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We study the radiation produced by an accelerated time delay acting on the left moving modes. Through
analysis via the Schrödinger picture, we find that the final state is a two-mode squeezed state of the left
moving Unruh modes, implying particle production. We analyze the system from an operational point of
view via the use of self-homodyne detection with broadband inertial detectors. We obtain semianalytical
solutions that show that the radiation appears decohered when such an inertial observer analyzes the
information of the radiation from the accelerated time-delay source. We make a connection with the case of
the accelerated mirror. We investigate the operational conditions under which the signal observed by the
inertial observer can be purified.
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I. INTRODUCTION

Since the 1970s it has been well known that a moving
mirror can radiate particles [1,2]. The radiation flux is
thermal for an appropriately chosen accelerated trajectory,
and hence an analogy [3,4] can be drawn with Hawking
radiation from a collapsing star [5] that forms a black hole.
Interest in this problem has been maintained over the years
due to this connection with gravitational physics, but also
due to difficulties in obtaining and interpreting results for
such systems [6–8]. Recently a circuit model approach has
been introduced which allows semianalytical solutions to
be obtained for this and related problems [9,10], allowing
clearer exploration of the physics.
Interactions with an accelerated mirror inevitably mix

left and right going modes (in a 1þ 1 approximation).
Hence it has been assumed that the particle production and
mixing seen by an inertial observer looking at (say) left
moving modes coming from an accelerated mirror are due
to loss of information via entanglement to the right going
modes. That is, in quantum mechanics it is expected that
initial pure states will evolve into pure final states; hence, if
a mixed state is observed, it is assumed there is some
coupling to unobserved parts of the system. By tracing off
parts of the system, the observed subsystem may seem
mixed due to the information that has been lost.
However, using the circuit model, it has recently been

shown that a single mode squeezed signal sent by a
uniformly accelerated observer would be observed to be

decohered by an inertial observer [10] under a particular
detection model. This is in spite of there being no coupling
between left and right going modes or to other unobserved
degrees of freedom. A key restriction imposed on the
observer in this scenario is that they do not possess global
information about the modal decomposition of the inter-
action, but rather are provided with a mode reference from
the accelerated source. In this sense, the decoherence can
be said to appear from an operational point of view, based
on the restriction imposed on the observer. It is interesting
to consider whether similar effects are present for passive
accelerated objects.
In this paper we analyze the effect of the Minkowski

vacuum interacting with an accelerated time delay. The
natural modes in the reference frame of an object uniformly
accelerating in the right going direction are the right Rindler
modes.Wemodel an interaction that delays the right Rindler
modes with respect to the left Rindler modes. The delay is
passive and does not couple left and right going modes. The
global effect of such a unitary delay can be analyzed
straightforwardly in the Schrödinger picture and predicts
particle production in the Minkowski frame. However, the
analysis of the statistics expected from particular detection
models for inertial Minkowski observers is more compli-
cated. We adopt the circuit model (input-output) formalism
and the self-homodyne detection method for our analysis
[10]. In this scheme, the observer’s detector is a broadband
“bucket” detector, looking at all field modes. The mode
reference is sent from the accelerated reference frame. The
conceptual setup of such a scenario can be found in Fig. 1.
This method does not utilize the perturbation method, and
given particular conditions, simple, accurate, semianalytic
expressions are obtained. This method also has the virtue of
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analyzing the effects of the interaction from an operational
point of view which has a strong connection with exper-
imental methodology.
Our paper is set up in the following way. In the following

section we introduce our model for the accelerated time
delay and derive a global solution in terms of Unruh modes
initially in the Minkowski vacuum state. In Sec. III we
introduce the self-homodyne detection model and derive
approximate solutions, valid for particular parameter
choices. In Sec. IV we analyze the results, and in Sec. V
we make a connection with the accelerated mirror under
similar conditions and find parameters for which the
measurement statistics of the time delay andmirror coincide.
The self-homodyne detection model assumes the mode
reference is sent from the source of the interaction in the
right Rindler wedge. In Sec. VI we show that if an additional
mode reference is sent from the left Rindlerwedge, then pure
state statistics can be observed for the “mirrorlike” case. Two
interesting cases are presented. We discuss and conclude in
Sec. VII.

II. ACCELERATED UNITARY TIME DELAY

A. Introducing the operators

In this paper we consider a massless scalar bosonic field
Φ̂ in (1þ 1)-dimensional Minkowski spacetime. Details on
the quantization method and the definition of the single
frequency annihilation/creation operators can be found in
[11–14]. For simplicity, we only consider the left moving
modes in this paper. The single frequency Minkowski
annihilation operator is defined as êk. It is useful to
introduce what is known as the single frequency Unruh
operators, ĉω and d̂ω. The Unruh operators are related to the
Minkowski operator in the following way [9,13,15]:

êk ¼
Z

dωAkωĉω þ Bkωd̂ω; ð1Þ

where

Akω ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh½πω=a�p
2π

ffiffiffiffiffiffi
ωk

p Γ½1 − iω=a�
�
k
a

�
iω=a

¼ B�
kω; ð2Þ

where ΓðxÞ is the gamma function. The Unruh modes are
related to the right and left Rindler modes, âω and b̂ω,
respectively, by a two-mode squeezing operation,

ĉω ¼ coshðrωÞâω − sinhðrωÞb̂†ω;
d̂ω ¼ coshðrωÞb̂ω − sinhðrωÞâ†ω; ð3Þ

where rω ≡ tanh−1½expð−πω=aÞ� and a is the acceleration
of the observer. By inverting Eq. (3), we obtain the
following equations:

âω ¼ coshðrωÞĉω þ sinhðrωÞd̂†ω;
b̂ω ¼ coshðrωÞd̂ω þ sinhðrωÞĉ†ω: ð4Þ

These definitions will form the basis of the quantum circuit
model (or input-output formalism) which was developed by
Su et al. [9,10]. It is noted that we have utilized a different
notation to denote the Rindler and Minkowski operators to
other authors.

B. Introducing the unitary

Interactions between uniformly accelerated objects and
quantum fields have been studied for many years; however,
to the best of our knowledge, a time delay in the Rindler
frame has not been previously studied. We first introduce
the unitary time-evolution operator in the Rindler frame as
follows;

Ût ¼ e−iĤRτþiĤL τ̄; ð5Þ

where ĤR is the Hamiltonian in the right Rindler wedge
and ĤL is the Hamiltonian in the left Rindler wedge. In the
right and left Rindler wedges, the Hamiltonian is defined as
follows:

ĤR ¼
Z

dωωðâ†ωâωÞ; ĤL ¼
Z

dωωðb̂†ωb̂ωÞ: ð6Þ

The unitary time delay in the right Rindler wedge can be
modeled through the following unitary:

Û ¼ eiĤRΔ: ð7Þ

This unitary can be compared with Eq. (5). It is easy to see
that we have set τ ¼ −Δ and τ̄ ¼ 0. We can induce a time

FIG. 1. The time-delay source moves along the red trajectory.
The detector remains stationary along the blue line and holds a
broadband detector.

SHO ONOE, DAIQIN SU, and TIMOTHY. C. RALPH PHYS. REV. D 98, 036011 (2018)

036011-2



delay by accelerating an object which delays the incoming
signal by a set time jΔj. In Fig. 2, a physical example of an
accelerated object that could cause such a delay is shown.

C. Schrödinger picture

To have an understanding of what physically occurs
to the field, we seek how the Minkowski vacuum
evolves under the operator defined in Eq. (7). The
Minkowski vacuum is defined as êkj0Mi ¼ 0, ∀ k while
the Rindler vacuum is defined as âωj0Ri ¼ b̂ωj0Ri ¼ 0,
∀ω. We calculate how the Minkowski vacuum transforms
under this unitary. First, we look into the output state in
terms of the Rindler vacuum (in terms of the accelerated
observers) [13],

Ûj0Mi ¼
Y
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − exp½−2πω=a�

p X∞
nω¼0

exp½−nωπω=a�
nω!

