 

some (4iysical situaticm. The stability of the discrete dynamical 

system defined by this Poincaure map is governed by the 

eigenvalues of the map, sometimes called Poincare characteristic 

multipliers. However we note that in general the formulation of 

the Poinccure map relies on a knowledge of the flow of the 

system, i.e. the solution. This is clearly not always available 

eu^ so the Poincare ms^ cannot usually ejqjlicitly be written 

down but the Poincare section can be used to calculate 

successive points or iterations of the map and the stability is 

then examined via the transient respcxise [Bishc^ et al. (1986)1. 

Before we move cxito some examples v^ich use this strc^scc^ic 

mapping technique we must first determine the stability criteria 

and bifurcations of a two dimensional map, since it is towards 

such low dimension systems that we focus our attention.
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Figure 3«3 One and two dimensional Poincare secticMis 
of an autonomous flow.

94



CHAPTER II.4

THE STABILITY AND BIFURCATIONS OF MAPS

II.4.1 Introduction

In this chapter we shall make a preliminary study of maps 

in their own right as discrete dynamical systans [Abraham and 

R c ^ i n  (1977)] v4iich may be considered as Poincare maps arising 

from a three dimensional flew or from a discrete model, such as 

census pc^lation dynamics, v^iich involves discrete time steps 

(May (1976)J.

The theoretical study of maps is largely due to the work of 

Poincare (1881) and Birkhoff (1911,1913) with more recent 

contributions by Arnold (1963) and Smale (1963,1967). With 

inprovements to computing facilities the emphasis Yias recently 

shifted to numerical investigations of particular maps, notably 

the map studied Henon (1976) and the delayed logistic map as 

studied by May (1976), Arcaison et al. (1982) and others.

As we have seen, by considering the representation of a 

periodic steady state on a Poincare section, a one dimensional 

map

Xi^l . F(x^) (4.1)

95



cam have fixed points at x=x®. If we further consider the 

response of this nap under the operation of a control psurauneter 

)I so that

‘i+1 " ) t (4.2)

then am (I is vauried the steady states trace out equlibrium 

paths in the displacement ccaitrol space (x, ̂ ). The local 

stability of these eqiulibrium points is guaranteed provided 

|f '(x ®)|<1; the local bifurcations of an equilibrium path has 

been covered by vaurious authors [Thompson and Stewaurt (1986)]. 

However in this worlc we aure mainly interested in a three 

dimensional flow which produces a two dimensional map so thus we 

sliall now review the stability criteria for such a map and 

define the local bifurcations.

II.4.2 The Stability of a Two Dimensional Map

A two dimensional invertible map may be regaurded as a 

Poincau“é map produced by a three dimensional flew or possibly as 

a transformaticxi of a non-invertible cme dimensional map [Ott 

(1981)]. We thus consider the ncxilinear map

(4.3)
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and then to excuidne the stability neeu: an equilibrium point 

(x®,yG), such that

X® = F(x®,y®) 

y® = G(x®,y®) , (4.4)

we introduce small disturbances | euid T) defined by •

and y. for all i. The map, equation (4.3), then becomes

X. = 3^ ♦ , = F(3^ ♦ I . +T|. )1+1 1+1 1 1
y. , = y® + T|. , = G(x® + ^ . »y® ♦T).) .•'i+i 1+1 1 1

(4.5)

E^}q>anding these functions in a Taylor series about the 

equilibrium and utilising the equilibrium condition equation 

(4.4) yields

t , =  F L + F T L + ( F  i-^2F|.Tl.+ F T f ) / 2 + . .  **1 + 1  x*i y i  x x i  x y i i  y y i
T L = g 1+GTI+(G i^+2G G Tf)/2+..1+1 X I  y i  X X I  x y i i  y y i

, (4.6)

where all the derivatives are evaluated at the equilibrium 

point. Now for sufficiently small disturbances we may neglect 

higher order terms to c^tain the variational equation

F = F E + F T|̂  *i+l X * i y i
\  = G I + G 1). ,i+1 X i y 1

(4.7)

which may be written in the matrix form
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" k • (4.8)

If this latter relationship is applied recursively we cAjtain

(4.9)

for some non-zero initial error vector from v^ich we can 

see that the necessary and sufficient condition for the 

convergence of the map (corresponding to a strictly stable 

solution) is that tends to the null matrix as i tends to 

infinity.

If the eigenvalues of H, denoted by X  say, are real then 

it is possible to use the Jordan canonical form to show that the 

requirement for stability of the map is when | X |<1 (see Hoffman 

and Kunze (1961)1. If in fact one of the eigenvalues lies on the 

unit circle with the other inside then the linear approximation 

is not sufficient to establish the stability condition of the 

fixed point.

If the eigenvalues happen to be conplex conjugates then the 

canonical form can still be used to show that | X |<1 is needed 

for stability however it is instructive to consider the 

following theorem (Hirsch and Smale (1973)1 .

Theorem
Let the eigenvectors of the matrix H be given by w,w»u+iv 

corresponding to the eigenvalues X , X  » a ^ i  ^, then there exist
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a matrix Q such that

Q“^HQ = (4.10)

In fact Q is given by the matrix Q=I-v,ul and we may use 

the change of variable

Si ■ = Q

■’l l . yi.

so that

■ * i n = q”^h q •  «

>'i a -ß- X . 1
.’f i . .ß Y .L 1 (4.11)

At this point it is convenient to introduce the polar 

coordinates r ¿uxl ^ so that

= r^cos 

Yi = r^^sin (4.12)

and the eigenvalues nay now be given by

X  « « p(cos*(> ± isin<{y) (4.13)
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If we now apply the map forward recursively in these new 

coordinates it can be shown that in general

r,cos<y. = r_(rcos(k\^+ ■&.) k k 0*̂  0
r, sin = r-prsinlk-^ ♦-iy.) , k k 0*̂  0 (4.14)

i.e.

= r. P •&= k ^k 0 (4.15)

The latter of these equations may be solved for k to yield

' ■^oP (4.16)

from vhich it is easy to see that if p <1 (i.e. | X  |<1) then the 

trajectory spirals inwards and the equilibrium point is stable. 

If on the other hand p >1 then the trajectory spirals out to 

infinity and the point is unstable. If p =1 then the equilibrium 

point is a centre and again the linear approximation is no 

Icxiger sufficient to establish the stability.

This exhausts the possibilities for the eigenvalues of the 

linear map and we see that the stability criterion is best 

discussed in the coirplex plane such that if both eigenvalues lie 

within the unit circle then the map is strictly (asymptotically) 

stable. If one or both of the eigenvalues lie outside the unit 

circle, which forms the stability boundary, then the map is 

unstable. Then for the map to become unstable the coefficients.
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under the influence of a control parameter ^ , nwst vary so that 

at least one eigenvalue moves outwards and crosses the stability 

boundary.

If both the eigenvalues are real then there are only two 

points at which they can cross the stability boundary, namely at 

♦I and -1. When the critical eigenvalue, say, is at +1, 

whilst the other eigenvalue remains inside the unit circle, the 

system is said to be in a state of incipient divergence. This 

bifurcation when X̂  ̂=+l is termed the cyclic fold or saddle node 

bifurcation. If, on the other hand =-l then the system is in 

a state of incipient flip, where this flip bifurcation 

represents a change from a fundamental to a sukrfiarmonic motion 

of any underlying flow. These two instabilities both involve 

only one critical eigenvalue and are essentially thus one 

dimensional.

If the eigenvalues are complex they can cross the stability 

boundary at an angle t ̂  corresponding to the so called flutter 

or Neimark instability.

In figure 4.1 the stability transitions for equilibrium 

states for flows and for periodic orbits or cycles (studied via 

their Poincaure maps) are summarised in the complex plane. We 

note that the stability transition of a map when X̂  ̂*-l does not 

have a counterpart for flows, and it can also be shown that the 

Neimark bifurcation of a map is more conplex than the analogous 

Hopf bifurcation for equilibria, corresponding to a flow on a
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two dimensional torus [Neimsurk (1949), Abrahaun and Marsden 

(1978) or see looss and Jose^^ (1977,1980)).

Hie movement of the eigenvalues of the matrix H as the 

control peurameter is veuried may also be discussed in terms of 

the trace and determinant of the matrix. If we consider H to be 

the matrix of coefficients

H =

(4.17)

then the trace T=a+d and the determinant Oad-bc are such that 

the eigenvalues satisfy the equation

X - t X * 0 = 0 . (4.18)

The stability criterion and routes to instability as the 

coefficents of the matrix evolve can thus equivalently be viewed 

in the (T,D) plane as shown in figure 4.2. Divergence occurs 

along the line T-D=l, flip on the line T+D=l while flutter (the 

Neimark instability) occurs on the line D=1 with points inside 

these lines representing a stable system.
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CHAPTER II.5

THE PREDICTIC3N OF INCIPIENT DYNAMIC INSTABILITIES

II.5.1 Predictions of the Hopf Bifurcation

Vie have seen in chapter II.2 that the sinplest equation 

which may undergo a Hopf bifurcation is given eui autonomous 

equation that can equivalently be written as the system

(5.1)

Ttie trace of the linearised system is given by -b and with 

determinant k (assumed to be positive). Hien with reference to 

the form of the solution as given in chapter II.2 and 

referring to figure 11.2.2 we see that for b positive 

trajectories will spiral inwards to form a focus with a solution 

in ejqxjnential form and expOTiential rate of decay given by 

a =-b/2.

Now, since it is possible to represent auiy physical system 

undergoing a Hopf bifurcation locally by a model of the form 

equation (5.1), a first approach to the prediction of this 

instability would naturally be to estimate the rate of decay of 

any oscillations of the physical system and to determine the
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point at which the d£urping becomes zero. The method of 

calculating this decay is often referred to as a calcuatiai of 

the logarithmic decrement and, as we shall see in ch£^>ter III.2, 

this method cam be used to predict the cmset of the Hopf 

bifurcation in realistic situations. A further point to note is 

that since it is the linear dairping that d r c ^  to zero, strai^t 

line extrapolaticMis can be made to the point at v^ich 

oscillations begin.

II.5.2 Determining the Eigenvalues of a Map

From the analysis of the preceding chapter it is clear that 

the eigenvalues of the linear approximation to a full nonlinear 

system, locally to an equilibrium point, determine the stability 

of the map; obtained by taking Poincare samples. Consequently it 

is useful to evaluate these linear eigenvalues by considering 

successive points, or iteraticais, of the me^ as obtained from 

either a transient or a steady state response. As each new point 

of the map becomes avadlable new estimates of the eigenvalues 

can be calculated, i.e. real-time updating (Bishop et al. 

(1986)].

If we assume that the points of the map are determined by a 

linear discrete system of the form

• “ «i * ‘V i
Vi^l . oc^ * dy^ ' (5.2)
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then given any three consecutive points

Pj = » j=i,i^l,i^2 (5.3)

it is always possible to solve a set of lineau: equaticxis to 

calculate the coefficients of the map. More precisely if we 

define

(5.4)

then

' **i*2*i ■

' •’‘i n  ■

= < V i * 2  *  * i * i y i * i ' / *  '

(5.5)

It is assumed that for this map the fixed point is at the origin 

however, if this is not the case, but the location of the 

equilibrium point is icnown then a simple transformation can be 

used to shift the origin accordingly.

Now if additional points of the map can be obtained that 

belong to a single treuisient respcxise (i.e. before the influence 

of some further disturbance) then a sequence of lineeu: maps can 

be calculated %Jhich, %idth increasing accuracy as the transient 

decays, approximate the Poincare map of the system. Ibis method
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for tracking the eigenvalues of a transient respcMise for 

convenience will be called the three-point method.

The above method is somewhat theoretical since it is 

unusual to know, a priori, the exact location of the fixed 

point. If this is the case then one additional interation of the 

map, is required to detain the a^rc^riate number of 

linear equations for a unique solution for the unknown 

equilibrium point as well as the coefficients of the 

system equation (5.2). This technique will thus be called the 

four-point method and ndght be used, for instance, in an 

evolving system.

Using either of the above methods for any particular set of 

points (either three or four) the stability of the system can be 

determined calculating the trace and determinant of the nap 

or equivalently the eigenvalues, since

T = a ♦ d
D = ad - be (5.6)

v^ere

X  = (t  1 /(T* - 4D)) /2 (5.7)

In a changing physical system the eigenvalues can be 

tracked using either of the above methods by examining the 

transient respwise of the system since in most physical
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situations of interest there is sufficient 'noise', or in the 

case of the North sea sufficient irregularity, to create a 

series of such transients as the system evolves in some way 

towards an instability. These eigenvalues can then be used to 

warn of any such incipient instability. Before we move on to 

describe some of these predictive techniques it is first of all 

worthwhile to consider local e^roxinations for the flip and the 

fold instabilities.

From the previous chapter we note that the flip and fold 

bifurcations essentially involve the movement of only one 

eigenvalue. It would therefore se«n sensible to seek a reduced 

system of one dimension that preserves all the qualitative 

structure of the full system as these instabilities £u:e 

approached. This is the central theme of the centre manifold 

method, namely the idea that the system will exhibit its 

bifurcaticxial behaviour on a manifold associated with the 

critical eigenvalue. This is of particulau: inportance if the 

system is approaching a flip bifurcation where subharmonic 

motion is apparent and the corresponding Poincare map is quickly 

attracted to and then oscillates close to the critical 

eigenvector (the centre itanifold in this case). An example of 

this flipping motion can be seen in figure 5.1 where the 

Poincare points are joined here by straight lines (this example 

is not that of just a sinple two dimensional map but that of the 

flip bifurcation arising in the motion of a marine structure to 

be considered later in chaipter III.4).
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From a conputatic^ial viewpoint no changes are necessary to 

either the three- or four-point methods to cope with a fold 

bifurcation but there are certain prc^lems with a^roximating a 

system near a flip bifurcation. In particulau: if successive 

iterations of the map lie an the critical eigenvector then the 

equations for the solution of the system coefficients become 

singular such that as a transient motion approaches this 

flipping behavicxir the system is ill-conditioned. However, since 

the manifold is here one dimensicxial, it would seem sensible to 

ignore the non-critical eigenvalue and aK>roximate the system by 

a one dimensional Poincaure map and consider successive points of 

a transient response to be governed by a lineau: map of the form

X. = X X. i+l 1 (5.8)

If, as before, we are tracking a transient response then a 

sequence of estimates for this critical eigenvalue can be 

obtained %ihich require | X |<1 for stability. We shall call this 

method the centre manifold method.

The three methods introduced here will be used in part III 

to monitor the stability of physical systems and used in 

conjunction with the information of the next section to predict 

the onset of typical instabilities of structures oscillating due 

to the acticxi of ocean waves.
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II.5.3 The Prediction of the Static Fold

Despite stating e£u:lier that the static fold bifurcation 

will not be discussed in this thesis, it is nevertheless 

instructive to consider the prediction of such am event for a 

continuous system so that certain compaurisons can be made with 

the corresponding bifurcation of a map, i.e. the cyclic fold.

If we consider the continuous system

X = jx ♦ ky 

y = lx ♦ ny , (5.9)

then the trace and determinant are given by

T = j + m  , D = j m - k l , (5.10)

with eigenvalues given by the characteristic equation

X  -  t X  ♦ D = 0 . (5.11)

If vie further inagine the system to be undamped ( the term 

damping is usually only used for the decay characteristics of a 

single equation but here we consider the term to correspond to 

the more general definition of a conservative system) then the 

eigenvalues will lie on the inaginauTi^ aucis such that

X =  ♦i (I) (5.12)
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We see that the only way in which the fold bifurcation C£ui occur 

is if the two eigenvalues approach the origin along the 

imaginaury ¿ucis, coalesce auid then move apeurt with both 

eigenvalues real, and c»ie positive. As this fold is ¿^reached 

the solution will take the general form

X = sinu)t , (5.13)

amd it has been shown that [Thompscxi (1982), also see Thonpson 

and Virgin (1986) ] if the coefficients of the lineau: system 

depend on a local coordinate (s) then as the eigenvalues near 

the origin this parameter varies according to the following 

relaticmship

(A) OCS . (5.14)

In addition to this, since the equilibrium path itself is 

undergoing a fold v^ose universal cauxxiical form is naturally 

quadratic, then s^ is prc^rticxial to some global ccwitrol 

parameter ^  so that in fact

U)^ocM (5.15)

This relaticxiship cam be used to form a prediction of the 

point at which the equilibrium path folds resulting in the 

respcxise juirping to a remote state of higher aurplitude.
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If we now consider a system which is lightly danped then 

the corresponding movanent of the eigenvalues is shewn in the 

left hand diagrams of figture 5.2. We note here that a predictor 

based on the relationship (5.15) actually predicts the point at 

which the eigenvalues meet, i.e. the point at vhich vibration 

ceases, but this itself being near to the fold point (in terms 

of ^ ) proves a useful predictor of the fold.

II.5.4 The Prediction of the Cyclic Fold

The cyclic fold bifurcation of a map occurs when the 

resonance respcwise of a periodically oscillating system folds 

over producing a jump to resonance. The question that naturally 

arises is can the same type of argument used in the previous 

section be applied to predict this cyclic jump phenomenon?

