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Abstract

Compact sets in constructive mathematics capture our intuition of what computable sub-

sets of the plane (or any other complete metric space) ought to be. A good representation

of compact sets provides an efficient means of creating and displaying images with a com-

puter. In this paper, I build upon existing work about complete metric spaces to define

compact sets as the completion of the space of finite sets under the Hausdorff metric. This

definition allowed me to quickly develop a computer verified theory of compact sets. I

applied this theory to compute provably correct plots of uniformly continuous functions.

0 Licence

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/nl/ or send a letter to Creative Com-
mons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1 Introduction

How should we define what computable subsets of the plane are? Sir Roger Penrose ponders this
question at one point in his book “The Emperor’s New Mind” [9]. Requiring that subsets be
decidable is too strict; determining if a point lies on the boundary of a set is undecidable in gen-
eral. Penrose gives the unit disc, {(x, y) |x2 + y2 ≤ 1}, and the epigraph of the exponential func-
tion, {(x, y) | exp(x) ≤ y}, as examples of sets that intuitively ought to be considered com-
putable [2]. Restricting one’s attention to pairs of rational or algebraic numbers may work well
for the unit disc, but the boundary of the epigraph of the exponential function contains only one
algebraic point. A better definition is needed.

To characterize computable sets, we draw an analogy with real numbers. The computable
real numbers are real numbers that can be effectively approximated to arbitrary precision. The
approximations are usually rational numbers or dyadic rational numbers. We can define com-
putable sets in a similar way.

We need a dense subset of sets that have finitary representations. In the case of the plane,
the simplest candidate is the finite subsets of Q2. Again, Q could be replaced with the dyadic
rationals. How do we measure the accuracy of an approximation? Distances between subsets
can be defined by the Hausdorff metric (section 3).

To construct the real numbers, we complete the rational numbers. By reasoning construc-
tively (section 2), the real numbers generated are always computable. Completing the finite sub-

sets of Q2 with the Hausdorff metric yields the compact sets (section 5). By reasoning construc-
tively, the generated compact sets are always computable!

∗. This paper is to be part of the proceedings of the Symbolic Computation in Software Science Austrian-
Japanese Workshop (SCSS 2008).; This document has been written using the GNU TEXMACS text editor (see
www.texmacs.org).
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The unit disc is constructively compact; it can be effectively approximated with finite sets.
When a computer attempts to display the unit disc, only a finite set of the pixels can be shown.
So instead of displaying an ideal disc, the computer displays a finite set that approximates the
disc. This is the key criterion that Penrose’s examples enjoy. They can be approximated to arbi-
trary precision and displayed on a raster.

Technically the epigraph of the exponential function is not compact; however, it is locally
compact. One may wish to consider constructive locally compact sets to be computable. This
would mean that any finite region of a computable set has effective approximations of arbitrary
precision.

This definition of constructively compact sets has been formalized in the Coq proof assis-
tant [11]. Approximations of compact sets can be rasterized and displayed inside Coq (sec-
tion 6). For example, figure 1 shows a theorem in Coq certifying that a plot is close the expo-
nential function. The plot itself is computed from the definition of the graph of the exponential
function.

Figure 1. A theorem in Coq stating that a plot on a 42 by 18 raster is close to the graph of the expo-

nential function on [−6, 1].

The standard definition of computable sets used in computable analysis says that a set is
computable if the distance to the set is a computable real-valued function. This definition is
equivalent to our definition using computable approximations (although, this has not been veri-
fied in Coq). However, I believe defining computable sets by effective approximations of finite
sets more accurately matches our intuition about sets that can be drawn by a computer.

2 Constructive Mathematics

Usually constructive logic is presented as a restriction of classical logic where proof by contradic-
tion and the law of the excluded middle are not allowed. While this is a valid point of view,
constructive logic can instead be presented as an extension of classical logic.

