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Abstract 

Proteome measurements derived from tandem mass spectrometry (MS/MS) are a powerful means to 

detect and quantify known and novel proteins. This methods-based thesis has developed a novel 

peptide spectral library (PSL) that can be applied to detect multiple proteins within complex 

MS/MS datasets, including protein markers of inflammation in ovine plasma. Such biomarkers 

permit better definition of the mammalian response to disease.  

The potential use of the PSL is in targeted proteomics applications such as sequential window 

acquisition of all theoretical fragment ion mass spectra (SWATH)-MS analysis and other targeted 

proteomics techniques requiring a spectral library for quantitation of proteins found in sheep plasma 

or serum. A major advantage of SWATH-MS analysis of proteins is that the current alternative, the 

enzyme-linked immunosorbent assays (ELISA), can only measure a single protein for each kit, has 

to be validated for each species and is costly and cumbersome.  

In light of the field’s current status, this thesis sought to address four key objectives: (1) develop a 

comprehensive method to characterise the ovine circulating acellular proteome; (2) investigate 

various protein fractionation techniques to enhance protein identification yields from plasma and 

serum samples; (3) optimise a bioinformatics workflow for constructing a PSL as a tool for 

identifying proteins and for future proteogenomics uses, and; (4) apply the PSL to samples obtained 

from healthy and ill sheep to identify candidate markers of inflammation.  

To achieve the above objectives, a baseline PSL was established using serum samples from healthy 

sheep. This PSL was broadened using a range of protein fractionation techniques, including acetone 

precipitation, partial organic precipitation with acetonitrile (ACN), combinatorial peptide ligand 

library enrichment (ProteoMiner™, Bio-Rad), as well as off-gel isoelectric focussing. Sample 

fractions were processed to tryptic peptides and analysed using nano-liquid chromatography 

electrospray ionisation tandem mass spectrometry (nanoLC-ESI-MS/MS) on an Eksigent nanoLC 

coupled to a quadrupole time-of-flight (QqTOF) mass spectrometer (TripleTOF 5600+, SCIEX) 

operated in a data-dependent acquisition (DDA) mode. Data from diseased and archived endotoxin-

treated experimental sheep samples, as well as in silico predicted and synthesised peptides of five 

proinflammatory cytokines, namely Interleukin 6 (IL-6), Interleukin 3 (IL-3), Interleukin 1a (IL-

1α), Interleukin 1b (IL-1β) and tumour necrosis factor-alpha (TNF-α) were later processed and 

added to create the encyclopaedic PSL.  

For all DDA experiments, MS/MS data were searched against an Ovis aries UniProtKB (Universal 

Protein Resource Consortium Knowledgebase) database using ProteinPilot™ Software (SCIEX) 



iii 

 

 

primarily, and then secondarily using Mascot (Matrix Science) search engine to identify proteins. 

These protein identifications (IDs) were validated using PeptideShaker (CompOmics, Inc) 

proteomics informatics software.  

Following establishment of the PSL, plasma samples from sheep, before and after endotoxin-

treatment, were analysed by data independent acquisition (DIA), namely SWATH-MS. Data were 

analysed using the SWATH™ MicroApp 2.0 (SCIEX) alongside the PSL to profile proteins in 

plasma samples in the two cohorts.  

The primary ProteinPilot™ search identified 41,288 distinct peptides from 3,195,890 spectra at a 

false discovery rate (FDR) threshold of 1%. Together with secondary analysis in Mascot and 

validation in PeptideShaker, these spectra enabled the identification of 398 proteins in the nascent 

PSL. Using PeptideShaker identification results from DDA experiments, the baseline PSL and the 

acetone precipitation experiments yielded 133 and 102 protein IDs, respectively. The ACN 

precipitation workflow resulted in 198 protein IDs. The ProteoMiner™ workflow yielded 305 

protein IDs, representing 56.4% increase in protein IDs, compared to undepleted samples. The off-

gel experiment yielded 70 protein IDs, 15 (21.4%) of which were attributed to fractionation 

compared to 55 protein IDs from crude serum. The diseased and endotoxin-treated sheep 

experiments yielded 183 and 84 protein IDs, respectively, and collectively contributed 80 protein 

IDs not detected in healthy sheep samples. Validated spectrum annotation matches were obtained 

from two peptides each of IL-6, IL-3, IL-1α, IL-1β and TNF-α in the PSL from the in silico 

predicted and synthesised proinflammatory cytokines experiment. 

The use of SWATH analysis enabled the quantitation of 243 proteins in sheep plasma and also 

revealed that the samples of the sheep model were non-identical between individuals and yet they 

were expected to be alike. Forty well-recognised acute phase proteins (APP) were quantitated and 

42 other proteins were potentially endotoxin-induced candidate markers of inflammation.  

This research has developed the first PSL resource designed for measuring the proteinaceous 

portion of blood from healthy and diseased sheep. Through its application, the first use of SWATH-

MS is reported herein to identify candidate protein markers of inflammation in sheep’s plasma. 

Through this work, the feasibility of simultaneously identifying many protein alterations in a cost-

effective manner and with widely available tools has been reinforced, with potential applications in 

veterinary pathology, animal welfare and in screening laboratory animals before inclusion in 

experimental groups to minimise differences. In future, the scope of the PSL can be broadened by 

including proteomic and genomic data from cellular components of blood and other tissues to 

complement ovine genome annotation efforts. 



iv 

 

 

Declaration by author 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, and any other original research work used or reported in my thesis. The content of my thesis 

is the result of work I have carried out since the commencement of my research higher degree 

candidature and does not include a substantial part of work that has been submitted to qualify for 

the award of any other degree or diploma in any university or other tertiary institution. I have 

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, 

subject to the policy and procedures of The University of Queensland, the thesis be made available 

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has 

been approved by the Dean of the Graduate School.  

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis. 

 



v 

 

 

Publications during candidature 

Peer-reviewed papers 

Saul Chemonges. Effect of Intermittent Positive Pressure Ventilation on Depth of Anaesthesia 

during and after Isoflurane Anaesthesia in Sulphur-Crested Cockatoos (Cacatua galerita galerita). 

Veterinary Medicine International, vol. 2014, Article ID 250523, 7 pages, 2014. 

doi:10.1155/2014/250523. 

David G Platts, Andrew Hilton, Sara Diab, Charles McDonald, Matthew Tunbridge, Saul 

Chemonges, Kimble R Dunster, Kiran Shekar, Darryl J Burstow and John F Fraser. A novel 

echocardiographic imaging technique, intracatheter echocardiography, to guide veno-venous 

extracorporeal membrane oxygenation cannulae placement in a validated ovine model. Intensive 

Care Medicine Experimental 2014, 2:2  doi:10.1186/2197-425X-2-2. 

David G. Platts, Sara Diab, Kimble  R. Dunster, Kiran Shekar, Darryl J. Burstow, Beatrice Sim, 

Matthew Tunbridge, Charles McDonald, Saul Chemonges, Jonathan Chan, John F. Fraser (2014). 

Feasibility of Perflutren Microsphere Contrast Transthoracic Echocardiography in the Visualisation 

of Ventricular Endocardium during Venovenous Extracorporeal Membrane Oxygenation in a 

Validated Ovine Model. Echocardiography, 32 3: 548-556. doi:10.1111/echo.12695.  

Saul Chemonges, John-Paul Tung and John F Fraser. Proteogenomics of selective susceptibility to 

endotoxin using circulating acute phase biomarkers and bioassay development in sheep: a review. 

Proteome Science 2014, 12:12  doi:10.1186/1477-5956-12-12. 

Chemonges S, Shekar K, Tung J-P, Dunster K, Diab S, Platts DG, Watts RP, Gregory SD, Foley S, 

Simonova G, McDonald C, Hayes R, Bellpart J, Timms D, Chew MS, Fung YL, Toon M, 

Maybauer MO, Fraser JF: Optimal management of the critically ill: Anaesthesia, monitoring, data 

capture and point-of-care technological practices in ovine models of critical care. BioMed Research 

International, vol. 2014, Article ID 468309, 17 pages, 2014. doi:10.1155/2014/468309. 

Chemonges, Saul. Suspected selective susceptibility to endotoxin in an ovine model. Online 

Journal of Veterinary Research, 2014, 18 12: 941-963. 

Chemonges, Saul. The recognition of LpxC inhibitors as potential antibiotics could revolutionise 

the management of sepsis in veterinary patients if their unknown biological properties are widely 

evaluated in suitable animal models. International Journal of Veterinary Science and Medicine, 2 2: 

99-102. doi:10.1016/j.ijvsm.2014.10.003. 

Chemonges, Saul. Profiles of resistance to breathing in spontaneously ventilating anaesthetised 



vi 

 

 

dogs attached to an Ayre’s T-piece. Online Journal of Veterinary Research, 2015, 19 1: 15-25. 

Chemonges S. Learning from critical care management of sheep receiving extra-corporeal 

membrane oxygenation for smoke-induced acute lung injury as a tool for processing large clinical 

datasets. bioRxiv 2016, bioRxiv 058511; doi: https://doi.org/10.1101/058511.  

Chemonges S, Gupta R, Mills PC, Kopp SR, Sadowski P: Characterisation of the circulating 

acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. 

Proteome Science 2017, 15:11. doi:10.1186/s12953-017-0119-z. 

Books 

Chemonges Saul. Resistance to breathing in anaesthetic breathing systems: a clinical perspective of 

understanding veterinary anaesthetic breathing circuits using dogs. Saarbrücken, Germany: Lambert 

Academic Publishing, 2012. 

Full conference papers 

Saul Chemonges. Critical care management of sheep receiving extra-corporeal membrane 

oxygenation due to smoke induced acute lung injury (ECMO S-ALI) and acute sepsis. Annual 

Science Week Conference of the Australian & New Zealand College of Veterinary Scientists, 

Chapter of Anaesthesia, Emergency and Critical Care. QT Gold Coast, Surfers Paradise, 11
th

 July 

2013. espace.library.uq.edu.au/view/UQ:328112 

Saul Chemonges. Contemporary data capture, anaesthesia monitoring and point-of-care 

Technology in critical care research settings for animal models. Annual Science Week Conference 

of the Australian & New Zealand College of Veterinary Scientists, Chapter of Anaesthesia, 

Emergency and Critical Care. QT Gold Coast, Surfers Paradise, 12 July 2013. 

espace.library.uq.edu.au/view/UQ:328111 

Saul Chemonges, Rajesh Gupta, Paul Mills, Steven Kopp and Pawel Sadowski. Development of a 

novel encyclopaedic peptide spectral library using the liquid fraction of sheep blood.  Abstract and 

oral presentation, Queensland Mass Spectrometry Symposium, Brisbane, Australia, 15-16 August 

2016. espace.library.uq.edu.au/view/UQ:406777 

Conference abstracts 

Margaret Passmore, Lin Fung, Kimble Dunster, Saul Chemonges, Sara Diab, Robyn Minchinton, 

Kiran Shekar, John Fraser. ECMO contributes to lung injury in an ovine model of veno-venous 

ECMO. Poster, ANZICS/ACCCN Intensive Care Annual Scientific Meeting (ASM), Hotel Grand 

Chancellor Hobart, TAS, 17-19 October 2013. 



vii 

 

 

Kiran Shekar, Jason Roberts, Sara Diab, Kimble Dunster, Charles McDonald, Saul Chemonges, 

Gabriela Simonova, Sam Foley, Steven Wallis, David Platts, Lin Fung, Maree Smith, John Fraser. 

Extracoproreal membrane oxygenation (ECMO) has more profound influence on ciprofloxacin 

pharmacokinetics in critically ill sheep when compared with healthy sheep. Poster, 1
st
 International 

Conference of the Asia-Pacific Chapter of the Extracorporeal Life Support Organization (APELSO) 

2013, 11 - 13 Oct 2013, P4. http://f1000.com/posters/browse/summary/1094577 

Margaret Passmore, Lin Fung, Kimble Dunster, Saul Chemonges, Sara Diab, Robyn Minchinton, 

Kiran Shekar, John Fraser. ECMO contributes to lung injury in an ovine model of veno-venous 

ECMO. Poster, 1
st
 International Conference of the Asia-Pacific Chapter of the Extracorporeal Life 

Support Organization (APELSO) 2013, 11 - 13 Oct 2013. 

Chemonges S, Manning M, Mohammed A, Dunster K, DiabS, Choudhary J, Fraser JF. Blockade of 

complement mediated inflammation may improve lung transplantation outcomes. The 

ANZICS/ACCCN Intensive Care Annual Scientific Meeting (ASM), Hotel Grand Chancellor 

Hobart, TAS, 17-19 October 2013. http://f1000.com/posters/browse/summary/1094666 

Passmore M, Fung YL, Dunster K, Chemonges S, Diab S, Minchinton RM, Fraser JF. ECMO 

contributes to lung injury in an ovine model of veno venous ECMO. The ANZICS/ACCCN 

Intensive Care Annual Scientific Meeting (ASM), Hotel Grand Chancellor Hobart, TAS, 17-19 

October 2013. 

David Platts, Sara Diab, Charles McDonald, Matthew Tunbridge, Saul Chemonges, Kimble 

Dunster, Kiran Shekar, Darryl Burstow, Daniel Mullany, John Fraser. A novel echocardiographic 

imaging technique to guide VV ECMO cannulae placement in a validated ovine model. O9, P1 

Poster, EURO ELSO MEETING  8-11 May, 2013. 

David Platts, Sara Diab, Charles McDonald, Matthew Tunbridge, Saul Chemonges, Kimble 

Dunster, Kiran Shekar, Darryl Burstow, Daniel Mullany, John Fraser. Venovenous ECMO return 

cannulae continuous high flow and its impact on tricuspid valve geometry and function. O9, P1 

Poster, EURO ELSO  8-11 May, 2013. 

David Platts, Andrew Hilton, Sara Diab, Charles McDonald, Matthew Tunbridge, Saul 

Chemonges, Kimble Dunster, Kiran Shekar, Darryl Burstow, John Fraser. Feasibility of a Novel 

Echocardiographic Imaging Technique, Intracatheter Echocardiography, to Guide Venovenous 

Extracorporeal Membrane Oxygenation Cannulae Placement in a Validated Ovine Model. P2-137 

Moderated Poster. 24th Annual Scientic Meeting of the American Society of Echocardiography, 

ASE June 29- July 2, 2013, Minneapolis Convention Center, MN. 

http://f1000.com/posters/browse/summary/1094577
http://f1000.com/posters/browse/summary/1094666


viii 

 

 

David Platts, Sara Diab, Charles McDonald, Matthew Tunbridge, Saul Chemonges, Kimble 

Dunster, Kiran Shekar, Darryl Burstow, Daniel Mullany, John Fraser. The Impact of Continuous 

Flow from Venovenous Extracorporeal Membrane Oxygenation Cannulae on Tricuspid Valve 

Geometry and Function. Abstract P2-142, 24th Annual Scientic Meeting of the American Society 

of Echocardiography, ASE June 29- July 2, 2013, Minneapolis Convention Center, MN. 

Chemonges Saul. Proteogenomic characterisation of circulating acute phase markers and 

bioassay development in sheep. In: 2014 Diamantina Health Partners 2nd Annual Forum. Pre-

Forum Symposium: Research and Innovation Ideas Awards, Woolloongabba, QLD, Australia, 30 

April-2 May, 2014. espace.library.uq.edu.au/view/UQ:329488 

Chemonges Saul and Sadowski Pawel. Using Skyline to support peptide MRM workflows on 

Shimadzu LCMS-8050. In: 62
nd

 American Society for Mass Spectrometry Conference on Mass 

Spectrometry and Allied Topics, Baltimore, MD, United States, 15-19 June 2014. 

espace.library.uq.edu.au/view/UQ:347312 

Chemonges Saul, Mills Paul, Kopp Steven and Sadowski Pawel. Towards a comprehensive 

targeted proteogenomic assay repository for the liquid fraction of sheep blood. In: 25
th

 Conference 

of the ANZSMS and the 6
th

 Conference of the Asia and Oceania Society for Mass Spectrometry 

Conference (AOMSC), Brisbane, QLD, Australia, 19-22 July 2015. 

Chemonges Saul, Gupta Rajesh, Mills Paul, Kopp Steven and Sadowski Pawel. SWATH enabled 

distinction of ‘proteophenotype’ in a sheep model of intensive care. In: Queensland Mass 

Spectrometry Symposium, Brisbane, Australia, 15-16 August 2016. 

Saul Chemonges, Rajesh Gupta, Paul Mills, Pawel Sadowski and Steven Kopp. Development of a 

novel encyclopaedic peptide spectral library using the liquid fraction of sheep blood.  In: Animal 

Science Olympics at QAAFI, Queensland Bioscience Precinct, The University of Queensland, St. 

Lucia,  Brisbane, Australia, 18 November 2016. 

Publications included in this thesis 

1. Publication citation – incorporated as Chapters 3 and 4. 

Chemonges S, Gupta R, Mills PC, Kopp SR, Sadowski P: Characterisation of the circulating 

acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. 

Proteome Science 2017, 15:11. doi:10.1186/s12953-017-0119-z. 

 



ix 

 

 

Contributor Statement of contribution 

Chemonges S 

(Candidate) 

Concept and design of the project (90%) 

Analysis and interpretation of the research data (70%) 

Drafting and production of significant parts (70%) 

Gupta R Concept and design of the project (0%) 

Analysis and interpretation of the research data (5%) 

Drafting and production of significant parts (0%) 

Mills PC Concept and design of the project (0%) 

Analysis and interpretation of the research data (0%) 

Drafting and production of significant parts (20%) 

Kopp SR Concept and design of the project (0%) 

Analysis and interpretation of the research data (0%) 

Drafting and production of significant parts (10%) 

Sadowski P Concept and design of the project (10%) 

Analysis and interpretation of the research data (25%) 

Drafting and production of significant parts (0%) 

 

2. Publication citation – incorporated as APPENDIX 7.0. 

Chemonges, Saul. Suspected selective susceptibility to endotoxin in an ovine model. Online 

Journal of Veterinary Research, 2014, 18 12: 941-963. 

 

  



x 

 

 

Contributions by others to the thesis 

I was responsible for the concept, design and all experimental data collection of the project, with 

advisory support and mentorship from Dr Pawel Sadowski. Prof Paul Mills and Dr Steven Kopp 

provided assistance with the thesis structure. 

 

Non-routine technical work 

Mr Vincent Chand assisted in experimental workstation setup processes at the Molecular Genetics 

Research Facility (MGRF) at Queensland University of Technology (QUT). Mr Rajesh Gupta and 

Dr Pawel Sadowski assisted in troubleshooting the mass spectrometry instrument and data 

acquisition at the Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research 

Facility, QUT. 

 

Analysis and interpretation of research data 

I was responsible for data analysis and interpretation of the research data in this thesis. 

 

Drafting significant parts of the work or critically revising it so as to contribute to the 

interpretation 

As principal author, I was responsible for the drafting and writing of the chapters, however advisory 

input was made by Dr Pawel Sadowski, Prof Paul Mills and Dr Steven Kopp. 

 

Statement of parts of the thesis submitted to qualify for the award of another degree 

None. 

  



xi 

 

 

Acknowledgements 

Gratitude is extended to Dr Steven Kopp for kindly accepting to take a leading advisory role for my 

PhD project and also for providing guidance during my candidature at the School of Veterinary 

Science, The University of Queensland. I would like to thank Prof Paul Mills for the willingness to 

be part of my research advisory team and for being my teacher. This research project would not 

have materialised without the insurmountable contribution, supervisory support, collaboration and 

expert mentorship of Dr Pawel Sadowski of Queensland University of Technology. In their various 

capacities, truly helpful people especially the team at the Central Analytical Research Facility, 

Queensland University of Technology, including Mr Vincent Chand, Dr Kevin Dudley, Dr Rajesh 

Gupta, Ms Melanie Fitzgerald, Ms Natalie Sukic, Ms Sanjleena Singh and Prof Stephen Blanksby 

are thanked for enabling me to achieve the goals of my research. I would like to extend my 

gratitude to Dr John-Paul Tung for kindly allowing me to be part of the collaborative work in my 

background studies on endotoxin and sepsis at the School of Medicine (SOM), and for kindly 

facilitating access to archived sheep blood samples at The Australian Red Cross Blood Service. 

Special thanks are extended to Mr Kimble Dunster and Ms Sara Diab for the technical support in 

the animal laboratory early in my candidature.  I would like to thank all Research High Degree 

administrative staff at the School of Veterinary Science specifically Ms Annette Winter and Mr 

Brian Bynon, Prof Judith Greer of SOM and staff of the Graduate School, The University of 

Queensland for all the help they have accorded me during my time as a student. Special thanks are 

extended to Prof Michelle Chew and Dr James Broadbent for providing critically valuable feedback 

during the final stages of writing of the thesis, and to Dr Malini Devadas for editorial assistance.  

This research could not have proceeded without financial support from the Australian Government 

by way of a Postgraduate Award Scholarship through The University of Queensland, advisor 

research funds and Queensland University of Technology for providing around-the-clock access to 

their facilities and human resources. I would like to express my gratitude and to say thank you to 

Linda – the donor of Dr H. George Osborne Research Scholarship through UQ’s School of 

Veterinary Science for kindly awarding me this scholarship that enabled me to complete working on 

an important aspect this project on a fulltime basis.  

Finally, I would like to thank my family, my Wife Marylyn and our children who have tirelessly 

supported and continue to get productively involved in my work. 

 

  



xii 

 

 

Keywords 

peptide spectral library, ovine circulating acellular proteome, nanolc-nanoesi-ms/ms, gene ontology, 

protein pathway analysis, veterinary proteomics, proteogenomics, sequential window acquisition of 

all theoretical fragment ion spectra mass spectrometry (swath-ms), acute inflammation biomarkers, 

bioinformatics. 