If we refer bade to the stable region for a map (figure 

II.4.2) then we see that for an undamped discrete dynamical 

system the only way in which a fold can occur is if the 

eigenvalues move around the unit circle, which forms the 

stability boundary for the eigenvalues, meet at +1 and then c»ie 

eigenvalue passes outwards in a positive directiwi. The 

correspCTvd ing movement of the traK% and determinant of 

this discrete system is given in the right hand diagrams of 

figure 5.2.
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Taking, as an initial step, a first order approximation to 

the derivatives of the system equation (5.9) yields a 

discretisation

X. = (1+ 6tj)x. ♦ k y . 6 t  i+l 1 1
y . , = lx. 6 t  + (1+ 6t m)y. . 1+1 1 1 (5.15)

The trace €uxl determinant of this discrete system £u:e found by

T = 2 ♦ (j^m) 6 t

D =  (!♦ 6tj) (!♦ 6tm) - k l ( 6 t ) (5.16)

and we see that as 6t tends to zero, i.e. as the discrete

system approximates the continuous system, T tends towards +2

and D towards +1. This is the regicwi at the apex of the flutter

and divergence bouncUuries thus, heuristically, the result 
2U) o< s for a discrete system is proved from the correspcxxiing 

result from a caitinuous system.

t
Thus (heuri^cally) we have shown that if a stability

analysis were performed at various points along an equilibrium 
2path then ti) drops to zero linearly if plotted against some 

local ccxitrol parameter s. Close to a fold in the respcxise curve 

this local parameter varies parabolical ly %d.th a global 

parameter describing some change in the system in such a way 

that (A)̂  now drops linearly to zero as the fold is ¿^roached. 

Again though, for lightly damped systems the prediction is in 

fact the point at %<hich the eigenvalues coincide, see the point
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A marked on figure 5.3. In certain {^ysical systems the folding 

of the resonance response curve may be very shcurp so that the 

valid region of the predictor may be quite local to the 

fold itself, see figure 5.4.

11.5.5 Map Rotations and Orbit Numbers

(a) E)efinitions

In this section we intend to continue an investigation of 

the prediction of the cyclic fold and shall study the local 

behaviour of the map in more detail. If we return to the 

movement of the eigenvalues as a cyclic fold is approached 

(figure 5.3) then we see that the position of the system in the 

(T,D) plane moves along the Neimark stability boundary. With the 

eigenvalues on the unit circle the ma^ is in a conditici of 

neutral stability and therefore local points produced by 

successive iterations rotate for an infinite number of times 

neither ccmverging nor diverging. Furthermore, as the 

coefficients of the system are varied so that the eigenvalues 

move around the unit circle and towards cc^ifluence at **’1, the 

number of iterations that are required for a complete rotation 

of 2Tl about the origin increases. In order to investigate this 

behaviour further it is possible to use the classical definitiv 

of the rotation number as follows:
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Definition 1

If the (k-l)th iteration of a map prodvxres the

point(x ,y ), which may also be represented in polar coordinates k k
by (r ), then the rotation number R is defined by the 

k k
expression

R = lim 2Tlk (5.17)

where is defined cxi the real axis and not modulus 2Tl (see 

Aronson et al. (1982)). This definition of the rotation number 

is valid for a general nonlineau: map but if we consider the 

linear case then considerable simplifications are possible.

As we have seen in chapter II.4 when the eigenvalues eu:e 

complex, as they are along the Neimark bounday, we may use a 

similarity tramsformation to produce a ms^ in the form

^ . 1  = ® V
(5.18)

where the eigenvalues of the linear map are given by

X = e
±i^ (5.19)

Ihen as we have seen

(5.20)
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so that in fact the rotation number is given by

R = 2K/^ . (5.21)

This expression may be reduced still further if we let ^=271<P 

to give

R = 1/<P (5.22)

This definition is a function of the eigenvalues only amd, 

since these are invariant under a similcurity transformation, 

then this definition also holds for a general linear map vhose 

eigenvalues are complex. The frequency of rotation of the map is 

given by

U) = 1/R = <P . (5.23)

We should note here though that the constant angular step 

inplied by equation (5.20) only holds in the transformed 

coordinate system and will not hold necessarily in the original 

space in which we are obliged to perform our prediction 

measurements.

As an alternative to the above definition of rotation 

number, it is possible to use Instead a first ^iproximation to 

the period. Rather than cwisider the limiting bdiaviour of the 

rotations %#e calculate the number (n) of iterations of the map 

needed before a single rotation of 2 H  has been surpassed. It
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is possible to see from figiire 5.5 that an orbit number can 

be c*)tained by a simple geometric construction [see Bishop 2uid 

Franciosi]. In fact it is given by n (defined above) plus the 

fractional part of the (n^l)th iteration where it intersects the 

line from the origin to the starting point, see figure 5.5. This 

new definition can be written in precise analytical form as 

follows:

Definition 2

The orbit number N of a two dimensional map is given by

N = n •»• f , (5.24)

where n is the least integer such that

|arg(P^^^) - arg(P^)| > 2jt , (5.25)

P being the point whose coordinates are (x ,y ). The fractional n n n
pcurt f is given by

f =
— > 2 2 V
n _ I m___n m n I

^  1 V X  . - X )^+ (y - y )^/ (5.n n+1 V  n+1 n n+1 n 26)

v^iere the coordinates of the point M=(x^,y^) are found from

X y - X yn n-«*! n-*-l n
m (x^/y^)(y - y ) ♦ (x0 0 n-»-! n n

(5.27)
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éuid

To shew that this new definition is well posed we must 

first prove the following theorem:

Theorem

The orbit number of a two dimensional lineau: map is a 

functicxi of the invariants of the map euid is independent of the 

initial start given to the iterations.

Proof

Consider a general two dimensional linear map

X , = ax **■ by n+1 n n
y , = cx ♦ dy , ■'n+1 n •'n (5.28)

for n=0,l,2,... amd given the initial start P^=(x^,y^). It is 

easy to verify that successive points can alternatively be 

defined by the relaticxiships

Xn = Rĵ (a,b,c,d)XQ ♦ bS^_^(a,b,c,d)y^
= cS^^j^(a,b,c,d)XQ ♦ R^(d,b,c,a)y^ (5.29)

If for ease of notation we define Q (a,b,c,d)*R (d,brC,a) thenn n
we may d r ^  all the arguments of the polynomials R^S and 0  to 

give
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*n ' V o  * *=^«-1^0 

“ =Sn-l*0 * V o  '

where the polynomials satisfy the following relaticxiships 

'*n*l =

' <^n-l " ''n = . (5.31)

1

For n>l the 

S
j B\
‘B v^iere r

,(n-6)/2;

n

n-2r
n

^ n -
determinant of the linear system, i.e. S =S (T,D). ̂ n n

>ad)r / (5.32)

£md r=0. 1,2,..

n is odd. As a

of the trace and

We may use equaticxi (5.29) to substitute for x ,y etc. ton n
calculate y^ v ^ c h  yields

* y p y p  * V o  

V o  * W o  * ‘’3^0 (5.33)

where the coefficients £u:e given 

®2 *
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emd

«3 = *=<°n*lSn-l - V n '

•’ l  ■  ■  ® n -l*

‘’2 = 'Q n U  -  °n> -  < V l  -  "n>

b, = ” ®n-i*n-1 (5.34)

This latter e^^ression may now be used in the equation for the 

fractional part to evaluate f in terms of Xq and and the 

polynomials R^, etc.. Finally by conparing coefficients 

of X q and Yq, and their powers, in the numerator and denominator 

of the resulting expression for f, etfter some algebra, it is 

possible to show that

(5.35)
f = n

n n-i

That is f depends only v:pon n and the inv2u:iants of the matrix.

Q.E.D.

We enphasis4 that the perhaps more obvious definition of f 

based on the angular ratio

|arg(Pn) - arg(P^)|

l“ 9'W  ■
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would be unsatisfactory since the independence from initial 

condition would be lost.

As previously stated» we wish for the moment to consider 

the behaviour of an aurea preserving map whose determinant is 

equal to •♦•1» and whose eigenvalues move around the unit circle. 

It is useful to c^isider the simplest system that displays these 

ch£u:acteristics» namely

yi.i = "'i
(5.36)

In fact by the use of similarity transformations it is possible

to transform any two dimensional linear area preserving map into

a map of this form (see Bishop and Franciosi) therefore the

following renarks 8u:e without loss in generality. This being the

case we see that the determinant is equal to +1 and the

requirement that the eigenvalues should move around the unit

circle implies that must vary from -2 to +2. A point worth

noting here is that with D=1 the polynomials are related to the
(L

Chetyshev polynômes of the secOTd kind by

Ŝ iz) = U^(z/2) (5.37)

The properties of the map as we now move along the D-1 boundary 
are now recovered by the properties of the Chebyshev 

polynomials, particularly the occurence of closed orbits of the

map.
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(b) Closed orbits

A closed orbit of the map occurs whenever the fractional 

part f is identically equal to zero but, since this itself is 

given in terms of the polynomials we see that closed orbits 

will occur at the zeros of the Chebyshev polynomials which are 

all real and lie in the ramge (-2,+2).

When is a rational number, vp =p/q say, the system 

performs exactly p rotatiwis of 2 71 about the origin so that 

with D=1 its orbit is formed by q points. In this case we nwst 

have S ,=0 and S =1 and the value of the trace at vrtiich this 

occurs is given by the second zero of the Chebyshev polynomial, 

i.e.

\L = 2cos(27ip/q) . (5.38)

With p̂ a rational nuntoer this corresponds to the eigenvalues 

being roots of unity so we see that the rotation number and the 

orbit nuntoer coincide at the integer numbers corresponding to 

closed oi±>its.

/C
To act as a conpariscxi between the two defirj^ons of map 

rotation, and since %<e are expecting the frequency to drop to 

zero quadratica!ly, %<e show here in figure 5.6 a computed graph
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2 » 2of 1/R plotted 1/N for values of \i between -2 and +2.

As we have seen, when N is an integer the two values must
2

coincide but between two such points the curve of 1/N exhibits 

a 'scallop'. This behaviour is apparent for small integer values 

of the period kxat as we approach the fold at ®2 this 

characteristic becomes less critical and the two approximations 

closely agree. This scalloping behaviour can be examined if the 

continuity of the orbit number as a function is questioned 

since, although N and its first derivative are continuous, the 

second derivative is however discontinuous which may account for 

the discrepancy, it being subsequently accentuated by the square 

law.

(c) The area enclosed by three mapping points

If we consider the area, of the triangle enclosed by

three cxxisecutive napping points, then it

can be shown that

^  "^yn+l”^n*l^n^^n^l^n^l”^n+2^n+l*^n+2^n ^n^n+2 (5.39)

Equation (5.28) can be used to substitute for x ,y etc. in this 

expressi(xi to give

2 ^  -a^(n)x2 ♦ «2(n)XQyQ ♦ ' (5.40)
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where (neglecting eurguments) the coefficients of this expression 

£u:e given by

a, =

=

a, =

- V n . 2 >

- ^ n V 2 >

(5.41)

in which, following the earlier notation

V l = S - Sn

"n+1
Wn+1

(5.42)

If we now consider the ratio of successive areas obtained 

by further points of the same sequence it can be shown that

= ad - be = D. (5.43)

This fact will be used later in chapter III.3 to predict the 

onset of the Neimarlc bifurcation .

II.5.6 Instability Predictions Near a Cylic Fold

Near the folding of a resonance response curve, as shown in 

figure 5.3, the orbit number N may be approximated by the 

integer valued n, i.e. the fractional part is ignored and we are
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approximating the orbit number by the period of rotaticwi. In the 

neighbourhood of the fold bifurcation point the frequency 0)=1/N 

drops to zero and its square U)^ varies linearly with the trace 

( ^ or more generally T). Since the definition new coincides 

with the rotaticMi number we see that in fact

o) = 1 arctan y(4-T )/T
2Tl

(5.44)

As T tends towards +2 this frequency may be expanded in a power 

series to c*)tain

2W \

2 *5 a ^(4-T ) ♦ (4-T ) +
3T‘

(5.45)

Hence a graph of U)^ plotted against T will locally be given by

- 1 ^ (5.46)

Putting 6 =2-T and linearising with repect to 6 we obtain

-  6 / ( 4 tc )̂
(5.47)

which shows that locally u)2 varies linearly with the control 

6 as the trace tends towards T«2, confirming our earlier 

heuristic argument carried over from the static fold.
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If the syston is not area preserving but its determinant is 

constant, slightly less than 1, then the eigenvalues are 

constrained to move along a path of constant radius as 

illustrated in the right h¿uid diagrams of figure 5.3. For such a 

lightly damped system the relationship can new be used to 

predict the point at which the eigenvalues become coincident. 

Furthermore the definition of the orbit number, or the rotation 

number in terms of the angle vp rather than the limit, do not 

require D=l, they are in fact quite general so consequently the 

vanishing of N (or R) may be used as a predictor of this point 

of confluence. Now if a system is lightly damped then this 

coincidence will be close and prior to the fold bifurcation and 

so predictions should be c»i the safe side.

It should be noted here that as the eigenvalues move around 

the unit circle towards the point at +1 the rate at which they 

do so as a function of the glci>al parameter need not necessarily 

be a linear one. In the three dimensional diagram of figure 5.7 

we see that the a^roaK:h to the fold point is quadratic in 

nature eu:)d, as a cxxisequence, for equal incremental increases in 

the control parameter \i the eigenvalues at first steadily move 

around the unit circle or just inside it. Near the fold this 

quadratic approach causes the movement of the eigenvalues to 

speed up considerably, a point illustrated later in chapter

III.4.
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11,5.7 Hie Use of Orbit Numbers to Predict the Folding of a 

Pericx3ic Oscillation

(a)Puffing’s equation

As sui example of how the orbit number may be used to 

predict a fold bifurcation in the resonance responce of a 

periodically oscillating system we shall first ccxisider a 

computational application to IXiffing's equation in the form

71* X + 2CT|X ♦ X ♦ ax* = F^cost (5.48)

If we choose 7) to be our control peurameter and fix the 

variables i =0.1, a  =0.005 and =2.5 then the equation exhibits 

a jump to resonance at a cyclic fold near 7) =1,46. Some computed 

Poincare maps are shown in figure 5.8 for various values of the 

control parameter in the neighbourhood of the critical point. 

TTie orbit number was calculated for a series of values of 7| 

using the earlier definition and used to produce prediction 

curves as shown in figure 5.9.

The concave nature of the U)^ prediction curve in this 

system allows straight line predictions to be always on the safe 

side while those predictions beised on the u)^ curve may, in this 

particular case, overestimate the fold unless local 

extraipolation are used.

The scalloping behaviour of the prediction curves is
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clearly evident in the top two diagrams, it being possible to 

reduce the extent of the scallc^ by calculating the orbit 

nuirter after more than a single rotation of 2Tl about the origin 

as shown in the lower diagrams of figure 5.9. However, one of 

the advantages gained by taOcing the orbit nuirber from one 

rotation is that it is a quick method of determining the 

frequency so there must be a trade off between speed and 

accuracy, peuirticularly bearing in mind that either for systems 

with relatively heavy damping or for systems whose period is 

laurge an estimation based on only one rotation might be 

unavoidable.

(b) An experimental beam

The rotation of a map will manifest itself as a lew 

frequency beat on top of a steady state periodic response and 

this beat can be used in exactly the same way as the frequency 

of a map. This fact is clarified in the diagrams of figure 5.10 

which show a three dimensional phase space of a periodically 

driven oscillator where the Poincare section defined by x=0 will 

produce as mapping variables the amplitude of response (A) and 

the time t, the latter being replaceable by the phase. Then the 

rotation of the amplitude-phase map will manifest itself in the 

x(t) time history as a beat on the anplitude as illustrated. A 

conputational study of this beat phenomenon has been made ky 

Thonpson and Virgin (1985) and included here is a figure taken 

from their paper which shews the beats produced by the
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oscillator (see figure 5.11)

X + = Boost (5.49)

for various values of the forcing anplitude B. Also shown in 

this figure is a successful use of the U)^ predictor (here 

denoted by p“^), estimating the point at which a fold occurs.

To conclude this study of the prediction of the cyclic fold 

we consider an experimental study of a thin steel beam clanped 

between two rigid supports and driven to resonance by an 

electromagnet (see Bishop and Franciosi]. Hie results are 

briefly summarised in figure 5.12 v4iere the top diagram shows 

the experimentally determined response curve with a jump to a 

lairge amplitude resonance at a value of the forcing frequency 

just kjelow 58Hz. Hie lower diagram shows the two beat frequency 

predictors, the beats in this case being measured manually off a 

trace produced by a u/v recorder. In this physical system the 

U)2 curve is clearly the best predictor with the curve 

approaching the axis in a most undesirable way. Hiis was 

perhaps as to be expected since if we look at the resonance 

response curve in figure 5.12 the folding of the response is 

very rapid so that its parabolic nature will not be significant 

over the wide range of forcing frequency considered here.
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II.5.8 Conclusions

In overall conclusion then we have shown that either by 

estimating the decay rate of transients or by evaluating the 

eigenvalues of the map of the governing periodic behaviour we 

can , theoretically at least, predict the onset of low dimension 

bifurcations of continuous and discrete systems. In part III we 

shall apply these predictive techniques to frfiysical situations 

and, as we shall see, with certain limitations the methods prove 

to be successful in a variety of 'real' problems.
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Figure 5.2 the effect of light deutping on the movement of
the eigenvalues of continuous and discrete linear
systems.
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UNDAMPED LIGHTLY DAMPED

Figure 5.3 Ul^ and predictors for the cyclic fold 
for undairped and lightly dairped systems.
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figure 5.6 Coiqparison between the rotation nuittoer and 
the orbit number of a map.