Consider formulas constructed from universal quantification (∀), implication ( ⇒ ), conjunc-
tion ( ∧ ), true (⊤), false (⊥), and equality for natural numbers ( =N ). Define negation by
¬ϕ4 ϕ⇒⊥. One can (constructively) prove ¬¬ϕ⇒ ϕ holds for any formula ϕ generated from
this set of connectives by induction on the structure of ϕ because the atomic formulas—which
in this case are equalities on N—are decidable. Thus, one can deduce classical results with con-
structive proofs for formulas generated from this restricted set of connectives.
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This set of connectives is not really restrictive because it can be used to define the other con-
nectives. One can define the classical disjunction (∨̃) by ϕ ∨̃ ψ 4 ¬(¬ϕ ∧ ¬ψ). Similarly, one

can define the classical existential quantifier (∃̃) by ∃̃x.ϕ(x)4 ¬∀x.¬ϕ(x). With this full set of
connectives, one can produce classical mathematics. The law of the excluded middle (ϕ ∨̃ ¬ϕ)
has a constructive proof when the classical disjunction is used.

Given this presentation of classical logic, we can extend the logic by adding two new connec-
tives, the constructive disjunction ( ∨ ) and the constructive existential (∃). These new connec-
tives come equipped with their constructive rules of inference (given by natural deduction) [12].
These constructive connectives are slightly stronger than their classical counterparts. Construc-
tive excluded middle (ϕ ∨ ¬ϕ) cannot be deduced in general, and our inductive argument that
¬¬ϕ⇒ ϕ holds no longer goes through if ϕ uses these constructive connectives.

We wish to use constructive reasoning because constructive proofs have a computational
interpretation. A constructive proof of ϕ ∨ ψ tells which of the two disjuncts hold. A proof of
∃n: N. ϕ(n) gives an explicit value for n that makes ϕ(n) hold. Most importantly, we have a
functional interpretation of ⇒ and ∀. A proof of ∀n: N.∃m:N.ϕ(n, m) is interpreted as a func-
tion with an argument n that returns an m paired with a proof of ϕ(n,m).

The classical fragment also admits this functional interpretation, but formulas in the classical
fragment typically end in � ⇒ ⊥. These functions take their arguments and return a proof of
false. Of course, there is no proof of false, so it must be the case that the arguments cannot
simultaneously be satisfied. Therefore, these functions can never be executed. In this sense, only
trivial functions are created by proofs of classical formulas. This is why constructive mathe-
matics aims to strengthen classical results. We wish to create proofs with non-trivial functional
interpretations.

From now on, I will leave out the word “constructive” from phrases like “constructive disjunc-
tion” and “constructive existential” and simply write “disjunction” and “existential”. This follows
the standard practice in constructive mathematics of using names from classical mathematics to
refer to some stronger constructive notion. I will explicitly use the word “classical” when I wish
to refer to classical concepts.

2.1 Dependently Typed Functional Programming

This functional interpretation of constructive deductions is given by the Curry-Howard isomor-
phism [12]. This isomorphism associates formulas with dependent types, and proofs of formulas
with functional programs of the associated dependent types. For example, the identity function
λx: A.x of type A⇒ A represents a proof of the tautology A⇒ A. Table 1 lists the association
between logical connectives and type constructors.

Logical Connective Type Constructor

implication: ⇒ function type: ⇒
conjunction: ∧ product type: ×
disjunction: ∨ disjoint union type: +

true: ⊤ unit type: ()

false: ⊥ void type: ∅
for all: ∀x.ϕ(x) dependent function type: Πx.ϕ(x)

exists: ∃x.ϕ(x) dependent pair type: Σx.ϕ(x)

Table 1. The association between formulas and types given by the Curry-Howard isomorphism

In dependent type theory, functions from values to types are allowed. Using types
parametrized by values, one can create dependent pair types, Σx: A.ϕ(x), and dependent func-
tion types, Πx: A.ϕ(x). A dependent pair consists of a value x of type A and an value of type
ϕ(x). The type of the second value depends on the first value, x. A dependent function is a
function from the type A to the type ϕ(x). The type of the result depends on the value of the
input.
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The association between logical connectives and types can be carried over to constructive
mathematics. We associate mathematical structures, such as the natural numbers, with induc-
tive types in functional programming languages. We associate atomic formulas with functions
returning types. For example, we can define equality on the natural numbers, x=N y, as a recur-
sive function:

0 =N 0 4 ⊤

Sx=N 0 4 ⊥

0 =N Sy 4 ⊥

Sx=N Sy 4 x=N y

One catch is that general recursion is not allowed when creating functions. The problem is that
general recursion allows one to create a fixpoint operator fix : (ϕ⇒ ϕ)⇒ ϕ that corresponds to a
proof of a logical inconsistency. To prevent this, we allow only well-founded recursion over an
argument with an inductive type. Because well-founded recursion ensures that functions always
terminate, the language is not Turing complete. However, one can still express fast growing
functions like the Ackermann function without difficulty [12].

Because proofs and programs are written in the same language, we can freely mix the two.
For example, in my previous work [7], I represent the real numbers by the type

∃f :Q+⇒Q.∀ε1 ε2.|f(ε1)− f(ε2)| ≤ ε1 + ε2. (1)

Values of this type are pairs of a function f : Q+ ⇒ Q and a proof of
∀ε1 ε2. |f(ε1) − f(ε2)| ≤ ε1 + ε2. The idea is that a real number is represented by a function f

that maps any requested precision ε: Q+ to a rational approximation of the real number. Not
every function of type Q+ ⇒ Q represents a real number. Only those functions that have
coherent approximations should be allowed. The proof object paired with f witnesses the fact
that f has coherent approximations. This is one example of how mixing functions and formulas
allows one to create precise datatypes.

2.2 Notation

I will use the functional style of defining multivariate functions with Curried types. A binary
function will have type X⇒ Y ⇒ Z instead of X ∧ Y ⇒ Z (⇒ is taken to be right associative).
To ease readability, I will still write binary function application as f(x, y), even though it
should really be f(x)(y).

Anonymous functions are written using lambda expressions. A function on natural numbers
that doubles its input is written λx:N.2 x. The type of the parameter will be omitted when it is
clear from context what it should be.

The type of propositions is ⋆ . Predicates are represented by functions to ⋆ . These predi-
cates are often used where power sets are used in classical mathematics. The type X⇒ ⋆ can be
seen as the power set of X. I will often write x∈A in place of A(x) when A :X⇒ ⋆ and x :X.

The notation x ∈ l is also used when l is a finite enumeration (section 4). Also x ∈ S will be
used when S is a compact set (section 5). The types will make it clear what the interpretation
of ∈ should be.

I will use shorthand to combine membership with quantifiers. I will write ∀x ∈ A. ϕ(x) for
∀x.x∈A⇒ ϕ(x), and ∃x∈A.ϕ(x) will mean ∃x.x∈A∧ ϕ(x).

Quotient types are not used in this theory. In place of quotients, setoids are used. A setoid

is a dependent record containing a type X (its carrier), a relation ≍ : X ⇒X ⇒ ⋆ , and a proof
that ≍ is an equivalence relation. When we define a function on setoid, we usually prove it is
respectful , meaning it respects the setoid equivalence relations on its domain and codomain.
Respectful functions will also be called morphisms .

I will often write f(x) when f is a record (or existential) with a function as its carrier (or
witness) and leave implicit the projection of f into a function.
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3 Metric Spaces

Traditionally, a metric space is defined as a set X with a metric function d :X ×X⇒R0+ satis-
fying certain axioms. The usual constructive formulation requires d be a computable function.
In my previous work [7], I have found it useful to take a more relaxed definition for a metric
space that does not require the metric be a function. Instead, I represent the metric via a
respectful ball relation B :Q+⇒X⇒X⇒ ⋆ satisfying five axioms:

1. ∀xε.Bε(x, x)

2. ∀xyε.Bε(x, y)⇒Bε(y, x)

3. ∀xyzε1 ε2.Bε1
(x, y)⇒Bε2

(y, z)⇒Bε1+ε2
(x, z)

4. ∀xyε.(∀δ.ε< δ⇒Bδ(x, y))⇒Bε(x, y)

5. ∀xy.(∀ε.Bε(x, y))⇒x≍ y

The ball relation Bε(x, y) expresses that the points x and y are within ε of each other. I call
this a ball relationship because the partially applied relation Bε(x): X ⇒ ⋆ is a predicate that
represents the ball of radius ε around the point x. The first two axioms are reflexivity and sym-
metry of the ball relationship. The third axiom is a version of the triangle inequality.

