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Abstract
Articulatory feature (AF) modelling of speech has received a 
considerable amount of attention in automatic speech recognition 
research. Although termed ‘articulatory’, previous definitions make 
certain assumptions that are invalid, for instance, that articulators 
‘hop’ from one fixed position to the next. In this paper, we studied 
two methods, based on support vector classification (SVC) and 
regression (SVR), in which the articulation continuum  is modelled 
without being restricted to using discrete AF value classes. A 
comparison with a baseline system trained on quantised values of 
the articulation continuum showed that both SVC and SVR 
outperform the baseline for two of the three investigated AFs, with 
improvements up to 5.6% absolute.
Index Terms: articulatory features, speech analysis, speech 
recognition.

1. Introduction
Articulatory feature (AF) modelling of speech as an alternative to 
phone modelling has received a considerable amount of attention 
in automatic speech recognition (ASR) research [1-4]. AF model­
ling is often considered as the solution to the problem of modelling 
the variation in speech using the standard ‘beads-on-a-string’ (i.e. 
using phones) paradigm [5]. AFs are physiologically motivated 
classes which characterise the essential aspects of articulatory 
properties of speech sounds for speech perception (e.g., voice, 
nasality) in a quantised form [1].

Although AFs are termed ‘articulatory’, previous definitions 
make certain assumptions that are invalid. For instance, in order to 
train and test an AF-based ASR system it is assumed that articula­
tors ‘hop’ from one fixed position to the next; disregarding the fact 
that the articulators move continuously from one position to the 
next. The articulation continuum is quantised and each class is 
assigned a label (referred to as an AF value) describing the target 
positions of the articulators. ASR systems are then trained and 
tested on these classes; see e.g. [1-4].

Previous work by [3,4] shows that the least well recognised 
AFs are those related to tongue position during vowel production 
and consonantal place of articulation, i.e. AFs of which the 
possible tongue positions or places of constriction during vowel or 
consonant production, respectively, seem to lie on an articulation 
continuum  from the front to the back or from the top to the bottom 
of the oral cavity. Consider a vowel: the absolute tongue position 
for its production is traditionally determined relative to some 
external reference point [6]. The AF value of that vowel, however, 
is specified relatively within a group of vowels and not absolutely
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across all vowels. Therefore, a second vowel with the same 
absolute position might be assigned a different AF value. This 
results in a broader distribution of MFCCs associated with the 
same quantised AF value resulting in an overlap of MFCCs for 
different AF values. This could possibly explain the somewhat 
disappointing recognition rates of those AFs.

These issues lead us to the novel idea of modelling the articu­
lation continuum such that one is no longer restricted to using 
discrete AF values (referred to as modelling of the unquantised 
articulation continuum); thus eliminating the assumption that 
articulators ‘hop’ from one fixed position to the next. The question 
we try to answer is: can articulatory feature continuums be mod­
elled without quantisation? Two methods of modelling the unquan­
tised AF space are compared (section 4). In the first method we 
train support vector classifiers (SVCs) on the extreme values of an 
AF continuum and the intermediate places of articulation are 
inferred. For this to work, it is necessary to establish whether the 
assumed articulation continuum has an equivalent in the acoustic 
(MFCC) space: SVCs are binary classifiers but the AFs have 
multiple quantisation levels so the continuum must be inferable 
from the extremes. The second method uses support vector regres­
sion (SVR) to create a function that describes the articulation 
continuum. Both are compared to a baseline SVC system trained 
on quantised values (section 3).

2. Classification systems and material
2.1. Classification systems
Most AF research has been carried out with multilayer perceptrons 
(MLPs) yielding good performance levels [1-4]. MLPs can assign 
posterior probabilities between 0  and 1 to points within uncer­
tainty regions, i.e. regions where AF value classes overlap, and 
posterior probabilities of either 1 or 0  to all points outside the 
uncertainty regions. This implies that if two points in MFCC space 
are easily classified, e.g. as high, they both will be given a poste­
rior probability of 1, making it difficult to indicate whether one 
point is actually higher than the other.