× ðâ†ωeiΔωb̂†ωÞnω j0Ri: ð8Þ

We find that we can explicitly write the final state in
terms of the Rindler single frequency creation operators
from the Rindler vacuum. It is clear that the right and left
Rindler observers can measure a pure state by comparing
the correlation between the right and left single frequency
Rindler particles.
We now look into the output state in terms of the

Minkowski vacuum (in terms of the inertial observers).
To do this, we decompose the unitary into a form which can
be understood in the Minkowski frame. With lengthy
calculations, we can show the following:

Û ¼ Ûd̂;pðωΔÞŜðr; ðθ2 þ θ1ÞÞÛĉ;pðθ1ÞÛd̂;pðθ1Þ; ð9Þ

where we have defined the following:

rðωÞ ¼ cosh−1ðj coshðrωÞ2e−iωΔ − sinhðrωÞ2jÞ;

eiθ1 ≡ coshðrωÞ2e−iωΔ − sinhðrωÞ2
j coshðrωÞ2e−iωΔ − sinhðrωÞ2j

;

eiθ2 ≡ ðe−iωΔ − 1Þ
je−iωΔ − 1j : ð10Þ

The unitary transformation is decomposed into a combi-
nation of phase shifters and a two-mode squeezer. The two-
mode squeezer is defined in the following way:

Ŝðr;θÞ≡ exp
�Z

dω rðωÞðd̂†ωĉ†ωeiθ − e−iθĉωd̂ωÞ
�
;

Ŝðr;θÞ†ĉωŜðr;θÞ ¼ coshðrðωÞÞĉω þ eiθ sinhðrðωÞÞd̂†ω;
Ŝðr;θÞ†d̂ωŜðr;θÞ ¼ coshðrðωÞÞd̂ω þ eiθ sinhðrðωÞÞĉ†ω:

ð11Þ

Phase shifters are defined in the following way:

Uô;pðθÞ≡ exp

�
i
Z

dωθðωÞô†ωôω
�
;

Uô;pðθÞ†ôωUô;pðθÞ ¼ eiθðωÞôω: ð12Þ

By acting this unitary onto the Minkowski vacuum, we find
the following:

Ûj0Mi ¼ Ûd̂;pðωΔÞŜðr; θ2 þ θ1Þj0Mi
¼ Ŝðr; ðθ2 þ θ1 þ ωΔÞÞj0Mi: ð13Þ

As a result, the final state is a pure two-mode squeezed
state. Equation (13) makes it clear that different Unruh
frequencies are completely uncorrelated from each other;
thus we can conclude that the correlations will exist
between single frequency Unruh modes. For single fre-
quency, the squeezing strength is rðωÞ and the squeezing
angle is θ1ðωÞ þ θ2ðωÞ þ ωΔ.
From a practical point of view, this information can be

extracted only when the observer knows the modal struc-
ture of the Unruh modes (which is dependent on the
trajectory of the accelerated observer). We impose a key
restriction on the inertial observer that they do not possess
global information about the modal decomposition of the
interaction; the observer has no information on the structure
of the incoming signal. That is to say that the signal must be
accompanied with information telling the inertial observer
where the signal is. To address this issue, we implement the
self-homodyne detection method. The information of the
modal structure will be encoded within the strong coherent
signal sent by the source. The inertial observer will require
only a broadband detector, and the information of the
incoming mode can be analyzed via statistical analysis of
the particle count.

FIG. 2. The unitary time delay can be modeled through the use
of mirrors. It can be seen that the incoming light beam must travel
an extra distance of Δ due to the mirrors. If this mirror
arrangement is accelerated, the delay will occur to the Rindler
modes in one Rindler wedge.
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III. SELF-HOMODYNE DETECTION ON
ACCELERATED UNITARY TIME EVOLUTION

A. Self-homodyne detection

We utilize homodyne tomography [16] to characterize
the state of a particular field mode. For Gaussian states, the
analysis of the first and second order moments [17] is
sufficient to characterize the Wigner function of a particular
output mode [18].
We will utilize the self-homodyne detection method to

characterize the Wigner function of a particular output
mode. This section will introduce the self-homodyne
detection method. Self-homodyne detection is conducted
through displacing the mode of interest by a large dis-
placement operator D̂iðα ¼ jαjeiϕÞ ¼ exp½αô†i − α�ôi�. The
particle count of such a state is compared to the particle
count of an output without the presence of the signal for
various ϕ.
The state with the signal can be created by acting the

unitary operator onto the initial state. In the Heisenberg
picture, we interpret this as the following:

ô0i ≡ Û†ôiÛ: ð14Þ

The signal that is created is then coupled with a strong
coherent signal. In the Heisenberg picture, the operator
evolves in the following way:

ô00i ≡ Û†D̂†
i ðαÞôiD̂iðαÞÛ: ð15Þ

The photon number operator can be written in the following
way:

N̂i ≡ ô00i
†ô00i

¼ jαj2 þ jαjX̂iðϕÞ þ ðô†i 0ô0iÞ
≈ jαj2 þ jαjX̂iðϕÞ;

N̂0;i ≡ D̂†
i ðαÞô†i ôiD̂iðαÞ

¼ jαj2 þ jαjX̂0;iðϕÞ þ ðô†i ôiÞ
≈ jαj2; ð16Þ

where we have defined the following:

X̂i ≡ ô0ie
−iϕ þ ô†i

0eiϕ;

X̂0;i ≡ ôie−iϕ þ ô†i e
iϕ: ð17Þ

The approximation in Eq. (16) is valid when we set jαj2 ≫
hô†i 0ô0ii and assume hX̂0;iðϕÞi ≪ jαj. Utilizing equation
(16), we find the following:

XiðϕÞ≡ hN̂i − N̂0;iiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂0;ii

q ≈ hX̂iðϕÞi: ð18Þ

In future calculations, we will differentiate between
hX̂iðϕÞi and XiðϕÞ. The first being the explicit expectation
value of X̂iðϕÞ, while the latter is the approximate value
we find via the self-homodyne detection method. We
take the variance of the expression above and find the
following:

ViðϕÞ≡ ðhΔN̂iiÞ2
hN̂0;ii

≈ hV̂iðϕÞi: ð19Þ

In cases where the observer does not know the mode in
which the signal is sent, the observer is restricted to
conducting a measurement over all bases. The mode of
interest is amplified by the large coherent signal, and thus
we can utilize the following assumption:

N̂j≠i − N̂0;j≠i

hN̂0;ii
≈ 0: ð20Þ

Utilizing this result and the fact that the total number
operator does not change with the change of basis, we
conclude the following:

ðN̂i − N̂0;iÞ ≈
X
j

N̂j − N̂0;j

¼
X
n

N̂n − N̂0;n: ð21Þ

In the equation above, n denotes the complete orthonormal
basis set in which the particle number is counted in. By
utilizing this approximation, we find the following:

XðϕÞ≡ ðhN̂i − hN̂0iÞ=
ffiffiffiffiffiffiffiffiffiffi
hN̂0i

q
≈ XiðϕÞ;

VðϕÞ≡ ðhN̂2i − hN̂i2Þ=hN̂0i ≈ ViðϕÞ: ð22Þ

Equations (18) and (19) is the homodyne detection mea-
sured over a single basis. Equation (22) is a self-homodyne
detection method which can be implemented when the
basis is not well-defined.
Our observer will be placed in Minkowski spacetime,

and hence we have defined the following:

N̂ ≡
Z

dkê†k
00ê00k

¼
Z

dω ĉ†ω00ĉ00ω þ d̂†ω
00d̂00ω;

N̂0 ¼ D̂iðαÞ†
�Z

dω ĉ†ωĉω þ d̂†ωd̂ω

�
D̂iðαÞ: ð23Þ

Equations (22) and (23) will form the foundation of the
self-homodyne detection method. We now analyze how
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these equations can be put into a more useful form. To do
this, we define the following operators:

ĉ00ω ≡ Û†D̂iðαÞ†ĉωD̂iðαÞÛ;

d̂00ω ≡ Û†D̂iðαÞ†d̂ωD̂iðαÞÛ;

ĉ0ω ≡ Û†ĉωÛ;

d̂0ω ≡ Û†d̂0ωÛ: ð24Þ

We also define the following values:

gcðωÞ≡ ĉ00ω − ĉ0ω;

gdðωÞ≡ d̂00ω − d̂0ω: ð25Þ

gcðωÞ and gdðωÞ are generally in the order of magnitude
of α. Utilizing these expressions, and the fact that
ĉωj0Mi ¼ d̂ωj0Mi ¼ 0, we find that the quadrature ampli-
tude can be calculated as follows:

XðϕÞ ≈ 2Re½R dω gcðωÞ�hĉ0ωi þ gdðωÞ�hd̂0ωi�
½R dωjgcðωÞj2 þ jgdðωÞj2�1=2

: ð26Þ

We have neglected all values which are in the order of
1=jαj, as we can set α to be arbitrarily large. We now
proceed onto calculating the quadrature variance. To do
this, we first simplify the following expectation values:

hĉ†ω00ĉ00ωĉ†ω0
00ĉω0 00i − hĉ†ω00ĉω00ihĉ†ω0

00ĉω0 00i ≈ gcðωÞgcðω0Þ�hδðω − ω0Þ þ 2ĉ†ω0ĉω0 0i þ 2Re½gcðωÞgcðω0Þhĉ†ω0ĉ†ω0
0i�;

hd̂†ω00d̂00ωd̂†ω0
00d̂ω0 00i − hd̂†ω00d̂ω00ihd̂†ω0

00d̂ω0 00i ≈ gdðωÞgdðω0Þ�hδðω − ω0Þ þ 2d̂†ω
0d̂ω0 0i þ 2Re½gdðωÞ�gdðω0Þ�hd̂0ωd̂ω0 0i�;

hĉ†ω00ĉ00ωd̂†ω0
00d̂ω0 00i − hĉ†ω00ĉω00ihd̂†ω0

00d̂ω0 i ≈ 2Re½gcðωÞ�gdðω0Þ�hĉ0ωd̂ω0 0i þ gcðωÞgdðω0Þ�hĉ†ω0d̂ω0 0i�: ð27Þ

We have neglected the terms which are zeroth and first
order in jαj. The remaining terms are second order in jαj.
We now simplify this expression a little more by assuming
that the displacement operator is applied onto the right
Rindler mode: D̂gðα ¼ jαjeiϕÞ. The explicit expression of
the displacement operator is defined in Eq. (32), and the
explicit expressions for Eq. (25) are calculated in Eq. (34).
Utilizing the expression found in Eq. (34), it is easy to show
that gcðωÞgcðω0Þ�, gdðωÞgdðω0Þ�, and gcðωÞ�gdðω0Þ� are not

dependent on ϕ. We can also show that gcðωÞgcðω0Þ,
gdðωÞ�gdðω0Þ�, and gcðωÞgdðω0Þ� are proportional to
e2iϕ. Thus, we can split the variance into the part that is
phase insensitive and that which is phase sensitive,

VðϕÞ ≈ 1þ V1 þ V2ðϕÞ; ð28Þ

where we have defined the following:

V1 ≡
R
dω dω02fgcðωÞgcðω0Þ�hĉ†ω0ĉω0 0i þ gdðωÞgdðω0Þ�hd̂†ω0d̂ω0 0i þ 2Re½gcðωÞ�gdðω0Þ�hĉ0ωd̂ω0 0i�gR

dωjgcðωÞj2 þ jgdðωÞj2
;

V2ðϕÞ≡ 2fRe½gcðωÞgcðω0Þhĉ†ω0ĉ†ω0
0i þ gdðωÞ�gdðω0Þ�hd̂0ωd̂ω0 0i þ 2gcðωÞgdðω0Þ�hĉ†ω0d̂ω0 0i�gR

dωjgcðωÞj2 þ jgdðωÞj2
: ð29Þ

Alternatively, we can write V2ðϕÞ in the following way:

V2ðϕÞ ¼ −V̄2 × cosð2ϕ − θÞ;

V̄2 ¼
���� 2½gcðωÞgcðωÞhĉ

†
ω
0ĉ†ω0

0i þ gdðωÞ�gdðωÞ�hd̂0ωd̂ω0 0i þ 2gcðωÞgdðωÞ�hĉ†ω0d̂ω0 0i�R
dωjgcðωÞj2 þ jgdðωÞj2

����;
θ ¼ − arccos

�
−
V2ð0Þ
V̄2

�
: ð30Þ

Equation (30) decomposes V2ðϕÞ into two different parts. V̄2 is a measure of how large the squeezing effect is, and θ is
the angle in which the state is squeezed. We now have all the necessary tools to calculate the statistics of a certain mode via
the self-homodyne detection method. In the next section, we will introduce the circuit model to calculate the correlation
functions that are of interest.
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B. Circuit model

In this section, we implement the circuit model to
calculate the first and second order mode moments. The
unitary only interacts with the right Rindler mode; thus we
expect no radiation in the left Rindler wedge from the
accelerated time delay. We can analyze the Wigner function
of the radiation from the accelerated time-delay source by
analyzing the right Rindler statistics. Hence this section
will focus on analyzing the statistics of an arbitrary right
Rindler mode âg. This Rindler mode is defined in the
following way:

âg ≡
Z

dω âωgðωÞ; ð31Þ

where gðωÞ is an arbitrary normalized positive frequency
mode. Thus we introduce the displacement operator in the
following way:

D̂gðα ¼ jαjeiϕÞ≡ expðαâ†g − α�âgÞ: ð32Þ

Any arbitrary bosonic operator can be written as a super-
position of the part that overlaps with âg and a part which is
orthonormal to âg [10,19],

ô ¼ ðô − ð½ô; â†g�âg þ ½âg; ô�â†gÞÞ þ ð½ô; â†g�âg þ ½âg; ô�â†gÞ:
ð33Þ

We have decomposed an arbitary bosonic operator ô into
two terms; the second term in the braket is affected by a
unitary that acts on a particular mode âg, and the first term
in the braket remains unaffected. We now have the
necessary tools to introduce the input-output relations
[9,10,20]. We expand Eq. (25) utilizing this decomposition
to find

gcðωÞ ¼ gðωÞ� coshðrωÞα;
gdðωÞ ¼ −gðωÞ sinhðrωÞα�: ð34Þ

Likewise, we can calculate how the Unruh operators evolve
by utilizing Eqs. (3) and (4),

â0ω ¼ âωe−iωΔ;

ĉ0ω ¼ ĉω þ coshðrωÞðe−iωΔ − 1Þâω
¼ ĉωðcoshðrωÞ2e−iωΔ − sinhðrωÞ2Þ
þ d̂†ω coshðrωÞ sinhðrωÞðe−iωΔ − 1Þ;

d̂0ω ¼ d̂ω þ sinhðrωÞðeiωΔ − 1Þâ†ω
¼ d̂ωðcoshðrωÞ2 − sinhðrωÞ2eiωΔÞ
þ ĉ†ω coshðrωÞ sinhðrωÞðeiωΔ − 1Þ: ð35Þ

We can calculate the quadrature variance and amplitude by
utilizing Eqs. (22), (34), and (35).

C. Quadrature amplitude and variance

By utilizing the fact that hĉ0ωi ¼ 0 and hd̂0ωi ¼ 0, we find
the following:

XðϕÞ ¼ 0: ð36Þ

We note there are some complications to Eqs. (36) and (37)
which will be addressed in Appendix B. We utilize the
formalism we introduced in Eqs. (28)–(30) to calculate the
quadrature variance. Utilizing the correlation functions that
are calculated in Appendix A, we find the following:

VðϕÞ ≈ 1þ 8
R
dω ð1þ 2 sinhðrωÞ2Þ coshðrωÞ2 sinhðrωÞ2jgðωÞj2ð1 − cosðωΔÞÞ

ð1þ 2IsÞ
; ð37Þ

Ic ≡
Z

dω coshðrωÞ2jgðωÞj2;

Is ≡
Z

dω sinhðrωÞ2jgðωÞj2: ð38Þ

As a result, V1 ¼ VðϕÞ − 1 and V2 ¼ 0. We were able to
obtain a completely general simple semianalytic expression
for the variance through the use of the input-output
formalism. Furthermore, this expression can be obtained
in an actual experiment through analyzing the photon count
statistics. This expression will be analyzed numerically in
order to gain further understanding of the statistics of the
signal.