The fourth axiom states that the balls are closed balls. Closed balls are used because being
closed is usually a classical formula. This means they can be ignored during computation
because they have no computational content [4]. We want to minimize the amount of computa-
tion needed to get our constructive results.

The fifth axiom states the identity of indiscernibles. This means that if two points are arbi-
trarily close together then they are equivalent. The reverse implication follows from the reflex-
ivity axiom and the fact that B is respectful. In some instances, axiom 5 can be considered as
the definition of ≍ on X.

For example, Q can be equipped with the usual metric by defining the ball relation as

Bε
Q(x, y)4 |x− y | ≤ ε.

This definition satisfies all the required axioms.

3.1 Uniform Continuity

We are interested in the category of metric spaces with uniformly continuous functions between
them. A function f : X ⇒ Y between two metric spaces is uniformly continuous with modulus

µf :Q+⇒Q+ if

∀x1x2 ε.Bµf(ε)
X (x1, x2)⇒Bε

Y (f(x1), f(x2)).

We call a function uniformly continuous if it is uniformly continuous with some modulus.
We use notation X → Y with a single bar arrow to denote the type of uniformly continuous
functions from X to Y . This record type consists of three parts, a function f of type X ⇒ Y , a
modulus of continuity, and a proof that f is uniformly continuous with the given modulus.
Again, we will leave the projection to the function type implicit and allow us to write f(x) when
f :X→Y and x:X .

3.2 Classification of Metric Spaces

There is a hierarchy of classes that metrics can belong to. The strongest class of metrics are the
decidable metrics where

∀xyε.Bε
X(x, y)∨¬Bε

X(x, y).

The constructive disjunction here implies there is an algorithm for computing whether two
points are within ε of each other or not. The metric on Q has this property; however, the metric
on R does not because of the lack of a decidable equality.

Metric Spaces 5



The next strongest class of metrics is what I call located metrics . These metrics have the
property

∀xyεδ.ε< δ⇒Bδ
X(x, y)∨¬Bε

X(x, y).

This is similar to being decidable, but there is a little extra wiggle room. If x and y are between

ε and δ far apart, then the algorithm has the option of either return a proof of Bδ
X(x, y) or

¬Bε
X(x, y). This extra flexibility allows R to be a located metric. Every decidable metric is also

a located metric. Some metrics are not located. The standard sup-metric on functions between
metric spaces may not be located.

The weakest class of metrics we will discuss are the stable metrics . A metric is stable when

∀xyε.¬¬Bε
X(x, y)⇒Bε

X(x, y).

Every located metric is stable. Although we will discuss the possibility of non-stable metrics in
section 7, it appears that metric spaces used in practice are stable. This work relies crucially on
stability at one point, so we will be assuming that metric spaces are stable throughout this
paper.

3.3 Complete Metrics

Given a metric space X , one can create a new metric space called the completion of X, or
simply C(X). The type C(X) is defined to be

∃f :Q+⇒X.∀ε1 ε2.Bε1+ε2

X (f(ε1), f(ε2))

with the ball relation defined to be

Bε
C(X)

(x, y)4 ∀δ1 δ2.Bδ1+ε+δ2

X (x(δ1), y(δ2)).

The definition of C(X) may look familiar. It is a generalization of the type that I gave for real
numbers in equation 1. In fact, in my actual implementation the real numbers are defined to be
C(Q).

A complete metric comes equipped with an injection from the original space unit :X→ C(X)
and a function bind : (X → C(Y )) ⇒ (C(X) → C(Y )) that lifts uniformly continuous functions
with domain X to uniformly continuous function with domain C(X). One of the most common
way of creating functions that operate on complete metric spaces is by using bind. One first
defines a function on X , which is easy to work with when X is a discrete space. Then one
proves the function is uniformly continuous. After that, bind does the rest of the work.