 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

ANZSRC code: 060408 Genomics, 50% 

ANZSRC code: 060102, Bioinformatics, 25% 

ANZSRC code: 070703, Veterinary Diagnosis and Diagnostics, 25% 

 

Fields of Research (FoR) Classification 

FoR code: 0707, Veterinary Sciences, 45% 

FoR code: 0601, Biochemistry and Cell Biology, 45% 

FoR code: 0699, Other Biological Sciences, 10% 



xiii 

 

 

Table of Contents 

Development of a novel encyclopaedic peptide spectral library using the liquid fraction of 

sheep blood........................................................................................................................................... i 

Abstract ............................................................................................................................................... ii 

Declaration by author ....................................................................................................................... iv 

Publications during candidature ...................................................................................................... v 

Peer-reviewed papers........................................................................................................................ v 

Books ............................................................................................................................................... vi 

Full conference papers ..................................................................................................................... vi 

Conference abstracts ........................................................................................................................ vi 

Publications included in this thesis ................................................................................................ viii 

Contributions by others to the thesis................................................................................................ x 

Non-routine technical work  ............................................................................................................. x 

Analysis and interpretation of research data  ................................................................................... x 

Drafting significant parts of the work or critically revising it so as to contribute to the 

interpretation  ................................................................................................................................... x 

Statement of parts of the thesis submitted to qualify for the award of another degree .............. x 

Acknowledgements............................................................................................................................ xi 

Keywords .......................................................................................................................................... xii 

Australian and New Zealand Standard Research Classification (ANZSRC) ............................ xii 

Fields of Research (FoR) Classification ......................................................................................... xii 

Table of Contents ............................................................................................................................ xiii 

List of Figures & Tables ................................................................................................................. xxi 

List of Abbreviations used in the thesis ...................................................................................... xxvi 

 

CHAPTER 1 ....................................................................................................................................... 1 

1.0 Introduction to the thesis ......................................................................................................... 1 

 

CHAPTER 2 ....................................................................................................................................... 7 

2.0 Literature review ...................................................................................................................... 7 

2.1 Proteomic assay development for the circulating acellular proteome in veterinary species7 



xiv 

 

 

2.2 The significance of studying the circulating acellular proteome ....................................... 7 

2.3 Difficulties in analysing the circulating acellular proteome .............................................. 9 

2.4 Separation strategies for protein analysis ......................................................................... 15 

2.4.1 In-gel separation of proteins ............................................................................. 15 

2.4.2 Chromatography................................................................................................ 15 

2.5 Mass spectrometry for routine detection of proteins ....................................................... 17 

2.6 Contemporary proteomics methods for samples from veterinary species ....................... 20 

2.6.1 Discovery proteomics ....................................................................................... 21 

2.6.2 Targeted proteomics .......................................................................................... 21 

2.7 Quantitation of proteins ................................................................................................... 23 

2.8 Bioinformatics strategies and applications for identifying proteins ................................ 24 

2.8.1 Strategies and computer software applications for identifying proteins ........... 24 

2.8.2 Gene ontology (GO) enrichment and protein pathway analyses of identified 

proteins ....................................................................................................................... 26 

2.9 Validation of proteomics results ...................................................................................... 26 

2.10 Studying non-model mammalian organisms in proteomics ........................................... 27 

2.11 Potential applications of proteomics in veterinary science lies in proteogenomics ....... 27 

2.12 Conclusions .................................................................................................................... 28 

 

CHAPTER 3 ..................................................................................................................................... 29 

3.0 Materials and methods ........................................................................................................... 29 

3.1 Introduction ...................................................................................................................... 29 

3.2 Ethics statement ............................................................................................................... 29  

3.3 Reagents used for sample preparation ............................................................................. 29 

3.4 Equipment used in the experiments ................................................................................. 30 

3.5 Consumables used for the experiments ............................................................................ 30 

3.6 Sample preparation for protein analysis........................................................................... 31 

3.7 Generic universal sample delipidation by acetone precipitation of proteins ................... 31 



xv 

 

 

3.8 Generic in-gel protein fractionation and digestion workflow .......................................... 31 

3.8.1 1D SDS-PAGE .................................................................................................. 31 

3.9 Generic in-solution digestion of proteins workflow ........................................................ 33 

3.10 Generic desalting of tryptic peptide digests ................................................................... 34 

3.11 nanoLC-nanoESI-MS/MS .............................................................................................. 34 

3.11.1 Chromatography.............................................................................................. 34 

3.11.2 Data dependent acquisition (DDA) ................................................................. 35 

3.11.2.1 DDA data processing ....................................................................... 35 

3.11.2.2 Overview of DDA data processing strategy .................................... 35 

3.11.2.3 Primary protein sequence database searching .................................. 35 

3.11.2.4 Secondary protein sequence database search and protein 

identification .................................................................................................. 37 

3.11.3 Data independent acquisition (DIA) ............................................................... 37 

3.11.3.1 DIA data processing ......................................................................... 38 

3.12 Statistical analysis of the processed data ....................................................................... 38 

3.12.1 Identified protein lists ..................................................................................... 38 

3.12.2 Gene ontology (GO) – term and protein pathway analysis ............................. 38 

 

CHAPTER 4 ..................................................................................................................................... 40 

4.0 Characterisation of the circulating acellular proteome of healthy sheep using nanoLC-

nanoESI-MS/MS analysis of serum ............................................................................................ 40 

4.1 Abstract ............................................................................................................................ 40 

4.2 Introduction ...................................................................................................................... 40 

4.3 Methods ............................................................................................................................ 41 

4.3.1 Animal care, sample collection, storage and preparation ................................. 41 

4.3.2 Experimental layout and data collection ........................................................... 42 

4.3.2.1 1D SDS-PAGE of normal sheep serum workflow............................. 42 

4.3.2.2 In-solution digestion of sheep serum workflow ................................. 43 



xvi 

 

 

4.3.3 Data archiving ................................................................................................... 43 

4.4 Results .............................................................................................................................. 43 

4.4.1 1D SDS-PAGE .................................................................................................. 43 

4.4.2 In-solution digestion ......................................................................................... 46 

4.4.3 Combined protein identifications from 1D SDS-PAGE and in-solution 

digestion of serum using ProteinPilot™ and Mascot database search engines and 

PeptideShaker search ................................................................................................. 47 

4.4.4 GO-term analysis of proteins identified in serum of healthy sheep .................. 49 

4.5 Discussion and conclusion ............................................................................................... 49 

 

CHAPTER 5 ..................................................................................................................................... 57 

5.0 Strategies for enhancing peptide extraction from the liquid fraction of sheep blood for 

protein identification by nanoLC-nanoESI-MS/MS analysis .................................................. 57 

5.1 Abstract ............................................................................................................................ 57 

5.2 Introduction ...................................................................................................................... 57 

5.3 Methods ............................................................................................................................ 59 

5.3.1 A comprehensive analysis of fractions of acetone-precipitated sheep plasma 

and serum ................................................................................................................... 59 

5.3.2 A comprehensive analysis of fractions of partial organic precipitation of sheep 

plasma and serum proteins using acetonitrile ............................................................ 60 

5.3.3 Combinatorial peptide ligand library enrichment of sheep plasma and serum . 63 

5.3.4 Off-gel fractionation of serum proteins ............................................................ 63 

5.4 Results .............................................................................................................................. 65 

5.4.1 A comprehensive analysis of fractions of acetone-precipitated sheep plasma 

and serum ................................................................................................................... 65 

5.4.1.1 1D SDS-PAGE ............................................................................................... 65 

5.4.1.2 In-solution digestion ...................................................................................... 65 

5.4.1.3 Composite ox, goat and sheep NCBI protein database search results in 

ProteinPilot™ ............................................................................................................. 65 



xvii 

 

 

5.4.1.4 UniProtKB sheep protein database search results for ProteinPilot, 

PeptideShaker and Mascot ............................................................................. 67 

5.4.2 A comprehensive analysis of fractions of partial organic precipitation of sheep 

plasma and serum proteins using acetonitrile ............................................................ 70 

5.4.2.1 1D SDS-PAGE ................................................................................... 70 

5.4.2.2 In-solution digestion .......................................................................... 71 

5.4.3 Combinatorial peptide ligand library protein enrichment of sheep plasma and 

serum .......................................................................................................................... 73 

5.4.3.1 1D SDS-PAGE ................................................................................... 73 

5.4.3.2 In-solution digestion .......................................................................... 75 

5.4.4 Off-gel fractionation of serum proteins ............................................................ 75 

5.4.4.1 1D SDS-PAGE ................................................................................... 75 

5.4.4.2 In-solution digestion .......................................................................... 77 

5.5 Discussion and conclusion ............................................................................................... 77 

 

CHAPTER 6 ..................................................................................................................................... 84 

6.0 Bioinformatics strategy for assembling an encyclopaedic peptide spectral library 

derived from plasma and serum samples of sheep ................................................................... 84 

6.1 Abstract ............................................................................................................................ 84 

6.2 Introduction ...................................................................................................................... 84 

6.3 Methods ............................................................................................................................ 86 

6.3.1 Generation of a custom sheep UniProtKB protein sequence database ............. 86 

6.3.2 Data sources for the assembly of the peptide spectral library ........................... 86 

6.3.2.1 Peptide data from healthy sheep plasma and serum samples............. 86 

6.3.2.2 Peptide data from sick sheep serum ................................................... 88 

6.3.2.3 Peptide data from plasma and serum of endotoxin-treated sheep ...... 88 

6.3.2.4 Data from in silico predicted synthetic peptides of selected 

proinflammatory cytokines ............................................................................ 88 

6.3.3 Validation of protein identifications in the PSL ............................................... 88 



xviii 

 

 

6.3.3.1 ProteinPilot™ search ......................................................................... 88 

6.3.3.2 Mascot search ..................................................................................... 88 

6.3.3.3 PeptideShaker search ......................................................................... 89 

6.3.3.4 Analysis of synthetic peptides to validate protein identifications and 

search parameters ........................................................................................... 90 

6.4 Results .............................................................................................................................. 90 

6.4.1 Generation of a sheep-only custom UniProtKB protein sequence database ..... 90 

6.4.2 ProteinPilot™ search results ............................................................................. 91 

6.4.3 Mascot search results ........................................................................................ 93 

6.4.4 PeptideShaker search results ............................................................................. 94 

6.4.5 Consensus protein identifications from ProteinPilot, Mascot and PeptideShaker 

searches ...................................................................................................................... 94 

6.4.6 Data archive for the PSL ................................................................................... 94 

6.5. Discussion and conclusion .............................................................................................. 95 

 

CHAPTER 7 ................................................................................................................................... 100 

7.0 Application of the peptide spectral library for identifying plasma proteins involved in 

early-phase acute systemic inflammation ............................................................................... 100 

7.1 Abstract .......................................................................................................................... 100 

7.2 Introduction .................................................................................................................... 100 

7.3 Methods .......................................................................................................................... 101 

7.3.1 Background of the experimental sheep selection and endotoxin treatment 

procedures ................................................................................................................ 101 

7.3.2 Sample selection, preparation and nanoLC-nanoESI-MS/MS analysis .......... 101 

7.3.3 Set-up of the SWATH-MS analysis experiment and workflow ..................... 103 

7.3.4 Peptide spectral library clean-up and SWATH-MS analysis parameters ....... 104 

7.3.5 Data analysis ................................................................................................... 105 

7.4 Results ............................................................................................................................ 106 

7.4.1 Outcome of sample comparison and protein data ........................................... 106 



xix 

 

 

7.4.2 Identification of proteins and their potential alterations in plasma of 

endotoxaemic sheep ................................................................................................. 110 

7.5 Discussion and conclusion ............................................................................................. 113 

 

CHAPTER 8 ................................................................................................................................... 117 

8.0 General discussion, conclusions and future directions .................................................... 117 

8.1 General discussion ......................................................................................................... 117 

8.1.1 Lessons learnt .................................................................................................. 126 

8.2 Conclusions .................................................................................................................... 128 

8.3 Future directions ............................................................................................................ 129 

List of References ...................................................................................................................... 131 

Appendices ................................................................................................................................. 176 

APPENDIX 4.0  The UniProtKB accession numbers of 267 proteins from a ProteinPilot 

search of a composite database search of Bos taurus, Ovis aries and Capra hircus database 

of combined first, second and third in-gel digestion samples .............................................. 176 

APPENDIX 4.1 The UniProtKB accession numbers of 102 proteins from a ProteinPilot 

search of a composite database search of Bos taurus, Ovis aries and Capra hircus database 

of the first, second and third in-solution digestion samples ................................................. 177 

APPENDIX 4.2 The UniProtKB accession numbers of 67 previously known proteins 

identified from a ProteinPilot search of a composite database search of Bos taurus, Ovis 

aries and Capra hircus database of the combined first, second and third in-gel and in-

solution digestion samples. .................................................................................................. 177 

APPENDIX 4.3 The UniProtKB accession numbers of 207 novel proteins identified from a 

ProteinPilot search of a composite database search of Bos taurus, Ovis aries and Capra 

hircus database of the combined first, second and third in-gel and in-solution digestion 

samples ................................................................................................................................. 177 

APPENDIX 4.4 The UniProtKB accession numbers of 83 disease-associated proteins 

identified from a ProteinPilot search of a composite database search of Bos taurus, Ovis 

aries and Capra hircus database of the combined first, second and third in-gel and in-

solution digestion samples ................................................................................................... 178 



xx 

 

 

APPENDIX 4.5 The UniProtKB accession numbers of 77 previously known serum proteins 

identified from a Mascot search of an Ovis aries protein sequence database of the combined 

first, second and third in-gel and in-solution digestion samples .......................................... 179 

APPENDIX 4.6 The UniProtKB accession numbers of 302 novel serum proteins identified 

from a Mascot search of an Ovis aries protein sequence database of the combined first, 

second and third in-gel and in-solution digestion samples .................................................. 179 

APPENDIX 4.7 The UniProtKB accession numbers of 83 disease-associated serum proteins 

identified from a Mascot search of an Ovis aries protein sequence database of the combined 

first, second and third in-gel and in-solution digestion samples .......................................... 180 

APPENDIX 4.8 List of 349 bovine aligned gene entries derived from inputting 379 Ovis 

aries protein entries in the PANTHER classification tool ................................................... 180 

APPENDIX 6.0 Generating a UniProtKB sheep-only protein FASTA sequence database 182 

APPENDIX 6.1 Extraction of protein data from ex-diagnostic sheep serum ..................... 185 

APPENDIX 6.2 Derivation of peptide data from plasma and serum of endotoxin-treated 

sheep..................................................................................................................................... 189 

APPENDIX 6.3 Generation of in silico predicted synthetic peptides of selected 

proinflammatory cytokines .................................................................................................. 192 

APPENDIX 6.4 The UniProtKB entries of 564 proteins identified by ProteinPilot™ 

Software in the peptide spectral library ............................................................................... 194 

APPENDIX 6.5 The UniProtKB entries of 830 proteins identified by Mascot in the peptide 

spectral library...................................................................................................................... 196 

APPENDIX 6.6 The UniProtKB entries of 398 proteins identified by PeptideShaker in the 

Peptide spectral library......................................................................................................... 199 

APPENDIX 6.7 The UniProtKB entries of 1,103 proteins in the peptide spectral library 

from a combined identification by ProteinPilot, Mascot and PeptideShaker ...................... 201 

APPENDIX 7.0 Suspected selective susceptibility to endotoxin in an ovine model.......... 205 

APPENDIX 7.1 Steps for generating a retention time (RT) calibration curve ................... 230 

APPENDIX 7.2 Entering SWATH-MS processing settings............................................... 230 

APPENDIX 7.3 List of 443 proteins that were quantitated by SWATH-MS analysis in 

plasma of endotoxaemic sheep ............................................................................................ 231 



xxi 

 

 

List of Figures & Tables 

 Figures  

Figure Description Page 

Figure 1.0 The main output of this thesis is a peptide spectral library (PSL)  3 

Figure 2.0 Quantitation of proteins: capabilities of mass spectrometry technologies and 

antibody ELISA  

8 

Figure 3.0 Fragmentation pattern of the peptide S-S-E-L-V-S-A-N-R from antithrombin-

III (Serpin C1) 

20 

Figure 3.1 Schematic diagram for discovery and targeted proteomics workflows 22 

Figure 4.0 Coomassie-stained 1D SDS-PAGE gels used in first in-gel digestion  44 

Figure 4.1 Coomassie-stained 1D SDS-PAGE gels used in the second in-gel digestion 44 

Figure 4.2 Coomassie-stained 1D SDS-PAGE gels used for the third in-gel digestion 45 

Figure 4.3 Comparison of lists of protein identifications (IDs) derived from in-solution 

versus in-gel digestion using BioVenn Software 

47 

Figure 4.4 Gene Ontology (GO) and pathway analysis of Mascot protein IDs in healthy 

sheep serum 

50 

Figure 5.0 Experimental design for acetonitrile precipitation of proteins in serum and 

plasma from healthy sheep for in-depth proteome coverage for the PSL 

62 

Figure 5.1 Experimental design for combinatorial peptide ligand library protein 

enrichment sheep plasma and serum prior to in-gel and in-solution digestion of 

proteins preceding nanoLC-nanoESI-MS/MS 

64 

Figure 5.2 1D SDS-PAGE preparations of acetone precipitation and fractionation studies 

using pooled serum (A) and plasma (B) samples from 20 healthy adult sheep  

66 

Figure 5.3 Protein identifications (IDs) in ProteinPilot™ software using a composite ox, 

goat and sheep NCBI protein database following acetone precipitation and 

analysis of both the precipitate and supernatant fractions of plasma and serum 

from healthy sheep 

67 



xxii 

 

 

Figure 5.4 Comparison of protein identifications (IDs) from the acetone-precipitation 

workflow (A), and PeptideShaker IDs of the respective fractions of acetone 

precipitation (B, C, D, E, F and G) 

69 

Figure 5.5 1D SDS-PAGE images of crude and ACN-precipitated fractions of plasma 

and serum from healthy sheep under different pH conditions and protein 

concentrations 

70 

Figure 5.6 Protein identifications and comparisons of ACN precipitation workflow 72 

Figure 5.7 Evaluation of ProteoMiner™ using plasma and serum of sheep 74 

Figure 5.8 Off-gel fractionation workflow using sheep serum 76 

Figure 5.9 Comparison of protein ID yields using PeptideShaker software from different 

sample preparation techniques of sheep plasma and serum 

77 

Figure 6.0 Experimental workflow – A; Protein identifications from the individual 

experiments that contributed to the peptide spectral library – B 

87 

Figure 6.1 Mascot Daemon user interface showing submission parameters for searches in 

Mascot Server v2.5.1 using a concatenated target/decoy database that was 

configured to be compliant with PeptideShaker searches as well 

89 

Figure 6.2 Fixing native mzIdentML file to work in PeptideShaker using Notepad++  90 

Figure 6.3 Screenshot of protein identification statistics in ProteinPilot™ after searching 

501 .mgf files from eight experimental workflows using a UniProtKB 

database for the assembly of the peptide spectral library 

91 

Figure 6.4 Protein search summary report in ProteinPilot™ Software showing 

identification yields and database search properties of assembled data from 

sheep serum and plasma of eight data dependent acquisition (DDA) 

experiments using a TripleTOF 5600+ (SCIEX) instrument for the 

construction of a peptide spectral library (PSL) 

92 

Figure 6.5 Inspection of  a protein list output from ProteinPilot™ Software  for the 

peptide spectral library showing the removal of proteins (light blue rows) with 

zero (0) unused confidence and hits from the common Repository of 

Adventitious Proteins (cRAP) database (http://www.thegpm.org/crap/) 

93 

Figure 6.6 Mascot search results user interface showing the procedure (red arrows) for 

exporting protein lists in csv and .dat file formats 

94 



xxiii 

 

 

Figure 6.7 Comparison of the results of ProteinPilot™, Mascot and PeptideShaker 

searches showing protein identification yields using data from sheep serum 

and plasma of eight data dependent acquisition (DDA) experiments using a 

TripleTOF 5600+ instrument for the construction of the peptide spectral 

library (PSL) 

95 

Figure 7.0 Identification of candidate early-phase inflammation-related proteins in 

plasma samples of endotoxaemic sheep 

103 

Figure 7.1 Example of XICs of a selected identified calibration peptide 

TYDSYLGDDYVR 

104 

Figure 7.2 Tandem mass spectrum – MS/MS (pink sticks) of the doubly charged 

calibration peptide – TYDSYLGDDYVR that was used to extract 

corresponding ions from SWATH data (blue sticks) 

105 

Figure 7.3 Total ion chromatograms (TICs) of peptides representing before (upper panel) 

and after (lower panel) endotoxin treatment in sheep plasma samples 

107 

Figure 7.4 Total ion chromatograms (TICs) of peptides representing before (upper panel) 

and after (lower panel) endotoxin treatment in sheep plasma samples after 

filtering out aberrant and those with low peptide intensities 

108 

Figure 7.5 Supervised PCA of 16 SWATH-MS-analysed plasma samples and protein 

data in MarkerView® software after normalisation. The samples comprised of 

eight treatment pairs representing before and after endotoxin treatment (Rx) 

time-points 

109 

Figure 7.6 Quantitation of serotransferrin 110 

Figure 7.7 Quantitation of C-Reactive protein 111 

Figure A6.0 Steps for generating a UniProtKB sheep-only protein FASTA sequence 

database 

182 

Figure A6.1 Extraction of protein data from ex-diagnostic sheep serum 188 

Figure A6.2(a) Protein data of endotoxin-exposed sheep workflow 190 

Figure A6.2(b) Figure A6.2(b). Comparison of protein IDs from the analysis of the circulating 

acellular proteome of healthy sheep compared with IDs drawn from sick sheep 

(UQ.O) and sheep treated with endotxin from E. coli (UQ.E). 