137





Figure 5.8 Sone conputed Poincare naps for Duffing’s 
equaticm*
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Figure 5.9 Predictions of the fold in Duffing*s ^tion 
using the orbit nuirber of the Poincare map.
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Figure 5.10 The equivalence of the map rotation 
to the beat frequency.
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Figure 5.11 Beat frequency of a nonlinear oscillator used 
as a predictor of the cyclic fold.
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5.12 sumnary of t*e predictions of the junp to
(fold) of an experimentally drivenresonance

beam.
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CHAPTER II.6

A ROUTE TO CHAOS

Some early reirarks have already been made in chapter II.l 

about chaotic motions and the underlying governing chaotic 

attractor vdth specific reference to the work of Ueda. There are 

now many texts that record in detail the theory of chaos since 

its first discovery by Lorenz (1963,1964) or, as some argue, by 

the early work of Ueda; Cvitanovic (1984), Holden (1986) or 

Thompson and Stewart (1986) to name but a few. The text of 

CSuckenheimer and Holmes (1983) is also an invaluable addition to 

the literature of chaos but such a global study of the subject 

shall not be attempted here. The appearance of chaotic motions 

reported in this thesis in part III will mainly come about via a 

cascade of period doubling bifurcations although other routes to 

chaos do exist (Kadanoff (1983)].

This route to choas occurs when a periodic attractor 

representing a fundamental harmonic response, for instance, 

initially bifurcates at H  = say into a subharmonic periodic 

motion of order 2. This periodic orbit itself bifurcates as the 

control parameter \L is gradually increased. The second flip 

bifurcation at ^  ® subharmonic of order n»4 

solution. As n  is increased still further, bifurcations to 

higher orders of subharmonic oscillation will continue with ever
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decreasing values of the control parameter such that an 
accumulatici point will exist just after which 
chaotic motion occurs which has an infinite period.

Universal features of this scenario in maps were discovered 
by Feigenbaum (1978) and later proved by Collet (1980) and 
Lanford (1982). The ratios

(6. 1)

i^2 i^l

were shown to converge to the universal number 6<jo-4.66920.. , 
universal referring here to the fact that this result holds 

generally for all maps. The same result has not been proved for 

the maps which are produced by stroboscopically sampling a 

trajectory of a flow, i.e. a Poincare map, but as we shall see 

later in experiments [Shaw (1984)1 and in numerical simulations 

(Bishop and Virgin (1986)1 it does appear that the result can 
indeed be carried over to flows.

As the period doubling (flip) bifurcations occur they each 

leave behind (in the control-phase space) an unstable orbit so 

that at the accumulatiOTi point there is in fact an infinite 

nuiTtoer of such unstable orbits, it has been suggested that the 

subsequent chaos is thus merely the conputer junping about 

between different unstable periodic solutions. However due to 

the heavy weight of mathenatical rigour now being applied to the 

study of chaos it seems that the subject is on a much stronger
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footing than this suggests.

The cascade of period doubling bifurcatiwis is the only 

continuous route to chaos from a periodic orbit (see the table 

of bifurcations, figure III.5.11). The other possible routes to 

chaos are via an intermittency explosion or a chaotic explosion, 

both of which are discontinuous bifurcations in which a gradual 

change in the control parameter produces a sudden jump in the 

response and the 2^>pearance of a chaotic attractor. These latter 

bifurcations can both be seen within the period doubling 

sequence in chapter III.5 but shall not be considered in depth. 

The interested reader should consult the wor)c of Frisch (1980) 

or the studies of Grebogi et al. (1980).
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CHAPTER III.l

OFFSHORE TECHNOLOGY

In the offshore industry modelling the coirplex motions of 

vessels, whether they are powered or moored, and production or 

drilling facilities is an extremely engaging task. In contrast, 

the aircraft industry has many advantages in that scale models 

can be constnxrted and tested, in wind tunnels for exanple, to 

produce meaningful results. Even full scale prototypes can be 

thoroughly evaluated before the production of a new design model 

is inplimented in the fabrication of a particular aircraft (note 

here that there were several prototype Concorde aeroplanes 

before comnercial operations began). On the other hand, in the 

offshore industry fluid forces cannot be scaled with any 

certainty to give ccxifident calculations of any great accuracy. 

More inportantly perhaps the cost of a full scale experimental 

model of a new design for oil and gas production platform is so 

inmense as to be prohibitive (Conoco's Tension leg Platform 

(TLP) cost £1 billion to design and construct) and even the 

testing of individual components has certain drawbacks since 

interaction is of paramount importance. The shear size of these 

production facilities is staggering; the Hutton TU> shown here 

in figure 1.1 weighs almost 50,000 tonnes and it s deck 

structure outflanks a football pitch. Thus the smallest 

inprovement in dynamic efficiency of such a massive system as
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this can lead to huge savings in terms of cost. It must also be 

rementoered that, unlike aircraft which can regularly be taken 

out of service auxl thoroughly checked and maintained in a 

'dry' situation, am oil platform has to r«nain in place enduring 

up to 100 m.p.h. winds and at times waves of over 100 feet, and 

do so continuously for over 20 years. Though it is true that 

certain conponents can be replaced from time to time the above 

mentioned problems create a need for mathematical and 

engineering skills on a mammoth scale.

In this part of the thesis some specific examples shall be 

considered in which the geometrical theory of dynamical systems 

is applied to the motions of compliant structures. The 

particular models chosen are necessarily of sinplistic form, but 

nevertheless they do capture the fundamental behaviour of the 

real situation. Indeed, in some cases that shall be described in 

the following chapters the models that shall be investigated 

were actually developed and tested in a design process and here 

are merely analysed in more detail with the insight of nonlinear

dynamics theory.

It is clear that the modelling of the dynamics of highly 

cxjnplex systems, such as barges, tankers and offshore platforms, 

is a daunting challenge. The models selected for study in this 

section are not intended to cater for 'microscopic' events 

(fluid forces, differing keel shapes etc.) even though they may 

play a considerable role in determining the final dynamics o 

the system, but rather to investigate the possible qualitative
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t^ehaviour of the dynainic notions of time evolutiOTi systems. In 

particular we shall examine any generic instabilities that such 

systems might undergo in the li^t of the knowledge gained from 

the eeurlier peurt II of this thesis.

Although it is well understood that the wave forces present 

in the North Sea are highly irregular, for the main part of the 

investigations reported here deterministic forcing of the 

mathematical models shall be considered. This is not quite so 

worthless as it may first seem since during the working life 

span of these typical structures and vessels it is readily 

conceivable that at some time there will be a train of waves 

which are in fact extremely regular (for instance waves emerging 

from a distant storm tend to be inherently periodic in nature as 

the fastest waves, of longer period, reach the structure before 

being infiltrated by shorter waves of varying frequencies), thus 

vindicating these studies, although clearly they form only a 

small section of an investigation of which a large part mist be 

random excitation. It should also be borne in mind that there 

are many physical situations in which the external excitation or 

force is predominantly unimodal, such as for example in the 

rotation of machine tools, the motion of vessels in a harbour, 

etc. for which the methods developed here can easily be carried 

over. However, to give an insight into the behaviour of offshore 

structures in random sea-state conditions, and in particular to 

see whether nonlineeu: effects remain visible, in chapter 111.7 

we shall consider the effects of the introduction of a ’random 

element’ superinposed onto the otherwise deterministic forcing.

150



Until recently most theoretical dynamical investigations 

carried out by design and consultant engineers were mainly of 

linear or quasi-linear systems so that closed form solutions 

were obtainable. The preceding discussions only indicate some of 

the complicated characteristics of conpliant systems that 

produce a truly nonlinear system from which little analytic 

information can be recovered. The theoretical tools still 

available in this situation, e.g. perturbation methods [Jordan 

and Smith (1977)1 , the method of slowly varying amplitude and 
phase [Hayashi (1964)1 and the describing function method [see 

Mees (1973,1981)1 , only allows the evaluation of solutions of 

certain types (modes) with sometimes quite considerable 

limitations. The fact that large regimes of chaotic motions have 

been identified in the Duffing oscillator (Ueda (1980), Holmes

(1979)1 enphasises the shortcomings of these traditional methods 

of analysis for ordinary differential equations. Hence the only 

recourse is then to direct time simulations. With the 

advancement of computer technology more elaborate mathematical 

models are being developed to account for physical processes. 

However, partly due to the high costs of commercial computer 

time and partly due to the shear weight of data so produced, 

little effort is placed on the actual amount of simulations 

performed once a model has been achieved. One should remember 

that most designers and engineers, being traditionally trained, 

are used to linear systems in which unique solutions prevail so 

nooBlly only a single or at most a fe« time domain siimilations 

are envisaged during the conplete design procedure. The
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tc^»logical approach to dynêutàcal syst«ns increasingly becoming 

popular [see for instance Stewart and Thompson (1986) and 

Abraham and Shaw (1982,1983,1985)1, and which is advocated here, 

is a method by which the qualitative behaviour of a system can 

be gleaned from this mass of results. The generality of this 

approach means that it is equally applicable in many areas of 

mathematics, engineering amd in the social and biological 

sciences.

One aspect of nonlinear phenomena that shall often be 

referred to in this section of the thesis is the possibility of 

subharmonic oscillations. In the construction of offshore 

facilities the main concern is to design the structures so as to 

have a natural period of vibration that is clearly distinct from 

the period of expected waves [Langewis (1986) 1 so that 

fundamental excitation is excluded; illustrated in figure 1.2(a) 

2ire the natural sway periods of the main designs of platforms 

currently in use. Obviously this is a clear enough design 

criterion but heed must al$o be taken to the possibility of 

subharmonic rescxiances, perhaps of large anplitudes, at a 

fraction of the natural period, be it sway, surge or pitch. In 

turbomachinary design in the aircraft industry this problem does 

not arise since, although subharmonic resonances would clearly 

exist, the machine is advanced rapidly to its operating speed so 

that sufficient power at the relevant frequencies is not 

available to excite extreme vibrations. The North Sea does not 

always behave in such an ordered, controlled manner and 

subhaunnonics must therefore not be ignored.
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As the oilfields currently under production become 

exhausted the move into deeper water results in further 

conplications with increased static and dynamic loads. The 

choice of a particular design of platform in this situaticxi is 

largely determined by w e i ^ t  considerations in the course of 

manufacture. Figure 1.2(b) shows the percentage increase in 

weight of the different structures for a move into 1500 feet of 

water and gives a clear justification for the use of compliant 

platfoms. However the subsequent dynamic motion, bearing in 

mind the fact that the natural periods of oscillation of fixed 

structures increases with such a move into deep water edging 

ever closer to the wave periods and vice versa for the coirpliant 

platforms, plays a vital role in future design worlc. In addition 

for the need to move into deeper waters the exploitation of 

marginal fields gives rise to the concept of transportable 

production facilities and so for these reasons the main enphasis 

of the wor)c that shall be reported here shall be towards the 

dynamic modelling of compliant systems.

In the chapters that shall follow all the time domain 

simulations were carried out using the Runge-Kutta routines of 

numerical integration. In each case the usual stephalving chec)cs 

were made to ensure the long term stability of the numerical 

solution as well as cheOcs of the overall solution of the 

equations by other routines run on different computers 

(particularly to show that the chaotic solutions are not machine

dependent).
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CHAPTER III.2

EXPERIKENTAL INVESTIGATIONS INTO THE FISHTAILING

OF A MOORED TANKER

III.2.1 Introduction

In deep water fields the offtake of oil and gas can either 

be conducted by meauis of a pipeline or by the use of a shuttle 

tanker. Each of these methods has its individual merits 

depending cmi the environmental conditions but the final choice 

of which of the two methods should be enployed for a particular 

field is most probably dictated by economic factors. While the 

laying of pipelines in shallow waters is a well established and 

feasible activity, in deep waters the costs make it a less than 

c^ious choice. ^>ecifically one mile of finished pipeline in 

deep water can currently cost as much as £50,000 per inch 

diameter mile; so that a 50 mile, 20 inch pipeline can cost up 

to £50 million [see Langewis (1986)1 , and costs are on the 

increase. Besides this economic constraint there are many 

technical coirplexities of pipeline technology which may give 

rise to shorter fatigue life and even lead to failure.

An alternative approach commonly adopted is the use of 

shuttle tankers for the offloeKl of oil; in which case insitu 

storage facilities are required or the possibility of an
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intermittant prcxiucticai. When using such tankers in d e ^  waters 

the main technical difficulty is the flooring system and it is 

necessary to consider the structural and seakeeping 

ch£iracteristics of the vessel to reduce the amount of discc»inect 

time as much as is possible.

III.2.2 The Fishtailing Instability

The Hopf bifurcation is a feature found in many fields of 

engineering and mathematics [see Hopf (1942) or Marsden and 

McCracken (1976)1 in which periodic oscillations occur in a 

system when some control parameter is varied. Classic exairples 

include the galloping of bridges and transmission cables, the 

aeroelastic flutter of aircraft panels [Dcwell (1975)1, limit 

cycles in chemical reactions [Vidal (1980)1 and biological 

systems [May (1976)1 , and, in particular, the fishtailing 

oscillations of moored vessels. If the vessel happens to be one 

of the huge crude oil transporter then it is imperative to avoid 

any large scale oscillations to protect neighbouring 

installations and to reduce the risk of a mooring line breaking 

due to excess tensions. As explained earlier, when offshore 

developments move into deeper waters pipelines to shore based 

plants become impracticable, hence it is inportant that we 

should have a thorough understanding of the basic instability 

phenomena that may arise in single point mooring (SPM) systems, 

comnonly used to moor vessels %*iilst loading is underway.
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Hie motions of such a moored vessel are obviously affected 

by many external and internal sources; wave, wind and current 

actions, size, and distribution of the payload of the vessel as 

well as the subsequent effects of the SPM system and any dynamic 

positioning of the ship. However the purpose of this study is to 

construct and examine the simplest experimental model which 

exhibits the fishtailing instability so that our understanding 

of this mechanism can be advanced. With this newfound knowledge 

it is hoped that further factors could later be considered, 

such as a more realistic marine environment, to give a 

picture of the fishtailing problem so that predictions canj^be 

made of the onset of such large such periodic motions in 

sufficient time to enable active control of dynamic positioning 

and station keeping thrusters to prevent the onset of the 

fishtailing instability.

III.2.3 The Experimental Model

For the purpose of these experimental investigations 

obvious sinplifications were necessarily made to the model of a 

moored vessel and a SPM system, the single control parameter was 

chosen to be the length of the rigid mooring arm. However, 

for convenience, we shall equivalently use the variable \l which 

is taken to be the length of the rigid arm beyond the adjustable 

pivot, see figure 2.1. All experiments were conducted in a flume 

approximately 0.5 metres wide, 0.25 metres high, and 6 metres 

long with a constant current provided ly a head tank. The model
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itself was nounted as close as possible to the upstream end of 

the flume following tests to check velocity profiles.

A vertical flexible cantilever was used to simulate a

mooring tower which allowed lateral movements only, these

motions being recorded and subsequently converted to actual

displacements at the pivot point, see figure 2.1. With the

mooring arm length set at a particular value such that the

control parameter, \L , is less than the critical value at v*iich

the bifurcation occurs, ^  , a static equilibrium state exists.c
If pL is increased past this point the system becomes

dynamically unstable and periodic oscillaticxis occur terminating 

in a limit cycle due to a combination of nonlinear terms, 

schematically viewed by the tanker in the positions 1-5 in 

figure 2.2. To examine the incipient nature of the system as the 

bifurcation is approached displacement/time histories were 

obtained in two distinct ways. Firstly the vessel was positioned 

on the equilibrium position and then released. Secondly the 

vessel was given a finite displacement just before records of 

displacements were made. Thus if the system were stable the 

vessel would either remain or decay onto the equilibrium 

position, with the exception of minor deviations due to 

fluctuations in the flow. Whereas if the system were unstable 

oscillations %i0uld be evident culminating in a limit cycle of 

periodic oscillations. Sample traces can be seen in figure 2.3 

both with and without an initial disturbance. The corresponding

phase portraits are shown in figure 2.4, where for |l-30 and
(i -90 only the phase portrait from trajectories with an initial
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disturbance or kick au:e visible; viiile for |l=115 and ^l=140 

after the bifurcation the diagrams on the left hand side 

correspond to the trajectory given an initial kick# those on 

the right hand side are those started on the equilibrium point.

The Hopf bifurcation in its simplest mathematical

form can be represented by the equation

iroc + bx ♦ cx^ ♦ kx = 0 , (2. 1)

(see Thorpson (1982) 1 in vihich the linear damping coefficient 

(b) drops to zero. The presence of the cubic damping term causes 

any ensuing oscillations to terminate in a limit cycle instead 

of diverging to infinity. Consequently a first ^aproach to be 

considered as a possible prediction technique of the fishtailing 

instability was to mcxiitor any induced transient motions and 

evaluate the logarithmic decrement in order to estimate the 

effective damping of the system. When this procedure is carried 

out over a range of the control parameter# before a least

cqnar-og fit can iDe used to provide a linear ^aproximation to the 

data. A plot of the amplitude of oscillations against the 

ccxitrol parameter is given in figure 2.5(a) and as can be seen 

from the lower diagram# figure 2.5(b) the aforementioned 

straight line provides a good extrapolated estimate of the value 

of the control parameter at %i)hirfi oscillations first occur. It 

should be said that care has been taJcen here as to whai to 

evaluate the decrement# firstly since it is the linear damping 

coefficient that we are trying to approximate then early
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readings should be discounted, and secondly since small 

anplitude notions will be greatly effected by any fluctuaticms 

in the flow so then latter readings are also ignored.