A second, similar way of creating functions with complete domains is by using
map : (X→ Y )⇒ (C(X)→C(Y )). The function map can be defined by map(f)4 bind(unit ◦ f),
but in my implementation, map is more fundamental than bind [7].

I will use the following notation:

x̂ 4 unit(x)

f̌ 4 bind(f)

f̄ 4 map(f)

The completion operation, C, and the functions unit and bind together form a standard con-
struction called a monad [6]. Monads have been used in functional programs to capture many
different computational notions including exceptions, mutable state, and input/output [13]. We
will see another example of a monad in section 4.

3.4 Product Metrics

Given two metric spaces X and Y , their Cartesian product X ×Y forms a metric space with the
standard sup-metric:

Bε
X×Y ((x1, y1), (x2, y2))4 Bε

X(x1, x2)∧Bε
Y (y1, y2)
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The product metric interacts nicely with the completion operation. There is an isomorphism
between C(X × Y ) and C(X) × C(Y ). One direction I call couple. The other direction is defined
by lifting the projection functions:

couple : C(X)×C(Y )→C(X ×Y )

π1̄ : C(X ×Y )→C(X)

π2̄ : C(X ×Y )→C(Y )

We denote couple(x, y) by 〈x, y〉. The following lemmas prove that these functions form an iso-
morphism.

〈π1̄(z), π2̄(z)〉 ≍ z

(π1̄〈x, y〉, π2̄〈x, y〉) ≍ (x, y)

3.5 Hausdorff Metrics

Given a metric space X , we can try to put a metric on predicates (subsets) of X . We start by
defining the Hausdorff hemimetric. A hemimetric is a metric without the symmetry and identity
of indiscernibles requirement. We define the hemimetric relation over X⇒ ⋆ as

Hε
X⇒⋆(A,B)4 ∀x∈A. ∃̃y ∈B.Bε(x, y).

Notice the use of the classical existential in this definition. In general, we do not need to know
which point in B is close to a given point in A; it is sufficient to know one exists without
knowing which one. Furthermore, there are cases when we cannot know which point in B is
close to a given point in A.

This relation is reflexive and satisfies the triangle inequality. It is not symmetric. We define
a symmetric relation by

Bε
X⇒⋆(A,B)4 Hε

X⇒⋆(A,B)∧Hε
X⇒⋆(B,A).

This relationship is reflexive, symmetric, and satisfies the triangle inequality. Notice that if
B ⊆A then Hε(A, B) holds for all ε. The hemimetric captures the subset relationship. If B ⊆A
and A ⊆ B (i.e. A ≍ B), then Bε(A, B) holds for all ε. However, axiom 5 for metric spaces
requires the reverse implication; if Bε(A, B) holds for all ε, then we want A≍B. Unfortunately,
this does not hold in general. Neither does the closedness property required by axiom 4 hold. To
make a true metric space, we need to focus on a subclass of predicates that have more structure.

4 Finite Enumerations

A finite enumeration of points from X is represented by a list. A point x is in a finite enumera-
tion if there classically exists a point in the list that is equivalent to x. We are not required to
know which point in the list is equivalent to x; we only need to know that there is one. An
equivalent definition can be given by well-founded recursion on lists:

x∈nil 4 ⊥

x∈ cons yl 4 x≍ y ∨̃x∈ l

Two finite enumerations are considered equivalent if they have exactly the same members:

l1≍ l24 ∀x.x∈ l1⇔x∈ l2

If X is a metric space, then the space of finite enumerations over X, F(X), is also a metric
space. The Hausdorff metric with the membership predicate defines the ball relation:

Bε
F(X)(l1, l2)4 Bε

X⇒⋆(λx.x∈ l1, λy.y ∈ l2)

This ball relation is both closed (axiom 4) and is compatible with our equivalence relation for
finite enumerations (axiom 5), so this truly is a metric space.
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Finite enumerations also form a monad (I have yet to verify this in Coq). The
unit : X → F(X) function creates an enumeration with a single member. The
bind : (X→ F(Y )) ⇒ (F(X) → F(Y )) function takes an f :X→ F(Y ) and applies it to every ele-
ment of an enumeration l : F(X) and returns the union of the results.