192 



xxiv 

 

 

Figure A6.3 Representative MS/MS spectra of one unique in silico predicted and 

synthesised peptide each of five proinflammatory cytokines present in the 

peptide spectral library as displayed in PeptideShaker Software 

194 

Figure A7.1 Schematic of Escherichia coli lipopolysaccharide (LPS) endotoxin-treated 

sheep showing LPS assessment time points 

209 

Figure A7.2 The total number of Merino (105) ewes that were enrolled to study the 

priming effects of Escherichia coli lipopolysaccharide (LPS) between 

27/01/2009 and 21/05/2013 

211 

Figure A7.3 Part of a paddock of a commercial farm that sheep were agisted between 

27/01/2009 and 21/05/2013 on behalf of Queensland University of 

Technology Medical Engineering Facility (QUT-MERF) for experimental 

studies 

212 

Figure A7.4 A purpose built mustering pen at a commercial farm that was used by 

Queensland University of Technology Medical Engineering Facility (QUT-

MERF) for agistment of experimental sheep 

212 

Figure A7.5 An ewe suspended on a sling while being weighed at purpose built shed at a 

commercial farm that was used by Queensland University of Technology 

Medical Engineering Facility (QUT-MERF) for agistment of experimental 

sheep 

213 

Figure A7.6 Merino ewes from the same mob that showed selective resistance to 

Escherichia coli lipopolysaccharide (LPS) endotoxin challenge 

215 

Figure A7.7 Merino ewes from the same mob showing selective resistance to Escherichia 

coli lipopolysaccharide (LPS) endotoxin 

217 

Figure A7.8 Outcomes of Merino ewes with different selection traits challenged with 

Escherichia coli lipopolysaccharide (LPS) endotoxin  

217 

   

 Tables  

Table Description Page 

Table 2.0 Some examples of analytical strategies used to explore the circulating 

acellular proteomes of human and veterinary species 

11 

Table 2.1 Determinants of peptide identification in proteomics studies  25 



xxv 

 

 

Table 4.0 The number of proteins identified by ProteinPilot™ Software from in-gel and 

in-solution digestion of healthy sheep serum samples by searching a 

composite database 

46 

Table 4.1 Unreviewed but named proteins in UniProtKB identified in serum of healthy 

sheep   

48 

Table 5.0 Details of healthy adult sheep that provided plasma and serum samples 

obtained from Serum Australis (SA) 

60 

Table 7.0 Sheep plasma samples used in SWATH-MS analysis experiments 102 

Table A6.1 Sick sheep serum samples for the derivation of peptide data for PSL 

enrichment 

185 

Table A6.2 Plasma and serum samples pooled from 24 sheep in groups of six showing 

samples taken before and after endotoxin treatment for in-solution and in-gel 

workflows 

189 

Table A6.3 Unlabelled and K[13C6: 15N2]-labelled H- and -OH termini synthetic 

peptides of five sheep cytokines 

193 

Table A7.1 Ewes used by Queensland University of Technology for a project from 

January 2009 - May 2013 

226 

Table A7.2 Weight groups of sheep that exhibited selective susceptibility to E.coli LPS 214 

Table A7.3 Sheep that exhibited selective susceptibility to E. coli LPS 215 

Table A7.4 Merino ewes from the same mob with two production traits (endoparasite 

resistance and wool production) treated with a titrated dose of E. coli LPS 

215 

Table A7.5 The UniProtKB accession numbers, gene names, NCBI names, protein status, 

UniProtKB names and fold change values of 243 sheep plasma proteins that 

altered during E. coli lipopolysaccharide-induced endotoxaemia. Fold change 

represents how the quantity of protein changed from before and after 75 

minutes of acute endotoxaemia based on their protein peak area comparisons 

that were processed in MarkerView™ Software (SCIEX) 

231 



xxvi 

 

 

List of Abbreviations used in the thesis 

>sp –protein header in Swiss-Prot database 

>tr – header for translated  nucleotides of the 

European Molecular Biology Laboratory 

°C – Degrees Celsius 

µg – microgram 

µL – microlitre 

µm – micrometre 

1D SDS-PAGE – one-dimensional sodium 

dodecyl sulfate polyacrylamide gel 

electrophoresis  

20150624_SC_SWATH-MS_ – prefix 

identifying SWATH data files 

2D-DIGE – two-dimensional difference gel 

electrophoresis 

2DE – two-dimensional gel electrophoresis 

Å – ångström  

A-a – alveolar-arterial oxygen gradient 

Ac – acetone precipitated 

ACN – acetonitrile  

ACN_Gel_Plasma – proteins  identified from 

in-gel digested plasma following acetonitrile 

precipitation 

ACN_Gel_Serum – proteins identified from in-

gel digested serum following acetonitrile 

precipitation 

ACN_Sol_Plasma – proteins identified from 

in-solution digested plasma following 

acetonitrile precipitation 

ACN_Sol_Serum – proteins identified from in-

solution digested serum following acetonitrile 

precipitation 

AEC – anion exchange chromatography 

AFP – antibody-free depletion 

AIMS – accurate  inclusion mass screening 

ANOVA – analysis of variance 

AP – adaptor protein 

APA – Australian Postgraduate Award 

APP – acetone-precipitated plasma 

APPs – acute phase proteins 

APS – acetone precipitated serum 

AQUA – absolute quantitation using 

heavy/light isotope ratios against spiked-in 

heavy labelled peptides 

ARCBS – Australian Red Cross Blood Service 

BCA – bicinchoninic  acid 

BiNGO – Biological Networks Gene Ontology  

BLAST – Basic Local Alignment Search Tool 

BLP – plasma samples drawn before endotoxin 

treatment 

BLS – serum samples drawn before endotoxin 

treatment 

BRF – Biological Research Facility 

BSA – bovine serum albumin 

BVetMed – Bachelor of Veterinary Medicine 

C18 - octadecyl carbon chain-bonded silica 

CA – California  

CARF – Central Analytical Research Facility 

CCO – continuous cardiac output 

CD 14 - cluster of differentiation antigen 14 

CE – capillary  electrophoresis 

cGMP - cyclic guanosine monophosphate 

CI – cardiac index 

CID – collision-induced dissociation 

CLA – caseous lymphadenitis 



xxvii 

 

 

CP – crude plasma 

cRAP – common Repository of Adventitious 

Proteins 

CRAPome – Contaminant Repository for 

Affinity Purification 

CS – crude serum 

CSIRO – Commonwealth  Scientific and 

Industrial Research Organisation 

CSIROS – sheep from the Commonwealth  

Scientific and Industrial Research Organisation 

CSV – comma separated values 

C-terminus – carboxyl terminus 

Cu-Zn – copper-zinc 

dat – extension for generic data file format 

DAVID – Database for Annotation, 

Visualisation and Integrated Discovery 

DDA – data-dependent acquisition 

DIA – data independent acquisition 

DNA – deoxyribonucleic acid 

DOI – digital object identifier 

D-Score – Search engine-independent score for 

localising peptide post-translational sites 

DTT – DL-Dithiothreitol 

EDTA – ethylenediaminetetraacetate   

EJV – external jugular vein 

ELISA – enzyme-linked immunosorbent assay 

EM – electron multiplier 

EMBL-EBI – European  Molecular Biology 

Laboratory - European Bioinformatics Institute 

ESI – electro-spray ionisation 

ESI-QUAD-TOF – electrospray ionisation 

quadrupole time-of-flight  

EZ-Run™  – Protein gel staining solution 

FA – formic acid 

FASP - filter-aided sample preparation 

technology 

FASTA – text-based format for representing 

peptide, amino acid or protein sequences. 

FDR – false discovery rate 

fm, fmol – femtomole  

G24PE00 – manufacturer's 24-well protocol 

for the Agilent 3100 OFFGEL fractionator 

GBB – gel loading buffer 

GE – General Electric Company 

GeLC – sodium dodecyl sulfate 

polyacrylamide gel electrophoresis 

GeLC-MS/MS – sodium dodecyl sulfate 

polyacrylamide gel electrophoresis followed 

by tandem mass spectrometry 

GN – gene name 

GO – Gene Ontology 

H – hydrogen  

HAP – high abundance protein 

HAS – human serum albumin 

HILIC – hydrophilic  interaction liquid 

chromatography 

HPLC - high performance liquid 

chromatography 

HPPP – Human Plasma Proteome Project 

HR – heart rate 

HRM - high-resolution multiple reaction 

monitoring 

IAM – iodoacetamide  

ICP-MS – inductively-coupled plasma mass 

spectrometry 

ICU – intensive care unit 



xxviii 

 

 

ID – identification  

IDMS – isotope dilution mass spectrometry 

IEF – isoelectric focussing 

IgG – immunoglobulin G 

IHBI – Institute  of Health and Biomedical 

Innovation 

IL-1α – Interleukin 1 alpha  

IL-1β – Interleukin 1 beta 

IL-3 – Interleukin 3 

IL-6 – Interleukin 6 

In-sol – in-solution 

IPAS – intact protein analysis system 

IT – ion-trap 

iTRAQ – isobaric tags for relative and absolute 

quantitation 

IV – intravenous 

K [13C6: 15N2] – heavy-labelled lysine (K)-

containing 
13

C and 
15

N atoms 

kg – kilogram  

LAP – low abundance protein 

LC – liquid chromatography 

LC-MS/MS – liquid  chromatography tandem 

mass spectrometry 

LC-SWATH-MS – liquid chromatography 

sequential window acquisition of all theoretical 

fragment ion spectra mass spectrometry 

LPS – lipopolysaccharide 

LTQ-MS – linear  ion trap quadrupole mass 

spectrometry 

m/z – mass-to-charge ratio 

MALDI-TOF-MS – matrix  assisted laser 

desorption/ionisation time-of-flight mass 

spectrometry 

MAP – mean pulmonary artery pressure 

MCP – microchannel plate 

mg – milligram  

mgf – Mascot generic format  

MGRF – Molecular Genetics Research Facility 

MHC – major histocompatibility complex 

miRNAs – micro ribonucleic acids 

mL – millilitre  

mm – millimetre 

mM – millimolar  

MPAP – mean pulmonary artery pressure 

MRM – multiple reaction monitoring 

MS – mass spectrometry 

MS/MS – tandem mass spectrometry 

MudPIT – multi-dimensional protein 

identification technology 

MVSt – Master of Veterinary Studies 

MWt – molecular weight 

mzid – extension for mzIdentML format files   

mzIdentML – data format standard for 

protein/peptide identifications derived from 

MS-based proteomics approaches 

nanoLC-ESI-MS/MS - nano-liquid 

chromatography electrospray ionisation 

tandem mass spectrometry 

nanoLC-nanoESI-MS/MS – nano liquid 

chromatography nano electrospray ionisation 

tandem mass spectrometry 

NCBI – National  Center for Biotechnology 

Information 

NH4HCO3 – ammonium bicarbonate 

ns – not significant 

NSW – New South Wales 



xxix 

 

 

N-terminus – amino terminus 

OH – hydroxyl  

OS – organism or species name 

P qty – protein quantity 

P1P – plasma samples drawn after endotoxin 

treatment 

P1S – serum samples drawn before endotoxin 

treatment 

PANTHER – Protein ANalysis THrough 

Evolutionary Relationships 

PaO2/FiO2 – ratio of partial pressure of arterial 

oxygen and fraction of inspired oxygen 

PC – Protein cleavage 

PCA – principal component analysis 

PCA-DA – principal component analysis and 

discriminant analysis 

PE – evidence of protein existence  

PGDipVetClinSt – Postgraduate diploma in 

Veterinary Clinical Studies 

pH – acidity or alkalinity of a solution 

PhosphoRS score – probability  value for a 

phosphorylated site of a peptide based on the 

given MS/MS data 

Pi – protease inhibitor 

PL – production line 

PPIAse - peptidyl-prolyl cis-trans isomerase 

PPT – precipitate  

PPTion – precipitation  

PRIDE – proteomics identifications database 

PS – supernatant of plasma after acetone 

precipitation 

PSAQ – protein standard absolute quantitation 

PSL – peptide spectral library  

PSMs – peptide  spectrum matches 

PTM – Post-transcriptional modification 

PXD – ProteomeXchange dataset 

QCAT – concatemer of Q peptides 

QLD – Queensland  

QqQ – triple quadrupole 

QTOF, Q-TOF or QqTOF – quadrupole time-

of-flight 

Quad HD - four times the definition of 

standard high definition 

QUT – Queensland University of Technology 

QUT-MERF – Medical Engineering Research 

Facility of the Queensland University of 

Technology 

RF – radio frequency 

RL – resistant line 

ROC – receiver operating characteristic 

RP – reverse phase 

RP-HPLC – reverse phase high performance 

liquid chromatography 

RT – retention time or room temperature, 

where appropriate 

Rx – treatment  

SA – Serum Australis 

SC – Saul Chemonges investigator initials for 

protein sample identification 

SCX – strong  cation exchange 

SD – standard deviation 

SDS-PAGE – sodium dodecyl sulfate 

polyacrylamide gel electrophoresis 

SELDI-TOF-MS – surface-enhanced laser 

desorption ionisation time-of-flight mass 

spectrometry 



xxx 

 

 

SID-LC-MRM-MS – stable isotope dilution 

multiple reaction monitoring mass 

spectrometry 

SILAC – stable isotope labelling with amino 

acids in cell culture 

SISCAPA – stable isotope standards and 

capture by anti-peptide antibodies 

SOM – School of Medicine, The University of 

Queensland 

SP – serum protein 

SRM – selected reaction monitoring 

SS – supernatant of serum after acetone 

precipitation 

SUP – supernatant  

SV – protein sequence version 

SvO2 – mixed venous oxygen saturation 

SVS – School of Veterinary Science, The 

University of Queensland 

SWATH – sequential widow acquisition of all 

theoretical fragment ion mass spectra 

SYSS – saleyard or stockyard-sourced sheep 

TAILS – terminal amine isotopic labelling of 

substrates 

TEMED – Tetramethylethylenediamine  

TFA – trifluoroacetic acid 

TGX™  – Tris-Glycine eXtended precast gels 

TIC – total ion chromatogram or current 

TIVA – total intravenous anaesthesia 

TLC – thin  layer chromatography 

TMTs – tandem mass tags 

TNF-α – tumour necrosis factor-alpha 

TOF– time-of-flight 

TPP – Trans-Proteomic Pipeline 

TPR – temperature, pulse, respiratory rate 

TRALI – transfusion-related acute lung injury 

trEMBL – translated predicted nucleotides of 

the European Molecular Biology Laboratory 

TripleTOF 5600+ – SCIEX mass spectrometer 

(instrument) used for sample analysis 

Tris – Trisaminomethane  

UHPLC-UV – ultra-high performance liquid 

chromatography coupled with an ultraviolet 

detector 

UK – United Kingdom 

UniProtKB – Universal  Protein Resource 

Consortium Knowledgebase 

UQ – The University of Queensland 

UQ.O – prefix for ex-diagnostic sick sheep 

serum samples from School of Veterinary 

Science, The University of Queensland  

URL – uniform resource locator 

v:v % – volume per volume percent 

VH – immunoglobulin heavy chain variable 

VIB-UGent - life sciences research institute, 

University of Gent, Belgium 

w/f – workflow  

WDR – wide dynamic range 

wiff – raw instrument data file format of 

SCIEX instruments 

wiff.scan - raw instrument scan data file format 

of SCIEX instruments 

XIC – extracted ion chromatogram 

 



1 

 

CHAPTER 1 

1.0 Introduction to the thesis 

This thesis concerns the development of a platform capable of detecting high and medium abundant 

proteins and their alterations during illness in the liquid fraction of sheep blood using next-

generation tandem mass spectrometry (MS/MS). It describes the construction of a peptide spectral 

library (PSL) for subsequent application in the sequential window acquisition of all theoretical 

fragment mass spectra (SWATH) mass spectrometry (MS)(SWATH-MS) technique
1
 and 

proteomics pipeline development for identifying and quantitating proteins reproducibly across 

samples
1-5

. The proteomics information derived from MS/MS is a powerful tool that can be used to 

profile known and novel proteins
6-8

. This approach is an attractive alternative to antibody enzyme-

linked immunosorbent assay (ELISA) technology, which typically requires a specific kit for each 

protein of interest and can, as a result, be particularly costly, time consuming and often need to be 

validated for each different species
9
. In the case of many biological phenomena including 

inflammation, it is important to provide the investigator with a broader tool to measure the plasma 

or serum levels of a panel of different proteins. Given the limited number of straightforward 

methods to simultaneously identify many plasma, serum or even lymph proteins in large domestic 

animals, the possibility of a robust and cost-effective proteomics approach to do so would be highly 

advantageous. 

Sheep are an important model for biomedical research because their cardiovascular physiology 

closely matches that of humans
10-12

. It is therefore important to have a better understanding of the 

proteome in sheep and the proteomic response to changed physiological status to more effectively 

use this model to study human disease conditions. While there are many parallels between the 

pathophysiology of acute injuries in humans and sheep, the majority of the research is primarily 

human-focussed. Moreover, the studies that have used sheep as their models of injury have been 

sporadic, often with scanty, hastily documented or incomplete information on the detail of the 

evolution of the model with regard to the mediators of the underlying injury. For example, this 

thesis was specifically motivated by a review study that showed a lack of consensus on how 

physiological data was extracted from injured sheep used for scientific purposes in a large number 

of studies
10

, and equivocal and subjective observations emanating from a model of smoke injury in 

sheep
13

 and a model of blood transfusion in sheep with induced endotoxaemia
14

. The incremental 

aspect of the latter study was futile as subsequent observations suggested a noisy background of 

preventable varying peri-experimental practices that were previously unaccounted for in the  

prototypical stages of the original study
15

. The preceding previous studies measured a range of 

parameters, including some proteins, but this was variable and therefore difficult to compare. The 
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proteomic approach measures all the proteins and their respective changes during disease, so can 

better assess and quantify the disease process. It was therefore deemed necessary to provide a robust 

molecular-level insight into understanding and quantitating the salient markers of injury in sheep. 

To address these concerns, it was proposed that learning from blood samples derived from injured 

or sick sheep could form the basis for the development of assays for acute phase proteins (APP) or 

other disease-associated proteins in the future, on the premise that every injury is accompanied by 

proteomic alterations in specific biomarkers. As a foundation, a holistic approach was conceived to 

advance a proteomics method for exploring the liquid fraction of sheep blood, from animals in good 

health and during acute illness. 

The four key objectives of this research project were to: (1) develop a robust and comprehensive 

method to characterise the circulating acellular proteome in ovine serum using nano liquid 

chromatography nano electrospray ionisation tandem mass spectrometry (nanoLC-nanoESI-

MS/MS)
16

, (2) investigate and use various protein fractionation techniques and sample types to 

enhance protein identification yields from plasma and serum samples,  (3) optimise a bioinformatics 

workflow for constructing a PSL as tool for identifying proteins and for future proteogenomics uses 

and, (4) develop an approach that can be used to diagnose proteomic changes in plasma indicative 

of disease in sheep.  

The availability of targeted protein data extraction using SWATH-MS analysis was identified as an 

enabling platform capable of potentially characterising APP in the liquid fraction of sheep blood. 

As a capstone study, SWATH-MS analysis was used alongside a newly constructed PSL to 

interrogate archived plasma samples of sheep in which the subjects were injected with endotoxin 

from E. coli to simulate an acute infection
17

 and determine if this approach can identify proteins and 

their alterations during early-phase acute inflammation.   

The primary output of this thesis is summarised in Figure 1.0. Two data acquisition strategies were 

used throughout – data dependent acquisition (DDA) for constructing the PSL and data independent 

acquisition (DIA) for SWATH-MS
1
 biological sample comparison. The SWATH Acquisition 

MicroApp (SCIEX) was utilised to extract the acquired SWATH-MS data for APP quantitation. 

Considering that DDA is inherently analyte abundance-biased by only selecting the most intense 

ions for fragmentation
18

, it was necessary to have a set of experiments that captured peptide data 

derived from various fractionation approaches during PSL construction to ensure comprehensive 

proteome coverage. On the other hand, SWATH-MS is a ‘fragment all’ technique which quantitates 

proteins in an unbiased manner that was employed for validation of the PSL
5
. Simply put, DDA is 

the traditional shotgun discovery data acquisition, whilst SWATH-MS is a more recent strategy. 

This thesis utilised both of these strategies. 
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Figure 1.0. The main output of this thesis is a high-quality peptide spectral library (PSL). 

Thousands of peptide spectral data were acquired using shotgun proteomic analysis of plasma and 

serum protein samples obtained from several healthy and sick sheep to generate the PSL for 

archiving in the proteomics identifications (PRIDE) database
19

 at the European Molecular Biology 

Laboratory - European Bioinformatics Institute (EMBL-EBI), inclusion in the National Center for 

Biotechnology Information (NCBI), and the Universal Protein Resource Consortium (UniProt)
20

 for 

annotating the sheep genome. Key: m/z = mass to charge ratio of individual peptides. 

The thesis consists of eight chapters, including this Introduction. The literature review is presented 

in Chapter 2. Here, the science of MS-based proteomics is introduced, including developments in 

the human biomedicine field for benchmarking purposes. This is followed by a discussion of the 

status quo of MS assays for the circulating acellular proteome with respect to veterinary species. 

Based on earlier work
17

 and recent reports
16,21,22

, there is a consensus that the ability to 

simultaneously assay many disease- and homeostasis-related proteins would be a welcome advance 

in diagnosing and monitoring animal diseases in clinical settings. Knowledge gaps were identified 

in the literature pertaining to exploring the ovine circulating acellular proteome, including the 

absence of reference MS-based data for sheep
16

, proteogenomics tools such as PSL repositories for 

interrogating plasma and serum proteomes in a targeted manner, optimised bioinformatics 

workflows, and methods for identifying several candidate circulating APPs simultaneously from 

controlled experiments. The lack of optimised sample preparation methods, WDR issues and the 

high cost of running assays were recognised as major impediments in the widespread use of 

proteomics approaches in veterinary science.   
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Chapter 3 presents the generic materials and methods used in the proteomics studies applied in this 

thesis
16

. The generic protocol relies on acetone precipitation
23-26

 as the starting fractionation 

technique for separating proteins from lipids in liquid samples followed by digesting proteins with 

trypsin into peptides and desalting using C18 material to remove salts. Desalting is a small-scale 

reverse phase high performance liquid chromatography (RP-HPLC) process whereby salts are 

eluted while the peptides are concentrated. The process also gets rid of particulate matter (for 

example, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel pieces). The 

end result of desalting is enhancement of protein identifications from peptide samples. This is 

followed by the provision of the details of nanoLC-nanoESI-MS/MS method employed for data 

acquisition. The chapter forms a common basis for the methodology of Chapter 4 and the modified 

methods included in the materials and methods of Chapter 5. 