Experiments were caunried out for a variety of vessel 

profiles and current speeds, a further example being illustrated 

in figure 2.6 with an alternative approach to analysing the 

oscillaticMis as a power spectrum of the ou^xit signal shown in 

figure 2.7.

In acMiticxi to these investigaticxis a motor arrangement was 

attached to the vessel so that the length of the mooring arm 

could be evolved. Experiments were carried out with this set up 

in an attempt to isolate combinations of variables which lead 

to the occurence of an unstable Hopf bifurcatiwi in 

conjunction with a cyclic fold as illustrated in figure 2.8 (see 

also chapter II.2) which is potentially more dangerous 

containing the possibility of a rapid junp from a stable steady 

state equilibrium to a periodic large anplitude solution. 

Although this particular type of bifurcation has not as yet been 

identified a particular case has been studied in v>hich an 

apparent cyclic fold of the periodic path occurs, see figure

2.9.

It should be noted that in this experimental system the 

damping in sway is provided by a coupling betweoi the fluid 

damping, %ihich is always present, and the effective damping 

provided by the rigid mooring arm. It v«s not the intention here
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Fiaure 2.5 (a) Steady state anplitudes plotted against the control
parameter.

(b) Logarithmic decrement approximation to the effective 
darping and straight line prediction of zero danping,
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Pioure 2.8 Schematic diagram of stable limit cycles
(a) a stable Hopf and (b) an unstable Hopf bifurcation
followed a cyclic fold.
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CHAPTER III.3

A STUDY OF THE NEIMARK BIFURCATION WITH THEORETICAL APPLICATIONS 

TO THE INSTABILITY OF PERIODIC MOTIONS OF A BARGE

III.3.1 Introduction

In the previous chapter we have seen am example of the Hc^f 

bifurcation in which a stable fixed point loses its stability 

amd the resulting motion terminates in a limit cycle due to the 

presence of further nonlineaur terms. Bve counterpart of this 

bifurcation for a periodic orbit is referred to as a secondary 

Hc^f or Neinark bifurcation (following Abraham and Marsden 

(1978)1, in which a periodic notion becomes unstable and an 

attracting torus is borne [Neimaurk (1959), Sacker (1964), Ruelle 

and Takens (1971) and looss and Joseph (1977,1980)]. In order to 

detect a Neimark bifurcation it is necessary to consider a 

system with a three dimensional f*iase space and perhaps for this 

reascxi simple examples of the instability from a flow are not as 

apparent as are those exanples of the flip and fold

bifurcations. One possible source of the bifurcaticxi is in the 

flow of fluid between two concentric cylinders %<hich rotate 

independently, known as Taylor-Couette flow (see Gorman et al.

(1980) or Andereck et al. (1983)1, producing a variety of flow 

patterns. In this thesis for the sake of completeness a

theoretical exanple shall be considered of the occurence of the
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Neimark instability relating to the roll moticwis of a barge and 

although experimental evidence shall not be reproduced here to 

support the model, it does nonetheless provide a simplistic 

description of the real situation.

III.3.2 The Delayed Logistic Map

Despite its apparent lack of sinplicity from a flew the 

Neimark bifurcaticMi is readily visible as am instabilty of a map 

viewed either as a two dimensional Poincare map extracted from a 

three dimensional flew or merely as a map aurising from a pair of 

discrete difference equations. One such exanple of a map is the 

so called delayed logistic map described by the pair of 

equations

y^^^ = jiy^(l-x^) , i=0,l,2... , (3.1)

which aurises in population biology amd ecological systems [see 

May (1976)]. Hiis two dimensional map, which includes the 

control paurauneter ^  , has been studied in detail by Ai w i s o t  et 

al. (1982) and several other authors including Guckenheimer and 

Holmes (1983). The system has a non-trivial path of fixed points 

given by

X « y « (^ -l)/^l t (3.2)
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which loses its stability at a supercritical (i.e. stable) 

Neimar)c bifurcation at ^  =2, illustrated in figure 3.1. In the 

region just after the bifurcation the mapping points form a 

limit cycle rotating about the now unstable equlibrium path 

under the influence of a pair of coitplex conjugate eigenvalues, 

the sixth roots of unity in this instance. Figure 3.2 shows 

iterations of the map for various values of the control 

parameter before and after the bifurcation. For |i<2 we see 

that the mapping points spiral wito the equilibrium path 

from the starting conditions x=y=0.01 (initial conditions given 

in brackets), similar to the behaviour of a trajectory of a flow 

in towards a stable node, whilst for values of ^  just greater 

than 2 an attracting limit cycle is formed and iterations either 

spiral out from the approximate centre of the limit cycle away 

from the unstable fixed point, or converge onto the periodic 

orbit from outside for larger values of initial conditions. When 

\i =2.27 the limit cycle collides with the unstable path along 

x=y=0 and in doing so sees the end of the attractor.

To investigate the possibility of using the techniques 

developed in chapter 11.5 to predict the onset of a Neimark 

bifurcation of a flow as a first approach we shall assume that 

the delayed logistic map is in fact the Poincare m ^  of a 

hyperthetical flow.

If we consider a linear approximation of the delayed 

logistic map in the form
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X , = ax + by n+1 n n
y = cx ♦ dy , ■'n+1 n n

(3.3)

then for ccxisecutive points of the nonlinear cx>rresponding 

linear approximaticxis can be determined by either the three— or 

four-point methods £is described in ch^)ter 11.5 producing a 

linear system in v^ich the coefficients depend on the iteration 

points, i.e. a=aj^etc.. The invariants of the Jacobian matrix, T 

and D, can be approximated by

Tn -  ®n ♦  <^n 

■’ll " V n  ■ V n  •
(3.4)

Figures 3.3 and 3.4 show the first 16 values of these 

approximati<x>s for three typical values of the control parameter 

as the bifurcation is approached. In each case the initial 

conditions used for the iterations of the map was x=y-0.01 with 

the values of T„ and D„ for n=0 corresponding to the third 

mapping point, since in this particular exercise the equilibrium 

point is (mown then the three-point method can be applied. The 

figures show that well before the bifurcation at u  «2 the 

approximations rapidly converge to the correct value of the 

trace or the determinant. However, as the instability is 

approached estimates take longer to settle down to a fixed value 

and more iterations of the map would be required for a confident 

estimate to be evaluated. This particular fact is of less 

consequence that might at first be imagined since, unlUce 

predictions for the fold bifurcation i*ich are loxiwn to only
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hold locally to the critical value, predictions can be made by 

extre^lation using values of the trace (deterndnant) well away 

from the bifurcation. Secondly the fact that successive 

estimates are not quickly settling down to a limiting value 

could itself be taken as a precurser to the onset of a Neimark 

instability.

Hence estimates for the traK^ and determinant of the 

noni i n^ar system can be obtained as the control parameter is 

vauried and a peurametric study can be made and used to follow 

their movement in the (T,D) plane, or equivalently the movement 

of the eigenvalues in the complex plane, as illustrated in

figure 3.5.

For the particular nonlinear map under consideration here 

the Jacobian matrix is given by

J =
(3.5)

so that a linear relationship between the determinant and the 

ccxitrol peurameter |i cam be used ais a predictor for the critical 

bifurcation point vihen D=l.

It should be noted that the mapping points of the delayed 

logistic nap have a periodic motion of order six due to the fact 
that the eigenvalues aure the sixth roots of unity %ihen T»D*1 

suc^ that
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. t42Tl<P ^ ^
X  = e , ^>= 6. (3.6)

An additional tool v*dch can be used when analysing

transient maps which rotate near a Neimar)c bifurcation is the

variation of the area enclosed by three consecutive points of

the map. Cleaurly» prior to the bifurcation a transient m^jping

sequence will COTverge to the fixed point and thus in this case

A tends towards zero. Figure 3.6 shows values of the area 
n

enclosed by three successive points of the delayed logistic map

prior to bifurcaticMi. After the critical value of the ccxitrol

parameter has been passed transient maps will now ccwiverge to

the limit cycle and so the area does not diminish without end.

AS a transient map now decays onto the periodic orbit Â  will
initially decrease, if the start is outside the limit cycle, or

initially increase if the start is close to the unstable centre.

AS pointed out in part II chapter 5, the ratio of successive

areas A and A of the linear map is equal to the determinant 
n+1 n

D of the linear system and so once again a linear relationship 
n
can be used in this case to predict the onset of the Neimark 
bifurcation using this ratio, the oonplete prediction process is 
sunmEurised in figure 3.7.

III.3.3 The Neinark Bifurcation of Periodic motions of a

A thorough investigation of the Neimark instability from a 
continuous flow situation has not as yet been undertaken but it
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would seem clear that the techniques previously described for a 
map could also be applied to a flow problem. Complete 
theoretical and esqjerimental justification for the model to be 
used in this section shall not be examined rigorously, but it is 
useful and instructive to form a complete study of low dimension 
bifurcaticMis by considering a math«natical model rather similar 
to the fishtailing problem in the previous chapter but with 
certain added coitplexities.

ĵ ysical situatiOTi we shall model is that of a flat 
bottomed barge fishtailing and rolling rolling under the 
influence of a steady current. It is )cncwn that typical flat 
bottomed barges can shed vortices from bilges or keels that are 
CCTistructed to provide extra restoring moment in roll (see for 
instance Robinson and Stoddart (1986)1. Ihe increased lateral 
force produced as these vortices are shed can induce a sway 
motion and this force can be represented by a sinusoidal term 
due to the regulaurity at which they are shed. The equation of 
motion of such a system can be described, in non-dimensional 
form, ky an equation of the Van der Pol type, namely

♦ bx ♦ (x* ♦ x*)x ♦ X = fsin(Dt , (3.7)

where x is the displacement of the vessel in the sway directicxi. 
Further details of the non-dimensionalisation process and 
properties of this equation can be found in Thorpson and Uann 
(1981), also see Thompson (1982).
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w ith  f=0 the system is autCMioinous such that if the linear 

danping coefficient, b, is allowed to change from being positive 

to become negative then the system will ejç)erience a stable Hopf 

bifurcation at b=0 similar to the fishtailing model of the 

previous chapter. Ttiis situation is schematically viewed in the 

top diagram in figure 3.8 with some typical trajectories both 

before and after the bifurcation being included in figure 3.9.

When f is nonzero, while b is still positive, the system 

(3.7) can sustain periodic oscillations viiich aure harmcMiic due 

to the forcing term. As explained, this notion is a direct 

consequence of the vortices shed during roll motions (possibly 

caused by the excitation of the barge by additional head waves), 

but we assume that these two motiwis can be uncoupled so that we 

shall only consider lateral sway displacements. If we now 

consider the further possibility that during these small 

anplitude sway oscillations the mooring length between the barge 

and its load is altered, similar to the approach of chapter

III.2, such that the effective linear danping coefficient of the 

system changes from being positive to become negative then a 

bifurcation will occur when b=0. Ttiis instability will be a 

Neimar)c bifurcation and the subsequent motion will be on an 

invariant torus and not, as previously, a siitple limit cycle, 

niis scenario can be seen in the lower diagram of figure 3.8, 

vdth the small anplitude harmonic motion prior to the 

bifurcation marked tr/ a faint circular path; this in turn being 

diaracterised hy ® single r^ieating Poincare point.
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Hie projecticMi of trajectories in the (x»x) phase plane can 

now cross oneanother, since the system is now non-autonomous, as 

can be seen in the diagrams in figure 3.10 calculated at the 

same control parameter values as used in figure 3.9. As is 

usually the case for a forced system it is now more convenient 

to examine the motion via its Poincare map sanpling the 

trajectories at multiples of the forcing period (i.e.2H). The 

control-phase plane will now have a structure similar to that of 

the delayed logistic map (figure 3.1) which will include a 

NeimarJc bifurcation at b=0. A variety of Poincare maps for 

control values before and after the bifurcation can be seen in 

figure 3.11 which have the same structure (node followed by a 

limit cycle) as in figure 3.2, the equivalent situaticxi for the 

map. The top left hand diagram of figure 3.11 shows the position 

of the Poincare points cxi the trajectory, though a record of the 

trajectory itself is not usually retained.

A final point to note here is that the rate of rotation of 

the Poincare points is directly governed by the frequency at 

which the vortices are shed. This relaticxiship can be most 

clearly visualised when ccxisidering the path of trajectories 

converging onto the attracting invariant torus from a starting 

condition close to the centre of the torus. Some trajectories 

and corresponding Poincare maps for a range of values of the 

frequency U) are given in figure 3.12. Rsference should be made 

here to the definition of the orbit number given in chapter II.5 

and the use of the variation of the speed of rotation to predict 

the folding of a periodic orbit in the next chapter.
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In cx>nclusion, although this investigation of the Neimark 

bifurcation is somewhat hype thetical using as it does a 

heuristic model, it does appear likely that predictions of the 

onset of this instcdDility could be made by using the same 

techniques as eipplied to the delayed logistic map as previously 

detailed.
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DELAYED LOGISTIC MAP

/

*1.1 ■ »1

Figure 3*2 Iterations of the delayed logistic map 
(initial conditions given in brackets).
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D E L A Y E D  L O G IS T IC  M A P

n = 0,1,2

Pn.2
Pn.1

0/- 0 mr1 /I / p s (x y )

/ / P^= (x ,̂y l̂

Pn J
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Aĵ  = area enclosed by

linear approximation

*n.i '  “n *n * ^'''n 

Vn»! * ®n *n * ^

Tn * " n “ ’n 

On * On<*n * ‘’n'n

^«•1 Dn

It

Figure 3.7 Prediction procedure for the Neimark bifurcation.
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Figure 3.9 Typical trajectories for a system undergoing a Hopf 
bifurcatiocir the lower diagrams include a limit cycle 
%fith starts both inside and outside the limit cycle.
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Figure 3.10 Typical trajectories of a system undergoing
a Neimark bifurcation.
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Figure 3.11 Poincare maps of a forced system during a 
Neimark bifurcatic»i inducing a limit cycle
in the map.
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•nie study of the behaviour of conpliant offshore structures 

is well suited to stroboscopic mapping techniques since ocean 

%^ves tend to be inherently periodic in nature. Many offshore 

facilities can be modelled tjy nonlinear oscillators and in such 

problems the response of the system can be sairpled at nwltiples 

of the predominant period of the waves. In a realistic sea-state 

ocean waves are not entirely regular but prone to some large 

anplitude slam or irregular waves, caused for exanple naturally 

by wind action or wake interaction from a neighbouring vessel. 

Any inpulsive or slam loading of a compliant system in an 

otherwise regular sea causes a perturbation from an equilibrium 

state and will produce a transient motion. Given a single or 

even a random sequence of such transients what information can 

we retrieve about the iimdnent behaviour of the structure and in 

particular can we predict at what point, if any, the system will

become unstable?

In order to attefipt to answer this question we shall 

utilise the Poincaré napping ideas as introduced in part II of 

this thesis and apply the prediction methods based on the 

monitoring of the eigenvalues of the system using the Centre 

Manifold, three- and four-point methods.

Obviously at this stage it is not intended that these 

techniques should form a design method but should be considered
a s  t o o ls  to  a s s is t  in  the a n a ly s is  of b e haviou r, m onitor and 

predict in s t a b il iU e s .  a«J a d i to  our o v e ra ll unde rstand ing o f

c o sp lia n t  stru c tu re s  in  ocean w aves. TO illu s t r a t e  the se
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techniques we shall consider two practical problems currently of 

great interest in the offshore industry , namely the modelling 

of the capsize of a ship in a regular sea, and the behaviour of 

an articulated mooring tower in a changing sea-state.

III.4.2 Ship Roll Response Leading to Capsize

In this section we consider the roll response of a ship, or 

vessel driven )jy regular beam seas. The capsize of ships is 

obviously a complicated mechanism with little data recorded 

about the displacement time histories of such vessels just prior 

to capsize. It is certainly true that a number of the ships that 

capsize each year do so in seas in relatively mild environmental 

conditions not in conditions thought at the time to be harsh or 

dangerous [see the Lloyds Register], and this is verified to 

some extent by the experimental model studies conducted by the 

Admiralty [see Marshfield (1978) or Wright and Marshfield 

(1980)). For clarity at this stage we shall consider periodic 

beam seas (i.e. deterministic and non-evolving) so that the 

essential features of the problem can be modelled by a 

relatively sinple equation. This type of analysis can then be 

extended to include a more irregular sea as in the section that 

shall imnediately follow this %#or)c.