SVCs [7] make binary decisions by constructing a hyper­
plane that separates the two classes so that the boundary is geomet­
rically furthest away from both. For each point, SVC assigns a 
score that lies on a continuum. The score is proportional to the 
point’s distance from the decision boundary (the point’s classifica­
tion is usually inferred from the score’s sign). In contrast to 
posterior probabilities, SVC scores are not restricted to a range of 
values. Such scores can therefore be used to infer how far a point is 
along the continuum from one class to another.

Regression is a natural way to model a continuum. SVR [7] is 
a technique closely related to SVC. It differs from other regression 
algorithms in a number of ways. Firstly, it is non-parametric so a 
regression function need not be predefined -  the function is 
estimated by a sum over a set of basis functions that are defined by 
the kernel. Secondly, most regression algorithms penalise all 
deviations of the regression function from the data (the goal is to 
minimise the total penalty). In contrast, SVR does not penalise
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until the deviation is greater than a parameter £. This leads to an 
“e-insensitive zone” around the regression function. When £=0 
SVR behaves in much the same way as, for example, MLP regres­
sion, by penalising all deviations. Thus SVR has an extra degree of 
freedom giving it greater potential to create a better model of the 
continuum by allowing the score for an MFCC to take any value 
inside the insensitive zone instead of forcing it to a discrete value.

The LIBSVM [8] package was used for both SVC and SVR. 
In initial experiments, both the polynomial and the RBF kernels 
were tested on the same task. The RBF kernel showed a better 
result so the experiments reported here use only that kernel.

2.2. Material
The TIMIT [9] speech corpus was used in this study. It consists of 
reliably hand labelled and segmented data of quasi-phonetically 
balanced sentences read by 630 native speakers of American 
English. TIMIT’s standard training and testing division was 
followed so that sentences and speakers used in training were not 
used in testing. The training data consists of 3,696 utterances. The 
test data (excluding the s a  sentences) consists of 1,344 utterances. 
AF labels were derived by substituting the frame-level phonemic 
TIMIT labels with the canonical AF values using a look-up table
[4]. The speech was parameterised with 12 MFCC coefficients and 
log energy, augmented with their first and second derivatives and 
extended with a context window of ±3 frames resulting in 273­
dimensional MFCC vectors.

2.3. The articulatory features
We investigate three AFs that seem to have an articulation contin­
uum: ‘fr-back’ describes the tongue position on the front-back 
continuum for vowels using quantised AF values front, central, 
back, and nil; ‘high-low’ describes the tongue position on the 
high-low continuum for vowels using AF values high, mid, low, 
and nil; ‘place’ describes the place of constriction for consonants 
using AF values bilabial, labiodental, dental, alveolar, velar, nil, 
and silence.

3. The baseline system
A baseline SVC system trained on quantised AF values is used to 
assess the results of the two methods of modelling the unquantised 
articulation continuum. Since SVCs can generalise to a small 
amount of high-dimensional data, not all available training mate­
rial was used. Instead, a smaller training set was created by ran­
domly selecting 500K frames (i.e. 44.2%) from the full training set 
while keeping the same prior distribution. Table 1 shows the 
baseline classification results for each AF separately in terms of 
accuracy, i.e. the percentage of frames correctly classified. The 
‘Acc.’ column shows the accuracies calculated over all test frames. 
The accuracies reported in the ‘Acc’ column are higher than those 
reported by [3,4]. Since we are primarily interested in how well 
our new methods are able to model the articulation continuums of 
the three AFs under investigation, we will compare the perform­
ance of the new methods with the baseline system when the nil and 
silence frames are discarded from the test set: nil and silence are 
not parts of the articulation continuum of the three AFs under 
investigation. These results are presented in the ‘No nil’ columns 
in Table 1. The number of support vectors (SVs) as a percentage of 
the amount of training data is also listed in Table 1; the values of 
the t  and c parameters in the SVCs are listed in Table 2 for 
completeness. The percentage of SVs indicates the SVC complex­
ity: more SVs suggest either more complex decision boundaries or 
more overlapping data (for an analysis see [4]). The T is the 
reciprocal of the RBF kernel width squared and c sets the amount 
of regularisation.

Table 3 lists the baseline accuracies for each AF value sepa­
rately and shows that the AF value accuracies differ widely. In the 
case of ‘high-low’ and ‘fr-back’, the accuracy of the “middle” AF

Table 1. The A F  accuracy with (Acc.) and without (No nil) nil and 
silence frames, and the percentage o f the training data that are 
SVs fo r  the baseline system, EXTR, and REGR.