IV. STATISTICAL ANALYSIS OF
ACCELERATED UNITARY TIME

EVOLUTION VIA SELF-HOMODYNE
DETECTION

A. Self-homodyne measurement in Rindler vacuum

Before examining the statistics of the signal created by a
unitary time delay, we analyze the statistics of the
Minkowski vacuum in the right Rindler frame: thermal
statistics. We examine the statistics of the right Rindler
frame via self-homodyne detection. As usual, we introduce
a large reference signal by the displacement operator
D̂gðαÞ. We are interested in the following scenario:
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Û ¼ 1;

N̂R ¼
Z

dω â†ω00â00ω;

N̂0;R ¼ D̂gðαÞ†
�Z

dω â†ωâω

�
D̂gðαÞ: ð39Þ

Following similar steps as in the previous sections, we
calculate the following:

hâ0ωi ¼ 0;

hâ0ωâ0ωi ¼ 0;

hâ0ω†â0ωi ¼ sinhðrωÞ2;
gaðωÞ ¼ g�ðωÞα: ð40Þ

As a result, the quadrature amplitude and variance are
calculated to be as follows:

XvacðϕÞ ¼ 0;

VvacðϕÞ ¼ 1þ 2Is: ð41Þ

This describes the statistics of a thermal bath, and it will be
compared with the result obtained in Eq. (37).

B. Numerical analysis of variance

The analysis with the Schrödinger picture showed that
there are no correlations between different Rindler/Unruh
frequency modes. As a result, we are interested in the right
Rindler single frequency statistics due to the unitary. As it is
difficult to consider a normalized single frequency mode,
we consider a localized Gaussian wave-packet mode in the
right Rindler frame,

gðω;ω0;δ;vcÞ≡B
ffiffiffiffi
ω

p �
1

2πδ2

�
1=4

exp

�
−
ðω−ω0Þ2

4δ2
− iωvc

�
;

ð42Þ

where B is the normalization constant, ω0 is the central
frequency, δ is the bandwidth of the wave-packet mode, and
vc is the central position of the Gaussian wave-packet
mode. By restricting ourselves to δ < 0.4ω0, the approxi-
mation B ≈ 1=

ffiffiffiffiffiffi
ω0

p
is valid. In this section we compute V1

which characterizes the deviation of the variance from the
shot noise. We first analyze how Δ affects the variance.
We find that the variance remains roughly constant for

Δ > δ−1 from Fig. 3. This is the regime where the overlap
between the delayed mode is roughly zero: ½â0g; â†g� ≈ 0.
While the original and delayed modes are overlapping, we
observe sinusoidal waves. This can be understood as a
result of the wave-packet modes becoming correlated/
anticorrelated. When the two modes are out of phase by
π, we observe a local maxima in the variance. The local
minima corresponds to when the two modes are in phase

with each other. The amplitude of the sinusoidal waves
decreases due to the decrease in the overlap between the
two modes.
Figure 4 analyzes how the variance increases for various

ω0. We find that the variance increases quadratically for
small Δ. This regime corresponds to when the two modes
still overlap with each other. As Fig. 4 has a significantly
larger value of δ than Fig. 3, we only see one oscillation
before the variance becomes constant. The regime where
the variance is constant can be interpreted as the regime
when the two modes no longer overlap with each other.
The variance starts to increase again for a sufficiently

large Δ. With further analysis, it can be shown that the
variance increases due to low frequency contributions
around ω ¼ 0. As a result, this regime can be interpreted
as an artifact of assuming the delay also applies to ultralow
frequencies. As this is physically unlikely, we are not
interested in this regime. The low frequency contributions
can be suppressed by setting δ ≪ ω0.
We can obtain numerical results that are similar to the

single frequency statistics by considering the regime where
the variance is roughly constant. This can be done by

FIG. 3. The graph demonstrates how Δ affects the variance of
the signal detected by the Minkowski detector. We have utilized
the following settings: a ¼ 1, ω0 ¼ 0.1, and δ ¼ 0.005.

FIG. 4. The graph demonstrates how Δ affects the variance of
the signal detected by the Minkowski detector. We have utilized
the following settings: a ¼ 1 and δ ¼ 0.2ω0.
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setting δ ≪ ω0 and setting 1=δ ≪ Δ. Figure 5 is a plot
which demonstrates the statistics of the signal: how ω0

affects the variance.
Figure 5 compares the variance of Vvac [Eq. (41)] and

VðϕÞ. For low ω0, it is found that Vvac is inversely
proportional to ω0, while VðϕÞ is inversely proportional
to ω2

0. This demonstrates the statistics of a thermal state,
and the state created by an accelerated time delay on the
Minkowski vacuum are quite different in general. On
the other hand, it is interesting to note that for high ω0

the characteristics of the variances are quite similar. This
figure can be summarized with the following equations:

Vðϕ;ωÞ ¼ 1þ 2cschðπω=aÞ2;
Vvacðϕ;ωÞ ¼ 1þ 2 sinhðrωÞ2: ð43Þ

The output state has a fluctuation above the shot noise, and
hence seems mixed. Through the analysis in the
Schrödinger picture, we know that the output state is a
two-mode squeezed state. However, this does not mean that
the local observer can easily observe a two-mode squeezed
state. The analysis via self-homodyne detection demon-
strates that when the local observer only looks at the
statistic of the radiation from the accelerated time-delay
source, the radiation seems noisy. As a result, the output
state has apparent decoherence.
This apparent decoherence can be traced back to the

underlying vacuum correlations that existed between the
right and left Rindler modes. The unitary distorted this
correlation. We conjecture that the inertial observer can
observe a final pure state when this correlation is extracted.
Because of technical reasons, extracting this correlation for
a time delay is difficult. As a result, we consider another
passive unitary, where some of the correlations can be
extracted more easily.

V. MIRROR

In this section we briefly consider another passive
unitary: an accelerated mirror. This unitary has been

considered in literature in the past [13]. The Minkowski
frequency statistics of the outcome has been considered by
Su et al. [9]. In this paper we consider the statistics with
respect to Rindler frequencies. By introducing the right and
left moving modes, âω;1 and âω;2, respectively, we can
introduce the mirror operator as follows:

ÛM ≡ exp

�Z
dωθωðâ†ω;1âω;2 − â†ω;2âω;1Þ

�
: ð44Þ

The operators evolve under this unitary in the following
way:

â0ω;1 ¼ âω;1 cosðθωÞ þ âω;2 sinðθωÞ;
â0ω;2 ¼ âω;2 cosðθωÞ − âω;1 sinðθωÞ: ð45Þ

Following the same method taken before, we find that the
Unruh operators evolve in the following way:

ĉ0ω ¼ ĉω þ coshðrωÞðâω;1ðcosðθωÞ − 1Þ þ âω;2 sinðθωÞÞ;
d̂0ω ¼ d̂ω − sinhðrωÞðâ†ω;1ðcosðθωÞ − 1Þ þ â†ω;2 sinðθωÞÞ:

ð46Þ

Utilizing this result, we find the following:

hĉ0ωi ¼ 0;

hd̂0ωi ¼ 0: ð47Þ

Hence, the quadrature variance is XMðϕÞ ¼ 0. We now
proceed onto calculating the variance. To do this, we first
calculate the following correlation functions:

h0Mjĉ†ω0ĉω0 0j0Mi ¼ FM;1ðωÞδðω − ω0Þ;
h0Mjd̂†ω0d̂ω0 0j0Mi ¼ FM;1ðωÞδðω − ω0Þ;
h0Mjĉω0ĉω0 0j0Mi ¼ 0;

h0Mjd̂ω0d̂ω0 0j0Mi ¼ 0;

h0Mjĉω0d̂ω0 0j0Mi ¼ FM;2ðωÞδðω − ω0Þ;
h0Mjĉ†ω0d̂ω0 0j0Mi ¼ 0; ð48Þ

where we have defined the following:

FM;1 ≡ 2 coshðrωÞ2 sinhðrωÞ2ð1 − cosðθÞÞ;
FM;2 ≡ − coshðrωÞ sinhðrωÞð1þ 2 sinhðrωÞ2Þð1 − cosðθÞÞ:

ð49Þ

It is interesting to compare this result to the result found in
Eq. (A1). We utilize the same procedure as before to
calculate the variance. The values for gcðωÞ and gdðωÞ are
the same as the ones calculated in Eq. (34).