We start by introducing a semi-enpirical nonlinear 

oscillator with a sir^le degree of freedom. Assuming that the 

wave length is long coipared to the ship’s beam, the roll motion
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of the vessel can be sufficiently modelled by the equation

S  ♦ G(-Ĉ ) ♦ F(-î̂ ) = a sinwt , (4.1)

where a dot denotes differentiation with respect to time t, is 
the relative roll angle, a is the effective wave slope 
aitplitude, U) is the forcing frequency (taken here to be the 
control parameter). G(^) and F(^) are odd polynomials of 
order 3 and 15 which represent the damping and restoring forces 
respectively, the coefficients of which were obtained from 
lalDoratory experiments (Marshfield (1978)1. An extensive 
experimental invesigation of this problem has been made by 
Wright and Marshfield (1980) and figure 4.1 gives some details 
of the model used and approximate steady state solutions of 
equation (4.1) as obtained by Wright and Marshfield using the 
perturbation method and Floquet theory (for a similar study see 
Cardo et al. (1984)1. Equation (4.1) was shown to give 
reasonably close agreement with the experimental results of the 
laboratory tests under various fliud loading conditions. For 
more details and a mere elaborate roll motion analysis the 
interested reader should consult the papers of Marshfield, and 
Wright and Marshfield.

•me approach here is to study the transient btìiaviour of 
equation (4.1) as the forcing frequency is increased and the 
system nears a jusp in resonance (similar to the jusp in 
resonance of a driven laeam as modelled by a IXiffing type of 
equation, see Bishop and Franciosi]. Physically this is
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modelling a changing sea-state in which the frequency of the 

exciting waves is slowly increasing. Sinulations of the system 

using this mathematical model were carried out using a time 

integration routine on a digital coitputer, the results of which 

are indicated in the lower diagram of figure 4.1 by a small 

circles. Due to the form of the righting lever, also referred to 

as the GZ curve, solutions past the fold point of the resonance 

response curve can lead to capsize rather than picking up the 

larger anplitude steady state. Transient motions, caused by 

random kicks superinposed on the periodicity of the waves 

(simulated ky setting the initial conditions of the system away 

from the stable steady state) are tracked by the Poincare 

sanpling methods as they decay onto the equilibrium state.

The stability region shown shaded in figure 4.2 inplies 

that oscillations will start to grow locally if the 

approximating two dimensional linear map evolves so that the 

path representii^ the trace and determinant of the system passes 

through the divergence boundary associated with the cyclic fold 

instability, -mis path in the (T,D) plane for the roll motion of 

a vessel for increasing frequency is shown in figure 4.3. As 

the path, which represents the stability of the system, crosses 

the parabola the transient motion changes from an

oscillatory to an asynptotic behaviour corresponding to a 

coalescence of the eigenvalues in the oonplex plane as seen in 

figure 4.3. The coalescence, which occurs within the unit circle 

because of the positive danping which gives the ship overall 

stability, is rapidly followed by one of the (now real)
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eigenvalues crossing the unit circle at the cylic fold resulting 

either in a juirp to a resonant state or, as in this case, 

capsize. The movement of these eigenvalues can be used to 

predict the incipient instability of the periodic motion and a 

linear relation of a power of the argument of the eigenvalues 

plotted against frequency of forcing can be established 

analagous to the quartic beat predictor in Bishop and Franciosi 

[also see Thorpson and Virgin (1986) 1. This prediction curve is 

shown in figure 4.4. As pointed out in chapter II.5 the 

prediction will be of the point at which critical danping occurs 

but as a function of the control parameter the fold appears very 

close to the point of critical danping. Thus in practical 

situations a knowledge of the critical danping would prove a 

useful, conservative estimate of the point of folding.

Returning to figure 4.3 it is worthwhile to note that the 

rapid movement of the eigenvalues, as argued in chapter II.5, 

can be seen from the fact that the points, corresponding to 

values obtained from simulations, are initially evenly 

distributed, yet after meeting the next point already 

represents an unstable system vdth eigenvalues outside the unit 

circle. It is of practical interest to note that the route to 

the fold in either of the diagrams in figure 4.3 is not 

straightforward, in fact at one point it appeared that the 

system was headir^ towards a flip bifurcation. This would seem 

to inply that the practicalities of using these methods as a 

black box prediction routine might be a little hopeful, 

nonetheless for systems which evolve slowly the methods may
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prove more successful.

This brief • study shows a relatvely sbn>le

application of the numerical techniques earlier introduced. 

Mathematical models in the form of equation (4.1) have been used 

to model a variety of floating vessel situaUons and as we shall 

see in the following chapters the roll response can eidiibit a 

wide range of neblinear btíiaviour including chaotic moUons. We 

shall now concentrate on a second and mote elaborate application 

of the methods including a random sea-state which is allowed to

evolve with time.

The a rU cu la ted  mooring tower is  used in  the offshore 

in d u s try  fo r lo a d ii«  crude o il in to  ta i* e rs  [fo r more d e ta ils  o f 

th is  se t up see Dumazy and Leturcq (1983)1. E s s e n tia lly  i t  is  an 

in ve rted  pendulum pinned a t the sea bed which stands v e rtic a lly  

aue to  its  own buoyancy, see fig u re  4.5. A tan)cer moored to  th is  

tower behaves llX e  a fi*e d  ob ject in  comparison to  the lo c a l 

o s c illa tio n s  o f the t « « r .  Due to  a d is c o n tin u ity  in  the 

s tiffn e s s  o f the  system, corresponding to  whether the mooring 

lin e  is  s lack o r no t, the  system in  in h e re n tly  non linea r. It has 

been Shown llhonpson e t a l.  (1984)1 th a t the motions o f the 

column can adequately be modelled as the nrarlim ensional b ilin e a r

o s c illa to r
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•• r • ^X ♦ 2-^X ♦ kX = — - sint * rit) , (4.2)

where a dot denotes differentiation with respect to the time 

(t), X represents the displacement, £ is the danpirg factor, 1) 

the frequency ratio, k is the sUffness term (non-constant) 

which has a discontinuity at the origin. Ihe function r(t) is a 

series of scaled random delta functions modelling any ispulsive 

slam loads, "mis dynamical system can be shown to exhibit 

conplex behaviour including chaotic moticms Ilhotipson et al. 

(1984)1, but we wish to focus our attention here on the 

transition from fundamental to subharmonic resonance via a flip 

bifurcation. With this purpose in mi«i we fix the stiffness and 

danping terms and choose i| to be our control parameter so that 

from this previous work we know the critical value at which the 

flip bifurcation occurs.

Figure 4.6 shows two typical time histories and their 

associated fincaré maps in the phase plane of a transient 

response after an impulsive loading perhaps due to a freak wave. 

Successive Poincar^ points are joined by straight lines to 

indicate the movement of the map. with a particular value of the 

control parameter far away from the flip bifurcation, the 

íPincaré map spirals in towards an equilibrium point, 

corresponding to a harmonic periodic oscillation, and the 

eigenvalues of the approximating linear map are complex 

conjugate. For values of 1) closer to the criUcal point the 

eigenvalues becoae real a«l negative as the map oscillates along 

the centre manifold (eigenvector) as it slowly converges.
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AS before we shall monitor the transient responses and 

determine the stability of the system by approximating the 

nonlinear Poincare map by a linear map as previously described.

In the vicinity of the flip bifurcation the transient is rapidly 

attracted to the centre manifold and so estimates for the 

eigenvalues using the three-point method cannot be obtained. Of 

course when this happens we are now only interested in the 

critical eigenvalue and so the centre manifold method can be 

used which approximates the system by a one dimensional map. 

Figure 4.7 shows estimates of the eigenvalues using both the 

three-point and centre manifold methods for two chosen 

r^resentative values of the control parameter. A peculiarity of 

the equations used in the three-point method means that, close 

to the centre manifold, after initial divergence estimates 

restabilise and lock onto the same solution as obtained using 

the centre manifold method. Similar problems also occur when

applying the four-point method.

If we now consider applying these tracking methods to the 

idealisation of the articulated mooring tower which is subjected 

to a sequence of random inpulses, i.e. of varying anplitude and 

frequency, then, far away from the bifurcation point, it will be 

possible to easily detect both eigenvalues. Relatively close to 

the bifurcation it may prove difficult to evaluate the

non-critical eigenvalue X ^ .  but it may s U l l  be possible to
derive some knowledge of its location by using only the initial 

estimates which correspond to mapping points **»ich have not as
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yet converged onto the centre manifold, see figure 4.8.

Ihus using a contoination of these methods it vdll be 

possible to compute the eigenvalues which determine the state of 

the stability of the system for increasing increments of the 

control parameter as it approaches the critical point 

where the fundamental n-1 path bifurcates into the n=2
subharmonic path depicting a periodic motion with two distinct

amplitudes. This process is viewed in figure 4.9 and included is 

the equivalent movement of successive maps leading to a path in 

the (T,D) plane. It is worth noting at this point that the 

region of the eigenvalues which we are considering here is a 

local one after the eigenvalues have approached oneanother and 

coalesced, a similar local study of the ship roll problem in the

previous section could have also been performed provided the

sea-state were to evolve at a sufficiently slow rate.

TO successfully model a realistic sea-state it is necessary 

to consider an evolving system in which the frequency is a 

function of time. To analyse such a model we trust now use the 

four-point method since the precise location of the 

instantaneous steady state is not known. Figure 4.10 shews seme 

of the results from this type of study at two different rates of 

evolution, where Clearly estimates are severely

effected by the occurence of a slam load causing a rapid
^ » return to the true valuediscontinuous divergence followed by

of the respective eigenvalue.
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If such a system as is modelled here were closely monitored 

then we have seen that it will be possible to predict the point 

at which subharmonic motion begins in which one of the two 

positive anplitudes of the motion can become large, hopefully in 

time to take preventative action.

111.4.4 ConclusiCTis

Ihe techniques applied in this section form the early 

stages of research into the application of dynamical systems 

theory to the problems encountered in m o d e m  caipliant offshore 

structures. The methods are intended to provide the offshore 

analyst with a means of extracting useful information from the 

transient behaviour so that the onset of potentially dangerous 

oscillations can be predicted and hence prevented. 

Obviously in a real situation iitproved sophisticated monitoring 

devices and software will have to be developed in order to 

obtain real-time information about the underlying stability of 

the dynamic motions of the system. More inrediately these 

theoretical tools can be extremely useful when, for example, 

guiding laboratory tests or coeputer similations or in defining

Stability criteria.
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Figure 4.1 Model details and analytical solution of the
roll response of a ship. 
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Piaure 4.9 Sunmary of methods for tracking
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CHAPTER III.5

■me work that shall be reported in this chapter represents 

some ongoing research that the author is engaged in. Starting 

from a sinple nodel we shall see that the underlying dynamics 

can be extremely conplicated and it is merely the authors aim to 

introduce here some of the conc^ts currently at the forefront 

of nonlinear dynamics research.

TTT.5.1 Introduction

in the previous chapter an equation was used to model the 

roll notion of a ship and this was studied for increasing values 
of the forcing frequency as a cyclic fold in the response « s  

approached which resulted in capsize, -me main motivation for 

the work that shall be reported in this chapter arises from the 

bifurcations oocuring in the same model but for decreasing

values Of the forcir« fregueioy on the other side of the 

resonance peak. In their experimental studies Wright and 

Marshfield (1980) found that t^*«n the frequency of

forci.« was approximately u. -0.9 a subharmonic resonance of the 

vessel was visible which also unaccountably led to capsize.

P i ^ e  5.1 (taken from Wright and Harshfield) s h » «  the region
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in question on the response curve emd also an experimental time 

history of the ship together vàth the corresponding waveform of 

the excitation. A point to note is that although the wave was 

designed to be regular it does oxitain sufficient fluctuations 

to make the experiment realistic which also adds weight to 

justify the numerical/cooputational type of studies advocated 

here. A study of the model was undertaken by Virgin (1986) in 

which he numerically integrated the equation in the region of 

the flip to subharmonic resraiance and included here as figure

5.2 is a diagram taken from his paper. Ihe point A on the 

response curve corresponds to the point at which the linear 

eigenvalues coalesce, i.e critical danping, while the point C is 

where one of the eigenvalues becomes negative (real) producing 

the flip bifurcation. Also shown on this figure are some sarple
traces of time histories as the flip is approached, »e note

that in fact the response undergoes a further flip to an n-4 
solution and for values of W just less than this value of the 
secxxvä flip the ship capsizes. A closer invesUgation of this 
region was made by Virgin in which he found that the response in 
fact goes through a oonplete Feigenbaum period doubling sequence 
terminating in a chaotic attractor.

The question that naturally springs to mind is ’Does the 

ship capsize due to these chaotic motions?*.

Before we attenpt to answer this question we review
some of the basic concepts of the model and study a local
quadratic approximtion to the restoring force and coaparisons

216



are also made vd.th the IXiffing oscillator as studied by Ueda 

(1980,1986), Gucicenheimer and Holmes (1983), Stewart (1986) and

others.

III.5.2 Local Mathematical Models of Ship Roll

An equaticxi of the form

K + bx ♦ GZ = fsinwtmx
(5.1)

is often used to model the roll motions of a ship or barge in 

teas, seas lltobinson and Stoddart (1986), Cardo et al. (1984)1, 

v^ere X is a measure of the roll angle. Ihe mass of the vessel
is here assumed to be a constant vdUch includes the added mass
in roll, b is an equivalent linear danping coefficient, and G8
is the restoring force providing the stiffness of the system,
both the latter t«o coefficients being evaluated either 

experimentally or semi-erpirically [Bawson and Tufper (1983)1.

in an ideal situation the GZ will be a symmetrical function of 
roll angle but in reality a vessel is usually biased in some way 
so that it has a propensity to capsize in a particular 
favoured direction, this is accounted for in the model by a bias
termBsuchthatGZ-B.g(x), v*ach could in fact be due to a
shifted or unevenly distributed cargo, ice on the dedc, 
environmental loading or perhaps damage.

The govemii« potential energy (V) of the system, found by
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integrating the stiffness function, for typical biased 

and unbiased systems are schematically drawn in figure 5.3. In 

this figure a stable equilibrium point is visualised by a ball 

shown blacked in resting in a 'potential well’, while a whxte 

ball resting on a ’potenUal hill* depicts an unstable point. 

Also shown in this figure is the (x,x) phase portrait of the 

undanped unforced counterpart of this system. Using this
diagramatic situation the capsize of the vessel can be thought
of as the ball being forced by the external force to oscillate 

inside the potential well in such a manner that at some time the 

m o U o n  surpasses the unstable position and diverges to infinity. 

(Note that in fact the ball can pass the unstable position and 

yet not capsize since the force can bring the system back to the

potential well).

TO examine the precise mechanism of capsize in more detail

we shall nodel the biased system of the ship roll by a local
quadratic approxinaticn to the GZ curve, not least of all 

because of coirputational expedience.

After a suitable rescaling of the time and roll angle we

focus our attention on the simplified equation

X  ♦ b x  ♦ X - = fsinWt , (5.2)

^ c h  we shall refer to as the single potential well model. The 
^ i o u r  Of this model withcxxt forcing for both the un<tonped 
and lightly damped cases are sketched out in the diagram« of
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figure 5.4(a)! the region s h o m  as shaded in the lower diagram 

indicates the region in the (x,x) phase plane for vAiich motions 

flow onto the equilibrium point as time evolves, i.e. the domain 

of attraction. As can be seen from this diagram it is precisely 

the invariant curve which forms the inset to the saddle point 

which delineates the regions of attraction and escape. This 

latter fact proves very useful when trying to evaluate the 

domains of attraction for various coexisting periodic attractors 

in nonlinear dynamics by first locating the saddle point and 

then running time bacto-ards to precisely locate this inset.

Similarities were noted between equation (5.2) and a 

Duffing type of equation, namely

X ♦ bx - X ♦ X♦ = fsinWt (5.3)

as used b y  Holmes (1979) and others to model the motions of a 

pendulum, this equation forms a  useful cosparison to the results 
that shall follow but could equally be ta).en as a  local 
approximaaon in some way. Ibe GZ curve, being locally cubic, 
leads to  an energy surface v*dch h a s a  double potential well as 
Shown in the figure 5.4(b) and consequently we shall refer to 
this model as the <k«ble potenaal w e ll model; also drawn in 
this figure are the unforced damped and undamped counterparts of 
the system. Ih e  dom ain of ataacaon for the right hand
eguillbrbm. state is m ar)«! a s sh « le d  in  the low er d iagram  and 

we see that this domain now has a more ccap le x  stru c tu re  th a t o f

the  s in g le  w e ll w ith  bamte o f  a t a a c t in g  re g io n s s p ir a l lü «
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round as we move away from the fixed point. Oils indicates the 

sensitivity of initial conditions associated with nonlinear 

problems. A further point to note is that the double well model 

has the considerable conputational advantage that at no time 

does the trajectory escape to infinity, escape here being 

associated with the escape from a particular well: however there 

is the added cotn>lication that motions can occur that straddle

both w e lls .