AF BASELINE EXTR REGR
Acc. No nil %SV No nil %SV No nil %SV

‘place’ 83.1 73.5 40.4 54.4 29.9 58.7 38.2
‘high-low’ 86.0 69.5 31.0 71.6 23.5 75.1 73.9
‘fr-back’ 87.1 72.3 40.1 73.2 38.9 73.8 77.0

Table 2. The values o f y, c, and s (for REGR only) fo r  the baseline 
system, EXTR, and REGR.

AF BASE
T

:l i n e
c

EX
T

;t r
c

I
T

IEGR
c E

‘place’ 0.1 3 0.01 5 0.01 10 0.5
‘high-low’ 0.01 3 0.05 5 0.01 1 0.1
‘fr-back’ 0.01 300 0.1 1 0.1 5 0.1

Table 3. A F  value classification accuracies fo r  the baseline 
system, EXTR, and REGR.

AF AF value
Baseline

Acc. (%) 
EXTR REGR

‘place’ bilabial 70.4 69.2 70.1
labiodental 71.7 6.3 20.2
dental 37.1 6.3 19.7
alveolar 78.8 78.9 78.8
velar 63.2 36.7 54.9

‘high-low’ high 74.5 74.6 74.6
mid 55.2 62.0 72.9
low 77.6 77.6 77.7

‘fr-back’ front 83.2 83.3 83.3
central 35.0 42.6 49.0
back 61.3 61.4 61.3

value is much lower than those of the “extreme” AF values. The 
differences between the ‘place’ AF values are not as large, with the 
exception of dental. For a possible explanation of these low 
accuracies, see [4].

4. Modelling the acoustic continuum
4.1. Training on extremes of the continuum (‘EXTR’)
The success of training SVCs only on the extreme values of an AF 
continuum and letting the intermediate places of articulation be 
inferred is dependent on the relative position of each of the AF 
values in the acoustic (MFCC) space. A “middle” class that is too 
far removed from the straight line joining the “extreme” classes 
indicates that it may be less reliable to train SVCs only on the 
extremes than to train on all three. We therefore calculated the 
relative positions of the AF value classes.

By inspecting combinations of MFCC coefficients in 3D scat­
ter plots, the distributions of the MFCCs for each AF value class 
were determined to be “unimodal”. The following analysis is 
performed using 39 dimensional MFCC vectors (without the ±3 
frame context window). Disregarding the variances for simplicity, 
we calculate distances between the mean MFCC vectors of each 
AF value class and subsequently calculate the perpendicular 
distance of the “middle” class mean from the straight line joining 
the “extreme” class means. For an AF consisting of (only) three AF 
values, it will always be possible to find some sort of continuum 
through the three class means. The question then is how far the 
“middle” deviates from the straight line joining the “extremes”.

Figure 1 shows 2D representations of the MFCC spaces for 
the AFs ‘high-low’ and ‘front-back’. Although in both cases the 
AF value class means do not lie on a straight line the deviation



may be sufficiently small that it may be possible to infer a contin­
uum by training SVCs on the extremes, especially for ‘high-low’. 
An investigation of ‘place’ yielded no obvious straight line in 
MFCC space that could be used to form a continuum. It suggested 
that a definition of the ‘place’ continuum requires a more complex 
non-linear mapping than can be achieved by simply training on the 
extremes.

For training the SVC system, only the AF value frames of the 
“extremes” of the continuums from the 500K training set were 
used (this method is referred to as ‘EXTR’). In the case of ‘place’, 
the SVC is trained on bilabial and velar (30,512 and 40,747 
frames respectively). For ‘high-low’, it is trained on low and high 
(56,851 and 61,235 frames respectively). ‘fr-back’ is trained on 
front and back (109,339 and 44,351 respectively). The percentage 
SVs for each SVC is listed in Table 1; the values for y and c are 
listed in Table 2. The SVCs were tested on only the ‘relevant’ 
frames in the test material, i.e. the nil and silence frames were 
discarded from the test material. This resulted in 139,977 test 
frames for ‘high-low’ and ‘fr-back’ and 199,639 frames for ‘place’. 
The results are presented in terms of ‘No nil’ accuracy in Table 1.