FIG. 5. The graph is a plot which demonstrates the statistics of
the state. We have utilized the following settings: Δ ¼ 108;
δ ¼ 0.05ω0.
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VMðϕÞ ≈ 1þ 8
R
dω ð1þ 2 sinhðrωÞ2Þ coshðrωÞ2 sinhðrωÞ2jgðωÞj2ð1 − cosðθÞÞ

ð1þ 2IsÞ
: ð50Þ

We obtain the single frequency statistic by substituting
jgðωÞj2 with a delta function,

VMðϕ;ωÞ ¼ 1þ 2cschðπω=aÞ2ð1 − cosðθÞÞ: ð51Þ

By comparing this equation to Eq. (41), we find that the
two results coincide when θ ¼ π=2. The condition in which
the result in Eq. (43) was valid is when Δ ≫ 1=δ. Both
conditions correspond to cases when ½â0ω; â†ω� ¼ 0, which is
when the overlap of the displaced mode and the original
mode is 0. This could be understood as a measure of how
much the vacuum correlation between the left Rindler and
right Rindler mode has been distorted. It is interesting to
note that the variance is highest when we set θ ¼ π. An
analogous result of this can be understood as the local
maxima that are observed in Fig. 3.

VI. PURIFICATION OF THE OUTPUT STATE

In this section, we introduce several special cases where
purification of the state can be observed. We extract the
correlation for the mirror case, as FM;2ðωÞ is a real valued
function. This makes extraction of the correlation much
simpler compared to F2ðωÞ which is a complex valued
function.
The strategy is now not only to place the displacement

for self-homodyne on the right Rindler mode but also to
displace the left Rindler mode. We displace the right and
left Rindler wedge by the following displacement oper-
ators:

D̂g;Rðα ¼ jαjeiϕÞ≡ expðαâ†g − α�âgÞ;
D̂g;Lðβ ¼ jβje−iϕÞ≡ expðβb̂†g − β�b̂gÞ; ð52Þ

where we have defined the following:

b̂g ¼
Z

dω gðωÞ�b̂ω: ð53Þ

In this case, we calculate gcðωÞ and gdðωÞ to be

gcðωÞ ¼ gðωÞeiϕðcoshðrωÞjαj − sinhðrωÞjβjÞ;
gdðωÞ ¼ gðωÞ�e−iϕðcoshðrωÞjβj − sinhðrωÞjαjÞ: ð54Þ

As a result, gcðωÞ and gdðωÞ� are proportional to eiϕ. Thus,
we can use Eqs. (28), (29), (48), and (54) to calculate the
variance of the output state. We find that V2 ¼ 0. For
simplicity, we consider the single frequency limit. When
we set either of the following:

jαj
jβj ¼

coshðrωÞ2 þ sinhðrωÞ2
2 coshðrωÞ sinhðrωÞ

;

jβj
jαj ¼

coshðrωÞ2 þ sinhðrωÞ2
2 coshðrωÞ sinhðrωÞ

; ð55Þ

we find that the single frequency variance is

Vðω;ϕÞ ¼ 1: ð56Þ

As a result, we observe vacuum. This means that the left
Rindler mode is perfectly anticorrelated with the noisy
particles we observed coming from the right Rindler
wedge. Furthermore, if we set jαj ¼ jβj, we find that the
single frequency variance is

Vðω;ϕÞ¼ 1þ2coshðrωÞsinhðrωÞðsinhð2rωÞ−coshð2rωÞÞ:
ð57Þ

The noise is less than vacuum. As a result, the output state
has a characteristic of a two-mode squeezed state. This
suggests there is entanglement between the particles that is
coupled with the right and left Rindler frequencies, as
observed by the Minkowski observer. By fully character-
izing this correlation, we would be able to purify the
output state.
This section highlighted some simple scenarios where

purification of the state could be found, implying the
presence of entanglement. Full characterization of this
entanglement is not a simple task and exceeds the scope
of this paper.

VII. CONCLUSION

In this paper we looked into the effect of accelerated
unitary time delay. Through the Schrödinger picture, we
showed that the output state is a two-mode squeezed state.
We continued onto analyzing what an inertial observer
would observe due to this unitary via self-homodyne
detection. We showed that the radiation from the accel-
erated time-delay source would be observed to be noisy
according to an inertial observer. As a result, accelerated
time delay causes an apparent decoherence. We propose
that the information is hidden in the vacuum noise that
existed in the left Rindler wedge. We conducted some
further research into the mirror case, and we showed that
indeed correlations existed in the left Rindler wedge.
We believe that, from an operational point of view, the

extraction of this information is not practical. The sta-
tionary observer wants to extract information out of the
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signal that is sent. As a result, they would not know the
source of the signal. The stationary observer only has
access to the physical signal (radiation) that is created from
the right Rindler observer. The sender is causally discon-
nected from the left Rindler wedge, and the sender cannot
tell the observer which mode the vacuum correlations
would be hidden in. As the stationary observer has no
clue where the vacuum correlation is hidden (i.e., only has
access to the decohered physical signal), according to the
stationary observer the system has apparently decohered.
The only method in which a pure state can be observed

by the stationary observer is if we considered a scenario
where two parties agreed on which signal is sent by the
right Rindler observer. They calculate where the vacuum
correlations will be hidden due to that particular signal. The
two parties then follow the left/right Rindler trajectories.
The sender in the right Rindler wedge sends a signal, and
the other party in the left Rindler tells the stationary
observer where the vacuum correlation would be hidden.
There are numerous technical difficulties with this method,
but nevertheless, it is in principle possible to conduct such
an experiment. Future research could examine if more
effective protocols exist.
Our paper looked into the statistics of the signal that is

created. Our results show that the statistics are indeed
mixed, but do not follow thermal statistics. One noteworthy
difference between the statistics of a thermal bath and the
results obtained in our paper was the low frequency
statistics. It can be shown that the 1=ω2

0 dependence for
low frequency leads to energy divergences. This is due to
ultralow frequency delays, which cannot be achieved in
practice.
The issue regarding the infinite energy was also encoun-

tered for the case of a uniformly accelerated mirror [9]. It is
noted that the energy flux and particle flux of a uniformly
accelerating mirror away from the horizon is actually zero
[15,21–23]. The particles and energy are created only when
there is a change in acceleration. For an eternally accel-
erated mirror, the radiation source can be traced back to the
horizon, where there is a divergence in energy flux [24–26].
In our case, we make a similar argument and argue that the
divergence occurs due to accelerating the time delay source
for an infinite time.
Another intriguing motivation for studying the time

delay is a possible connection to the results presented in
recent experiments by Riek et al. [27]. These authors
measured the effect of a rapidly varying time delay
produced by transmission through a crystal with a changing
refractive index. Because of the similarity between a time
varying refractive index and acceleration [28], we believe
that analyzing the effect of the accelerated time delay may
give further insight into the results obtained in this paper
and lead to new experimental proposals. In the next section,
we note some possible implications of our results on black-
hole information paradox.

A. A comment on black hole information paradox

The black hole information paradox [29–36] points out
the apparent contradiction between quantum mechanics
and Hawking radiation. To restore the purity of the final
state of an evaporated black hole, there must be hidden
correlations in the final state. Some of the previous
proposal were correlations between early and late time
thermal bath [30,31,36] and correlations between the
thermal bath and curvature of spacetime [37–39]. Our
study raises the possibility that the correlations may exist
between the distorted vacuum fluctuations. The equiva-
lence principle ties a strong connection between gravity and
acceleration [40–44]. Thus, we conjecture that the notion of
apparent decoherence in the Rindler case can also be
applied to the case of a black hole.
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APPENDIX A: CORRELATION BETWEEN
UNRUH OPERATORS DUE TO ACCELERATED

TIME DELAY/EVOLUTION

The vacuum expectation values of the product of the two
output Unruh operators are calculated by utilizing Eq. (35)
and the fact that the Unruh and Minkowski vacuum
coincides,

h0Mjĉ†ω0ĉω0 0j0Mi ¼ F1ðωÞδðω − ω0Þ;
h0Mjd̂†ω0d̂ω0 0j0Mi ¼ F1ðωÞδðω − ω0Þ;
h0Mjĉω0ĉω0 0j0Mi ¼ 0;

h0Mjd̂ω0d̂ω0 0j0Mi ¼ 0;

h0Mjĉω0d̂ω0 0j0Mi ¼ F2ðωÞδðω − ω0Þ;
h0Mjĉ†ω0d̂ω0 0j0Mi ¼ 0; ðA1Þ

where we have defined the following:

F1ðωÞ≡ coshðrωÞ2 sinhðrωÞ2ð2 − 2 cosðωΔÞÞ;
F2ðωÞ≡ coshðrωÞ sinhðrωÞð1 − eiωΔÞðcoshðrωÞ2e−iωΔ

− sinhðrωÞ2Þ: ðA2Þ

All other combinations can be found utilizing commutation
relations for the Unruh operators or applying the complex
conjugate.
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APPENDIX B: PRACTICAL AND IDEAL SELF-
HOMODYNE DETECTION

1. Practical measurements

We note that, if we explicitly calculate the quadrature
amplitude, Eq. (36), without ignoring the terms which are
in the order of 1=

ffiffiffi
α

p
, this is the expression we obtain

XðϕÞ ¼ 1

jαj

R
dωδð0ÞF1ðωÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Is
p : ðB1Þ

In this case, the approximation that the above expression is
0 is not valid. As there are infinite particles, we require jαj
to be infinite, which cannot be achieved in an experiment.

This practicality issue will be addressed in this section. The
results obtained in the paper are the idealized results which
neglected these values. This issue also appears in the
calculations for the variance as well. In practice, we cannot
measure infinitely small and large wavelength particles.
This is due to the limitations caused by our experimental
apparatus and setup. We assume that our detector can only
measure frequencies between kmin and kmax. We introduce a
new subscript Pr to denote practical measurements with
low and high frequency cutoff. This can be compared with
the subscript Id which denotes the ideal measurements that
were obtained in the paper.
The particle count measured by a practical detector is

modeled by the operator defined in Eq. (B2),

N̂Pr ≡
Z

kmax

kmin

dkê†k
00ê00k

¼
Z

dω dω0 Aωω0;1½ĉ†ω00ĉω0 00 þ d̂†ω0
00d̂ω

00� þ ½Aωω0;2ĉ
†
ω
00d̂ω0 00 þ A�

ωω0;2d̂
†
ω
00ĉω0 00�;

Aωω0;1 ≡
Z

dkA�
kωAkω0 ; Aωω0;2 ≡

Z
dkA�

kωA
�
kω0 : ðB2Þ

The corresponding expectation values are calculated as follows:

hN̂Pri ¼
Z

dωdω0Aωω0;1½hĉ†ω00ĉω0 00i þ hd̂†ω0
00d̂ω

00i� þ 2Re½Aωω0;2hĉ†ω00d̂ω0 00i�

¼ jαj2
Z

dωdω0Aωω0;1½ðcoshðrωÞ coshðrω0 Þ þ sinhðrωÞ sinhðrω0 ÞÞgðωÞgðω0Þ�Þ�

− 2Re½Aωω0;2 coshðrωÞ sinhðrωÞgðωÞgðω0Þα2� þ jαj0
Z

dωF1ðωÞAωω;1;

hN̂Pr;0i ¼ jαj2
Z

dωdω0Aωω0;1½ðcoshðrωÞ coshðrω0 Þ þ sinhðrωÞ sinhðrω0 ÞÞgðωÞgðω0Þ�Þ�

− 2Re½Aωω0;2 coshðrωÞ sinhðrω0 ÞgðωÞgðω0Þα2�: ðB3Þ

Thus, the practical quadrature amplitude is

XPrðϕÞ ¼
1
2π logðkmax

kmin
Þ R dωF1ðωÞffiffiffiffiffiffiffiffiffiffi
hN̂0i

q ≈ 0: ðB4Þ

The approximation is valid as
R
dωF1ðωÞ is finite. How large jαjmust be for the approximation to be valid will be analyzed

later in this Appendix. We are now interested in calculating the variance. To do this, we must calculate the expectation value
of N̂2

Pr. N̂
2
Pr is defined as follows:

N̂Pr
2 ¼

Z
dωdω0dω00dω000ðAωω0;1Aω00ω000;1½ĉ†ω0ĉω0 0ĉ†ω00

0ĉω000 0 þ d̂†ω0
0d̂0ωd̂

†
ω000

0d̂ω00 0� þ fd̂†ω0
0d̂0ωĉ

†
ω00

0ĉω000 0 þ ĉ†ω0ĉω0 0d̂†ω000
0d̂ω00 0g�

þ Aωω0;2A�
ω00ω000;2ĉ

†
ω
0d̂ω0 0d̂†ω00

0ĉω000 0 þ A�
ωω0;2Aω00ω000;2d̂

†
ω
0ĉω0 0ĉ†ω00

0d̂ω000 0 þ fAωω0;2Aω00ω000;2ĉ
†
ω
0d̂ω0 0ĉ†ω00

0d̂ω000 0

þ A�
ωω0;2A

�
ω00ω000;2d̂

†
ω
0ĉω0 0d̂†ω00

0ĉω000 0g þ fAωω0;1Aω00ω000;2ĉ
†
ω
0ĉω0 0ĉ†ω00

0d̂ω000 0 þ A�
ωω0;2Aω00ω000;1d̂

†
ω
0ĉω0 0ĉ†ω00

0ĉω000 0g
þ fAωω0;2Aω00ω000;1ĉ

†
ω
0d̂ω0 0ĉ†ω00

0ĉω000 0 þ Aωω0;1A�
ω00ω000;2ĉ

†
ω
0ĉω0 0d̂†ω00

0ĉω000 0g þ fAωω0;1A�
ω00ω000;2d̂

†
ω0

0d̂0ωd̂
†
ω00

0ĉω000 0

þ Aωω0;2Aω00ω000;1ĉ
†
ω
0d̂ω0 0d̂†ω000

0d̂ω00 0g þ fA�
ωω0;2Aω00ω000;1d̂

†
ω
0ĉω0 0d̂†ω000

0d̂ω00 0 þ Aωω0;1Aω00ω000;2d̂
†
ω0

0d̂0ωĉ
†
ω00

0d̂ω000 0g: ðB5Þ
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In the equation above, we have grouped the operators which are related by relabeling and a complex conjugate. The
expectation value of this operator can be calculated by first computing the following correlation functions:

hĉ†ω00ĉω0 00ĉ†ω00
00ĉω000 00i ¼ hĉ†ω00ĉω0 00ihĉ†ω00

00ĉω000 00i þ gcðω0Þgcðω00Þ�δðω − ω000ÞF1ðωÞ þ gcðωÞ�gcðω000Þδðω0 − ω00Þð1þ F1ðω0ÞÞ
þ jαj0δðω − ω000Þδðω0 − ω00ÞF1ðωÞð1þ F1ðω0ÞÞ;

hd̂†ω00d̂ω0 00d̂†ω00
00d̂ω000 00i ¼ hd̂†ω00d̂ω0 00ihd̂†ω00

00d̂ω000 00i þ gdðω0Þgdðω00Þ�δðω − ω000ÞF1ðωÞ þ gdðωÞ�gdðω000Þδðω0 − ω00Þð1þ F1ðω0ÞÞ
þ jαj0δðω − ω000Þδðω0 − ω00ÞF1ðωÞð1þ F1ðω0ÞÞ;

hĉ†ω00ĉω0 00d̂†ω00
00d̂ω000 00i ¼ hĉ†ω00ĉω0 00ihd̂†ω00

00d̂ω000 00i þ gcðωÞ�gdðω00Þ�δðω0 − ω000ÞF2ðω0Þ þ gcðω0Þgdðω000Þδðω − ω00ÞF2ðωÞ�
þ jαj0δðω − ω00Þδðω0 − ω000ÞF2ðωÞ�F2ðω0Þ; ðB6Þ

hĉ†ω00d̂ω0 00d̂†ω00
00ĉω000 00i ¼ hĉ†ω00d̂ω0 00ihd̂†ω00

00ĉω000 00i þ gcðωÞ�gcðω000Þδðω0 − ω00Þð1þ F1ðω0ÞÞ þ gdðω0Þgdðω00Þ�δðω − ω000ÞF1ðωÞ
þ gcðωÞ�gdðω00Þ�δðω0 − ω000ÞF2ðω0Þ þ gdðω0Þgcðω000Þδðω − ω00ÞF2ðωÞ�
þ jαj0δðω − ω00Þδðω0 − ω000ÞF2ðω0ÞF2ðωÞ� þ jαj0δðω − ω000Þδðω0 − ω00ÞF1ðωÞð1þ F1ðω0ÞÞ;