Chapter 4 presents a study prototype for characterisation of the circulating acellular proteome in 

healthy sheep, using generic methods (Chapter 3) applied to serum
16

. The serum proteome of sheep 

is relatively unknown and is often extrapolated from what is known in cattle. It is a readily available 

substrate for most experimental and clinical applications as evidenced in recent sheep studies that 

have applied mass spectrometry proteomics. For these reasons, it was considered necessary to 

characterise the serum proteome of sheep before using this tool in this species. This chapter 

therefore represents the feasibility of being able to identify a substantial number of proteins in the 

liquid fraction of sheep blood. The results of this study represent the baseline upon which 

alternative methods of sample preparation are based as described in Chapter 5.  

Chapter 5 presents strategies for enriching the baseline protein data collected in Chapter 4. This was 

achieved by using various sample fractionation techniques and sample types to enhance protein 

identification yields. Protein extraction and identification processes, and comparative studies 

between serum and plasma proteomes are described in seven experiments covering: (a) a 

comprehensive analysis of fractions of acetone-precipitated sheep serum and plasma, which 

evaluates both fractions of acetone precipitation of proteins (this is also necessary in order to 

establish if there is any benefit associated with using either serum or plasma as the analytical 

sample for subsequent targeted data extraction); (b) a comprehensive analysis of fractions of partial 

organic precipitation of sheep serum and plasma proteins using acetonitrile in order to increase the 

acellular circulating proteome coverage via an innovative pseudo-depletion strategy of the most 

abundant plasma/serum proteins because ovine antibody-based protein depletion kits are still 

scarce; (c) the combinatorial peptide ligand library protein enrichment of sheep serum and plasma 

using a ProteoMiner™ Protein Enrichment kit (Bio-Rad), which equalises the protein abundance 

and hence increases the chance of identifying more proteins with MS; (d) the off-gel protein 
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fractionation (isoelectric focussing (IEF)) of serum proteins, which deals with protein sample 

separation using an Agilent 3100 OFFGEL Fractionator from Agilent Technologies before MS 

analysis; (e) the extraction of protein data from ex-diagnostic sheep serum; f) the derivation of 

protein data from serum and plasma samples from endotoxin-treated sheep that had been archived 

from a different study; and (g) in silico prediction of synthetic peptides of five selected 

proinflammatory cytokines of sheep used to assist in identifying corresponding endogenous 

cytokines and also as internal standards for quality during protein identification. 

Chapter 6 presents an optimised bioinformatics strategy bringing together data from Chapters 4 and 

5 to form an encyclopaedic PSL. In this chapter, alternative search algorithms alongside peptide 

sequence files are used for data mining to validate protein identifications. It furnishes the details of 

the absolute numbers of peptide spectra and proteins present in the PSL, thereby constituting the 

foundation for future proteogenomics studies on sheep. 

Chapter 7 describes the application of the nascent PSL to determine if it can be used to diagnose 

proteomic changes indicative of disease in sheep. The PSL together with the SWATH Acquisition 

MicroApp (SWATH Pipeline) were applied to interrogate plasma samples from a sheep model of 

intensive care in which the experimental subjects were exposed to an endotoxin
14

. The aim of this 

clinical capstone study was to detect candidate protein inflammation biomarkers and their 

alterations in the plasma. 

The general discussion, conclusions and future directions of the thesis are presented in Chapter 8, 

followed by the references and appendices. The discussion looks back over the project to highlight 

the successes and challenges by acknowledging that the work performed on sheep blood in this 

thesis is unique. The discussion recognises that the primary output of this method development 

thesis is the novel encyclopaedic PSL, comprising of high-quality annotated spectra for 398 proteins 

derived from the circulating acellular proteome of sick and healthy sheep that subsequent 

researchers may find useful. The work was guided by the goal of identifying protein biomarkers of 

early-phase acute inflammation because doing so helps in defining the predictors of mammalian 

response to illness – which translates into understanding resilience to disease. The reason why 

sheep were used was given as being invaluable production animals that not only contribute to the 

human food chain, but are also a source of natural wool and used for diverse cultural purposes, 

including the fulfilling of sacrificial requirements. The several difficulties and costs associated with 

traditional protein assay methods such as ELISA prompted the development of MS-based proteomic 

assays as an attractive and potentially viable alternative. In the absence of abundant protein 

depletion strategies for samples from majority veterinary species, the problem of the wide dynamic 

range (WDR) between low- and high-abundant proteins can be minimised by combining different 
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proteomics strategies, such as protein fractionation and chromatography
27

. As an upside, this 

nascent PSL was applied as a proof of concept capstone study – with promising results – using 

archived plasma samples from ill sheep with induced endotoxaemia as the model disease state.  

The conclusion points out that this project has delivered the much-needed experimental methods 

benchmarked on studies in humans that can be used for detection of pathology in domestic animals. 

A vital attribute of the contribution of this work is the optimisation of serum and plasma sample 

preparation, which is now available for widespread use. This thesis is the first to have developed a 

novel encyclopaedic PSL for the ovine circulating acellular proteome with the capability of 

identifying a large number of proteins. The work pioneered the use of a SWATH pipeline on a large 

scale to interrogate plasma and serum samples of a sheep model of intensive care
14

. It made it 

possible to distinguish between samples from untreated and endotoxin treated sheep in order to 

identify hundreds of proteins, including quantitating their alterations in the circulating acellular 

proteome. This workflow could be improved by well-controlled sample collection preferably from 

identical subjects under uniform conditions to further enhance the applicability of the present 

findings for future science.   

Included in the future perspectives is the need for a high-capacity trap column and a longer heated 

analytical column to enable the loading of higher amounts of protein to enhance deeper peptide 

analysis. Since this work is looking at new methods of protein detection, it will be necessary for 

future experiments to heavily lean on reproducibility, repeatability and validation experiments. 

There is a need to have several replicates from the samples of the workflows that were used in this 

thesis in order to potentially increase the proteome coverage of the PSL. The off-gel fractionation 

workflow needs to be further optimised and applied for sheep plasma samples as well. By using the 

already acquired data, the PSL can also be built using an alternative workflow such as the Trans-

Proteomic Pipeline (TPP) that permits more control of false discovery rate (FDR) of peptides and 

proteins
5
. The main future applications of the PSL lies in proteogenomics that will require its 

broadening by adding genomic an proteomic data from other organs of sheep in order to be more 

inclusive. There is also need to investigate the effects of intravenous anaesthetic drugs on the 

extraction of proteins from plasma and serum samples as this was assumed to have been a 

contributing factor for the low protein identifications in samples obtained sheep anaesthetised by 

total intravenous anaesthesia (TIVA)
10

. 
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CHAPTER 2 

2.0 Literature review 

2.1 Proteomic assay development for the circulating acellular proteome in veterinary species  

The conventional approaches to analysing proteins in plasma or serum have largely been those that 

are non-specific and measure total protein content only, such as absorbance and Biuret Test-derived 

assays
28

, or specific antibody-depended methods that detect the amount of a single protein
29-31

. 

Mass spectrometry-based proteomic assays are emerging as a promising approach that have the 

advantage of specificity and high throughput of protein analysis
32

, but these assays, especially for 

veterinary species are still limited and need to be developed
16,33

.  

This review focusses on discovery proteomics (also known as bottom-up or shotgun proteomics), 

involving protein fractionation, protease digestion, MS/MS fragmentation of peptides and database 

search, founded on established principles, for analysing the undepleted circulating acellular 

proteome of non-model mammalian organisms
8,32,34-37

. Non-model organisms are defined  as 

“organisms that have not been selected by the research community for extensive study either for 

historic reasons, or because they lack the features that make model organisms easy to investigate 

(e.g. they cannot grow in the laboratory, have a long life cycle, low fecundity or poor genetics)
38

.” 

This definition of model/non-model organisms is disputable as indeed, every animal may make a 

good model for studies
39

. Mentioning sheep for example, besides its significance as a model for 

copper poisoning
40

, there is also rich literature for it’s use in surgery (neurology
41

, orthopaedics
42

 

and cardiology
10

). The overall goal of this review is to provide the theoretical foundation necessary 

for building a PSL using plasma and serum of sheep  to be applied in targeted proteomic data 

extraction
5
 and for future proteogenomics studies. The review begins by outlining proteomics 

laboratory practices for acquiring reliable results. A discussion on the relevance and challenges of 

plasma and serum proteomics is provided. This is followed by an account on the difficulties 

associated with exploring the circulating acellular proteome, protein separation techniques, the 

basics of MS as an aid in detecting proteins, contemporary proteomics approaches, and 

bioinformatics strategies, including the use of nominated software to help identify known and novel 

proteins. The problems associated with studying non-model species and some potential applications 

of proteomics in veterinary science are also discussed. The conclusion emphasises that there is need 

develop mass spectrometry-based discovery proteomics methods capable of identifying a wide 

range of proteins in the circulating acellular proteome in veterinary species. 

2.2 The significance of studying the circulating acellular proteome  

The circulating acellular proteome occupies an important intersection of proteomics, diagnostics 
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and medicine
43

. It is partly for this reason that plasma proteins are a major focus in biomarker 

research, to the extent that a specialised database resource has been established for the Human 

Plasma Proteome Project (HPPP)
43

. While assaying circulating acellular proteins has been 

historically crucial in veterinary clinical chemistry
21

, the widely available platforms for this 

purpose, for example handheld refractrometry and automated blood chemistry analysers, are either 

not sufficient or only provide superficial insight into the circulating acellular proteome. Ceciliani et 

al.
21

 state that “proteomics holds the key to unlocking the vision of advancing veterinary pathology 

and diagnostics”, highlighting the need to better characterise the circulating acellular proteome of 

veterinary species.  

Immunoassay-based technologies such as ELISAs are the universal benchmark for validating other 

protein assay methods
29

, because of their high degree of specificity
31

. Protein antibody ELISAs, 

however, are limited by their inability to scale up
31

, the comparatively prohibitive cost of assay 

development
44

, cumbersome multiplexing, long turnaround times, high failure rates
45

 and their 

minimal ability to identify a wide range of proteins
46

. Furthermore, ELISA antibodies can vary in 

availability and quality
31

. In fact, some MS methods could even be better than ELISAs as a 

detection method when determining analyte reference ranges
47

. ELISAs face further competition 

due to the diminished need for high-quality antibodies when using MS proteomic approaches
48

. An 

attractive alternative to ELISAs is the development of targeted MS/MS-based proteomics 

approaches that are capable of profiling a wide range of proteins for a fraction of the cost
49

, 

considerable amenability to multiplexing and shorter turnaround times for assays
9
 as illustrated in 

Figure 2.0. 

 

Figure 2.0. Quantitation of proteins: capabilities of mass spectrometry technologies and antibody 

ELISA. KEY: ELISA – enzyme linked immuno-sorbent assay; MRM –multiple reaction 

monitoring; HRM – high-resolution multiple reaction monitoring; MS – mass spectrometry; 

SWATH – sequential window acquisition of all theoretical fragment-ion spectra. Adapted (with 
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written permission of BIOGNOSYS) from Rinner, O. in 5
th

 Berliner LC/MS/MS Symposium, 

BIOGNOSYS Proteomics - Next Generation, Berlin, Germany, 2013. 

2.3 Difficulties in analysing the circulating acellular proteome  

Despite numerous efforts aimed at the characterisation of the circulating acellular proteome
27,43

, 

challenges still persist for its analysis
44

. As Pernemalm and Lehtio
49

 inferred, “plasma has proven to 

be the most difficult material to work with using current MS-based proteomics techniques”. In 

studies on humans, for example, the circulating acellular proteome comprises just over 20 highly 

abundant proteins that constitute 99% of the total proteins
27,43,49

. These proteins include albumin, 

factor H, apolipoprotein A1, immunoglobulin G, apolipoprotein A2, transferrin, apolipoprotein B, 

fibrinogen, acid-1-glycoprotein, immunoglobulin A, ceruloplasmin, alpha-2-macroglobulin, 

complement C4, immunoglobulin M, complement C1q, alpha-1-antitrypsin, immunoglobulin D, 

complement C3, prealbumin, haptoglobin, plasminogen and thyroxine binding hormone
27

. The 

remaining 1% lower-abundance proteins, which are biologically important  and most sought after, 

create a WDR; the ratio of lowest to highest abundance protein detectable is up to 10 orders of 

magnitude
31,49,50

.  

Sample prefractionation remains crucial to deplete proteins of high abundance in the circulating 

acellular proteome of humans
51

, and there is no evidence to suggest otherwise in veterinary species. 

It is reasonable to assume that the WDR problem also applies to samples from mammalian 

veterinary species. Scientific progress in sample preparation and prefractionation continues to yield 

promising results when coupled with more sensitive instruments for the detection of proteins that 

may have been nearly impossible to discern previously, while simultaneously addressing WDR
31

. A 

number of evolving contemporary proteomic approaches, together with some commonly used 

protein separation and fractionation strategies to address the problem of the WDR, are discussed in 

subsequent sections of this chapter.  

The methods that have been developed for depleting high abundance proteins include protein-based 

approaches such as immunoaffinity depletion with antibodies
52-54

, combinatorial hexa-peptide 

ligand libraries coupled to beads
55,56

 and enrichment of carbonylated proteins by biotinylation of 

oxidised proteins with biotin hydrazide
57

. A second approach is a peptide-based prefractionation 

technique that is used to reduce the complexity introduced by digestion of the plasma proteins
54

, for 

example by enrichment of cystein containing peptides using thiol-affinity resin (cysteinyl-peptide 

enrichment technology)
58

. A third approach is by a combined protein/peptide prefractionation such 

as glyco-affinity enrichment such as lectin affinity
59,60

, hydrazide chemistry
61

 and other 

carbohydrate enrichment for sialylated peptides
62

. A fourth approach to depleting proteins of high 
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abundance is metal affinity-based fractionation that applies immobilised metal affinity 

chromatography technology
63,64

.  Of special mention is the use of stable isotope standards and 

capture by anti-peptide antibodies (SISCAPA)
65

 – this method has been developed to detect and 

quantify low-abundance proteins, with promising outcomes. The advantages of applying any of 

these methods to deplete proteins of high abundance is that that they reduce the complexity of 

samples by minimising the problem of the signal-to-biological-noise ratio
65

, whilst enriching for 

proteins of low abundance. The downside of applying these systems is the additional costs incurred 

for antibodies or kits, more time invested for sample analysis and the loss of analytes due to 

unspecific binding of non-target proteins or peptides
49

. In this project, the combinatorial hexa-

peptide ligand libraries coupled to beads (ProteoMiner™) was applied to some samples (Chapter 5). 

For a detailed insight on this subject, there is an excellent comprehensive review on sample 

fractionation efforts to deplete highly abundant proteins as a way of dealing with challenges during 

global analysis of human plasma proteome elsewhere
49

.  

Due to the considerable complexity of the circulating acellular proteome samples
66

, MS instruments 

that can provide comprehensive analysis of the sample in a single analysis are yet to be developed. 

It is for this reason that protein fractionation is commonly recommended, by splitting of a proteomic 

sample into multiple different fractions or pools so that each one can be individually analysed by a 

separate injection on an LC/MS/MS
67

.  

Some studies have aimed to deplete high-abundance proteins with concomitant enrichment of low-

abundance proteins in horse
68

, cattle
69,70

 and pig
70

 plasma or serum. However, as mentioned earlier 

in the various methods used, some important associated non-targeted proteins could be lost during 

the depletion process
71

. Reports by Di Girolamo et al.
22,72

 and Ceciliani et al.
21

, provide 

comprehensive insights into developments in the field of veterinary proteomics. It appears that two 

dimensional gel electrophoresis (2DE) followed by MALDI-TOF MS is the most-used approach in 

cattle, sheep, pigs, chicken, horses and even fish
22

 for protein characterisation. In recent times 

however, this method has now been surpassed by newer more capable techniques and taken the 

opportunity to apply modern methods developed for human proteomic workflows. The modern 

methods for in-depth proteomic analysis incorporate protein depletion followed by multiple 

fractionation (10 or more fractions) and then analysis by high-resolution LC/MS/MS. In the current 

literature review, a few human and animal studies illustrate the developments and strategies used to 

analyse the circulating acellular proteome – the detected proteins or protein groups are provided in 

Table 2.0.  

An important consideration that should be factored into the analysis of the circulating acellular 

proteome is biological variation or the differences that occur between individuals that samples are 
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derived from due to genetic or environmental differences. It is necessary to design experiments to 

take this variation into account and identify the experimental response of interest for example 

exploring proteomic changes in plasma after the administration of an endotoxin to sheep.  In order 

to minimise these differences, it would ideally be necessary to have genetically identical individuals 

with the same physiological status that are raised under uniform environmental conditions. Unlike 

model animals such as mice, and without cloning, it is relatively difficult to have several genetically 

identical large animals for inclusion in experiments. In practice having animals of the same age, 

breed, sex, age and physiological status are commonly used in experiments.  

Table 2.0. Some examples of analytical strategies used to explore the circulating acellular 

proteomes of human and veterinary species.  

Strategy for proteome analysis 
Number of proteins 

identified or monitored 
Reference 

Various technology platform comparisons for The 

Human Plasma Proteome Project.  
3020, revised to 889 

 

73,74
 

2D-DIGE + LC-MS/MS (Canine 

haemangiosarcoma). 

1 monitored protein 

biomarker 

75
 

Albumin and IgG depletion, 2D-DIGE, MALDI-

TOF-MS or LTQ-MS (Swine fever). 

10 differentially expressed 

proteins  

76
 

MALDI-TOF, iTRAQ, LC-MS/MS (Bovine 

mycobacterial infection). 
110 proteins 

77
 

Depletion + SCX + LC-MS/MS + AIMS. 
1105 protein groups; 1.5%, 

≥2 peptides 

78
 

Peptide N-terminal enrichment using TAILS. 
113 proteins; p-value <0.05, 

≥1 peptides. 

79
 

Combinatorial peptide binding enrichment, 2D- 

DIGE, MALDI-MS or LC-MS/MS. 
15 proteins 

80
 

Combinatorial hexapeptide ligand library 

immobilised on a solid-phase matrix + 2D-DIGE. 
29 proteins 

56
 

SCX + IPAS + LC-MS/MS. 
1709 protein groups; 5 % 

protein and peptide FDR. 

81
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Strategy for proteome analysis 
Number of proteins 

identified or monitored 
Reference 

AEC + 1D SDS-PAGE, SELDI-TOF-MS (Canine 

lymphoma). 

19 biomarker candidate 

proteins. 

82
 

Various MS/MS data submitted to the proteomics 

identification database (PRIDE) and human Peptide 

Atlas using Trans-Proteomic Pipeline
43

. 

1929 protein groups. 
19,83,84

 

Protein size fractionation, HILIC LC-MS/MS, SCX 

MudPIT + size exclusion. 

1955 proteins; 5% peptide 

FDR, ≥1 peptides. 

85
 

Protein size fractionation by IEF and GeLC-MS/MS. 
1957 protein groups; 0.5% 

peptide FDR, ≥2 peptides. 

86
 

SCX + intact-protein analysis system (IPAS) + LC-

MS/MS. 

1961 protein groups; 5% 

protein and peptide FDR. 

87
 

2D-DIGE + MALDI-TOF-MS, LC-MS/MS (Bovine 

respiratory disease). 
2 protein group changes. 

88
 

Albumin and IgG depletion, 2D-DIGE, LC-MS/MS. 
21 differentially expressed 

proteins 

89
 

Glycoenrichment using hydrazide chemistry
61

. 

212 protein groups; 

1%protein FDR; ≥1 

peptides. 

90
 

Peptide N-terminal enrichment. 

222 protein groups; 

1%peptide FDR, ≥1 

peptides. 

91
 

Depletion by affinity chromatography + SCX + 

RPLC + ESI-MS/MS.  

2392 proteins (>94% 

confidence). 

92
 

Dual-stage column, iTRAQ tagging, offline SCX 

chromatography, and LC-MS/MS. 
689 proteins 

93
 

AEC + SELDI-TOF-MS, LC-MS/MS (Sheep liver 

fluke infestation). 

26 candidate protein 

biomarkers. 

94
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Strategy for proteome analysis 
Number of proteins 

identified or monitored 
Reference 

AFP, LAP enrichment, HAP depletion, HSA and 

IgG multi-depletion. 

279 protein groups; > 2 

peptides, 95% confidence. 

95
 

Immunoassay & 2D gel electrophoresis. 289 proteins. 
27

 

Immunodepletion, 2-DE-DIGE, LC-MS/MS. 301 proteins. 
51

 

2D-DIGE + MALDI-TOF-MS, nLC-MS/MS 

(Bovine mastitis). 
34 proteins. 

96
 

Protein size fractionation by depletion + GeLC, 

depletion + SCX, and depletion only. 

342, 251 and 194, 

respectively; 1% peptide 

FDR, ≥2 peptides. 

97
 

Glycoenrichment using non-lectin-based. 
406 protein groups; 1% 

peptide FDR, ≥2 peptides. 

98
 

Glycoenrichment using TiO2 + 2D-chromatography. 
413 protein groups; 1% 

peptide FDR, ≥1 peptides. 

99
 

AEC + SELDI-TOF-MS (Pig reproductive and 

respiratory syndrome). 
47 protein peaks. 

100
 

2 different separations techniques + MS. 490 proteins. 
101

 

2D-DIGE + MALDI-TOF-MS (Bovine serum & 

whey). 
62 protein groups. 

102
 

2D-DIGE + MALDI-TOF/TOF. 
15 to 16 mainly APR 

proteins. 