4.2. Regression (‘REGR’)
SVR is used to create a function that will be able to describe the 
articulation continuum (this method is referred to as ‘REGR’). 
Each AF value is assigned a numerical value: for ‘high-low’, 
low=1, mid=2, and high=3; ‘fr-back’, front=0, central=1, and 
back=2; for ‘place’, bilabial=1, labiodental=2, dental=3, alveo- 
lar=4, and velar=5. For each AF, SVR is used to fit a function to 
those values given the 273 dimensional MFCC vector as input. 
Table 1 shows the percentage SVs and Table 2 shows the values 
for the parameters y, c, and e.

The SVR function is trained on the same data as was used for 
EXTR but including the frames of the intermediate AF values. So 
the SVR function is trained on all AF value classes. This resulted 
in 170,645 training frames for ‘high-low’ and ‘fr-back’ and 
240,791 training frames for ‘place’. The resulting regressions were 
tested on the same data as EXTR and the ‘No nil’ baseline. The 
results are presented in terms of ‘No nil’ accuracy in Table 1.

4.3. Results
First, we investigate whether the EXTR and REGR classifiers 
place the AF values in the ‘correct’ order, i.e. low-mid-high, front- 
central-back, and bilabial-labiodental-dental-alveolar-velar. To 
that end, the distributions of the SVR and SVC scores of the test 
material are plotted. SVR and SVC score distributions show the 
amount of overlap between any two classes of AF values assuming 
the ‘gold’ standard.

The left-hand side of Figure 2 shows the outline of the histo­
grams of the SVR scores of the test material as scored by the 
REGR (panels a, c, e) and the SVC scores as scored by the EXTR 
(panels b, d, f) classifiers for ‘high-low’ (a, b), ‘fr-back’ (c, d), and 
‘place’ (e, f). As is clear from the SVR score distributions, the 
REGR classifiers were able to create a function that correctly 
models the articulation continuum for all three AFs: the distribu­
tions of the various AF values are placed in the correct order. In 
the case of EXTR, for both ‘high-low’ and ‘fr-back’ the distribu­
tion of the “middle” AF value is clearly placed in between the 
distributions of the two “extreme” AF values. EXTR is thus able to 
infer the “middle” AF value after training only on the “extreme” 
AF values. The EXTR method, however, has slightly more diffi­
culty in modelling the ‘place’ continuum correctly: labiodental and 
dental have swapped places.

In order to compare the results of the REGR and EXTR clas­
sifiers with the baseline system, the AF and AF value accuracies 
need to be calculated by requantising the continuums. To deter­
mine the accuracy of any two AF values a threshold can be placed 
in the SVR and SVC score distributions: every score below the 
threshold is regarded as one AF value, while every score above it is

regarded as the other. ROC curves can be used to plot the accura­
cies for all possible thresholds. In Figure 2, the right-hand panels 
show the ROC curves and corresponding score distributions on the 
left. Comparing the ROC curves for REGR and EXTR shows that 
REGR seems to outperform EXTR.

central
mid

low 3.78 high front 2.42 back
Figure 1. Distances between A F  value class means in MFCC 
space o f ‘high-low’ (left) and ‘fr-back’ (right).
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Figure 2. The left-hand side shows the outlines o f the test score 
histograms obtained by the REGR (a, c, e) and EXTR (b, d, f)
classifiers fo r  ‘high-low’(a, b), fr-back’ (c, d), and 'place' (e, f); 
the right-hand side shows the corresponding ROC curves.
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The AF and AF value accuracies of the REGR and EXTR classifi­
ers are then inferred by setting thresholds in the SVR and SVC 
score distributions as described above. The thresholds, for ‘high- 
low’ and ‘fr-back’ are set such that the AF value accuracies for the 
“extreme” AF values are (almost) identical to the baseline AF 
value accuracies. For an explanation for ‘place’, see below. The 
REGR and EXTR methods are then evaluated on the “middle” AF 
value(s). Table 1 presents the AF accuracies for EXTR and REGR 
per AF; the AF value accuracies are shown in Table 3.