hd̂†ω00ĉω0 00ĉ†ω00
00d̂ω000 00i ¼ hd̂†ω00ĉω0 00ihĉ†ω00

00d̂ω000 00i þ gcðω0Þgcðω00Þ�δðω − ω000ÞF1ðωÞ þ gdðωÞ�gdðω000Þδðω0 − ω00Þð1þ F1ðω0ÞÞ
þ gdðωÞ�gcðω00Þ�δðω0 − ω000ÞF2ðω0Þ þ gcðω0Þgdðω000Þδðω − ω00ÞF2ðωÞ�
þ jαj0δðω − ω00Þδðω0 − ω000ÞF2ðω0ÞF2ðωÞ� þ jαj0δðω0 − ω00Þδðω − ω000ÞF1ðωÞð1þ F1ðω0ÞÞ;

hĉ†ω00d̂ω0 00ĉ†ω00
00d̂ω000 00i ¼ hĉ†ω00d̂ω0 00ihĉ†ω00

00d̂ω000 00i;
hĉ†ω00ĉω0 00ĉ†ω00

00d̂ω000 00i ¼ hĉ†ω00ĉω0 00ihĉ†ω00
00d̂ω000 00i þ gcðωÞ�gcðω00Þ�δðω0 − ω000ÞF2ðω0Þ þ gcðωÞ�gdðω000Þδðω0 − ω00ÞðF1ðω0Þ þ 1Þ;

hĉ†ω00d̂ω0 00ĉ†ω00
00ĉω000 00i ¼ hĉ†ω00d̂ω0 00ihĉ†ω00

00ĉω000 00i þ gcðωÞ�gcðω00Þ�δðω0 − ω00ÞF2ðω0Þ þ gdðω0Þgcðω00Þ�δðω − ω000ÞF1ðωÞ;
hd̂†ω00d̂ω0 00d̂†ω00

00ĉω000 00i ¼ hd̂†ω00d̂ω0 00ihd̂†ω00
00ĉω000 00i þ gdðωÞ�gdðω00Þ�δðω0 − ω000ÞF2ðω0Þ þ gdðωÞ�gcðω000Þδðω0 − ω00ÞðF1ðω0Þ þ 1Þ;

hd̂†ω00ĉω0 00d̂†ω00
00d̂ω000 00i ¼ hd̂†ω00ĉω0 00ihd̂†ω00

00d̂ω000 00i þ gdðωÞ�gdðω00Þ�δðω0 − ω000ÞF2ðω0Þ
þ gcðω0Þgdðω00Þ�δðω − ω000ÞF1ðωÞÞ: ðB7Þ

All other expressions can be found by applying a complex conjugate to the expressions above or by utilizing the fact that ĉω
commutes with d̂ω. We introduce the G functions to simplify further calculations,

Gαβγδðω;ω0;ω00;ω000Þ≡ hα̂†ω00β̂ω0 00γ̂†ω00
00δ̂ω000 00i − hα̂†ω00β̂ω0 00ihγ̂†ω00

00δ̂ω000 00 i; ðB8Þ

where α; β; γ; δ ∈ c; d. The explicit expressions of these terms can be found by plugging in the expression written in
Eqs. (B6) and (B7). We introduce a subscript to these G functions: Gαβγδ;n, where n ∈ 0; 2. The new subscript denotes the
zeroth order α term or the second order α term. Utilizing Eqs. (B5)–(B8), we find that the particle number fluctuation can be
written in the following way:

ðΔhN̂PriÞ2 ¼
Z

dωdω0dω00dω000Aωω0;1Aω00ω000;1Gccccðω;ω0;ω00;ω000Þ þ A�
ωω0;1A

�
ω00ω000;1Gddddðω;ω0;ω00;ω000Þ

þ 2Aω;ω0;1A�
ω00;ω000;1Gccddðω;ω0;ω00;ω000Þ þ Aωω0;2A�

ω00ω000;2Gcddcðω;ω0;ω00;ω000Þ
þ A�

ωω0;2Aω00ω000;2Gdccdðω;ω0;ω00;ω000Þ þ 2Re½A�
ωω0;1A

�
ω00ω000;2Gcccdðω;ω0;ω00;ω000Þ�

þ A�
ωω0;2A

�
ω00ω000;1Gcdccðω;ω0;ω00;ω000Þ� þ Aωω0;1A�

ω00ω000;2Gdddcðω;ω0;ω00;ω000Þ
þ A�

ωω0;2Aω00ω000;1Gdcddðω;ω0;ω00;ω000Þ�: ðB9Þ

We notice that every term in the last two lines is proportional to α2. Following similar steps to the paper, we write the
variance of the signal in a compact way,
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VPrðϕÞ ¼
ðΔh ˆNPriÞ2
hN̂Pr;0i

¼ V 0
1;2 þ V 0

2 cosðθ − 2ϕÞ þ V0
1;0 ≈ V 0

1;2 þ V 0
2 cosðθ − 2ϕÞ; ðB10Þ

where we have defined the following:

V 0
1;n ≡ 1

hN̂0i
Z

dωdω0dω00dω000Aωω0;1Aω00ω000;1Gcccc;nðω;ω0;ω00;ω000Þ þ A�
ωω0;1A

�
ω00ω000;1Gdddd;nðω;ω0;ω00;ω000Þ

þ 2Aω;ω0;1A�
ω00;ω000;1Gccdd;nðω;ω0;ω00;ω000Þ þ Aωω0;2A�

ω00ω000;2Gcddc;nðω;ω0;ω00;ω000Þ
þ A�

ωω0;2Aω00ω000;2Gdccd;nðω;ω0;ω00;ω000Þ; ðB11Þ

V 0
2;ϕ ≡ 2

hN̂0i
Z

dωdω0dω00dω000A�
ωω0;1A

�
ω00ω000;2Gcccdðω;ω0;ω00;ω000Þ� þ A�

ωω0;2A
�
ω00ω000;1Gcdccðω;ω0;ω00;ω000Þ�

þ Aωω0;1A�
ω00ω000;2Gdddcðω;ω0;ω00;ω000Þ þ A�

ωω0;2Aω00ω000;1Gdcddðω;ω0;ω00;ω000Þ; ðB12Þ

V̄2
0 ¼ jV 0

2;ϕj;

eiθ ≡ V 0
2;ϕ¼0

jV 0
2;ϕ¼0j

: ðB13Þ

V 0
1;2 can be interpreted as the average noise of the signal. V

0
2

can be interpreted as the amount of squeezing in the signal.
V 0
1;0 can be interpreted as the error that arises due to the

construction of self-homodyne detection. In the next
section we will conduct a numerical analysis of the
quadrature amplitude and variance.

2. Numerical analysis of practical measurements

a. Particle number

In this section, we look into how various parameters
affect the particle count of a coherent Rindler signal with an
amplitude of jαj ¼ 1. This section will analyze the neces-
sary conditions for hN̂Pri ≈ hN̂Idi. This is important, as if
this is not satisfied it would mean a significant amount of
the signal was traced out.
Figure 6 demonstrates how hN̂Pri converges toward

hN̂Idi as we increase kwid. We have defined the following:

kmed ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxkmin

p
;

kwid ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmax=kmin

p
: ðB14Þ

We find that the particle count converges to the particle
count hN̂0;Idi by increasing kwid. To analyze the conver-
gence rate, we now analyze how δ affects the particle count.
The Rindler coordinate v is related to the Minkowski
coordinate V in the following way:

V ¼ a−1e−av: ðB15Þ

From this equation, we conclude that a constant oscillation
in the Rindler coordinate would result in an exponentially
decaying frequency in the Minkowski coordinate. This ties
a strong relationship between the Rindler position and
Minkowski frequency. Utilizing this notion and the fact that
the field of the operator âg is

fâgðvÞ ¼
�
1

2π

�
1=4

ffiffiffiffiffiffi
δ

ω0

s
e−δ

2ðv−vcÞ2e−iω0ðv−vcÞ; ðB16Þ

we conclude that the following condition should be
satisfied to measure 2 standard deviations of the signal:

kwid > ae
ffiffi
2

p
aδ−1 : ðB17Þ

Two standard deviations of a Gaussian covers 97.7% of the
signal. As a result, we expect hN̂Pri=hN̂Idi ≈ 0.977 when

kwid ¼ ae
ffiffi
2

p
aδ−1 . We verify this conjecture through Fig. 7.