4.1 Mixing Classical and Constructive Reasoning

Proving the ball relation for finite enumerations is closed makes essential use of classical rea-
soning. Given ε, suppose Bδ

F(X)
(l1, l2) holds whenever ε < δ. We need to show that Bε

F(X)(l1, l2)

holds. By the definition of the metric, this requires proving (in part) ∀x ∈ l1. ∃̃y ∈ l2.Bε
X(x, y).

From our assumptions, we know that ∀x ∈ l1. ∃̃y ∈ l2.Bδ
X(x, y) holds for every δ greater than ε.

If we had used a constructive existential in the definition of the Hausdorff hemimetric, we would
have a problem. Each different value δ could produce a different y witnessing Bδ

X(x, y). In order

to use the closedness property from X to conclude Bε
X(x, y), we need a single y such that

Bδ
X(x, y) holds for all δ greater than ε. Classically we would use the infinite pigeon hole prin-

ciple to find a single y that occurs infinitely often in the stream of ys produced from
δ ∈ {ε+

1

n
|n:N+}. Such reasoning does not work constructively. Given an infinite stream of ele-

ments drawn from a finite enumeration, there is no algorithm that will determine which one
occurs infinitely often.

Fortunately, because we used classical quantifiers in the definition of the Hausdorff metric,
we can apply the the infinite pigeon hole principle to this problem. We classically know there is

some y that occurs infinitely often when δ ∈ {ε +
1

n
|n: N+}, even if we do not know which one.

For such y, Bδ
X(x, y) holds for δ arbitrarily close to ε, and therefore Bδ

X(x, y) must hold for all δ

greater than ε. By the closedness property for X, Bε
X(x, y) holds as required. The other half of

the definition of Bε
F(X)

(l1, l2) is handled similarly.
Recall that the classical fragment of constructive logic requires that proof by contradiction

hold for atomic formulas in order to deduce the rule ¬¬ϕ⇒ ϕ. Because Bε
X(x, y) is a param-

eter, we do not know if it is constructed out of classical connectives. To use the classical rea-
soning needed to apply the pigeon hole principle, we assume that ¬¬Bε

X(x, y)⇒Bε
X(x, y) holds.

This is the crucial point where stability of the metric for X is used.

5 Compact Sets

Completing the metric space of finite enumerations yields a metric space of compact sets:

K(X)4 C(F(X))

The idea is that every compact set can be represented as a limit of finite enumerations that
approximate it. In order for a compact set to be considered a set, we need to define a member-
ship relation. The membership is not over X because compact sets are supposed to be complete
and X may not be a complete space itself. Instead, membership is over C(X), and it is defined
for x: C(X) and S: K(X) as

x∈S4 ∀ε1 ε2. ∃̃y ∈S(ε2).Bε1+ε2

X (x(ε1), y).

A point is considered to be a member of a compact set S if it is arbitrarily close to being a
member of all approximations of S. Thus K(X) represents the space of compact subsets of
C(X).

5.1 Correctness of Compact Sets

Bishop and Bridges define a compact set in a metric space X as a set that is complete and
totally bounded [1]. In our framework, we say a predicate A : X ⇒ ⋆ is complete if for every
x : C(X) made from approximations in A, then x is in A:

∀x: C(X).(∀ε.x(ε)∈A)⇒∃z ∈A. ẑ ≍ x
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A set B: X ⇒ ⋆ is totally bounded if there is an ε-net for every ε : Q+. An ε-net is a list of
points l from B such that for every x ∈ B there (constructively) exists a point z that is construc-
tively in l and Bε(x, z). Bishop and Bridges use the strong constructive definition of list mem-
bership that tells which member of the list the value is.