A comparison of the baseline system’s AF accuracy (Table 1 
-  ‘No nil’ column) and AF value accuracy (Table 3) for ‘high-low’ 
and ‘fr-back’ with the EXTR and REGR classifier’s accuracies 
clearly shows what we already hypothesised: modelling of the 
unquantised articulation continuum results in better AF and AF 
value accuracies compared to the baseline system. Looking at the 
AF values shows that EXTR has a 6 .8% absolute increase for mid 
and a 7.6% absolute increase for central compared to the baseline 
system; REGR has an even bigger absolute increase of 17.7% for 
mid and a 14.0% increase for central.

The results for ‘place’, however, are different. The thresholds 
were placed such that the AF accuracies for bilabial and alveolar 
match the baseline, since the SVR and SVC score distributions of 
labiodental and dental were entirely below the distribution of 
alveolar. This explains the very low AF value accuracies for 
labiodental and dental. As Table 3 clearly shows neither REGR 
nor EXTR were able to model the assumed articulation continuum, 
in fact they both perform worse than the baseline system.

5. Discussion
In Section 4.1 it was suggested that a definition of the ‘place’ 
continuum requires a more complex non-linear mapping than can 
be achieved by simply training on the extremes. The results in the 
previous section seem to underline this suggestion. An explanation 
of the disappointing results might be that for ‘place’ at least two 
variables have to be modelled: the place of the constriction and the 
size of the constriction. Consider a plosive, e.g. [p], and an ap- 
proximant, e.g. [w], consonant: the sizes of the constrictions differ 
hugely with a complete constriction for the first and hardly any 
constriction for the latter. In the case of ‘high-low’ and ‘fr-back’ 
the size of constriction is fairly constant for all tongue positions. 
Furthermore, even though the places of constriction for consonants 
seem to lie on an articulation continuum from the front to the back 
of the oral cavity, this continuum differs from the ‘high-low’ and 
‘fr-back’ continuums. During vowel production, the tongue can be 
at any point between the top and the bottom and the front and the 
back of the oral cavity. However, during productions of, specifi­
cally, bilabial, labiodental, and dental consonants, there is little 
freedom in the actual place of the constriction; the place of con­
striction is fixed. These results thus seem to suggest that despite 
first impressions, there is no real articulation continuum for 
‘place’. To improve the accuracy for ‘place’ and its AF values, 
other methods need to be investigated.

As the results in the previous section show, REGR outper­
forms EXTR on all levels and for all AFs. An explanation for 
REGR’s better ability of modelling the unquantised articulation 
continuum is that SVRs provide a natural way to model a contin­
uum and they are trained on all AF values. SVCs on the other hand 
are binary classifiers trained on only two classes, the “extreme” 
classes. As hypothesised in Section 4.1, if the “middle” AF value is 
further removed from the straight line through the “extremes”, it 
may be less reliable to train only on the “extremes”. Since SVR is 
used to create a function to describe the articulation continuum, it 
does not suffer if the “middle” AF value class is not on a straight 
line through the “extreme” AF value classes. This hypothesis thus 
also explains the slightly bigger overall improvement for ‘high- 
low’ compared to ‘fr-back’, since the “middle” AF value class for 
‘high-low’ is closer to the straight line through the “extremes” than

for ‘fr-back’. The bigger overall improvement for ‘high-low’ might 
however also be explained by the fact that for ‘high-low’ the 
number of training frames for the “extreme” AF values is approxi­
mately equal, while in the case of ‘fr-back’ there are 2.5 times 
more front than back frames. This is a topic for future research.

6. Concluding remarks and future work
The analyses reported here show that the current definition of AFs 
is not perfect for automatic detection. For ‘high-low’ and ‘fr-back’, 
it is possible to improve on the AF value classification accuracies 
by modelling the unquantised articulation continuum, but the 
results from ‘place’ suggest that new definitions of the AF descrip­
tions and/or alternative modelling approaches may be needed. This 
is the focus of our future work.

In future work, in our search for a better description of the 
speech signal, we will also take into account one of the big ques­
tions in ASR and psycholinguistics: what is the unit of speech 
recognition? Psychologists investigating child language acquisition 
have found that young children learn their mother language by 
grouping together elements in the speech signal having strong 
associations with one another, but weak associations with elements 
within other chunks [10,11]. In analogy with this, we intend to 
look at methods for unsupervised clustering of speech, e.g. as used 
by [12], so as to arrive at a method of modelling the unquantised 
articulation continuum. This approach will, additionally, provide a 
new and improved definition of the unit of recognition.
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