I f  we now consider e ith e r o f these systems to  be exc ited  by 

a sm all anount o f e x te rn a l force then the fix e d  p o in t becomes a

harsonic n-l periodic solution and the saddle point becomes a

small saddle cycle, as schematically illustrated in the top 

diagrams of figure 5.5. dynamical behaviour of the system is

now examined by considering P o inca rl sections in  the  usual

^  a«d so the Phase portraits in figure 5.5 are « «  that of 

a map and not of a flow, rx>te though that because of the need

for continuity for arbitrarily small forcing the qualitative
structure of the phase portrait of the map n«st te the same as

that Of the flow, once again the inset to the saddle (cycle,

separates the shaded regions of attraction and is drawn here
U lin e  1»« outsetpbeing o f less physica l

w ith  a heavie r im e .

not fully explored in this diagram. Shown in significance, is not t u n y  ^
this figure by a dotted line are the small amplitude periodic 

solutions Of the flow arxd the point characterises them, as

snch in the IPinoar^ Pl—  It should be r « « * e r « d  that
if the system were given a start, for instance on the inset to 
the saddle, any subsequent motion is now not that of a flow but
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a map, so that a point would step into the saddle in this case 

along the continuous line drawn with decreasing advancement of 

distance as the saddle were approached.

I I I . 5.3 Chaotic Capsize

Returning now to the original capsize problem for any given 

values of the coefficients and variables that desribe the motion 

the ship may or may not capsize. For the purpose of this study 

it was decided to fix the level of danping at b=0.1 and with m=l 

increase the level of forcing for various fixed frequencies with 

f a function of time, i.e. evolving, modelling a changing 

sea-state. This type of approach has the added advantage that as 

f is increased the ship at some stage rust capsize, the m a m  

questions being "at what level of forcing does the capsize 

occur?" and "what mechanism of bifurcation is this phenomenon? .

Early Investigations of using this evolving technique to 

reflect the loi« term behaviour of the system are shown in 

figure 5.6 (Note the change in notaUon with the damping now 

being given by 8-0.1, m-1 and the forcing aitplitude is now F 

and not f as before). For early values of the forcing frequency 

near (0-0.8 the escape, given when x-1 following the rescaling, 

appears to be caused by a sudden junp in the response of the 

system. When ta) >0.83 this Jump phenomenon, similar to a cyclic 

fold, does not lead to the capsize of the vessel but instead the 

response restabilises at a higher amplitude (cf. the response of
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a driven beam in chapter II.5(, the junp in latter runs being 
less severe. In each case the response would appear to be slowly 
increasing in amplitude but it is not this steady increase that 
causes the eventual capsize, instead a new sudden phenomenon 
occurs. Ihe appearance of this new unforseen event is more 
alarming since there is no apparent indication of its impending 
intervention such that predictions of capsize based only on the 
slowly increasing amplitude would considerably overestimate the 
time (in terms of increasing F) to capsize.

Ttie regime of irregular response iwnediately prior to the 
escape was examined in more detail by sampling the response and 
following the path of fi*ed points, corresponding to the 
periodic solution, in the phase plane as the forcing was 
increased. Some typical examples of the traces are shown in 
figure 5.7 where the displacement of the Poincare points is 
plotted against F (note that this displacement need not 
necessarily correspond to the maximum amplitude of the 
response). Prom these diagrams it is clear that the irregular 
response of the time history just prior to escape is in fact due 
to the equilibrium path undergoing a cascade of period doubling 
(flip) bifurcations which is a well loiown route to chaotic 
motions, in the diagram® we also see that for certain values of 
the forcing frequency the equilibrium path has a fold, for 
example in the top diagram of figure 5.7 when (b -0.8 after which 
point there is no local attractor anl so the trajectory diverges 
(as found in the time history of figure 5.6). If a careful 
search is made of the phase plane then it is pcsible to

222



locate, at lower values of F, a coexisting periodic state that
also period doubles, that is the fold point has now extended
past the region of period doubling, ■me particular case when 
(0 =0 .8 5 has been studied in further detail such that the 
unstable path can also be located, figure 5.8, from which it is 
clear that any indepth study of the bifurcations of this type of 
system must also include routines to follow unstable paths and 
locate sauidle points and their insets.

TO verify that the period doubling sequence was conplete 
resulting in chaotic motions the scenario is included here as 
figure 5.9. mis drawing was in fact terminated at F=0.109 since 
this was the lowest value at which escape had never been seen to 
occur. This diagram, which is only one half of the period 
doubling sequence, is similar in structure to that of the Henon 
IHenon (1976)1 and logistic [May (1976)1 maps including windows 
of periodic motion. A feature of these maps called a chaotic
explosion is also apparent where a chaotic attractor suddenly
increases in size (or decreases). This phenome«»., termed an 
interior crisis by et al. (1983), can be seen within the
periodic windows (and to the right) and is oaused when an 
unstable path from the original periodic motion collides with a 
small internal ohaotic attractor, the explosion results in a 
larger ̂ laotic attxactor.

A point to note here is that inside these periodic windows 
if we imagine F to be decreasing then the motion charges from 
beii« peiodic to chaotic, this is called an intermittency
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explosion and is a further route to chaos. Unfortunately this 
event is not particularly clear on this figure since the scale 
is necessarily small, the interested reader is advised to 
consult the paper to appear by the author llhonpson et al.l or 
the paper of Grebogi et al. (1983) for similar behaviour for a
map.

It is not clear at this stage of research whether the 
chaotic explosion near F-0.10875 could be explained by the ideas 
of an internal crisis a la Grebogi since the explosion occurs 
outside the bounds of the original attractor. A further event, 
termed an exterior crisis by Grebogi, is one which leads to a 
sudden end of the chaotic attractor of a map caused by the 
interaction between the chaotic attractor with either an 
unstable saddle point or its inset. Ihis type of chaotic 
bifurcation in which the sudden destruction of a chaotic 
attractor leaves no local attractor is more comnonly termed a 
blue sky catastrophe [see Thompson and Stewart (1986)1. It is 
clearly this type of bifurcation that leads to the capsize of
the ship but the fact that at the end of the period doubling
sequence there is an infinite number of unstable paths adds to 
the conblexity of locating the precise mechanism of escape for 
this paurticular equatiwi.

The only readily available test for truly chaotic motion is 
to plot the chaotic attractor; this being done in figure 5.10 
where we see the two bands of the attractor. As the phase angle
at which the Poincar̂  section is taken is varied these bands
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fold over and mix (the folding can just be viewed in this 
diagram), and it is precisely this mixing and folding of the 
attractor that causes the sensitivity to initial conditions that 
is identified %̂ th chaos. 'ttiis particular figure also 
illustrates another problem encountered, namely that of chaotic 
transients. After a blue s)cy catastrophe the attractor no longer 
exists formally. Nevertheless typical trajectories initialised 
in the region previously occupied by the chaotic attractor 
appear to move about chaotically in this region but after a 
finite time the orbit leaves and then rapidly escapes to 
infinity. The time that such a transient stays vdthin the region 
varies so that it is difficult to determine whether a particular 
trajectory would not escape if the machine were left to run for 
a longer period. Bearing in mind that for a certain system the 
reverse process might be significant, using these chaotic 
transients it is desirable to predict at what point the chaotic 
attractor will appear. A brief conparison has been made with the 
worlc of Grebogi et al. (1983) in scaling these chaotic 
transients and some success has been achieved in a posteriori 
predicting the critical value when chaotic motions become 
stable k>ut this wor)c will not be reported here.

The main question that remains to be answered is by what 
mechanism does the blue s)cy catastrophe occur. If we look at the 
generic bifurcations as tabled by Thonpson and Stewart (1986), 
figure 5.11, we note as a matter of interest the way in which a 

flow can bifurcate so that no attractor exists through
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a saddle cycle connection, see figure 5.12 taken from the book 
of Ihotipson and Stewart [also see Stewart and Thompson (1986) 1.
The counterpart o f th is  dangerous b ifu rc a tio n  fo r a map would be 

when a saddle p o in t (representing a saddle cycle) c o llid e s  vrtth  

a s tab le  node (representing a p e rio d ic  s o lu tio n ). I f  we look 

back to  fig u re  5.8 i t  is  p re c ise ly  th is  b ifu rc a tio n  th a t occurs 

a t the fo ld  po in t o f the e q u ilib riu m  path where th is  saddle node 

cx> llis icxi re s u lts  in  no lo ca l a ttra c to r.

TO determine the reasons for the blue sky event at the end

of the chaotic attractor a sensible first approadi is to check

whether the g loba l saddle, S, o r its  in se t touches the 

a ttra c to r. U tt le  th e o re tic a l in fo rm ation is  a va ila b le  regarding 

the path o r route taken ty  the  in se t to  the saddle hot some 

knowledge can be gained by applying the so c a lle d  M elnikov 

method [Melnikov (1963)). In s in p le  terms M elnikov's Method 

provides an a n a ly tic  expression fo r the parameter values a t 

which honoc lin ic  tangency ^ s ,  i.e .  v*»n the outset and the

inset of the saddle first t o ^ .  If the parameter values are

va ried  s t i l l  fu rth e r a hom <«linic tang le  ensues fo r which 

M elnikov Showed that the in se t and the  outset oust new in te rs e c t 

oneanother an in f in ite  nuntoer o f tim es, schem atically 

illu s tra te d  in  fig u re  5.13.

The appendix to this chapter contains a brief account of 
the method of Melnikov as well as the details of the application 
of the method to the siî rle well model and also included in the 
appendix is a scaling of the double potential well model.
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The critical value of the forcing calculated by the 

Melnikov method is given by the relationship

O.lsinh(Tm))
5TIU)2

(5.5)

With «*) -1 this yields F̂ -0.0735 which conpares favourably with 
the conputational evidence of figure 5.14 which, run as it is at 
F=0.074, imist be just after the homoclinic tangency has occured. 
Ihe shaded region in this diagram depicts the area of the phase 
plane that leads to escape.

From a conputational point of view the inset to a saddle in 
a map is harder to locate than the inset of flow. In a flow, 
given an initial condition on a saddle point a trajectory will 
trace out the inset if time is run backwards. However in a map 
an initial start steps along the continuous curve representing 
the inset, these steps may be large with no indication of the 
path inbetween points. The only way to get a pseudo-continuous 
picture of the inset is to consider a number of initial 
condiUons using the so called ladder method; this ladder method 
is a systematic way of subdividing a section of the inset into 
•rungs- and iterating each ru.« or start backwards in time. By a 
careful choice of the nunber of rungs in each section an almost 
continuous line can be achieved. This method is diagramaUcally
illustrated in figure 5.15 where the points (Poincare points)

P„,P̂ .P̂ ,... and ^
outset respecUvely. P̂  a«l (̂  are chosen to be close to the
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saddle point S *dth the sections corresponding to an iteration 

of the map being marked on the inset and along

the outset.

Thus we are now in a position to track the path of the 
inset to see if it touches the chaotic attractor, -me occurence 
of a homoclinic tangle conplicates the story since the inset and
outset now cross each other an infinite nui*er of times, -me 
area trapped between any two such crossings becomes stretched
out to form thin -whiskers- which curl round following the
original path of the inset in such a way that the rungs of the

ladder can be separated by large distances. The presence of

these whiskers mean that the catchment region of the chaotic
attractor becomes fractal in nature Isee the paper to be 
published by the author, -nkmpson. Bishop and leungl. Figure 
5.16 shows some of the conplexity of the situation, the shaded 
region corresponds to the area of the phase plane that leads to 
escape, exairplified by the sequence a^, 02'-- 
points Pi,P2,..etc.leadto the chaotic attractor. As can be
seen from this figure the inset does indeed pass close to the
Chaotic attractor, a close-up stuly of **,ich is shewn in the top 

right hand comer.

Asurmaryof the values at which the various bifurcations
occur is given here as figure 5.17. The folding of the
equilibria path is characterised by the curves A and B %*ilst
the first and second period doublings occur at C and D with
final escape at E. The curve marked H is the value of the
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forcing at «hich the Melnikov method predicts a hoooclinic
tangency which gives no information about the eventual escape.
AS the frequency drops to al»ut 0.8 all the curves approach 
„«another and in fact the Melnikov curve can lie above the
escape curve schematically illustrated in figure 5.18. This
inplies that it is also possible to have a chaotic attractor 
«hich has a snooth basin boundary Isee also Moon and U  (1985)1.

It would appear then that from our results it is possible 
for a chaotic attractor to exist with either a smooth or fractal 
basin boundary (the basin of attraction) but that the escape is
inaependent of this event associated with a homoclinic tangle.
Whether indeed it is the t«Khing of the attractor by the inset 
from the global saddle or in fact the intervention of the inset
Of a sore local saddle which sees the end of the attractor is as
yet unresolved and will form the basis of further research.
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Figure 5.1 (a) Waveform and time history of subharmonic
motion leading to capsize 

(b) Resonance response curve and region of 
cd«otic CE^ize.

230



t-V j.

VO

231



(a)

(b)

(c)

mV ♦ bx ♦ GZ = f sin u)t 

GZ = B^glx)
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I

rioure S.3 (.1 Typical restori,« force curves (GZ, for unbiased
and biased systems

,b) corresponding govemi,« potential energy function (V) 
(C) undanped unforced phase portraits.
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Piaure 5.7 Displacaient of Poincare points plotted 
against level of forcing (F) at various 
values of the forcing frequency.
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Figure 5.10 The chaotic attractor sairpled at different phase 
aisles, a steady state diaotic solution and a
chaotic transient.
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Figure 5.13 Schefnatic diagram of a hcmoclinic tangle.

242





L o d d e r M e t h o d

Figure 5.15 Schematic illustration of the ladder method,
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Figure 5.17 Bifurcation diagram.
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CHAPTER III.6

To act as a summary of the methods developed for 

investigating and predicting the cyclic fold (saddle node) and 

the flip instabilities, both codimension one bifurcations, a 

study of the possible steady state motions of a moored 

semi-submersible platform has been carried out. Ihis study, as 

well as pointing out some of the conplexities of nonlinear 

systems, illustrates how these methods might be applied to any 

dynamic study of a conpliant system.

III.6.1 Introduction

As offshore developments necessarily move into deeper 

waters the use of fixed steel jacket production platforms

becomes uneconomic when the amount of stiffening required to 

provide for adequate structural stability and fatigue life is 

taken into account. Concrete gravity structures were originally 

designed for heavy payloads in shallow waters and are not 

considered to be well suited for deep water, or temporary, 

production, consequently much currait offshore design is 

directed towards floating facilities. Catenary moored 

semi-subnersibles are a relatively new and innovaUve feature in
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the field of deep vpater platforms or transportable production 

support facilities in the offshore industry [Chou et al. (1983), 

Rainey (1978)). The effect of the mooring chains renders the 

dynamic response of these conpliant structures highly nonlinear.

So much so, in fact, that traditionally adopted analytical 

approaches based on assumptions of near-lineararity are often 

inadequate if extreme responses are to be predicted with any 

certainty, therefore, the role of nonlinear dynamics is a 

fundamental prerequisite to the understanding of the large 

amplitude motions (Cash and Rainey (1980), Robinson and Stoddart

(1986)1.

Ihe growth of research interest into rxmlinear dynamics in 

the field of applied mathematics has been spectacular in recent 

years [Ughthill (1986) 1 although it is only comparatively 

reoently that the important qualitative insight afforded by 

dynamical systems theory has been applied by engineers to 

current practical industrial or engineering problems 

[Guc)cenheimer and Holmes (1983), Thompson (1982) 1.

AS a starting point in the modelling process a dynamical 

system is often described by a governing equation of motion 

(Nayfeh and Hoc* (1979), Patel (1983)1. Wiile there is a 

relatively complete analytical theory for linear ordinary 

differentUl equations, most nonlinear systems cannot be solved 

in a closed form. Recourse to direct time simulaUon is perhaps 

the most useful approach towards a solution and will be adopted 

throughout this vork. In the past direct time domain simulation
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have been lindted by the expense of confjuter time but fast, 

efficient conputers are becoming increasingly available so that 

numerical integration can be used as the main thrust of analysis 

rather than one or two isolated simulations to verify an 

approximate method [Cardo et al. (1984), Wright and Marshfield 

(1980) and Nayfeh and Khdeir (1986)].

For ease of presentaticxi some assuirpticxis and 

sinplifications are necessarily made. Firstly, deterministic 

forcing is considered modelling a regular sea; random processes 

will form the baisis of later (ch£pter III.7) and future wor)c. 

Secondly, the added mass and damping coefficients and the value 

of the fluid loading are taJcen as being amplitude and frequency 

independent, with the justification that there will be a limited 

interaction between the structure and the free surface (Patel 

and Wal)cer (1983)). Finally, only a single degree of freedom 

will be considered, namely uncoupled surge motions. For large 

anplitude oscillations it is liJcely that these modelling 

assunptions may be violated, however, without these 

sinplifications a study of the variations of all the parameters 

would be extremely l e r ^ y  (cf. Ueda's examination of a two 

parameter system (1980) see also chapter II.D). Nonetheless the 

design engineer should be aware of the hidden complexities of 

nonlinear systen® when performing time domain simulations.

Despite these restrictions the underlying nonlineararity of 

the system and the light effective damping results in a variety 

of complex phenomena including competing steady state solutions.
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sensitivity to initial conditions, sudden jumps between 

resonances incorporating hysteresis loops, and chaotic motions. 

These features occur in the two cases considered, i.e. leeward 

lines slack and active, as we shall shortly see.

Due to the aissunpticais made and the complexity of the 

behaviour the main emphasis is placed on qualitative behaviour 

[Thompson and Stewart (1986)]. In other words, even for the 

relatively simple system considered in this paper, these complex 

motions are likely to be encounterd in a similar form for more 

sophisticated models and therefore in the actual response of a 

semi-submersible.