∀ε:Q+.∃l: listX.(∀x∈ l.x∈B)∧∀x∈B.∃z ∈ l.Bε
Y (x, z)

Does our definition of compact sets correspond with Bishop and Bridges’s definition? The short
answer is yes, but there is a small caveat. Our definition of metric space is more general than
the one that Bishop and Bridges use. Bishop and Bridges require a distance function
d : X ⇒ X ⇒ R. Our more liberal definition of metric space does not have this requirement. I
have verified that our definition of compact is the same as Bishop and Bridges’s assuming that
X is a located metric. If a metric space has a distance function, then it is a located metric.
Thus our definition of compact corresponds to Bishop and Bridges’s definition of compact for
those metric spaces that correspond to Bishop and Bridges’s definition of metric space.

It may seem impossible that our definition can be equivalent to Bishop and Bridges’s defini-
tion when we sometimes use a classical existential quantifier while Bishop and Bridges use con-
structive quantifiers everywhere. How would one prove Bishop and Bridges version of x∈S from
our version of x ∈ S? The trick is to use the constructive disjunction from the definition of
located metric. Roughly speaking, at some point we need to prove ∃z ∈ l.Bε

Y (x, z) from
∃̃z ∈ l.Bε

Y (x, z). This can be done by doing a search though the list l using the located metric
property to decide for each element z0 ∈ l whether Bε+δ(x, z0) or ¬Bε(x, z0) holds. The classical
existence is sufficient to prove that this finite search will successfully find some z such that
Bε+δ(x, z) holds. The extra δ can be absorbed by other parts of the proof. The full proof of the
isomorphism is too technical to be presented here. A detailed description can be found in my
forthcoming PhD thesis or by examining the formal Coq proofs.

5.2 Distribution of F over C

The composition of two monads A ◦B forms a monad when there is a distribution function dist :
B(A(X)) → A(B(X)) satisfying certain laws [5]. For compact sets, K(X)4 (C ◦ F)(X), the dis-
tribution function dist : F(C(X))→C(F(X)) is defined by

dist(l)(ε)4 map (λx.x(ε))l.

This function interprets a finite enumeration of points from C(X) as a compact set. Thus K is
also a monad (I have yet to verified this in Coq).

5.3 Compact Image

We define the compact image of a compact set S : K(X) under a uniformly continuous function
f̌ : C(X) → C(Y ) by first noting that applying f to every point in a finite enumeration is a uni-
formly continuous function, map(f) : F(X) → F(C(Y )). Composing this with dist yields a uni-
formly continuous function from finite enumeration F(X) to compact sets K(Y ). Using bind, this
function can be lifted to operate on K(X). The result is the compact image function:

f ↾S4 bind (dist ◦map(f))(S)

Although Bishop and Bridges would agree that the result of this function is compact, they
would not say that it is the image of S because one cannot constructively prove

y ∈ f ↾S⇒∃x∈S. f̌ (x)≍ y.

However, I believe one can prove (but I have not verified this yet) the classical statement

y ∈ f ↾S⇒ ∃̃x∈S. f̌ (x)≍ y.

When f̌ is injective, as it will be for our graphing example in section 6.1, the constructive exis-
tential statement holds.
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6 Plotting Functions

There are many examples of constructively compact sets. This section illustrates one application
of compacts sets, plotting functions.

6.1 Graphing Functions

Given a uniformly continuous function f̌ : C(X) → C(Y ) and a compact set D : K(X), the graph

of the function over D is the set of points {(x, f̌ (x)) |x∈D}. This graph can be constructed as a
compact set G : K(X × Y ). A single point is graphed by the function g(x) 4 〈x̂ , f(x)〉. This
function is uniformly continuous, g : X → C(X × Y ). The graph G is defined as the compact
image of D under g.

G4 g ↾D

6.2 Rasterizing Compact Sets

Given a compact set in the plane S : K(Q × Q), we can draw an image of it, or rather we can
draw an approximation of it. This process consists of two steps. The first step is to compute an
ε-approximation l 4 S(ε). The finite enumeration l is a list of rational coordinates. The next
step is to move these points around so that all the points lie on a raster. A raster is simply a
two dimensional matrix of Booleans. Given coordinates for the top-left and bottom-right cor-
ners, a raster can be interpreted as a finite enumeration. Using advanced notation features in
Coq, a raster can be displayed inside the proof assistant. Most importantly, when the con-
structed raster is interpreted, it is provably close to the original compact set.