From Eq. (B17), it is found that when we have
kwid ¼ 1 × 108, then 2 standard deviations of the signal
is covered when δ ≈ 0.077. Further analysis shows that
when δ ¼ 0.077, hN̂Pri=hN̂Idi ≈ 0.977, regardless of ω0.
This validates the conjecture made in Eq. (B8). It is
concluded that the spatial width of a Rindler signal has

FIG. 6. The graph demonstrates how kwid affects the particle
count detected by the Minkowski detector. We have utilized the
following settings:ω0¼0.6,kmed¼1, δ¼0.4ω0,vc¼0.577,a¼1.
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a very strong correlation with the frequency width of the
signal in the Minkowski frame.
As we have tied a strong relation between the Rindler

position and Minkowski frequency, there must be a con-
nection between the central Rindler position vc and central
Minkowski frequency kmed. We analyze the oscillatory
behavior within the integrand of hN̂Pri, found in
Eq. (B3). By utilizing the low frequency limit for the
gamma function, Γð1þ ixÞ ≈ e−iγx, we find that we can
cancel out all of the oscillatory behavior within the
integrand by setting vc as follows:

vc ¼
1

a
ð0.577Þ þ logð½kmed�=aÞ; ðB18Þ

where γ is the Euler constant. This expression explicitly
demonstrates the connection between the Rindler position
of the wave-packet mode and the frequency in the
Minkowski frame.
How the particle count changes with ω0 is demonstrated

in Fig. 8. It is found that the ideal and practical particle

count coincides with each other for a smaller ω0 with
larger kwid.

b. Quadrature amplitude

In this section we look at hN̂Pri − hN̂Pr;0i and look at the
validity of Eq. (B4). The approximation made in this
equation is valid when hN̂Pri − hN̂Pr;0i ≪ ðIc þ IsÞjαj.
Thus, we analyze how large we must set jαj for the
approximation in Eq. (B4) to be valid. hN̂Pri − hN̂Pr;0i
can be simplified as follows:

hN̂Pri − hN̂Pr;0i ¼
1

π
logðkwidÞ

Z
dωF1ðω;ΔÞ: ðB19Þ

Looking at this equation, it is clear that the particle count is
proportional to logðkwidÞ. We analyze how Δ affects the
particle count in Fig. 9.
By analyzing this graph, we find that the sufficient

condition to assume XðϕÞ ≈ 0 is when the amplitude of the
local oscillator satisfies the following:

jαj ≫ Δ
log10ðkmedÞ

16
: ðB20Þ

c. Variance

We now look at whether there are practical settings
where the ideal and practical variances coincide with each
other. This can be done by looking into the validity of the
following equations:

VPr ≈ V 0
1;2 þ V 0

2 cosðθ − 2ϕÞ; ðB21Þ

V 0
1;2 þ V 0

2 cosðθ − 2ϕÞ ≈ VId: ðB22Þ
In this section we will explore the validity of the latter
equation. In the previous section we looked at the condition
in which most of the coherent signal is observed. In this

FIG. 7. The graph demonstrates how kwidth affects the particle
count detected by the Minkowski detector, for various ω0.
We have utilized the following settings: kmed ¼ 1, kwid ¼ 108,
vc ¼ 0.577, a ¼ 1.

FIG. 8. The graph demonstrates how ω0 affects the particle
count detected by the Minkowski detector. We have utilized the
following settings: kmed ¼ 1, δ ¼ 0.4ω0, v0c ¼ 0.577, a ¼ 1.

FIG. 9. The graph is a plot of how the particle count, hN̂0iXðϕÞ,
is affected by Δ. We have utilized the following settings:
kwid ¼ 108.
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section we explore whether there are any further constraints
for Eq. (B22) to be valid.
We first examine howΔ affects the convergence between

practical and ideal variance. From Fig. 10 it is found that
the practical variance coincides with the ideal case for
ω0 ¼ 0.6 regardless of Δ. This is because we have set
kwid ¼ 106, which is large enough for more than 2 standard
deviations of the signal to be measured. As a result, we
conclude that Δ is not responsible for the relative deviation
between the ideal and practical results. This makes sense,
as Δ does not change which part of the signal is traced out.
The effect of Δ on the variance will be discussed further in
the following chapter.
We now examine how ω0 affects the variance. From

Fig. 11, we find that the variance follows a similar trend to
what was observed for the particle count. The practical and
ideal variances deviate from each other due to a δ that is too
small compared to kwid. It is interesting to note the squeezing
effect that appears with smaller δ. The squeezing effect
appears when we introduce low and high frequency cutoff.

From this graph we can conclude that squeezing arises from
tracing off important parts of the signal. Tracing off
information not only causes mixing but also can cause
squeezing. Previously, it was shown that squeezing is
observed from an accelerated mirror when the signal was
analyzed with reference to Minkowski frequencies [9]. In
this paper we showed that the squeezing effect observed in
their paper is removed if we conduct self-homodyne
detection with respect to Rindler frequencies. The squeezing
observed in their paper was a result of tracing out correla-
tions that existed between Unruh/Rindler modes.
In this section, we looked at the convergence rate of the

variance and found that Δ does not play a huge role in the
amount of error from the ideal case. We found that the error
arises when important parts of the signal is traced out. The
error is suppressed when Eq. (B17) is satisfied. In the
following section we will look into how large jαjmust be in
order to neglect the zeroth order term.

d. Zeroth order variance term

In this section we examine the particle fluctuation,
hN̂Pr;0i × V1;0. By setting jαj2 ≫ hN̂0iV1;0, Eq. (B21) is
satisfied.
We first look into how kwid affects the particle fluctua-

tions. Figure 12 is a log-linear plot of particle fluctuation
versus kwid. This graph shows that the particle fluctuation is
approximately logarithmically proportional to kwid for kwid
larger than 10. We now look into how Δ affects the particle
fluctuation. Figure 13 is a log-log plot of the particle
fluctuation versus kwid. By a linear regression, we find that
the particle fluctuation is quadratically proportional to the
particle count. It is found that there is an increase in
proportionality constant between Δ < 10 and Δ > 100. As
we are interested in a sufficient condition to neglect the
zeroth order term, we consider the case when Δ > 100. We
find hN̂0iV1;0 ≈ Δ2. Combining this result with the result
from Fig. 12, the sufficient condition to neglect the zeroth
order term is as follows:

FIG. 10. The graph demonstrates how Δ affects the variance of
the particle count detected by the Minkowski detector, for various
ω0. We have utilized the following settings: kmed ¼ 1,
kwid ¼ 106, δ ¼ 0.4ω0, vc ¼ 0.577, a ¼ 1.

FIG. 11. The plots show how ω0 affects the variance. We have
utilized the following settings: kmed ¼ 1, kwid ¼ 106, δ ¼ 0.4ω0,
v0c ¼ 0.577, a ¼ 1, Δ ¼ 10.

FIG. 12. The graph is a plot of how the zeroth order particle
fluctuation, hN̂0iV 0

1;0, is affected by kwid. We have utilized the
following settings: Δ ¼ 10.
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jαj ≫ Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðkwidÞ=6

p
: ðB23Þ

It is found that this condition puts a larger lower bound on
jαj than Eq. (B20) for kwid < 4 × 1042. As it is impossible
to reach this bound in a practical experiment, we conclude
Eq. (B23) must be satisfied for our experiment to neglect
the zeroth order term.
We have now demonstrated that there is a regime in

which the practical measurement converges with the ideal
measurement. We showed that when Eqs. (B17) and (B23)
are satisfied, and with the correct kmid, the practical
measurement and the ideal measurements coincide with
each other. This demonstrates the validity of the results
found in Eqs. (36) and (37).
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