103
 

Serial/tandem depletion. 
695 protein groups; 5% 

peptide FDR, ≥2 peptides. 

104
 

SCX + 2D LC-MS/MS, MRM (Equine doping). 
70 proteins detected, 49 

proteins monitored. 

105
 

Glycoenrichment using lectin-based N-glyco FASP 

technology
106

.  

800 protein groups; 1% 

protein and peptide FDR, ≥1 

peptides. 

107
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Strategy for proteome analysis 
Number of proteins 

identified or monitored 
Reference 

Albumin and IgG depletion, LC-MS/MS (Pig foot & 

mouth disease). 
8-9 proteins. 

108
 

Two different fractionation methods + MS. 9087 proteins. 
109

 

1D-SDS-PAGE, MALDI-TOF-TOF (Sheep scab 

infestation). 

2 major acute phase 

proteins. 

110
 

2-D MALDI-TOF-MS; CE-IT-MS (Validated on 

sheep lung disease and peri-partum period). 

42 medium-high-abundance 

proteins identified. 

111
 

Combinatorial peptide binding enrichment, 2D-

DIGE, MALDI-MS/MS (Lambs). 

4 differentially expressed 

proteins.  

112
 

Albumin depletion, iTRAQ, SCX LC-MS/MS 

(Bovine plasma & uterine fluid). 
53 proteins FDR <0.10. 

113
 

Undepleted, LC-MS/MS; nLC-PC-IDMS-SRM 

(Chicken ovarian cancer). 

3 proteins identified and 

quantitated. 

114
 

Key: 1D SDS-PAGE: one-dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis; 2D-DIGE:two-dimensional difference gel electrophoresis; AEC: anion-exchange 

chromatography; AIMS: accurate inclusion mass screening; antibody free depletion: LAP: low 

abundance protein, HAP: high abundance protein; HSA; human serum albumin and IgG multi-

depletion; ESI: electro-spray induction; GeLC: in-gel digestion followed by liquid 

chromatography; HILIC: hydrophilic interaction liquid chromatography; IEF: iso-electric 

focussing; IPAS: intact protein analysis system; iTRAQ: isobaric tags for relative and absolute 

quantitation; LC: liquid chromatography; LTQ: linear ion trap quadrupole; MALDI: matrix 

assisted laser desorption ionisation; MRM: multiple reaction monitoring; MS/MS: tandem mass 

spectrometry; MS: mass spectrometry; MudPIT: multi-dimensional protein identification 

technology; nLC: nano-liquid chromatography; RP: reverse phase; SCX: strong cation exchange; 

SELDI: surface-enhanced laser desorption ionisation; TAILS: terminal amine isotopic labelling 

of substrates; TOF: time-of-flight; FASP: filter-aided sample preparation technology; CE: 

capillary electrophoresis; IT: ion-trap; PC: Protein cleavage; IDMS: isotope dilution mass 

spectrometry; SRM: selected reaction monitoring. 
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2.4 Separation strategies for protein analysis  

Numerous studies describe universal sample preparation strategies for proteomic studies of non-

model organisms
7
, such as a recent review by Ceciliani and colleagues

21
. Generally, in discovery 

proteomics, protein samples are first separated by gel electrophoresis and then digested by an 

enzyme (usually trypsin) and the peptides are separated by chromatography before MS 

analysis
21,115

, in order to achieve deeper proteome sequence coverage
8
, as outlined below.  

2.4.1 In-gel separation of proteins 

Sample pre-fractionation using methods such as in-gel separation improves sensitivity to peptide 

detection after digestion during MS analysis
116

. One-dimensional sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (1D SDS-PAGE), since early improvements
117

 based on a 

glycine-Tris buffer system, is an effective electrophoretic technique for separating proteins
116,118

. 

This is based on the principle that protein fractionation in gels occurs due to a protein’s molecular 

weight and/or isoelectric point
116

. This technique is a commonly adapted method for making self-

casting gels, such as that described by Schägger
118,119

 and others
116,120

.  

In-gel digestion of proteins involves the sample initially being fractionated using 1D SDS-PAGE. 

The gel is then sliced into bands that are subsequently subjected to in-gel protease enzymatic 

digestion and the products then analysed by LC-MS/MS
50,116,121-123

, preferably after desalting. 

Despite being widely used, in-gel fractionation is dogged by poor recovery of proteins, poor gel-gel 

reproducibility and difficulties in being automated
116

. For global proteomic approaches in non-

model organisms
36

, as is the over-arching subject of this thesis, 1D SDS-PAGE is the experimental 

fractionation method of choice for discovery proteomics workflows, because it has previously been 

associated with a high number of protein identifications during LC-MS/MS
116

. 

2.4.2 Chromatography  

Chromatography is used to separate peptides from a protein digest to reduce the complexity of the 

sample
32,48,124

. The different forms of chromatography are drawn from the same principle, as they 

all have a stationary phase (solid or liquid supported on a solid) and a mobile phase (a liquid or a 

gas) 
125,126

. The most common column packing material for reversed phase chromatography is C18. 

Reversed phase chromatography relies on hydrophobic interactions and analytes partitioning 

between the stationary organic phase such as C18, C8 or biphenyl and the aqueous mobile phase 

which includes organic modifiers (commonly acetonitrile or methanol).The adsorption of peptides 

on the surface of the octadecyl carbon chain (C18)-bonded silica as they traverse the column, for 

instance, depends on hydrogen bonds, van der Waals forces and solubility
125,127,128

. Peptide 

adsorption can also be varied by changing the solvent, or the temperature or pH of the solvent
126

. 
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There are elegant in-depth reviews focusing on protein and peptide separation chromatographic 

techniques for further reading in Tang et al.
124

, Xie et al.
129

, and Ly and Wasinger
125

, for example. 

High performance liquid chromatography (HPLC) is based on the observation that the 

chromatographic resolution increases as the particle size of the packing material decreases. It 

involves elution of smaller particle-size compounds (for example, peptides) through a pressurised 

capillary column with increased contact surface area
129-133

.Unfortunately, the decrease in packing 

material particle size also leads to large increases in column backpressure. HPLC columns are 

routinely packed with 3 μ particles but the use of even smaller particles has led to the development 

of ultra-high performance liquid chromatography (UHPLC) methods. HPLC is not restricted to 

capillaries and is most commonly performed using metal columns with 2 mm internal diameter or 

larger. The work in this thesis was performed with 75 μ internal diameter capillaries using a nano 

LC. HPLC is faster and allows better separation of peptides in a mixture than unpressurised 

columns
48

 and is amenable to detection methods that are highly automated and extremely 

sensitive
130

. Currently, two types of HPLC are recognised: normal and the reversed phase 

variants
130,134

. Normal HPLC uses a non-polar organic solvent and relies on van der Waals forces 

for adsorption and separation
131

. Reverse phase HPLC (RPLC), on the other hand, uses silica that 

has been made non-polar and a polar solvent such as methanol
126,134,135

 and is renowned for its 

peptide desalting applications prior to MS analysis
125,136

. In another form of chromatography that 

uses ion-exchange, peptides are separated, based on the salt content or pH of the mobile phase by 

way of anion or cation exchange and is often used in combination with other fractionation 

strategies
125

. Multidimensional LC, for example, uses strong cation exchange (SCX) in combination 

with RPLC in packed columns, making it very efficient and currently the most commonly used 

method for peptide separation in bottom-up proteomics approaches
124,129

. 

The time taken for a particular peptide to travel through an HPLC column to the detector is known 

as retention time (RT)
126

. This is unique for each peptide and is measured from when a sample is 

injected into the column to the point at which the display shows a maximum peak detection height 

in the mass spectrometer
137

. The RT is determined by the material of the stationary phase in the 

column, composition of the solvent and column temperature
130,131

. Recently, there has been the 

development of an experimentally derived dimensionless peptide-specific value called indexed 

retention time (iRT) that allows very accurate RT prediction across many platforms; this has many 

applications in targeted proteomics
137

. It is preferable to have a high capacity trap column and a 

long heated analytical column, to enable higher loading of peptides for increased chromatographic 

resolution and increased limits of detection
138

. While a longer column would improve analytical 

performance, a typical mass spectrometer detector will only have an effective 3-4 orders of 
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magnitude of operation and increased loading will have a minimal effect on detecting low 

abundance proteins. The longer column would allow improved resolution and sampling of 

individual peptides, helping solve the problem of sample complexity, but this could also be 

achieved by increased sample fractionation. The peak width of a chromatographic peak is defined 

as the peak's full width at half maximum
139

. The narrower the peaks means that there's better 

chromatographic resolution. In practice, this refers to the median of the peak widths for all the 

identified peptides. Optimum and reproducible LC-MS performance outcomes is when peak widths 

remain in a narrow range over a multitude of runs
139

.  

A common method for detecting eluted peptides from an HPLC process is when it is coupled with a 

mass spectrometer. The output is recorded as peaks, each representing a compound passing through 

the detector
126,140

. Retention times can be used to identify the peptides present in the solution, 

provided that pure internal standards are known under identical conditions as in targeted analyses of 

peptides
140

. The peaks can be used as a way of determining quantities of peptides present in the 

mixture, with the area under the peak being proportional to the quantity of the protein present.
141

 

Based on this property, the RT will be the same, irrespective of the concentration of the compound 

in the mixture. It is therefore possible to calibrate a mass spectrometer so that it can be used to find 

even minute quantities of a peptide
126,140

. The experiments for this thesis used a Nano-HPLC 

(Eksigent Ultra 2D, Eksigent) with a Nanospray III ion source (SCIEX) for nano liquid 

chromatography and nano electrospray ionisation (nanoLC-nanoESI).  

2.5 Mass spectrometry for routine detection of proteins 

A mass spectrometer is an instrument that separates ionised molecules with different mass-to-

charge ratios and determines the amounts of each particle in a mixture
142

. The basic principle of MS 

involves the vaporisation of a sample, causation of ionisation, acceleration, deflection and detection 

of ions
143

. The most common types of ion generation for protein anlaysis are matrix-assisted laser 

desorption/ionisation (MALDI)
144

 and electrospray ionisation (ESI)
145

. MALDI and ESI are two 

forms of soft ionisation that are capable of ionising proteins and peptides while preserving their 

chemical structure intact. The other ionisation methods are plasma desorption (PD)
146

 atmospheric 

pressure chemical ionisation (APCI), atmospheric pressure photoionisation (APPI)
147

, fast atom 

bombardment (FAB) and electron impact (EI) commonly used for environmental work using GC-

MS
148,149

. 

Mass spectrometry is an important method in analytical proteomics and can be used to identify 

molecular peptide ions by their characteristic fragmentation patterns in the mass spectrum
32,141,150

. 

In proteomics, proteins are digested into peptides, dissolved in a polar solvent, ionised and then 

separated according to mass and charge before being conveyed through a detector that quantifies the 
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ions by displaying peptide spectra
31

. Most mass spectrometers used for proteomics nowadays are 

triple quadrupoles, quadrupole time-of-flight (Q-TOF) and Orbitrap instruments
48

, but more 

inventions are likely to surface.  

A quadrupole mass analyser comprises of a set of four conducting rods arranged in parallel 

separated by a middle space, with the opposing pairs of rods electrically connected to each other
151

. 

Ions are separated based on the stability of their flight paths through an oscillating electric field in 

the quadrupole
151

. The electric field is created when a radio frequency (RF) voltage is applied 

between one pair of opposing rods within the quadrupole
151

. A direct current offset voltage is then 

applied to the other pair of opposing rods
151

. Only ions of a certain mass to charge  (m/z) value will 

have a stable flight path through the quadrupole in the resulting electric field, whilst all other ions 

with unsteady paths will not reach the detector
151

. The RF and direct current voltages can be tuned 

in a way that allows the quadrupole to act as a mass filter or analyte-specific detector for ions of a 

particular m/z
151

. The analyser can also be operated to scan for a range of m/z values by 

continuously varying the applied voltages
151

. In summary, by applying voltage ramps and RFs, 

complex magnetic fields are created in quadrupoles that allow ions to be focused and filtered, by 

magnetic fields. 

A triple quadrupole mass spectrometer consists of two quadrupole mass analysers with a collision 

cell sandwiched between
151

. The first quadrupole mass analyser selects the precursor ions
151

. The 

selected precursor ions are then fragmented in the collision cell by a process known as collision-

induced dissociation (CID) in an inert gas such as argon
151,152

 to obtain tandem mass spectra 

(MS/MS)
153

. Product ion patterns and relative ion abundance can be considerably reproducible if 

the CID conditions are consistent
151

. The product ions are analysed or selected by the second 

quadrupole mass analyser, and then passed on to the detector
151

. The precursor and product ion 

pairs are called mass transitions
151

. When the electric field and collision energy are maintained, only 

analyte ions having a specified mass transition (precursor/product ion pair) are able to reach the 

detector, which results in the high specificity of tandem quadrupole mass spectrometric methods
151

. 

This type of data acquisition is called selected-reaction monitoring (SRM) or multiple-reaction 

monitoring (MRM) when numerous transitions are monitored during a chromatographic run
151,154

. 

In mass spectrometry, three methods of ion detection are recognised; these include direct charge 

detection (Faraday cup detector), image charge detection (inductive detector), and secondary 

electron generation (electron multiplier (EM) and microchannel plate (MCP) detectors)
155

. Due to 

the comparatively low sensitivity, direct charge detection is only commonly used in magnetic sector 

instruments. Because inductive detectors use non-destructive detection method, they are critical to 

Fourier-transform instruments, for example Orbitrap mass analysers, where signal averaging of 
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circulating ion cloud is central to the operation of the instrument
155

. Time-of-flight (TOF) ion 

detectors are designed to have large areas, rapid response times to provide good timing resolution 

with correspondingly accurate m/z determinations and high sensitivity, which are best met by the 

EM and MCP detectors, based upon their generation of secondary electrons
155,156

. The TOF detector 

was used in this project. 

Peptide fragmentation processes in collision cells – a key technology used in this thesis creates 

positively charged molecules that are accelerated in a vacuum and deflected by an electromagnet 

and amplified into an electronic display in the form of a stick diagram
126

. Peptides form molecular 

ions in the ionisation chamber of the mass spectrometer that can be mass selected and 

detected
140,157

. When this is coupled with an HPLC output corresponding to when the detector is 

showing a peak, some ions that are passing through the detector at the time can be diverted (mass 

selected) and converted into either a mass spectrum, a chromatographic display or both
140

. This 

gives a fragmentation pattern that can be compared against bioinformatics databases of known 

patterns
65,141,158,159

. This principle is based on that fact that molecular ions are unstable and tend to 

break into predictable fragments in a specific reproducible fashion
150

 as illustrated in Figure 3.0. 

Each line on the stick diagram is a mass spectrum representing a different fragment produced when 

the molecular ion breaks up
126,157

. The tallest line in a molecular ion peak is arbitrarily fractionated 

into 100 parts called the base peak, representing the commonest fragment formed
126

. The  

information from the peaks in the spectrum can then be used to derive the peptide sequence
160

. 

Ideally, the peaks of interest in an MS/MS spectrum are those represented by b- and y-ions, 

corresponding to the prefix of N-terminal (b-ion) and the suffix of C-terminal (y-ion) fragments, 

respectively
160

. In practice however, the MS/MS spectrum contains a compound mixture of peptide 

fragments and uninterpretable 'noise' peaks like those of different ion types such as a-, c-, x-, or z-

ions generated when the peptide is not cleaved at an amide bond
160

. Bioinformatic tools enable 

unknown spectra to be analysed and matched against databases that have libraries for the mass 

spectra
65,141

. The peak with the highest m/z value, represents the relative molecular weight of the 

peptide, or what is referred to as the precursor ion, which allows it to be identified
65

. The mass of 

the ion detected is related to the magnetic field used to impel the ions to reach the detector, enabling 

the number of ions (current) vs m/z to be calibrated based on the 
12

C scale
161

. The relative paths of 

light to heavy ions in a mass spectrometer give accurate information on the relative masses of 

isotopes and their relative abundance (proportions) or intensities. That means that the identity of a 

wide range of compounds can be found without having to know their retention times
126

. 
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Figure 3.0 Fragmentation pattern of the peptide S-S-E-L-V-S-A-N-R from antithrombin-III (Serpin 

C1) as displayed by X! Tandem (The Global Proteome Machine Organization; version CYCLONE 

2010.12.01.1) 
162,163

 after a data dependent acquisition (DDA) experiment using a quadrupole time-

of-flight instrument (TripleTOF® 5600+, SCIEX) on a tryptic digest of healthy sheep serum. The 

highest m/z value represents the relative molecular weight of the peptide precursor ion. 

ProteinPilot™ Software 5.0 (SCIEX) using the Paragon™ Algorithm: 5.0.0.0, 4767
164

, was initially 

used to search a custom database in order to generate a calibrated Mascot generic format (.mgf) file 

that was eventually fed into X!Tandem for analysis. The red sticks represent y ions which extend 

from the carboxyl or C-terminus of the fragmentation; the blue sticks are b ions representing 

fragment ions extending from the amino or the N-terminus. The sequential numbers b1-b5 and y1-

y8 represent an offset from the previous by the mass of an amino acid.  

2.6 Contemporary proteomics methods for samples from veterinary species 

In this thesis, it was proposed that a typical proteomic method for a non-model organism be adapted 

from quantitative proteomics ideas such as advanced by Bantscheff et al.
48

 and Armengaud et al.
7
 

This comprises sample preparation, protein discovery (discovery proteomics), protein verification 

using both synthetic and endogenous proteins from biological samples in a targeted fashion 

(targeted proteomics), and the testing and optimisation of selected bioinformatics workflows
48

.  

Working with the preceding approach, and once sample preparation workflow is optimised, the 

proteome can then be characterised using high-resolution MS/MS technology with representative 
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tissue samples from healthy normal organisms. As pointed out elsewhere
7
, unlike model organisms, 

non-model organisms make difficult experimental organisms
165

 as more effort is required because 

of the absence of well-defined protein databases, but protocol adaptation and method development 

should be close to identical.  

2.6.1 Discovery proteomics  

Discovery proteomics is a strategy for global proteome analysis
34,49

, using MS technology to detect 

a large number of proteins from multiple experiments
31

. The compilation of data from multiple 

experiments is actually one of the defining properties of discovery proteomics. Work for this thesis 

used a quadrupole time-of-flight instrument (TripleTOF® 5600+ System, SCIEX) that relies on 

DDA following liquid chromatography (LC) for spectral library construction needed for 

downstream analysis (Figure 3.1). 

2.6.2 Targeted proteomics 

Targeted MS proteomics
166

 is a technology that involves building an assay using preselected 

proteins or peptides of interest to provide precise, quantitative and sensitive data important for 

hypothesis-driven questions, with the aid of a triple quadrupole mass spectrometer
31,65,140

. Albeit 

distinct from discovery-based proteomics approaches, targeted proteomics complements untargeted 

shotgun methods
140

 in that it can be used for verification purposes
65

 by bridging the gap between 

antibody-based detection (e.g. ELISA) and discovery-based MS, by focussing experiments on 

important peptides to be fragmented and analysed
31,140

. 

With advances in high-resolution/high sensitivity MS instrumentation such as Q-TOF, Q-Trap, 

Orbitrap
167

, alongside the inclusion of associated techniques like LC and ESI, it is now possible to 

identify and quantitate many proteins in the circulating acellular proteome in a single experiment 

using targeted approaches
65,168-170

. The use of MRM / SRM (defined earlier when discussing 

quadrupoles in section 2.5) being a highly selective and sensitive technique
115,140

, focusses the mass 

spectrometer to detect only a group of chosen analytes
31

 with known fragmentation properties
140

 for 

protein identification and quantitation
43

. This technique is a useful avenue for detecting and 

verifying assays for low-abundance proteins when using high-resolution mass spectrometry
43,65

. 

The triple quadrupole mass spectrometer used for MRM is one of the oldest kinds and their MRMs 

are a “traditional” method when compared to high-resolution mass spectrometry.  
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Figure 3.1. Schematic diagram for discovery and targeted proteomics workflows. Protein 

quantitation method 1 illustrates the principle of the triple quadrupole (QqQ) mass spectrometer 

commonly used for targeted proteomics. Protein quantitation method 2 illustrates the principle of 

quadrupole time-of-flight (QTOF or QqTOF). KEY: MRM-Multiple reaction monitoring; MS-

Mass spectrometry; SWATH-Sequential window acquisition of all theoretical fragment-ion spectra. 

Courtesy of, and with permission from, Dr Pawel Sadowski, Queensland University of Technology. 

When a stable isotope dilution multiple reaction monitoring mass spectrometry (SID-LC-MRM-

MS) approach on a triple quadrupole (QqQ) instrument
171

 is used in conjunction with Skyline 

software
172

, it is possible to verify the most likely protein biomarker candidates for inflammation in 

the circulating acellular proteome of sheep. There is strong benefit to using MRM-based assays, 

considering their sensitivity, reproducibility, robustness
31

 and superior multiplexing capabilities
173

, 

especially in a multispecies-driven industry such as in veterinary diagnostic pathology in future. 

A peptide spectral library (PSL) built from discovery proteomics using a Q-TOF instrument is 

required for targeted quantitative workflows involving sequential window acquisition of all 

theoretical fragment ion spectra mass spectrometry (SWATH) or LC-SWATH-MS, a key 
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technology used in this thesis and MRM. The operation of SWATH is similar to MRM but with 

much wider isolation windows in Q1 (Figure 3.1) where the increased resolution is provided by the 

high-resolution TOF detector. These isolation windows are cycled at a sufficient speed to provide 

MS/MS fragmentation of all analytes present in the sample inside a given mass range during 

SWATH data aquisition
1
. The SWATH algorithm is written to focus on m/z windows instead of ion 

abundance, to allow fragmenting everything without a priori knowledge of the sample
1
.The 

challenge is then to develop software (such as SWATH™ Acquisition MicroApp, SCIEX) that is 

capable of analysing and deconvoluting the complex data. Basically, the discovery analysis that has 

identified a peptides’ precursor ion mass, its fragmentation pattern and its retention time is then 

used to identify specific fragment ions in the correct SWATH window at the correct retention 

time
1
.While the SWATH method is a form of data-independent acquisition (DIA)

174
, like MRM, it 

relies on spectral libraries generated from DDA experiments in order to identify and verify a wider 

range of proteins. Unlike MRM, where peptide targets are predetermined before data acquisition, 

SWATH quantifies all peptides by DIA but also allows choosing of protein targets during 

subsequent data analysis
1
. SWATH acquisition is best suited to target high and medium abundance 

proteins and is known for providing comprehensive sample coverage with negligible reduction in 

quantitative precision
175

.  