6.3 Plotting the Exponential Function.

Given a uniformly continuous function f̌ :R→R and an interval [a, b], the graph of f̌ over this
compact interval is a compact set. The graph is an ideal mathematical curve. This graph can
then be plotted yielding a raster that when interpreted as a finite enumeration is provably close
to the ideal mathematical curve.

Recall figure 1 from section 1. It is a theorem in Coq that states the (ideal mathematical)
graph of the exponential function (which is uniformly continuous on (−∞, 1]) restricted to the

range [0, 3] on the interval [−6, 1] is within
324

2592
(which is equivalent to

1

8
) of the finite set repre-

sented by raster shown with the top-left corner mapped to (−6, 3) and the bottom-right corner
mapped to (1, 0). The raster is 42 by 18, so, by considering the domain and range of the graph,
each pixel represents a

1

6
by

1

6
square. The error between the plot and the graph must always be

greater than half a pixel. I chose an ε that produces a graph with an error of
3

4
of a pixel. In

this case
3

4
·

1

6
≍

1

8
, which is the error given in the theorem.

There is one small objection to this image. Each block in the picture represents an infinites-
imal mathematical point lying at the center of the block, but the block appears as a square the
size of the pixel. This can be fixed by interpreting each block as a filled square instead of as a
single point. This change would simply add an additional

1

2
pixel to the error term. This has

not been done yet in this early implementation.

7 Alternative Hausdorff Metric Definitions

There is another possible definition for the Hausdorff metric. One could define the Hausdorff
hemimetric as

Hε
′(A,B)4 ∀x∈A.∀δ.∃y ∈B.Bε+δ

X (x, y).

The extra flexibility given by the δ term also allows one to conclude that there is some y ∈ B
that is within ε of x without telling us which one (again, it may be the case that we cannot
know which y is the one). Our original definition Hε(A, B) is implied by Hε

′(A, B); however, the
alternative definition yields more constructive information.
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The two definitions are equivalent under mild assumptions. When X is a located metric,
then Hε

′(A, B) ⇔Hε(A, B). This is very common case and allows us to recover the constructive
information in the H ′ version from the H version.

The constructive existential in the definition of H ′ would make the resulting metric not
provably stable. It is somewhat unclear which version is the right definition for the constructive
Hausdorff metric. The key deciding factor for me was that I had declared the ball relation to be
in the Prop universe. Coq has a Prop/Set distinction where values in the Prop universe are
removed during program extraction [11]. To make program extraction sound, values outside the
Prop universe cannot depend on information inside the Prop universe. This means that even if I
used the H ′ definition in the Hausdorff metric, its information would not be allowed by Coq to
construct values in Set. For this reason, I chose the H version with the classical quantifiers for
the definition of the Hausdorff metric. Values with classical existential quantifier type have no
information in them and naturally fit into the Prop universe.

8 Conclusion

This work shows that one can compute with and display constructively compact sets inside a
proof assistant. We showed how to graph uniformly continuous functions and render the results.
We have turned a proof assistant into a graphing calculator. Moreover, our plots come with
proofs of (approximate) correctness.

Even though a classical quantifier in the Hausdorff metric is used, it does not interfere with
the computation of raster images. This development shows that one can combine classical rea-
soning with constructive reasoning. The classical existential quantifier was key in allowing us to
use the pigeon hole principle to prove the closedness property of the Hausdorff metric.

All of the theorems in this paper have been verified by Coq except where indicated other-
wise. Those few theorems that have not been verified in Coq are not essential and have not been
assumed in the rest of the work (the statements simply do not appear in the Coq formalization).
This formalization will be part of the next version of the CoRN library [3], which will be
released when Coq 8.2 is released.

Given my previous work about metric spaces and uniformly continuous functions [8], the
work of defining compact sets and plotting functions took only one and a half months of addi-
tional work.

This work provides a foundation for future work. One can construct more compact sets such
as fractals and geometric shapes. Proof assistants could be modified so that the high resolution
display of a monitor could be used instead of the “ASCII art” notation that is used in this work.
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