III.6.2 Mathematical Modelling

(a) The underlying equation of moticxi

The schematic diagram of a moored semi-submersible in 

figure 6.1 illustrates the system to be modelled considering 

unidirectional waves. Thus it is possible to focus attention on 

the single degree of freedom surge motion (X) under the 

influence of a constant wind or current loading (L), described 

by the differential equation

mûC ♦ bX ♦ F(X) « L 4 FoSinWt , (6 . 1 )

where a dot denotes differentiation with respect to time (t), m
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and b are mass and danping coefficients, F(X) is a nonlinear 

function representing the restoring force and the right hand 

side of equation (6.1) represents a regular sea vdth wave force 

, frequency U) and period T=2Tl /U) .

The value of the coefficients assumed here to be were 

c^Dtained by realistic approximations from a recent Case Study 

[see Dynamics of Compliant Structures (1985) 1 ? a static offset 

is incorporated into the system simulating the effect of a 

constant wind force or current loading. The common procedure of 

slac)cening off the leeward catenary lines in an attenpt to 

reduce loads changes the form of F(X) and simulations run vdth 

lx)th the lee lines active emd slac)c will be considered and the 

following wor)c aims to explore the response of this system to 

typical regular waves.

(b) Numerical time simulation

It is a relatively sinple matter to integrate a nonlinear 

ordinary differential equation on a digital comfxiter. A popular 

scheme is the Runge-Kutta method which has proved to give 

satisfax:tory results in a wide range of applications (see the 

note in <d«qpter III.l].

In ma)cing a parametric study of a dynamical system it is 

necessary to assess the role played by each factor on the 

resulting behaviour. Such a task can be daunting even for a
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relatively sinple model [Ueda (1980) 1. In this work the mass, 
danping and stiffness characteristics as well as the v«ve force 

are held constant at realistic values and the wave period is 

chosen as the control parameter. Therefore, the subsequent 

cociputations relate to values of the wave period in the region 

of practical 'design v*ave' ejq)ectations.

Using numerical time integration there 0 «  no restrictions 

to nearly linear systems or small parameters common to many 

approximate techniques such as the perturbation method. Also, an 

evolving sea-state and random influences can be handled by this 

method [Bishc^ et al. (1986)).

(c) Instabilities and bifurcations

A major concern for an engineer is being able to predict 

any sudden change in the behaviour of a system that might occur 

due to a slowly evolving sea-state. It is inportant to know 

under what conditions a steady state will lose its stability by 

juirpingto another remote steady state, bifurcating into a 

different order of subharmonic motion, or even capsizing as seen

in chapter III.5.

The dynamical systems theory of differential equations 

offers guidance to the expected forms of bifurcations under the 

operation of a control parameter. In fact there are only three
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local generic bifurcations in which a periodic dynamical system 

can lose its stability for one parameter systems [Stewart and 

•monpson (1986)1 and the manifestation of approaching 

instability has been observed in transient motion and found to 

be useful for prediction purposes (Bishop and Franciosi]. Also 

a further justification for using a low order system is that the 

significant behaviour of large dynamical systems, particularly 

those approaching instability, is topologically governed by the 

qualitative behaviour of an attractor of low dimension.

III.6.3 The Leeward Lines Slaclc Case

we start by considering the case of a semi-submersible 

moored by catenary chains where the leeward mooring lines have 

been slackened off to reduce tensions IBishop and Virgin 

(1987)1. The stiffness characteristics of this system are shown 

in figure 6.2(a), indicating the cosparison between real data 

(shown by dots) and the corresponding curve fit. An exponential 

form for this restorii« force was adopted to give the required 

zero stiffness at large negative displacements, it is more 

convenient to study local oscillations with dlsplaoema,ts x 

about a static offset or equilibrium position , in **>ich case 

the restoring force may be represented by

F(X) ♦ X )
(6.3)
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F(X) = L ♦ fix) , (6.4)

where

f(x) = L ( e ^  - 1) (6.5)

The coefficients of the curve fit are given by

L = 400gexp(cX^) (6 . 6)

since 400g KN is the )cnown load at zero displacement, where 

g=9.81 m/s^ emd c=0.1.

Although a vauriety of static offsets can be examined, for 

the purpose of this study shall be taken to be 6 metres for 

k»th the aKTtive and slac)c cases.

Placing the restoring force relationship into the equaticxi 

of motion gives

noc ♦ bx ♦ f (X) = FoSinWt (6.7)

The mass (m) of the stnx:ture under consideration, including 

mass, is 45011x10^ Kg with a danping coefficient (b) of 

383 KN/ (m/s). The danping used in the model is linear and 

although this provides a good approxiiiiation within a given speed 

range the essentially quadratic nature of typical dasping 

mechanisms might come into play for larger anplitude/period
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ratios. For conputational convenience the forcing term F„ is 

taken to be constant at 15000 KN corresponding to an 8 metre 

wave but could readily be incorporated in the following 

conputational analysis as a variable, more realistically

modelling the wave force variations according to typical data 

see figure 6.3.

Expanding the exponenUal and subsequent linearization of 

the equation (6.5) yields

L ( e ^  - 1) = licx ♦ 0(x ) (6 .8)

and inserting the relevant coefficients leads to

f(x) - 715 X (6.9)

which gives a natural linearised frequency for the offset of 6

metres as

U)^ « y(Lc/m) = 0.126 rad/s (6 . 10)

and a linearised natural period of

T « 211/0.126 » 49.85 seconds n
(6 . 11)

The natural periods of the semi-submersible for a range of 

offset values is shown in figure 6.4.
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TO measure the range of validity of this linearization the 

natural period of oscillation of equation (6.7) was confuted 

with no darnping or forcing and the deviation from equation 

(6.11) is illustrated in the lower diagram of figure 6.5. Hiis 

diagram also shows the potential energy function (V) on which 

the system can thought to be oscillating in, obtained by 

integrating the stiffness function. It can be seen that the 

natural period is considerably lengthened for large anplitude 

nonlinear free oscillations.

An analytical expression for the amplitude of the 

linearised system is the standard result from vibration theory 

[Thomson (1981) also see chapter 11.3) and this may be later 

conpared with the nonlinear amplitudes obtained from numerical 

integration in the next section.

(b) Competing steady states

The wave period T is used as the control parameter so that 

a large nuntoer of simulations are computed and the resulting 

final steady state amplitudes obtained, as shown in figure 

6.6, for values of T between 10 and 30 seconds. The design wave 

periods are within this range and for the semi-submersible under 

consideration are therefore about 25%-50% of the linearised 

natural period of the system.

The arplitudes shown in figure 6.6 represent the final
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control parameter. Hie onset of each new bifurcation occurs at a 

progressively smaller variation in the control parameter until 

the respcMise can be termed diaotic.

A scenario of period doubling steady states as Poincare 

maps is shown in figure 6.8. These pictures are obtained by 

letting the system settle down after a considerable nurnber of 

forcing cycles after which sufficient points are plotted to 

characterise the steady state. For the given wave periods in 

figure 6.8 bifurcations leading to subharmonics of order 96 are 

shown, indicating the extremely complex nature of the motion. A 

plot of the displacement of the Poincare points against the 

control parameter in figure 6.9 clearly shows the cascade of 

period doubling bifurcaticxis. The amplitude of these bifurcating 

subharmonic resonances relate to the n=3 response arm in figure 

6.6. It should be noted here that X p  will not in general 

correspond to the maximum anplitude of the oscillation and that 

the bifurctions of the arm with positive displacements are so 

small as to not be visible on the scale drawn.

The result, previously explained in part II, that the ratio

of successive distances between bifurcations during a period

doubling cascade tends to a universal number was only proved for

maps but it is useful to construct these ratios for the cascade

under consideration here. If we denote the value of the wave

period at which the bifucation to a subharmonic of order n

occurs ky T then from the investigations reported here we find 
n

that
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T , = 22.38 » T 2 = 23.59 , = 23.828
= 23.8695 , = 23.879 , » 23.88105 . (6.12)

These values produce the following Feigenbaum ratios

(6.13)

as follcKo/s

, 6-= 5.735 , 6 = 4.368 , 6 = 4.634, ''3- r -4

remerttoering that the universal Feigenbaum number is given by 

^  = 4.6692.

A close up view of the approach to chaos is shown in figure 

6 . 1 0  in «hich the folding of the attractor can just be seen in 

the bottom right hand diagram. A useful identification of this 

type of behaviour is obtained by sanpling the attractor at 

different phases of the forcing. A detailed analysis of the 

chaotic dynamics inevitably involves many aspects of advanced 

mathematical concepts which will form the basis of further woric 

but suffice it to say here that the subsequent motion of the 

platform will be highly coaplex and almost certain to create 

problems if found to occur in reality.
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t i i .6.4 The Leeward Lines Active Case 

(a) Equation of motion

A similar conputational study has been carried out when the 

mcoring chains on the leeward side were considered to be active 

during all motions. Ihe equation describing local departures 

from an offset of 6 metres is once again given by the equation 

(6.7) with the same coefficients as before except that the 

restoring force, seen in figure 6.2(b), can now be represented 

by a cubic polynomial. Ihe coefficients of this expression were 

obtained by fitting the data in a least squares sense and found

to be such that

f(x) = 880.84x 32.27}^ +1.899X^ . (6.14)

By considering a linear approximation the natural frequency 

and period can be calculated to yield

u) = 0.14 rad/s , n
(6.15)

and

44.9 seconds (6.16)

The damping factor is

r s b/(2m(i) ) * 0.03 $ • n
(6.17)
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which is relatively small and therefore transient motion will 

take some time to decay. However, a close approximation to the 

position of the steady state in the phase plane is given by the 

steady state of a close tr/ control value so that transients can 

be minimised to some extent.

(b) Conpeting steady states

The maximum airplitudes of steady state motions are shown in 

figure 6.11 where again multiple steady state oscillations for a 

fixed wave period are the rule not the exception. This anplitude 

response diagram is more syitinetrical than for the lee lines 

slack case in figure 6.6 as expected but a small asynmetry in 

wave form is due to the static offset of the semi-submersible. 

Again interlocking spirals in the domains of attraction of (x,x) 

are encountered although they are not carputed here.

The linear steady state can be seen as a small amplitude 

harmonic (n=l) response. However, some unexpected behaviour

occurs between T=18 and T«22 seconds with the appearance of a

hysteresis loop. The actual mechanism of the instability will be 

described in the next section but it is clear that there will be 

finite junps between these stable periodic attractors, including 

junps to the extremely large amplitude motion which would be

catastrophic.
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The type of behaviour is conplicated by these jumps between 

harmonic and suWiarmonic solutions although <xily the maximum 

positive and negative amplitudes of the wave form are shown in 

figure 6.11. The use of a linear solution gives only the small 

anplitude motion as indicated so that the limitations of 

linearisation are apparent and it can be seen that even a small 

deviation from linearity can have a dramatic effect oi the 

dynamic response of the system.

(c) The loss of stability

the incipient loss of stability of a dynamical system is 

manifested in the transient response. For a one parameter 

system, such as ours, there are only three distinct ways in 

vghich cyclic behaviour can become unstable generically. 

Dynamical systems theory tells us that these are the fold 

(saddle-node), flip and Neimarl? bifurcaUrais, and are 

characterised by one or more of the eigenvalues, of the 

underlying linear map, passing through the unit circle in the 

cooplex plane and increasing in modulus. Analytically this type 

of stability theory includes Floquet theory but the numerical 

procedures described in this worlc, particularly Poincar^ mapping 

techniques, can be used to obtain useful information about the 

Stability of a dynamical system.
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The instabilities introdvx»! in section 6.2 can be observed

in the junp behaviour of the semi-submersible as viewed in the

steady state respcxise diaigram of figure 6.11. These juirps may be

nore clearly seen in the displacement-control or

velocity-control planes. This is shewn in figure 6.12 where both

X and X versus T are plotted which may be viewed as a three 
P P

dimensional control space with displacement and velocity at 

right 2uigles to each other.

As with the lee lines slack case, a stable solution may 

junp suddenly to a new attractor or bifurcate into a higher 

order subharmonic in a more subtle fashion. Referring to figure

6.12 and gradually increasing the wave period from T-12 seconds, 

a small anplitude harmonic solution remains stable until about 

T=21 seconds when a jut,p to an n=2 subharmonic oscillation 

occurs. Ihis subharmonic then restabilises onto the n=l

fundamental solutirai at about T*24 seconds until another jump at 

T-30 seconds leads to a large n*l anplitude oscillation. A 

return journey would sinply follow this large anplitude motion 

and gradually increase in magnitude until a large jurp back down 

to the fundamental solution at T-13 seconds occurs. 

Alternatively following a small arplitude at T-30 seconds and 
decreasing the wave period would lead to a subharmonic flip 

bifurcation followed by a junp onto the n-1 harmonic at about 

T-19 seconds. Therefore not only are the initial conditions 

crucial to the final steady state m o U o n  but also one oust know 

,*»ther the forci.« period is gradually increasing or

decreasing.
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Now considering in more detail the instability phenomena 

associated with the response of the semi-submersible for wave 

periods between 18 and 24 seconds and small amplitude 

oscillations. The displacement of the Poincare points 

characterising this type of behaviour are shown in figure 6.13. 

The type of instability phenomenon can be evaluated by 

considering the eigenvalues of linear transient motion close to 

the steady state as described by Bishop et al. (1986).

To represent the Poincare points of a transient motion we 

let

X (k) = x(t^ ♦ kT) 
P

y (k) * x(t^ kT) 
P

(6.18)

or in the vector form

(6.19)

n » n  if «e let A( X ) be a 2x2 matrix of constant coefficients 

with eigenvalues X , we may approximate the nonlinear Poincare
map determining the relationship between successive points by a

linear map

z, , » A(X)z. » k«0,l»2...k^l k
(6. 20)

The requirement for stability is that
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|X| < 1 ,
(6. 21)

but suffice to say here that the fold and the flip bifurcation 
are characterised by a single real eigenvalue crossing the 
stability boundary through +1 and -1 respectively.

By applying this technique to monitor transient responses 
as the wave period is reduced to just below 24 seconds from the 
right hand diagram of figure 6.13 it can be seen that the 
subharmonic response, subsequently evident as T is decreased 
further, is due to a supercritical flip bifurcation. Perhaps 
more worrying for the design engineer is the presence of a 
subcritical flip bifurcation in the control phase space at 
around 21 seconds. This bifurcation is again determined by an 
eigenvalue passing through -1 as illustrated in the lower
diaigram of figure 6.13.

to determine the stability of the subhamonic notion along 
the n-2 path we roust COTSider alternate points of the Poincare
map.

(6. 22)

Hence the stability is governed by the position in the coeplex 
plane of eigenvalues of A^(X). i.e. . From the left hand 
diagram of figure 6.13 we see that as the wave period is reduced
below 19 seconds the corresponding eigenvalues along the n-2
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path approach indicating that the reason for the sudden end 

of the n=2 attractor is due to a cyclic fold bifurcation.

The unstable paths, only one of vAiich is shown in figure

6.13 as a dotted line, may be geometrically quite corplex and a 

cxanplete understanding of any model behaviour would necessarily 

include a knowledge of these unstable paths and domains of

attraction.

III.6.5 Conclusions

This discussion has illustrated that extreme care most be 

taken when modelling a dynamical system with nonlinear ordinary 

differential equaUons. Such nonlinear systems exhibit a variety 

of conplex phenomena including chaotic motions and sudden junps 

between steady states. If the mathemaUcal model used in 

this study adequately describes reality then these responses may 

be expected in practice. In the case of the moored 

semi-submersible, nonlinearities are dominant so that methods of 

linear analysis are severely limited. Some analytical tools have 

predicted the existence and stability of subharmonic 

oscillations, notably the describing function method [Hees 

(1981,1983)1 usually though with certain restrictions.

Often, direct time domain simulation is used as a check of 

perturbation or power spectra tediniques but sensitivity to 

initial conditions with coexisting steady state solutions means
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that interpretation of these results may be difficult. In some 

cases the linear theory would underestimate the maxiitwm surge 

anplitude by a factor of 20. C3bviously this would be a serious 

situatici ccxiceming operating cc»iditic»is and fatigue of mooring 

chains etc..

The model used in this chapter is a relatively sinple one 

considering, as it does, only deterministic forcing with the 

most dangerous nonlinear phenomena occuring at long periods. Of 

particular interest are the presence of sudden jurnps which give 

no real warning of incipient instability of the motion. The 

variety of coirplex features exhibited by this model are 

stimulated by the light effective damping in the system.

Dynamical systems theory is used as a conceptual framework 

for qualitatively analysing the vast amount of computer 

generated data. Using this as a guide the typical instabilities 

and bifurcations of a system can be studied and, to a certain 

extent, predicted. For more conplex models the utilisation of 

dynamical systems theory is essential if any kind of insight 

into nonlinear dynamical behaviour is to be achieved.