The downside of discovery proteomics workflows is the reduced ability to identify proteins of low 

abundance, the need for extensive protein database searches and the complex bioinformatics 

processes required to analyse MS data
31,115

. Both SWATH and MRM workflows require a PSL for 

analyte identification; however, only SWATH requires a library with identical RT parameters as the 

one used during data acquisition. Consequently, this calls for the need to generate a spectral library 

exactly the same way as the ultimate SWATH samples, which can be impractical
176

. A strategy to 

overcome this problem is to use iRT, which allows the RT to be pegged to the peptide (not the 

platform or data acquisition parameters), thereby allowing fast and accurate RT predication for 

downstream applications, including SWATH data extraction
137

. 

2.7 Quantitation of proteins 

Peptide and protein quantitation can be achieved by using either label or label-free approaches for 

absolute or relative quantitation needs
29,48

. The vast majority of quantitation methods are derived 

applications from cellular proteomics
177

. For quantitation purposes, in-gel digestion appears to 

affect recovery of individual peptides compared to in-solution digestion approaches
178

. It is for this 

reason that SWATH and MRM workflows do not currently support in-gel fractionated samples.  

Some examples for the relative quantitation of peptides include: metabolic labelling with amino 

acids in cell cultures – e.g. stable isotope labelling by amino acids in cell culture  (SILAC)
179

; 
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chemical protein and peptide labelling – e.g., tandem mass tags (TMTs) and isobaric tags for 

absolute and relative quantitation (iTRAQ)
180,181

; label-free quantitation including LC-MS/MS 

analysis of peptides such SWATH
48,176

; and MRM (SRM).
48,49

 As for absolute quantitation, the 

methods that have been developed using the stable-isotope-labelled standard approach include 

absolute quantitation (AQUA)
182

, a concatemer of Q peptides (QCAT)
183

 protein standard absolute 

quantitation (PSAQ)
184

, absolute SILAC 
185

 and FlexiQuant
186

. 

Label-free methods for absolute quantitation of peptides and proteins continue to be developed. 

These include using peptide-to-spectrum matches (also known as spectrum count)
187

, methods 

employing signal intensity, and inductively-coupled plasma mass spectrometry (ICP-MS)
48

. Label-

free methods for peptide and protein quantitation have greater affordability and lack labelling 

contaminants that could interfere with MS analysis
115

. SWATH processing provides quantitation 

while confirming the identity of detectable proteins and peptides
175,188

.  

2.8 Bioinformatics strategies and applications for identifying proteins 

2.8.1 Strategies and computer software applications for identifying proteins  

Mass spectrometry proteomics heavily relies on sophisticated computational strategies to identify 

peptides, by matching the acquired MS data against protein databases
6
. The practice is to have the 

sequence database in FASTA format, with a repository of sequences obtained from reputable 

sources for example the National Center for Biotechnology Information (NCBI) and the Universal 

Protein Resource Knowledgebase (UniProtKB) organisation
20,189

. The acquired MS raw data for 

discovery proteomics workflows is usually processed by the instrument in the first instance into a 

propriety data format. The data is then processed by instrument-bundled or other propriety or open 

access software platforms for protein database searches to identify proteins.  

There are various types of software that can be used to process raw data from the instrument for 

searching databases to identify proteins. Some of these software platforms include MS-GF+
190

, 

SEQUEST
191

,  Andromeda
192

,  Comet MS
193

, MS Amanda
194

, MyriMatch
195

, Morpheus
196

, Tide
197

 

(TurboSEQUEST + Crux
198

), Open Mass Spectrometry Search Algorithm (OMSSA)
199

, 

ProteinPilot™ software (SCIEX) which uses the Paragon™ algorithm
164

, and Mascot (Matrix 

Science)
200

 software. Other tools that could be used are Scaffold software (Proteome Software 

Inc.)
187

 which incorporates X!Tandem (The Global Proteome Machine Organization)
162,163

, 

PeptideProphet™ and ProteinProphet™  bioinformatics algorithms (Institute for Systems Biology, 

Seattle) to identify proteins
187

; and the Trans-Proteomic Pipeline (TPP)
201

 – an open-source bundle 

of software tools that has been developed for the analysis of MS/MS information
202

. Alternative 

protein identification search engines continue to evolve that are discussed in depth elsewhere
8
. 
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To identify peptides, the experimentally-generated mass spectra are matched against protein 

sequence databases, generating a qualitative list of potential matches, ranked by confidence, of 

proteins that may be present in the sample
21

. Identifying peptides, however, is not without 

challenges, and some remedies have been proposed
6
. Briefly, four cardinal attributes have been 

identified as being crucial to the successful identification of peptides (Table 2.1). In addition to 

these, there is also need for computational strategies for building and using customised protein 

sequence databases, overcoming the challenge of false positive identifications in proteomics, 

reliable prediction of splice-junctions, and correction of sampling bias
6
, just to name a few. 

Table 2.1. Determinants of peptide identification in proteomics studies.*  

No. Attribute 

1 Finding the right balance between completeness and optimum size of protein sequence 

database. The more comprehensive it is, the larger the database size will be, leading to 

the increase in the time required to perform searches. 

2 Applying multiple database search tools to increase sensitivity and specificity 

associated with a given peptide identification strategy. Different search tools may be 

able to assign spectra to peptides that could have been missed by another search tool. 

3 Accessing computational time and resources necessary for data processing, factoring in 

false discovery rate (FDR) estimation or analysis. Proteomics data acquisition, 

processing and data analysis require considerable investment in computing in terms of 

hardware, software and considerable patience in order to process the data.  

4 Having the ability to interpret the data in biological context. There is need to have 

adequate human resources with appropriate training to relate proteomics findings for 

potential application to real-life situations.  

* Drawn from references 
8
 and 

6
. 

In general, the majority of proteomic searching tools are largely unintegrated and remain rather 

labour intensive
159

. One strategy to address the manual task problem is to derive peptide sequences 

using de novo sequencing and homology searching of MS/MS spectra, without the need for a 

sequence database
203

. An excellent lesson on the salient computational and user-level aspects on de 

novo sequencing of peptides has been covered in detail by Chong and Leong
204

. Meanwhile, 

integrated proteomic search tools continue to be developed that can perform all functions, from 

MS/MS matching to genome annotation, on a single platform
8
. One platform that minimises the 

human interface by promoting automation and with the capability of running on personal computers 



26 

 

is a software tool called Peppy
159

. Another example is the Proteomic Mapping Pipeline, which has 

easily-customisable proteomic search capabilities for non-model organisms
205

. 

Given the preceding background and together with an optimised bioinformatics workflow, an 

established proteomics method could be applied to interrogate the circulating acellular proteome in 

mammalian veterinary species
17

.  

2.8.2 Gene ontology (GO) enrichment and protein pathway analyses of identified proteins 

Gene ontology (GO) annotation and pathway analysis of proteins is a bioinformatics approach used 

after identifying proteins to assess the biological relevance of the protein data
206

. This is necessary 

as it complements protein quantitation for example in the outcomes from protein fold changes 

during biomarker studies
2,207-209

. Several tools are publicly available for GO enrichments analysis, 

each using unique algorithms such as g:Profiler
210

, BiNGO
211

 that displays data in Cytoscape
212

, 

Ontologizer
213

, GOrilla
214

 and DAVID (The Database for Annotation, Visualization and Integrated 

Discovery) gene functional classification tool
215

, to name only a few. The application of protein 

pathway analytical tools facilitates the visualisation of interactions between genes, proteins and 

other biological molecules to reveal biological pathways and to generate global canonical pathway 

protein interactions
216,217

 that could be fundamental when using animal models to study human 

disease, for instance, because of the conserved nature of pathways
218

. Examples of such pathway 

tools include the commercial Ingenuity Pathway Knowledge Base
31,33,219

 and the open-source freely 

available PANTHER (Protein ANalysis THrough Evolutionary Relationships) software suite
220

.  

2.9 Validation of proteomics results 

The large number of spectra generated by MS proteomics experiments to be matched with peptide 

sequences and subsequent protein identification requires validation in order to minimise false 

identifications. Validation of the data can be performed both at peptide and protein levels
221

. This 

may involve manual inspection, but this is cumbersome and subjective, or by using automated 

analysis software
221

. A useful strategy is to use multiple software that implement probabilistic 

approaches
221

 to analyse the same dataset and select spectral identifications that are shared among 

the various software. It is important to remember that the analysis software only just matches 

patterns between theoretical and experimental data. The optimal form of validation would be to 

synthesise every peptide identified and compare the synthetic form to the hypothetical data. Clearly 

this is not possible for all, but a few of the most important peptides to illustrate that the analysis is 

working. Protein-level validation may take the form of technical and biological replication of the 

experiment and compare the protein identifications
221

, by using  the emerging high resolution MRM 

(HR-MRM) method or the gold-standard specific antbody techniques (ELISA and Western 
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blotting)
222

.     

2.10 Studying non-model mammalian organisms in proteomics 

The proteomics approach for studying non-model organisms is based on the principle of the genetic 

theory. Genes encoded in DNA are transcribed into RNA that is then translated by ribosomes into 

proteins. The (accurate) detection of an endogenous protein in the circulating acellular proteome is 

therefore a confirmation that there is a genetic code for it
223,224

. The availability of accompanying 

genome data is central to the ability to detect proteins. Except for animal species commonly used in 

translational research whose genomes have been largely sequenced (such the mouse) or those of 

veterinary importance (such as the dog, horse, ox, chicken and pig), there is a relative scarcity of 

proteomic data for other animals
21

. Complete genomic data is important because many studies on 

animal models of disease are founded on the premise that every form of disease insult is associated 

with characteristic changes in protein expression
17,225-229

. For animals whose genomes have only 

been recently sequenced, such as sheep
230

, coding errors are still be present, and there may be many 

gaps that need to be annotated. Another problem of working with non-model organisms is that not 

enough is known about the protein change responses to a range of physiological and pathological 

events. This problem is confounded further by the impact of breed differences on response to 

stimuli in many veterinary species. 

As proteomics heavily relies on complete genomic sequencing data, some approaches used in non-

model animals include optimising data analysis steps, combining available database information of 

the target species with related species, testing different software tools and different search 

parameters
6,8

 and assuming that the results will be similar to that of humans. The co-ordinated 

sharing of proteomic data through publicly available repositories such as the ProteomeXchange 

consortium
231

 is invaluable, as it allows constant querying of proteomic data on an open access 

platform.  

2.11 Potential applications of proteomics in veterinary science lies in proteogenomics 

Proteogenomics has been described as a platform that can be used to establish a draft protein 

database of any organism, by providing an avenue for studying difficult experimental organisms
7
. A 

truly comprehensive proteogenomics project is characterised by attributes that encompass genomic 

and proteomics efforts with the end result of annotating the genome
6,8

. High-resolution MS 

techniques for peptide detection enable the prediction of open reading frames of an organism, by 

correlating MS data with genome sequence information based on the expressed protein evidence
8,232

 

from protein samples. This means that, although time-consuming, there is now capacity to identify a 

plethora of proteins with potential biotechnological applications in production and companion 
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animals. Proteomic data can also be used for annotation of genomes of most animals that are yet to 

be fully sequenced
8,232

.  

After identifying proteins, quantitating them can be useful in diagnosing pathological aberrations 

and monitoring disease progression
43

. However, comprehensive MS-based methods to estimate 

serum or plasma levels of various proteins in veterinary species are still lacking. Using a spectral 

counting approach
84

 to build a database to determine normal protein levels for animals could prove 

useful for veterinarians and researchers in future. 

2.12 Conclusions 

Proteomics is a promising tool for veterinary science applications. Method development and 

validated experiments are needed, preferably those benchmarking on studies in humans, to elucidate 

important findings, including the detection of subclinical disease in domestic animals – an 

application that could improve animal welfare. Resilience to disease is an important trait; however, 

the relative paucity of detailed information on the immune response in many veterinary species, 

especially production animals, means that there may be sub-optimal scope for selecting breeding 

stock based on immunological resilience. If specific and reliable markers of immunological 

resilience could be identified, such markers could be used to identify individuals that might be at 

increased risk of infectious disease, and to predict resilient individuals. Such markers could then be 

used to study the heritability of resilience, with the eventual aim of developing a screening panel to 

select resilient breeding stock. Furthermore, a panel of markers could also be used as a surveillance 

tool, to monitor the potential deleterious immunological effects of selecting for performance traits 

such as reproduction or growth rate. Such a strategy would help to inform optimal balanced genetic 

development in flocks. While the outlook appears bright, there is need to optimise sample 

collection/preparation methods, address WDR issues and reduce the cost of running assays, to allow 

the widespread use of proteomics in domestic animal science
21

 and to uncover protein expression 

and characterisation by building and exploiting the capabilities of PSLs in this era of 

proteogenomics. 
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CHAPTER 3 

3.0 Materials and methods 

3.1 Introduction 

This chapter presents the generic materials and methods used in proteomics studies applied in this 

thesis. The generic or universal approach of protein analysis relies on acetone precipitation of 

proteins in order to remove lipids mainly
233

. This is followed by in-solution and in-gel digestion of 

proteins into peptides with trypsin and desalting of peptides prior to LC-MS/MS analysis. The 

effect of desalting of peptides prior to analysis and its reproducibility as a critical element of all 

proteomic experiments was also evaluated. Desalting of peptides is even more crucial when using 

label-free proteomics approaches
176

. The details of nanoLC-nanoESI-MS/MS method employed are 

also provided. Considered together, the procedures covered herein form a common basis for the 

adapted proteomics methods used in the entire thesis.  

3.2 Ethics statement 

The studies included in this thesis were conducted in accordance with the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes
234

. Animal tissue samples for 

method development were acquired following approval from Queensland University of Technology 

(QUT) Confirmation number: 1400000591, QV reference number: 46375 and Ethics number TRIM 

10/8428 issued to Serum Australis Pty Ltd (http://www.serumaustralis.com.au), for bleeding live 

sheep and supply of blood products. Tissue from live animal experiments had animal ethics 

approval obtained from the University Animal Ethics Committee of QUT (reference 0800000555), 

which was ratified by The University of Queensland (UQ).  

3.3 Reagents used for sample preparation  

10x Tris/Glycine/SDS Buffer (Bio-Rad, Inc., cat. No. 161-0732), Acetonitrile (LC/MS grade, 

suitable for UHPLC-UV; Fisher Scientific, Optima
®
, cat. No. A955-4), Acrylamide/Bis-acrylamide 

(Sigma-Aldrich, cat. No. A2917), Ammonium acetate (≥ 98%; Sigma-Aldrich, A1542; Lot # 

SLBBF4804V), Ammonium bicarbonate (NH4HCO3) ReagentPlus®, ≥99.0%; Sigma-Aldrich, cat. 

No. A6141), Ammonium Chloride (AJAX Chemicals, UNIVAR
®
), Ammonium persulfate (Bio-

Rad, cat. No. 161-0700), Bicinchoninic acid (BCA Protein Assay Kit; Pierce™, cat. No. 23225), 

Bromophenol Blue (Bio-Rad, cat. No. 161-0404), Disodium ethylenediaminetetraacetate dihydrate 

(EDTA ≥99% pure, Bio-Rad, cat. No. 161-0729); DL-Dithiothreitol (DTT, ≥98% (TLC), ≥99.0% 

(titration); Sigma-Aldrich, cat. No. D0632),  

Formic acid (≥99.5 %, LC/MS grade; Fisher Scientific, Optima
®
, cat. No. A117-50), Formic acid in 
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acetonitrile (0.1% (vol/vol), LC/MS grade; Fisher Scientific, Optima
®
, cat. No. LS120-4), Formic 

acid in water (0.1% (vol/vol), LC/MS grade; Fisher Scientific, Optima
®
, cat. No. LS118-4), 

Glycerol (for molecular biology ≥99%; Sigma-Aldrich, cat. No. G5516), Hydrochloric acid 

(BioReagent for molecular biology 36.5-38.0%; Sigma-Aldrich, cat No. H1758 ); Iodoacetamide 

(Crystalline HPLC, ≥99%; Sigma-Aldrich, Lot # SLBC7561V, PCode: 1001691393); Mass 

Spectrometry Safe Protease and Phosphatase Inhibitor Cocktail (MSSAFE, Sigma-Aldrich), 

Protease inhibitor cocktail tablets (cOmplete™, Mini, EDTA-free; Roche, Lot No. 10051300), 

Protein gel staining solution (EZ-Run™, Fisher Scientific; cat. No. BP3620), Sodiun dodecyl 

sulfate ≥ 98.5% (Sigma-Aldrich, L4509, Batch # 046K0085), Tetramethylethylenediamine 

(TEMED; Bio-Rad, cat. No. 161-0800), Trifluoroacetic acid (CHROMASOLV
®
 for HPLC, 

≥99.0%; Sigma-Aldrich, cat. No. 302031), Trifluoroacetic acid in water (0.1% (vol/vol), LC/MS 

grade; Fisher Scientific, Optima
®
, cat. No. LS119-212), Trisaminomethane (Tris ≥99.8%; Bio-Rad, 

Inc., cat. No. 161-0716), Trypsin (sequencing grade modified; Promega, cat. No. V5117), Urea 

(Bio-Rad,  cat. No. 161-0730), Liquid chromatography–mass spectrometry (LC-MS) water (LC/MS 

grade, suitable for UHPLC; Fisher Scientific, Optima
®
, cat. No. W6-4), Deionised water 

(Millipore), Albumin standard 2 mg/mL (Bovine Serum Albumin Standard, Pierce™, Thermo 

Fisher Scientific), ExcelGel SDS Buffer Strips (anode and cathode) (GE Healthcare Sciences), and 

IPG Buffer pH 4–7 (GE Healthcare Sciences). 

3.4 Equipment used in the experiments  

Quadrupole time-of-flight mass spectrometer (TripleTOF® 5600+ System, SCIEX) with Nanospray 

III ion source (SCIEX), Nano-HPLC (Eksigent Ultra-2D, Eksigent Technologies, Dublin, CA), 

Centrifuge (Eppendorf, cat. No. 5424R), Mixer (Eppendorf Thermomixer
® 

Comfort), Vortex mixer 

(Ratek, Model VM1), pH meter (Cardy Twin pH Meter, Spectrum Technologies), 

Spectrophotometer (NanoDrop 2000; Thermo Scientific), and Offgel Electrophoresis System (3100 

OFFGEL Fractionator, Agilent Technologies). SpeedVac Concentrator (Christ
®
 cat. No. RVC 2-33 

IR). 

3.5 Consumables used for the experiments 

Protein Enrichment Kit (ProteoMiner™ Small-Capacity Protein Enrichment Kit, Bio-Rad cat. Nos. 

163-3006 and 163-3008), Polyacrylamide gels (Mini-PROTEAN® TGX™ Precast Gels, Bio-Rad, 

cat. No. 4561084), Electrospray emitters (New Objective, cat. No. FS360-20-10-N-20-C12), 

NanoLC analytical column (ChromXP C18 3 µm, 150mm × 75 µm 120 Å, Eksigent Technologies, 

Dublin, CA), NanoLC trap cartridge (ChromXP C18CL 5 µm, 10 mm × 0.3 mm 120 Å, Eksigent 

Technologies, Dublin, CA), Protein low binding tubes (volume 0.5 and 1.5 ml; Eppendorf, cat. nos. 

022431064 and 022431081), 10 µL (0.6 µL bed of chromatography media) desalting pipette tips 
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(Millipore® ZipTips C
18

, Sigma-Aldrich, cat. No. Z720046), 100µL bed desalting pipette tips 

(Pierce™ C
18

 Tips, Thermo Fisher Scientific, cat. No. 87784), 750 µL Volume polypropylene 

autosampler vials (12 x 32mm Snap Neck Vial, Waters, cat. No. 186005224). 

3.6 Sample preparation for protein analysis 

Frozen sheep serum samples were thawed on ice and then centrifuged at 13,000 g at 4 
o
C for 20 min 

as previously described
16

. The sediment and top layer comprising mainly of lipids and suds were 

discarded, retaining the supernatant. The protein concentration of the supernatant was determined 

with bicinchoninic acid (BCA) protein assay kit (BCA Protein Assay Kit, Pierce™) according to 

the manufacturer’s instructions using a spectrophotometer (NanoDrop 2000, Thermo Scientific). 

The supernatant was then either directly analysed or enriched by acetone precipitation of proteins. 

In some experiments, a protease inhibitor cocktail tablet (cOmplete, Roche) was added into the 

sample after thawing, according to the manufacturer’s instructions in order to evaluate if there was 

any difference in protein yields when a protease inhibitor was present in the samples than when it 

was not
235

.  

3.7 Generic universal sample delipidation by acetone precipitation of proteins 

Proteins in serum were precipitated by adding 4 × (v:v %) of cold (-20 °C) acetone and then 

incubating at -20 °C for 16 h, prior to centrifugation at 4,000 g for 2 min. The supernatant was 

discarded. This method was described as delipidation rather than fractionation as the proteins were 

collected in only a single pool (pellet) at the end of the process. The pellet was washed with cold 

acetone and the suspension was centrifuged at 4,000 g for 5 min at 4 °C. The supernatant was 

discarded and this procedure was repeated one more time. The pellet was then dissolved in freshly 

prepared 8 M urea in 25 mM NH4HCO3 (Sigma-Aldrich) buffer. The mixture was centrifuged at 

4,000 g for 5 min at 4 °C, the supernatant was kept and the insoluble sediment was discarded. The 

protein concentration of the supernatant was determined using the BCA method
28

.  It is important to 

note that although this is a standard method, the use of urea can interfere with downstream 

processes including tryptic digests and gel electrophoresis resulting in poorly resolved gels. 

3.8 Generic in-gel protein fractionation and digestion workflow 

3.8.1 1D SDS-PAGE 

The universal 1D SDS-PAGE procedure adapted in this thesis for protein separation (also referred 

to as in-gel separation of proteins) was based on its established description
117

 and subsequent 

refinements
118,119,236,237

. Briefly, the resolving self-cast 10% SDS-PAGE gels were prepared by 

mixing 3.85 mL of deionised water (Millipore) with 2 mL of 40% acrylamide / 2% bisacrylamide 

mix (final concentrations – 10% acrylamide / 0.5% bisacrylamide), 2 mL of 1.5M tris (pH 8.8), 80 
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µL of 10% SDS, 80 µL of 10% ammonium persulfate and 8 µL of Tetramethylethylenediamine 

(TEMED, Bio-Rad), which was then poured into a casting chamber (Mini-PROTEAN, Bio-Rad) 

and left to set after overlaying the gel with isopropanol. The isopropanol was then removed and the 

stacking 4% SDS-PAGE gels were prepared by mixing 3.15 mL of deionised water (Millipore) with 

0.5 mL of 40% acrylamide / 2% bisacrylamide mix (final concentrations – 5% acrylamide / 0.25% 

bisacrylamide), 2 mL of 0.5 M tris (pH 6.8), 50 µL of 10% SDS, 50 µL of 10% ammonium 

persulfate and 5 µL of TEMED, and then poured on top of the resolving gel followed by insertion 

of plastic comb to mould the loading wells. The gels were left to polymerise for 12 h at RT before 

loading the wells with known quantities of protein samples. A stock solution of 10× running buffer 

was prepared by mixing 30 g of Tris, 144 g of glycine, 10 g of SDS and made up to 1L solution 

using de-ionised water (Millipore) before storage at RT. A 5× sample buffer stock was prepared by 

mixing 1.75 mL of 0.5M Tris (pH 6.8), 4.5 mL of glycerol, 0.5 g of SDS, 1 drop of 2.5mg/mL 

solution of bromophenol blue. The solution was brought up to 10 mL, then aliquoted into 500 µL 

and stored at -20 °C until use. 

To load the gel, a desirable quantity of protein in the sample was aimed at approximately 0.1 µg/µL 

for each stained protein band
118

 in either self-cast or precast polyacrylamide gel (Mini-PROTEAN® 

TGX™ Precast 4-15% Gels, Bio-Rad). A protein standard (Precision Plus Protein™ Dual Xtra, 

Bio-Rad) was loaded into to the first well of every gel for the estimation of the protein molecular 

weight. Protein concentrations of bovine serum albumin (BSA) standard (Pierce) and the samples 

were adjusted so that suitable amounts of protein could be loaded onto the gel with freshly prepared 

20mM solution of dithiothreitol (DTT) in liquid chromatography mass spectrometry (LC-MS) water 

with 1× SDS sample buffer. Gel loading preparations were made in 1,500 µL (or 500 µL, where 

appropriate) Eppendorf tubes and then vortexed briefly before being centrifuged at 4,000 g for 6 s. 

The tubes containing the sample buffer and sample were heated at 56 °C for 3 min to unfold 

proteins prior to loading onto the gel and electrophoretic separation of proteins at a fixed voltage 

(150-180V) for approximately 45 min in a vertical electrophoresis chamber (Mini-PROTEAN 

Electrophoresis Cell, Bio-Rad) powered by PowerPac™ Universal power supply from Bio-Rad. 

The gels were stained with Coomassie brilliant blue (EZ-Run™, Protein Gel Staining Solution, 

Fisher Scientific) according to the manufacturer’s instructions and then photographed using a 

handheld camera (5.7-inch Quad HD Super AMOLED
®
, Samsung; or New 8-megapixel iSight 

camera with 1.5µ pixels with Optical image stabilisation, iPhone 6, Apple Inc.).  

Gel bands were excised into a clean 1,500 µL Eppendorf tube and de-stained using 50% acetonitrile 

(ACN) (Optima
®
, Fisher Scientific) in 25mM NH4HCO3 accompanied by agitation at 750 rpm for 

20 min at RT. This procedure was repeatedly and alternated with washing the gel bands with 25 
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mM NH4HCO3 buffer. Once de-stained, final washing of the gel bands was performed using LC-

MS grade water followed by incubation for 20 min at RT. The water was discarded and the gel 

bands were cut into approximately 1 mm
3
 pieces using a 10 µL pipette tip. Gel bands were 

dehydrated by adding 100% ACN and agitating at 750 rpm for 10 min at RT prior to drying in a 

vacuum centrifuge (SpeedVac Concentrator Christ
®
 cat. No. RVC 2-33 IR), for 10 min. 

In-gel proteins were reduced in order to break disulphide bonds and alkylated to prevent the bonds 

re-forming as originally described elsewhere
238

. Briefly, freshly prepared 10 mM DTT (Sigma-

Aldrich) in 25 mM NH4HCO3 buffer was added sufficiently to cover the vacuum dried gel pieces 

and agitated at 750 rpm for 45 min at 56 °C. Freshly prepared 55 mM iodoacetamide (IAM) 

(Sigma-Aldrich) in 25 mM NH4HCO3 was added to the sample so the volume added was twice that 

of the DTT added in the previous step and agitated for 30 min at RT in the dark. The reagents were 

washed off with 25 mM NH4HCO3 buffer with agitation for 5 min at RT, before centrifuging briefly 

and discarding the supernatant. Gel bands were then dehydrated using 100% ACN and agitated at 

1400 rpm for 10 min at RT. The entire supernatant was discarded prior to drying the gel pieces in a 

vacuum centrifuge (SpeedVac Concentrator Christ
®
 cat. No. RVC 2-33 IR), for 20 min. 

Vacuum-dried gel pieces were incubated on ice for 5 min before adding 0.005 µg/µL solution of 

freshly prepared ice-cold working solution of trypsin (Trypsin Gold, Mass Spectrometry Grade, 

Promega) in 50 mM NH4HCO3 buffer enough trypsin buffer to cover the dry gel pieces
239

 and left 

incubating for a further 30 min until the entire enzyme solution had entered the gel pieces. Gel 

pieces were then covered in 50 mM NH4HCO3 buffer and left to incubate for 16 hrs at 37 °C on an 

agitator at 300 rpm. Digestion was stopped by adding 100 µL of 5% formic acid (FA) (Sigma-

Aldrich). Peptide extraction was performed by agitating the gel pieces at 1,000 rpm for 15 min at 

RT. The peptide-containing supernatant was collected into a clean 0.5 ml low binding Eppendorf 

tube. Gel pieces were further washed by adding 5% FA in 50% ACN and agitating at1000 rpm for 

15 min, before collecting the supernatant. Gel bands were further extracted by adding 100% ACN 

and agitation at 1000 rpm for 15 min at RT. The entire supernatant was collected and then 

completely vacuum-dried prior to reconstitution in 10 µL of 0.1% trifluoroacetic acid (TFA) 

(Sigma-Aldrich) / 2% ACN followed by desalting of peptides. 

3.9 Generic in-solution digestion of proteins workflow 

The method adapted here was based on the one established by Villén and Gygi
123

. Briefly, a known 

quantity of serum or plasma protein sample was thawed and kept on ice at 4 °C was reduced using 

20 mM DTT (to achieve 5 mM final concentration) and the mixture was incubated for 1h at room 

temperature (RT). The mixture was alkylated using 55 mM IAM (to achieve 14 mM final 

concentration) followed by incubation for 20 min in the dark at RT. Alkylation was quenched using  
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DTT  followed by further incubation for 5 min in the dark. The mixture was diluted with 25mM 

NH4HCO3 buffer followed by adding aqueous 70 mM CaCl2 (to achieve 10 mM final 

concentration).  Trypsin (Promega) was added at enzyme to substrate (protein concentration of 

sample) ratio of 1:50. The contents were incubated for 16 h at 37 °C with gentle agitation and then 

cooled to RT. Digestion was stopped using 10% TFA before vacuum concentrating the contents to 

dryness. The dried peptides were reconstituted in aqueous 0.1% TFA/2%ACN before desalting. 

3.10 Generic desalting of tryptic peptide digests 

It is often necessary to remove salts and particulate matter including excess of trypsin from peptide 

digests prior to analysis to prevent blockage of nanoLC columns and also to reduce noise artefacts 

of MS spectra
240-242

. Desalting of tryptic peptide digests was optimised and performed using either 

octadecyl carbon chain (C18) pipette tips (ZipTip® Pipette Tips, Millipore, or Pierce C18 Tips, 

Thermo Fisher Scientific) depending on the filter capacity according to manufacturer’s instructions. 

Briefly, the desalting pipette tip was conditioned using a solution of 50% ACN/0.05% 

trifluoroacetic acid (TFA) in LC-MS grade water and then equilibrated with 2% ACN/ 0.1% TFA in 

LC-MS water. After carefully and gently pipetting the entire sample up and down the membrane for 

at least 10 times, the membrane was washed with 2% ACN/0.1% TFA in LC-MS water. The 

peptides were eluted using 70% ACN/0.1% TFA in LC-MS water, vacuum dried and then 

reconstituted in 10 µL of 2% ACN/0.1% FA in LC-MS grade water and transferred into a 

polypropylene autosampler vial for nanoLC-nanoESI-MS/MS analysis. 

3.11 nanoLC-nanoESI-MS/MS   

3.11.1 Chromatography 

Peptide spectral data from approximately 400 ng – 1 µg of injected tryptic peptides per sample were 

generated using nanoLC-nanoESI-MS/MS on a TripleTOF
® 

5600+ instrument. Peptides were 

separated by performing reversed-phase chromatography using an Eksigent ekspert™ nanoLC 400 

System directly coupled to the MS/MS instrument. The LC platform was setup in a trap and elute 

configuration with a 10 mm × 0.3 mm trap cartridge packed with ChromXP C18CL 5 µm 120 Å 

material and a 150 mm × 75 µm analytical column packed with ChromXP C18 3 µm 120 Å 

(Eksigent Technologies, Dublin, CA). The mobile phase solvents were composed of mobile phase 

A: water/0.1 % FA; mobile phase B: ACN/0.1% FA; and mobile phase C: water/2% ACN/0.1% 

FA. Trapping was performed in mobile phase C for 5 min at 5 µL/min followed by an elution 

configuration across a 90 min gradient using mobile phases A and B at a conserved flowrate of 300 

nL/min. The proportions of both solvents were adjusted at specified time-points of 0, 60, 65, 70, 79, 

80 and 90 min corresponding to 98, 60, 35, 5, 5, 98 and 98 % of solvent A, and 2, 40, 65, 95, 95, 2 
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and 2 % of solvent B, respectively. To minimise retention time drift, the analytical column was 

maintained at 40°C. 

3.11.2 Data dependent acquisition (DDA) 

After chromatography, peptides were injected into the instrument and analysed by DDA. The DDA 

mode of the instrument was set to obtain high resolution (30,000) TOF-MS scans over a mass range 

of 350-1350 m/z, followed by up to 40 (top 40) high sensitivity MS/MS scans of the most abundant 

peptide ions per cycle. The selection criteria for the peptide ions included intensity greater than 150 

cps and charge state of 2-5. The dynamic exclusion duration was set at 12 s to account for the 

difference in chromatographic peak width.  Each survey (TOF-MS) scan lasted 0.25 s and the 

product ion (MS/MS) scan lasted 0.05 s resulting in a total cycle time of 2.3 s. The ions were 

fragmented in the collision cell using rolling collision energy, and collision energy spread (CES) 

was set to 5. The collected peptide ion fragmentation spectra were stored in .wiff format (SCIEX). 

3.11.2.1 DDA data processing  

3.11.2.2 Overview of DDA data processing strategy 

Because of the genome of sheep being incompletely sequenced or annotated, proteins were 

identified by matching tryptic peptides against a composite protein sequence database of sheep, goat 

and ox using ProteinPilot™ in the first instance in order to capture homologous sequences. The 

inclusion of protein sequences from related species is a helpful strategy when exploring and 

establishing foundation proteogenomics data to identify known or novel genes of the non-model 

study subject — in this case sheep
6-8,20,189,243,244

. Mascot 
200

 search was subsequently conducted 

using a sheep only sequence database to identify high-scoring proteins and PeptideShaker 
245

 to 

verify protein identifications from the primary search data. 

3.11.2.3 Primary protein sequence database searching 

The acquired MS/MS data from the instrument were extracted and annotated with amino acid 

sequences from a custom built database using the Paragon™ Algorithm
164

 (ProteinPilot™ Software 

5.0, Revision Number: 4769,  SCIEX). The custom database (55,108 sequences; 34,001,891 

residues) with added common contaminants was assembled in FASTA format downloaded on 15 

April, 2015 from a repository of non-redundant and predicted protein sequences of Ovis aries, Bos 

taurus and Capra hircus sourced from NCBI (National Center for Biotechnology Information – 

http://www.ncbi.nlm.nih.gov/protein/). Another Ovis aries-only custom database (27,393 

sequences, 13,114,569 residues) with added contaminants from the common Repository of 

Adventitious Proteins, cRAP (http://www.thegpm.org/crap/), was assembled in FASTA format on 

26 July, 2016 from UniProtKB (Universal Protein Resource Knowledgebase – 
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http://www.uniprot.org/). For ProteinPilot™ searches, the following settings were selected: Sample 

type: Identification; Cys Alkylation: Iodoacetamide; Digestion: Trypsin; Instrument: 

TripleTOF5600; Special Factors: Urea denaturation; Species: None; Search effort: Thorough ID; ID 

Focus: Amino acid substitution; Results Quality: Detected protein threshold [Unused ProtScore 

(Conf)] ≥ 0.05 with false discovery rate (FDR) selected. Annotations were only retrieved from 

UniProt during composite file searches (i.e. when a group of files were searched concurrently). The 

automatically generated Excel (Microsoft
®
 Excel™ 2010, Microsoft Corporation) spreadsheet 

report from ProteinPilot™ output was manually inspected and then meticulously curated to filter 

out contaminants and protein identifications with 0 (zero) unused confidence scores. The protein-

level FDR analysis report generated automatically in Excel by ProteinPilot™ was used to determine 

identification thresholds. FDR is the number of significant peptide matches in the decoy results 

divided by the number of significant matches in the target results. The report showed proteins 

identified at critical FDR, estimated FDR and numeric receiver operating characteristic (ROC) plots 

of the data from DDA experiments.  The identification threshold was determined as the highest 

number of proteins identified corresponding to 1% critical FDR on the Global FDR fit in the report. 

Only proteins identified at FDR ≤1% with ≥ 2 high-scoring peptides were considered for protein 

lists and for comparative analysis in the first instance.  

The .group file derived from ProteinPilot™ composite search of all samples analysed by DDA were 

used as a reference PSL with SWATH™ Acquisition MicroApp version 2.0 (SCIEX) data 

extraction. The resulting library file contained the following information required for targeted data 

extraction: UniProt accessions, stripped peptide sequences, modified peptide sequences, Q1 and Q3 

ion detection, retention times, relative intensities, precursor charges, fragment types, scores, 

confidence and decoy results.    

The .group file data in ProteinPilot™ were exported as calibrated Mascot generic format (.mgf) and 

mzIdentML (.mzid) format files. The .mgfs were further reformatted by an in-house Perl script 

(www.perl.org) or mgf repair tool (SCIEX)  prior to loading via a Daemon application to Mascot 

search engine (Matrix Science, London, UK; version 2.5.1)
200

. Mascot was set up to search the 

same custom database that was used in ProteinPilot™ with the following search parameters: Type 

of search: MS/MS Ion Search; Enzyme: Trypsin; Fixed modifications: Carbamidomethyl (C); 

variable modifications: Deamidated (NQ), Oxidation (M); Mass values: Monoisotopic; Protein 

mass: Unrestricted; Peptide mass tolerance: ± 10 ppm; Fragment mass tolerance: ± 0.01 Da; Max 

missed cleavages: 1; Instrument type: ESI-QUAD-TOF, and the auto-decoy search option was 

selected. Peak list and identification data from the search were exported in a .dat format for further 

processing. Protein lists were exported in csv format for immediate data evaluation and curation to 
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remove contaminants in Excel spreadsheet. Only proteins identified with 2 or more high-scoring 

peptides were included for further evaluation. 

3.11.2.4 Secondary protein sequence database search and protein identification 

The .mgf and .dat  or .mzIdentML files (from ProteinPilot™ after proprietary source code editing – 

see Chapter 6) were also loaded for protein identification using PeptideShaker Software
245

. Peak 

lists obtained from MS/MS spectra were identified using Mascot
200

. Protein identification was 

conducted against a concatenated target/decoy
246

 version of the Ovis aries (27284, 99.5%) 

complement of the UniProtKB, 27,411 (target) sequences. The decoy sequences were created by 

reversing the target sequences in SearchGUI. The identification settings were as follows: Trypsin 

with a maximum of 1 missed cleavages; 10.0 ppm as MS1 and 0.5 Da as MS2 tolerances; fixed 

modifications: Carbamidomethylation of C (+57.021464 Da),  variable modifications: Deamidation 

of N (+0.984016 Da), Deamidation of Q (+0.984016 Da), Oxidation of M (+15.994915 Da), 

Pyrolidone from E (--18.010565 Da) and Pyrolidone from Q (--17.026549 Da), fixed modifications 

during refinement procedure: Carbamidomethylation of C (+57.021464 Da). All algorithm-specific 

settings are listed in the Certificate of Analysis available in the data files.  

Peptides and proteins were inferred from the spectrum identification results using PeptideShaker 

version 1.13.0
245

. Peptide Spectrum Matches (PSMs), peptides and proteins were validated at a 

1.0% FDR estimated using the decoy hit distribution. All validation thresholds are listed in the 

Certificate of Analysis available in the data files. Post-translational modification localisations were 

scored using the D-score
247

 and the phosphoRS score
248

 with a threshold of 95.0 as implemented in 

the compomics-utilities package
249

. A phosphoRS score above this threshold was considered as a 

confident localisation. Protein identification reports were exported in .xlsx format for evaluation 

and curation in Excel spreadsheet. Only proteins identified with 2 or more verified peptides were 

included for further evaluation.  

3.11.3 Data independent acquisition (DIA) 

Eluted peptides were subjected to cyclic data independent acquisition (DIA) using a generic 

SWATH-MS™ acquisition method (SCIEX) based on its earlier description
1
.  The instrument was 

operated using a mass range of 100 msec for the survey scan (MS), followed by performing MS/MS 

on all precursors in a cyclic manner using an accumulation time of 0.1 s per SWATH-MS window 

(36 windows total, each 26 m/z units wide) for a total cycle time of 3.75 s. The above parameters 

allowed the collection of at least 6 data points for each chromatographic peak of a peptide to ensure 

a reasonably accurate quantitation.  It should be noted that a typical quantitation requires 

approximately 14 data points over a peak to define it accurately, although this is probably not 
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pratical with a slower method like SWATH-MS. The lower peak definition is associated with 

increased variability of quantitation. 

3.11.3.1 DIA data processing  

The generated raw .wiff instrument files were concurrently imported into PeakView
®

 v.2.2 

Software (SCIEX) with SWATH-MS™ Acquisition MicroApp 2.0 (SCIEX) incorporated for 

spectral alignment and targeted data extraction alongside a loaded PSL that was earlier constructed 

generated from a composite of DDA experiments using sheep serum and plasma acquired on the 

same instrument. 

PeakView Software
®
 performed the mining of extracted ion chromatograms (XICs) and determined 

peak areas for the entire sample set. The XICs of fragment ions from MS/MS spectra of targeted 

proteins and peptides were generated by the SWATH-MS™ Acquisition MicroApp, which also 

integrated the peak areas from the SWATH-MS™ data files.  

The parameters for SWATH-MS™ data extraction were set as follows: up to five peptides per 

protein, up to five transitions per peptide, peptide confidence level of 99%, include shared peptides, 

and extracted ion chromatograph (XIC) width of 50 ppm. The processed data were amenable to 

exportation as quantitative output for the peak area under the intensity curve for individual ions, the 

summed intensity of individual ions for a given peptide, and the summed intensity of peptides for a 

given protein, in .txt format. 

3.12 Statistical analysis of the processed data 

3.12.1 Identified protein lists 

Proteins lists from DDA experiments were presented in spreadsheet and charts (Microsoft
®
 Excel™ 

2010, Microsoft Corporation) and then exported for analysis and visualised using Venny 2.1
250

,  

jvenn
251

 or BioVenn
252

 software version 2007 – 2017, where appropriate.  

Peptide and protein peak areas from DIA experiments were automatically passed to MarkerView™ 

Software version 1.3 (SCIEX) for visualisation, normalisation and statistical analysis. Protein 

identification entries were exported into Excel™ spreadsheet, which facilitated inspection and 

comparative analysis using BioVenn software.  

3.12.2 Gene ontology (GO) – term and protein pathway analysis  

The proteins identified by Mascot searches were subjected to gene ontology (GO) analysis using 

Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool
220

. In the 

PANTHER tool, the gene entries were analysed by aligning them to Bos taurus, as the closest 

organism analogous to sheep because Ovis aries entries were not available. The results of GO-term 
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analysis of molecular function, biological process, cellular component, protein class and pathway 

analysis of the detected proteins were displayed in Excel™ charts. 
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CHAPTER 4 

4.0 Characterisation of the circulating acellular proteome of healthy sheep using nanoLC-

nanoESI-MS/MS analysis of serum 

4.1 Abstract 

Unlike humans, there is currently no publicly available reference mass spectrometry-based 

circulating acellular proteome data for sheep, limiting the analysis and interpretation of a range of 

physiological changes and disease states. The objective of this Chapter was to develop a robust and 

comprehensive method to characterise the circulating acellular proteome in ovine serum. 