Inprovements to the model would inevitably incorporate a 

more accurate wave loading representation, including a 

stochastic sea-state, added mass and danping coefficients as a 

functicxi of wave frequency, and a nulti-degree of freedom 

approach to study the effect of coupling on say heave, roll and 

sway. A conplete attenpt at modelling all of these factors is
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daunting but it has been the aim of this chapter to illustrate 

the coirplexity of a theoretical mathematical model of a 

dynamical system sinulating the surge moticMis of a catenary 

chain moored semi-submersible, to indicate that great care 

should be taken when c£un:ying out direct time domain 

simulations of any system with nonlinearities.
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Figure 6.2 Restoring force curves catparing experimental
data vd.th a curve fit auid displaying linearisatiort 
and local axes for a given offset for (a) lee 
lines slack and (b) lee lines active.
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Figure 6.6 Maximum aitplitude of steady state oscillations 
as a function of wave period.
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Pioure 6.11 Haxi»» »l>lit»le of .te«ly state _as a function of «ave period for lee lines active.
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6.12 Poincari points plottad against wave period
indicating juirpe to renote states.
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problems in a r£uidom sea-state. Nevertheless, since at some time 

the forcing waves are likely to be predominantly of one 

freguency, subharmonic motiwis should not be flippantly 

disregarded.

III.7.2 A Pilot Study of the Bilinear Oscillator

The bilinear oscillator has been successfully used to model 

the behaviour of a conpliant offshore facility under the 

influence of slackening mooring lines with regular, 

deterministic forcing v«ves [see Thonpson et al.(1984)]. If the 

mooring lines become slack during dynamic moticxis the stiffness 

of the system undergoes a discontinuity which may lead to 

potentially dangerous oscillations. Subharmonic resonances have 

been shown to coexist with stable small airplitude fundamental 

solutions, the observed response depending only upon the initial 

cxMxiitions imparted to the system.

In previous models investigated in this thesis (besides the 

work monitoring slam loads) it has always assumed that a steady 

tredn of ocean waves excite the structure, however in the 

present chapter we wish to note the effect on the response of 

the facility when an element of random forcing is considered to 

be superimposed on top of the usual regular forcing.

The bilinear oscillator in nondimensionalised form is given
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by the equation

if X ♦ 2^T)X ♦ kX = f(t) , (7.1)

where T) is the frequency ratio, ^ the damping factor and k a 

stiffness funcrtion which undergoes a discontinuity at the 

origin. The dot r^resents a differentiation with respect to 

time t, and the forcing functicxi f(t), modelling the acticxi of 

the waves, will ,in three different ways, be taJcen to be a 

random perturbation from a deterministic sinusoidal input. We 

shall then consider the effect of these approximate models of a 

changing sea~state on the qualitative btíiaviour of the system.

III.7.3 Types of Randomness

(a) Method 1; White Noise

first approach is to add to the sinusoidal input a 

random function w h i ^  can be thou^t of as vhite noise. Thus

f(t) » ACsinWt ♦ej^w(t)) , (7.2)

where w(t) produces a snail random number vhenever f(t) is 

called during the numerical integration with standard 

deviation . Accordingly a power spectrum analysis of the 

frequencies visible in the input would be a delta function at 

the forcing frequency %#ith a steady component at all other
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frequencies. We expect this method to be well brfiaved (i.e. 

continuous) and robust, with predictable perturbations from the 

deterministic soluticxis.

(b) Method 2; Frequency Wander

In an attenpt to model a quasi-regular but changing 

sea-state we consider, as an input, a function whicAi has a 

fundamental frequency which is itself a random function of time

f(t) = Asin(W^t) , (7.4)

v*iere the frequency is allowed to WEmder within the band width

Ü) ( l-e2) < U) Ü) ( 1-^2^ (7.5)

It is clear that the frequaxy should not change dramatically 

between each time step of the numerical integration and so the 

randomness is merely enforced after a predefined time 

difference, namely 21T (also see Webster and Trundell (1981)1. 

Since the frequency of the forcing is itself changing, the 

question arises " Where do we ta)ce our Poincare sections to be 

?-. To answer this question we follow the natural extension of 

Poincare's ideas and sanple the time history %*ienever the input 

crosses the x-0 axis moving in an upwards direction. Of 

course the Poincaré points themselves will not now settle down 

but Instead occupy a 'Poincare region', it thus being necessary
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to investigate the power spectrum of the output for confirmation 

of the prescenoe of a subhaunnonic motion.

(c) Method 3; Bandwidth Spread

The third idealisation of a random perturbation considers 

the %#aves not to be made up of a single fundamental freguency 

but instead to consist of an odd number of frequencies vhich fit 

in a prescribed band width» d. As a cwisequence we take 

frequency spikes at FFT frequencies that fit into a single time 

period and then

f (t) sin w^t , (7.6)

The resulting power spectrum of the i i ^ t  now has a narrow band 

width, the constants A ^  in this pilot study are taken to be 

unity. It is envisaged that this approach vdll have the most 

effect on the response of the system.

It should be noted here that we are not trying to model the 

power spectrum of real North sea %«ve data, since over a long 

time period this contains a wide range of frequencies, but 

rather to consider the situation that often occurs in reality 

where the leaves can be seen to have a predominant forcing 

frequency, i.e. a narrow band spectrum.

Although the spectra of the signals from methods 2 and 3
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are very similar a nonlinear system will respond to them very 

differently. The respcmse of a lineau: system to an i i ^ t  is the 

sum of the resptxises to its separate corponents; a nonlinear 

system responds to the time series of the input 'directly' and 

superpositiw is not possible. The signals from the first two 

methods displays a nwi-Gaussian probability distributiaij 

vAiereas the third approaches the Gaussiam distribution as the 

nuntoer of sinusoidal components is increased. The third signal 

is, though, the least like a sine %#ave and so we might expect 

this method to have greatest effect on the ncxilinear phenomena.

III.7.4 Numerical Studies

For the purpose of this pilot study v»e shall limit our task 

by considering an exploration of the bilinear oscillator with 

specific values of the defining coefficients such that for 

deterministic forcing we know that the soluticxi exhibits either 

an n»l or n»4 soluticwi, depending on the starting coiditicxis, 

see figure 7.1. Thus, in the first instance following the work 

of Thompson et al. (1984) we focus our attention on the 

departure of the solution from the n=4 solution indicated by the 

movement of the four Poincare points. This is achieved by using 

the coefficients a  =10, C*0.1 and T| «3.95 and in which case the

stiffness k, given by

(l^/a)^/(4a7|^) for X>0

for X<0 , (7.7)
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can be evaluated.

It can be seen from figures 7.2,7.3 and 7.4 that for an 

incre£ising amount of randomness the numerical soluticxi's ability 

to recognise the n=4 subharmonic diminishes. Wiis is especially 

true for method 3, where by looking at the placement of the 

Poincare points alone, there seems to be little semblance of the 

subharmonic solution present. To verify its appearance it is 

necessary to l o ^  at a power spectrum analysis of the output 

signal, see the lower right hand diagrams of figures 7.5, 7.6

and 7.7. If a graph of the amplitude of the fourth order 

subharmonic resonance is plotted against the degree of 

randonness, as the latter is increased, then it is seen that the 

anplitude initially decreases rapidly. This is true for each of 

the three methods, as seen in the last three figures, but none 

the less some oompcxient of the subharmoiic resonance still

remains.

III.7.5 Conclusions

This pilot study indicates that, althoug^i much of the 

large amplitude subharmonic solutions of an offshore struc±ure 

as modelled by the bilinear oscillator are severely decreased 

by the introduction of a certain amount of randomness on top of 

a deterministic forcing, the qualitative nature of the
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Bandwidth spread

Figure 7.4 Poincare regions of the n-4 solution for increasing
aiiDunts of bandwidth spread.
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White noise effect on Bilinear o sc illa tor

Figure 7.5 « «  effect of %*iite noise on the mean, max, RMS
and magnitude of the power spectrum of the output.
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Frequency wander effect on Bilineor osciUQtor

M«bUW**)

Figure 7,6 the effect of frequency wander on the mean, max, RMS 
and the magnitude of the power spectrum of the output.
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CHAPTER III.5 APPENDIX

MEIiaiKOV'S METHOD

III.5A.1 Theory

Melnikov's method was first developed by the Russian 

mathematician Melnikov (1963) and has more recently been 

detailed by Guckenheimer and Holmes (1983). The method has 

several areas of application but we shall restrict our attention 

here to the determinatic»i of a honoclinic tangency, i.e. when 

the inset and the outset (the stable and unstable manifolds in 

the terminology of Guckenheimer and Holmes) of a hyperbolic 

saddle point collide as was illustrated in figure III.5.13. If 

we consider the method as described by Guckenheimer and Holmes 

then we discuss the Poincare map of the time periodic 

nonautonomous system

X « fĵ (x,y) ♦Egĵ (x,y,t)
y » f2(x,y) +eg2(x»y/t) , (5A.1)

where the functions g^ and g^ are periodic with period T, € is 

a small parameter and the functions f^ and f2 are such that if 

C -0 the system is Hamiltonian. However for ease of notation if 

%«e define the vector quantities
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X = , f =

■2j

g =

'2  J

(5A.2)

so that the system is now given by

X = f(X) -^eg(X,t) (5A.3)

It is also oOTvenient at this point to define the wedge product

A )yy

£ A g = (5A.4)

Now for the unperturbed flow, i.e. with 6 =0, we assume 

that the system has a homoclinic orbit q® (t) to a hyperbolic 

saddle point S^, see figure 5A.1. The interior of this 

homoclinic orbit is filled with a continuous family of curves, 

q®(t): a  € (-1,0), with periods such that tends to 

infinity as a  tends to zero. Note that the period of these 

orbits need not necessarily coincide with the period of the

forcing T, say.

As is usual in such systems it is possible to construct the 

Poincare map , where the phase portrait of the suspended 

autonomous flow is sanpled on the section I ® at multiples of 

the forcing period T. Tbe time at %*iich this section is taJcen is 

varied and consequently appears in various stages of the 

analysis. Under these conditions, and because of the need for 

continuity from the flow case, the unperturbed Poincare map Pq ®
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will possess a hyperbolic saddle point S q .  Itiis structure will 

be highly degenerate under a perturbation e and vdll yield 

either transverse homoclinic orbits or no homoclinic points at 

all. The existence of a unique hyperbolic saddle point (the 

position of which will depend on the section time to) and the 

relationship between the unperturbed stable and unstable 

manifolds and the corresponding perturbed manifolds depend on 

the parameter e being sufficiently small (see lemmas 5.1 and

5.2 of Guckenheimer and Holmes (1983)].

nie s^iaratiOTi of the inset and the outset of the perturbed 

system on the section at the point q* (t=0) is defined by

d(to) = (to) - q| (to) (5A.5)

as illustrated in figure 5A.2. The points q'̂ g (to) and q |  (to) 
are the points cai the unstable and stable manifolds closest to 

the saddle S^® (along the manifolds) which also lies on the

normal

-£^ (q° (0) I 

fj(q°(01)

(5A.6)

Theorem
Defining the Helnikov function M(t^) as

OD

H(t,) ■t. ) ) A g (q® (t-t, ),t) dt (5A.7)

•OD
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then if M(to) has sinple zeros, and is independent of e 

(sufficiently small) the inset and outset intersect 

transversely. If M(to) has no zeros then the manifolds no not 

intersect.

The proof is based on the evaluation of two integrals 

¿iround the unperturbed homoclinic orbit from vSiich it is 

possible to show that

d(t«) = C MitJ/lfiqMO))! ♦ 0(c2) (5A.8)

Now provided that M(to) is independent of e the higher terms of 

this expansion will be dominated by the first term and since 

|f (q®(0))|-0(1) then M(to) gives a good estimate of the 

separation of the manifolds at q® (0) on the section Eg® . As the 

time that this section is taJcen is varied if M(to) oscillates 

about zero then q'^(to) and must change their orientation

with respect to the normal f^. Furthermore if this )cind of 

oscillation occurs then there nust be a time t«» X say when 

q U  (X )*q^ (X ) and %#e have a homoclinic point, but since all 

the Poincar€ maps are equivalent the unstable and stable 

manifolds and W« must intersect for all t.» 0<to<T, i.e. no 

matter where we choose the Poincaré section there will be a 

honoclinic point and the manifolds must cross an infinite number 

of times. Conversely if M(tJ has no zeros then the manifolds do



not intersect as and qS(t^) retain the sameC t
orientation.

M (to ) is in fact periodic in to with period T and so 

effectively what the method is doing is standing at the fixed 

point q®(0) on a moving cross section and watching the pertxarbed 

manifolds oscillate as to varies between 0 and T.

III.5A.2 Applicaticxis of the Melnikov Method

As an example of the use of the Melnikov method we shall 

consider the calculation of the Melnikov function for the single 

potential well system equation III.5.2 considered in ch^>ter

111.5 %4hich can equivalently be described by the system

X * y
V :: -X x2 4 Fsinwt - By . (5A.9)

To meet with the necessity for a small parameter e we introduce 

the change of variables F« €F' and B ' e B ’ so that the system

(5A.9) becomes

x » y

^ . -X ♦ x2 ♦ e (F'sinWt - B'y> (5A.10)

Before the Melnikov function can be evaluated the solution 

along the unperturbed homoclinic orbit has to be found, and with
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this aim we first examine the fixed points of the unperturbed 

system, namely

• •
X  ♦ X - x^ » 0 . (5A.11)

the fixed points of which are at x=y=0 and x=l, y=0, the former 

corresponding to a centre while the latter is an unstable saddle 

point (obtained by a linear stability analysis). The Hamiltonian 

functicxi is

H = y^/2 ♦ x^/2 - x 3/3 , (5A.12)

so that at the saddle H=l/6. The curve H=l/6 forms a homoclinic 

orbit enclosing the centre at (0,0) and by integrating the 

Hamiltcxiian the soluticxi of the differential equaticxi alcxig this

orbit is given by

x®(t) » 1 - 3/(l-KX)sht) (5A.13)

¿md

y*(t) - 3sinht/(l+cosht)' (5A.14)

It is possible here to make a cornparison vdth the double 
potential well "»Jel introduced in chapter III.5, for vi>i<* 
there is already an abundance of literature available, by virtue 
of scaling the height of the potential barrier or hill so as to 
mattdi that of the single well (i.e. H«l/6).
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All that remains to be done is to calculate the Melnikov 

function and here we note that since the corpcMient g^=0, then 

%iith the change of variable t't^t^ the function reduces to

GO

M^(t^) = J^y®(t)(F'sinU)(t+t^) - 3'y®(t))dt . (5A.15)

-  00

SubstitutiOTi of the solution y® (t) into this expressicai yields

B 1 2
(5A.16)

where

00

-  00

sinht sin to) (t-»to ) dt 

( l^cosht) ̂

(5A.17)

and

00 2sinh t dt

(1+cosht)
- 0 0

(5A.18)

The evaluation of the second of these integrals is lengthy but 
.traightforvard Isee Gradstein and Ryshik (1980)1 and can be 
found to be eqi*al to 2/15. first of these integrals requires 
an application of the isethod of residuesi by the use of the 
change of variables z-t/2 the integral is transformed into the

integral
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OD

I * Imag e IO)

- OD

. , i2(i)z j_ sinhz e ciz .
cx)sh z

(5A.19)

If we now consider instead a contour integral which is from -R 

to ♦R along the real axis and a semi-circular arc of radius R 

then as R tends to infinity this complex contour approximates 

the limits of the integral The poles of the integrand which 

lie within this ccxitour are when coshz=0, i.e. when

2 = (2n+l)Tli/2 ; n=0,l,2... (5A.20)

Then expanding sinhz and coshz about these poles it is possible 

to find the sun of the residues so that applying the residue

theorem gives

» Imag e 21ti 20)2 I  • (5A.21)

The series is a geometric progression which nay be sunrmd to

yield

. -2Tia)^cosu)to/sinh(iia)) » (5A.22)

whereapon the Kelnikov function becomes

M(to) -  - 6 F W c o so ) to / 8 in h (T ia ) )  -  3*6/5 . (5A.23)

Transverse 

when M(to) has zeros, i.e. v*ien

homoclinic intersections can thus only occur
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coswto = - 3' sinh(Tiu))/(5F'TlU) ) (5A.24)

Since in the studies detailed in chapter 111.5 we held the 

danping ccxistant at 0.1 we see that the stable and unstable 

manifolds intersect when

Fg = O.lsinh(TlU)) / (511U^) . (5A.25)

If we enforce the scaling necessary for the potential 

barrier of the two well problem to be the same height as that of 

the single then the correspc»xiing result [see Guckenheimer and 

Holmes (1983)1 is when

F„ * 0.4 V2cosh(Tl 0) </6/4) / (9TIU)) . H
(5A.26)

The bifurcation diagram of figure 5A.3 shows both these 

curves but once again there appears to be no real information 

that can be retrieved from this Melnikov curve regarding the 

eventual escape of the system to infinity.

In conclusion it should be said that the particulars of the 

application of the method of Melnikov to the local equation used 

for the purpose of this investigation is reasonably 

straightforward but needs to be included here since it may prove 

eifterall to play a vital role in the final outcome of the 

system, and since not previously reported needed to be 

calculated and set down for the records. Furthermore since



there is already a weight of information is available regarding 

the double potential well problem it is natural to suppose that 

the reader may %d.sh to make certain conparisons and therefore, 

despite the fact that it is an entirely different problem, the 

discussions are included here for conpleteness.

xi





Ptrturbtd Manifolds and Distance Function

Pioure 5A.2 Definition of distance function separating the inset 
and the outset from the perturbed saddle point.
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Piaure 5A.3 Bifurcation diagram of forcing amplitude ver 
frequency. Included is the Helnikov curve doe 
to the author and the scaled curve due to Holmes
IGuckenheimer and Holmes (1983)1. 
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