Serum samples from healthy sheep were subjected to shotgun proteomic analysis using nanoLC-

nanoESI-MS/MS on a TripleTOF® 5600+, SCIEX instrument. Proteins were identified using 

ProteinPilot™ and Mascot software based on a minimum of two unmodified highly scoring unique 

peptides per protein at a false discovery rate (FDR) of 1% by searching a subset of the UniProtKB 

database. PeptideShaker searches were used to validate protein identifications from ProteinPilot™ 

and Mascot.  

ProteinPilot™ and Mascot identified 245 and 379 protein groups (IDs), respectively, and 

PeptideShaker validated 133 protein IDs from the entire dataset. Since Mascot software is 

considered the industry standard and identified the most proteins, these were analysed using 

PANTHER classification tool revealing the association of 349 genes with 127 protein pathway hits. 

These results demonstrated for the first time the feasibility of characterising the ovine circulating 

acellular proteome using nanoLC-nanoESI-MS/MS. This peptide spectral data contributes to a 

protein library that can be used to identify a wide range of proteins in ovine serum. 

4.2 Introduction 

The well-defined serum proteome of humans permits analysis and interpretation of a range of 

physiology changes and disease states
101,253

, but not that of sheep in comparison . To date, the 

serum proteome of sheep is largely extrapolated from cattle, which can be inaccurate despite a 97% 

similarity in protein coding sequences
254

 and different promoters driving the expression of specific 

proteins
255

. Characterisation of the serum proteome of sheep would therefore be useful to quantify 

disease in this species. 

Sheep are a major production species, providing meat and wool, plus are used in a range of 

biotechnological and translational studies
256-260

. Despite this, relatively little is known about the 

responses of sheep to a variety of pathophysiological events. There is therefore a need to 

comprehensively characterise the proteins in ovine serum for better quantitative assessment of 
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disease processes. Blood is relatively easily collected from sheep
22,111,261-263

, but comparatively only 

a small number of proteins have been identified, limiting the capacity to assess disease
111,264

. One 

problem to date is that protein sample preparation in published studies on sheep have been 

inadequate and have generally ignored the full conventions for reporting identified proteins from 

samples
265,266

. Consequently, data are lacking on optimised sample preparation approaches for 

shotgun proteomics workflows using more than one protein sequence search engine to explore the 

circulating acellular proteome of sheep. For example, the number of proteins identified by single 

laboratories using gel fractionation followed by MS from human plasma has been in the region of 

nearly 300 protein IDs)
27

.  In 2005, LC-MS/MS data from multiple sample preparation techniques 

and protein sequence search engines for HPPP from 18 laboratories worldwide collectively 

identified 3,020 plasma proteins based on a minimum of 2-high-scoring peptides
73,267

. This number 

of protein IDs from HPPP studies was subsequently revised to 889
73,74

.  A study that used RP-

HPLC and LC-ESI-MS/MS to analyse and define the human baseline plasma proteome identified 

200 proteins
216

. More recently, protein expression profiles of human plasma proteins using  1D 

SDS-PAGE coupled with nanoLC-ESI-MS/MS in a single laboratory identified 253 proteins after 

desalting of the peptides
268

. A similar approach to that used in the preceding study was considered 

attractive to be used in exploring the circulating acellular proteome of sheep. 

In this chapter, nanoLC-nanoESI-MS/MS was used to analyse peptide samples derived from 

healthy sheep following 1D SDS-PAGE and in-solution digestion. 

4.3 Methods 

4.3.1 Animal care, sample collection, storage and preparation 

Serum samples of  approximately 2 year-old healthy adult female Merino sheep (n=6) with ear tag 

identification numbers 473, 413, 463, 471, 476 and 478 belonging to an experimental colony at 

QUT and the Australian Red Cross Blood Service (ARCBS) were obtained for the development and 

optimisation of a comprehensive proteomic approach for interrogating the circulating acellular 

proteome. The sheep were reared according to established standard operating procedures, described 

elsewhere
10

, in order to minimise variables that are known to modify the proteome such as breed, 

and physiological status for example stress, season, lactation, nutrition, health, pregnancy and 

oestrus status. Sample aliquots of 500 µL were stored in 1.5 mL Eppendorf tubes at -80 °C at the 

ARCBS, Brisbane. The samples were transferred to the wet laboratory at the Molecular Genetics 

Research Facility (MGRF) within Central Analytical Research Facility (CARF), QUT for 

processing. Processed samples were analysed at the Proteomics and Small Molecule Mass 

Spectrometry laboratory at CARF, QUT. 



42 

 

4.3.2 Experimental layout and data collection 

In order to characterise the serum proteome of sheep, two universal sample preparation strategies 

described in Chapter 3 for shotgun proteome analysis were employed in three paired sets of 

experiments (first, second and third), using in-gel (1D SDS-PAGE) and in-solution protein 

digestion of serum samples. This was followed by peptide analysis by nanoLC-nanoESI-MS/MS.  

4.3.2.1 1D SDS-PAGE of normal sheep serum workflow 

As a pilot study, an acetone precipitated serum sample obtained from one sheep (Sheep ID 473) was 

processed and subjected to 1D SDS-PAGE to ascertain the feasibility of obtaining protein 

identification data as a basis for constructing a peptide spectral library in future (first in-gel 

digestion). In order to determine the optimum amount of serum protein to load, 2, 10 and 22 µg of 

protein were run in separate wells of the same gel. To determine the amount of protein that needed 

to be loaded on a gel for protein bands to be visualised after using EZ-Run protein stain, 250, 500 

and 2500 fmol of bovine serum albumin (BSA) protein were loaded in separate wells of another gel 

and run. 

In order to increase the protein coverage, a fraction of acetone precipitated serum sample from 

Sheep ID 473 was subjected to 1D SDS-PAGE in two gels run concurrently (second in-gel 

digestion). One gel was loaded with 50 µg and 100 µg of protein in adjacent lanes and the second 

gel was also loaded with 50 µg, 100 µg and 50 µg in adjacent lanes.  

In all the 1D SDS-PAGE experiments above (first and second in-gel digestions), individual gel 

lanes were cut out and divided into 12 portions in a ladder-like fashion and individually digested so 

that the sum total of the proteins in the sample were submitted for analysis, even portions of gel that 

did not appear to contain proteins. This approach enabled the analysis of the entire proteome spread 

over a larger number of injections onto the MS instrument. 

In order to determine the effect of the quantity of protein loaded, acetone precipitation and a 

protease inhibitor on protein coverage, pooled serum  samples from six healthy sheep (Sheep IDs 

413, 463, 471,473, 476 and 478) were processed and subjected to 1D SDS-PAGE in three gels 

(third in-gel digestion). The samples utilised consisted of crude protein (200 µg and 100 µg) in one 

gel with each lane cut out and divided into 6 portions and individually digested. One lane in a 

second gel loaded with 100 µg of crude serum with a protease inhibitor had 6 portions of gel cut 

and digested, another lane loaded with 100 µg of acetone precipitated serum protein with a protease 

inhibitor had 12 portions of gel cut and digested and a third lane loaded with 100 µg of crude serum 

without a protease inhibitor had 6 portions of gel cut and digested. A third gel was loaded and run 

identically as the second gel; the first lane loaded with 100 µg of crude serum with a protease 
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inhibitor had 14 portions of gel cut and digested, the second lane loaded with 100 µg of acetone 

precipitated serum protein had 12 portions of gel cut and digested and a third lane loaded with 100 

µg of crude serum without a protease inhibitor had 6 portions of gel cut and digested. 

4.3.2.2 In-solution digestion of sheep serum workflow 

As a pilot study, 10 µg of acetone precipitated serum sample obtained from one sheep was 

subjected to in-solution digestion to ascertain the feasibility of obtaining protein identification data 

as a basis for protein quantitation in future (first in-solution digestion). In order to determine the 

effect of using unfractionated sample on protein coverage, a fraction of 20 µg of crude serum 

sample from the sheep used in the first in-gel digestion was subjected to in-solution digestion and 

analysed (second in-solution digestion). A third experiment utilised 100 µg of pooled crude serum 

samples from all six sheep (Sheep IDs 473, 413, 463, 471, 476 and 478) for in-solution digestion in 

order to determine the effect of using a higher quantity of protein substrate on protein coverage 

(third in-solution digestion). 

4.3.3 Data archiving 

The mass spectrometry data along with the identification results were deposited to 

ProteomeXchange Consortium
231

 via the proteomics identifications (PRIDE) partner repository
269

 

with the dataset identifiers PXD004989 and DOI: 10.6019/PXD004989. The URL is 

https://www.ebi.ac.uk/pride/archive/projects/PXD004989 and can be accessed with username 

reviewer99399@ebi.ac.uk and password QBFFTGzl.  

4.4 Results 

4.4.1 1D SDS-PAGE 

The results of the first, second and third in-gel digestion workflows are presented in Figures 4.0, 4.1 

and 4.2, respectively. The details of the individual gels are provided in the figure captions. Except 

for Gel B in Figure 4.0, the protein sample lanes of all the other gels were subjected to in-gel 

digestion followed by nanoLC-nanoESI-MS/MS to identify proteins. Protein IDs were obtained 

using ProteinPilot™ to search a UniProtKB composite database of Ovis aries, Bos taurus and 

Capra hircus with a results quality of FDR ≤1%; ≥ 2 peptides for a protein to be considered  

confidently identified as the highest scoring member of the protein group. The Pro Group™ 

Algorithm in ProteinPilot™ assigned one protein the best confidence possible (unused score) 

among protein isoforms, which enabled protein subset differentiation, as well the suppression of 

false positives for protein-grouping analysis
270

. The results were therefore based on protein group 

identifications presented as protein identifications (IDs). 
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↑. Gel A ↑. Gel B 

Figure 4.0. Coomassie-stained 1D SDS-PAGE gels used in first in-gel digestion. Fractions of 

acetone precipitated serum protein from one healthy sheep (Sheep ID 473)  were loaded alongside 

bovine serum albumin (BSA) in Gel A. Gel A suffered a handling artefact to the top right corner of 

the gel. The leftmost well of both gels were loaded with 4 µL of a protein molecular weight 

standard (Precision Plus Protein™ Dual Xtra, Bio-Rad Laboratories). One well in Gel A was loaded 

with 500 fm of BSA standard; other three wells were loaded with 22 µg, 10 µg and 2 µg each of 

sheep serum protein sample, that yielded 120, 19 and 41 protein identifications, respectively. After 

the molecular weight standard, other three in Gel B were loaded with 500 fm, 2500 fm and 250 fm 

each of BSA standard. Arrows show BSA standard. Key: kD = kiloDalton; BSA= bovine serum 

albumin; sheep SP= serum protein; ug=µg; MWt= Molecular weight marker fm=fmol.  

 

  

↑. Gel A ↑. Gel B 

↑. Figure 4.1. Coomassie-stained 1D SDS-PAGE gels used in the second in-gel digestion. Fractions 

of acetone precipitated sheep serum protein samples from one healthy sheep (Sheep ID 473) were 

used. One well in Gel A was loaded with BSA standard (arrow); two other wells had 100 µg and 50 

µg of protein each that yielded 151 and 127 protein IDs, respectively. Three wells in Gel B were 

loaded with 50 µg, 100 µg and 50 µg each of protein that yielded 144, 156 and 141 protein IDs, 

respectively. Key: kD = kiloDalton; BSA= bovine serum albumin; sheep SP = serum protein; ug = 

µg; MWt = Molecular weight; fm = fmol.  The arrow in gel A points at the BSA standard band.  
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↑. Gel A ↑. Gel B ↑. Gel C 

Figure 4.2. Coomassie-stained 1D SDS-PAGE gels used for the third in-gel digestion. Fractions of 

pooled serum protein samples from six healthy sheep were used. Gel A was loaded with 200 µg 

and 100 µg of crude serum separately yielding 40 and 38 protein IDs, respectively. Gels B and C 

were loaded identically with three-100 µg of serum protein that were treated as follows: one well 

had crude serum with a protease inhibitor (SP 100 µg+Pi), the second had acetone precipitated 

serum and a protease inhibitor (SP 100 µg+Pi+Ac) and the third had crude serum only (SP 100 

µg), each category yielded 162, 143 and 114 protein IDs, respectively. Key: kD = kiloDalton; 

BSA= bovine serum albumin (white arrow); sheep SP= serum protein; ug = µg; MWt = Molecular 

weight; fm = fmol; Ac = acetone precipitated serum; Pi = protease inhibitor (cOmplete™, Roche). 

The protein ID results of the first, second and third in-gel and in-solution digestions are summarised 

in Table 4.0. The Pro Group™ Algorithm in ProteinPilot™
 
assigned one protein the best confidence 

possible (unused confidence) among protein isoforms, which enabled protein subset differentiation, 

reduction of redundant protein IDs as well the suppression of false positives for protein-grouping 

analysis
270

. The results were therefore based on protein group identifications presented as protein 

identifications (IDs).  

In the present set of experiments, proteins were identified by using peptide signatures to search 

custom-built protein sequence databases. Protein ID confidence was determined by the number of 

proteins that were assuredly accepted as correct, having been identified by two or more high-

scoring peptides
271,272

. Overall, a total of 267 confident and unique protein groups were identified 

using ProteinPilot™ by searching a composite UniProtKB database after combining all the three in-

gel digestion workflows (first, second and third in-gel digestions)  from a total quantity of  1,284 µg 

of serum protein obtained from six healthy sheep. The UniProtKB entries for the identified proteins 

are presented in Appendix 4.0.  
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Table 4.0. The number of proteins identified by ProteinPilot™ Software from in-gel and in-

solution digestion of healthy sheep serum samples by searching a composite database. 

Experiment → First digestion Second digestion Third digestion 

Digestion type 

 

In-gel In-sol In-gel In-sol In-gel In-sol 

Serum protein source Ac Ac Ac Crude Ac + Crude Crude 

Total quantity of 

protein analysed  

34 µg 10 µg 350 µg 20 µg 900 µg 100 µg 

Number of protein 

IDs 

120 25 241 100 182 32 

Key: In-sol = In-solution; Ac = Acetone precipitated; IDs = Identifications  

4.4.2 In-solution digestion 

A composite ProteinPilot™ search of all the three in-solution digestion workflow samples 

comprising of 130 µg of serum protein yielded a total of 102 protein IDs. The UniProtKB entries 

for these proteins are presented in Appendix 4.1. 

A comparison between the protein ID list derived from combined first, second and third in-gel 

digestion (in-gel digestion workflow) and  that of  combined first, second and third in-solution 

digestion (in-solution digestion workflow) in BioVenn Software
252

 which collectively yielded 284 

protein IDs is presented in Figure 4.3. The UniProtKB entries of the 17 proteins that were exclusive 

to the in-solution digestion workflow (i.e. proteins were not detected by in-gel workflow) are 

A0A0F6QNP7, W5PSQ7, W5QH45, W5NQW9, G5E604, W5PZF0, W5NWX6, Q1KZF3, 

W5PJZ2, W5QDP8, W5PDR7, W5PN97, W5PXI6, F1N3Q7, C6ZP49, G3N346 and Q3SYR8. 

A combined ProteinPilot search of the pilot data from one sheep and the additional data from five 

sheep for both in-gel and in-solution digestion workflows using a composite Ovis aries, Bos taurus 

and Capra hircus database yielded an overall outcome of 274 protein IDs. Based on comparison 

with previous studies and protein database resources
17,20,110,111,189,263,264,273-280

, there were 67 known, 

207 novel and 83 disease-associated serum proteins identified using this composite database whose 

UniProtKB entries are presented in Appendix 4.2, Appendix 4.3 and Appendix 4.4, respectively. 

The known proteins are those that have been cited in the literature and also have a confirmed status 

in UniProtKB. Novel proteins constitute those that previously appeared as predicted and proteins 
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that had hitherto been inferred by homology. Disease-associated proteins refer to proteins that are 

expressed or alter during pathology in sheep and other species. 

 

 

Figure 4.3. Comparison of lists of 

protein identifications (IDs) derived from 

in-solution versus in-gel digestion using 

BioVenn Software. Protein 

identifications were made by searching a 

composite database of Bos taurus, Ovis 

aries and Capra hircus using 

ProteinPilot™ Software. Only 17 protein 

IDs were exclusive to the in-solution 

workflow compared to 182 protein IDs 

exclusive to in-gel workflow. 

4.4.3 Combined protein identifications from 1D SDS-PAGE and in-solution digestion of serum 

using ProteinPilot™ and Mascot database search engines and PeptideShaker search 

Protein yields from a composite search of all the sample data from the three workflows (first, 

second and third in-gel and in-solution digestion) using a sheep-only UniProtKB database were as 

follows: ProteinPilot: 245 IDs; Mascot: 379 IDs and PeptideShaker: 133 IDs. Again, based on 

comparison with previous studies and protein database resources
17,20,110,111,189,263,264,273-280

,  and 

using  the 379 Mascot protein IDs, there were 77 known, 302 novel and 83 disease-associated 

serum proteins identified using this sheep only database as listed in Appendix 4.5, 4.6 and 4.7, 

respectively. 

The 379 protein IDs from Mascot search were used as a benchmark for further downstream 

analysis. Every sheep protein ID made in Mascot was mapped to a distinct gene. Of all the 379 

protein IDs made by searching the sheep only UniProtKB database, only 70 proteins had been 

annotated based on sequence similarity to other species, whilst 305 proteins were uncharacterised.  

Of the 70 annotated proteins, only annexin A2 (P14639), serum albumin (P12303),  transthyretin 

(B3SV56), nuclear receptor subfamily 1 group D member 1 (A2SW69) and insulin-like growth 

factor-binding protein 2a (Q29400) had been reviewed and therefore included in the Swiss-Prot 

subset of UniProtKB.  The unreviewed, but named proteins are presented in Table 4.1. 
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Table 4.1. Unreviewed but named proteins in UniProtKB identified in serum of healthy sheep   

14-3-3 Protein sigma Gelsolin isoform B 

Adaptor protein complex subunit beta Glutathione peroxidase 

Adenylyl cyclase-associated protein Glyceraldehyde-3-phosphate dehydrogenase 

Adiponectin Growth hormone receptor variant h 

Alpha-1-acid glycoprotein Histone H2a 

Alpha-1-antitrypsin transcript variant 1 Histone H2b 

Alpha-2-HS-glycoprotein Histone H3 

Alpha-mannosidase Histone H4 

Amine oxidase Importin subunit alpha 

Angiotensinogen Large tumour suppressor-like 1 protein 

Antithrombin-III L-Lactate dehydrogenase 

Apolipoprotein E MHC Class II antigen 

Arginase Monocyte differentiation antigen cd14 

Aspartate aminotransferase Olfactory receptor 

Beta-a globin chain Oxysterol-binding protein 

Carbonic anhydrase 2 Pentaxin (pentraxin) 

Carboxypeptidase Peptidyl-prolyl cis-trans isomerase (PPIase) 

Centromere protein C Phosphodiesterase 

Ceruloplasmin Plasminogen 

CGMP-dependent protein kinase Polypeptide N-acetylgalactosaminyltransferase 

Chitinase-3-like protein 1 Proteasome subunit alpha type 

Clusterin Proteasome subunit beta type 

Coagulation factor IX Protein-serine/threonine kinase 

Condensin complex subunit 2 Protein-tyrosine-phosphatase 

Conglutinin 1 Prothrombin 

Corneodesmosome protein Superoxide dismutase [Cu-Zn] 

C-X-C motif chemokine Thyroxine-binding globulin 

Dipeptidase Transaldolase 

DNA polymerase Tubulin alpha chain 

Factor H Tubulin beta chain 

Fibrinogen alpha chain Uricase 

Fibulin-1 VH region chain 

Fructose-1,6-bisphosphatase 1  
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4.4.4 GO-term analysis of proteins identified in serum of healthy sheep   

The 379 proteins identified by a composite Mascot search of the first, second and third in-gel and 

in-solution digestion of serum proteins from healthy sheep were subjected to GO-term analysis 

using PANTHER classification tool
220

. In the PANTHER tool, the gene entries were analysed by 

aligning them to Bos taurus, as the closest organism analogous to sheep because Ovis aries entries 

were not available. The PANTHER analysis resulted into 349 bovine aligned gene entries as listed 

in Appendix 4.8. 

The results of GO-term analysis of molecular function, biological process, cellular component, 

protein class and pathway analysis of the detected proteins are provided in Figure 4.4. Looking at 

the molecular function domain of the proteins alone based on the GO-term results (Panel A), 

catalytic activity was dominant of the 264 function hits. From the protein IDs that had names, at 

least 27 of them were specifically classified as enzymes from protein database searches. It is evident 

from these results that there is a hierarchy in the biological processes of the 586 process hits (Panel 

B). The cellular component GO domain (Panel C) for serum from healthy sheep had 214 hits in 

total. The protein class GO domain (Panel D) had 386 class hits, with enzyme modulation topping 

the list. Among the 49 prominent protein pathways that were displayed in PANTHER from the 

analysed genes, 14 were represented by over 3.0% contribution to the revealed pathway pool (Panel 

E). 

4.5 Discussion and conclusion 

This chapter reports the development of a proteomics baseline profile of healthy sheep serum by 

analysing peptides derived from in-solution digestion and 1D SDS-PAGE using nanoLC-nanoESI-

MS/MS. The major outcome was that 379 proteins were identified, compared for example to 42 

proteins from serum of sheep with mild respiratory disease during peripartum period
111

 and a single 

protein (serum amyloid A) in sheep with scrapie
264

. Both of these cited earlier sheep studies used 

two dimensional (2-DE) surface enhanced laser desorption/ionisation time of flight mass 

spectrometry (SELDI-TOF MS) and LC-MS/MS.  
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Figure 4.4. Gene Ontology (GO) and pathway analysis of Mascot protein IDs in healthy sheep 

serum. The GO – term domains are: A–molecular function, B–biological function, C– cellular 

component, and D–protein class. E–pathway analysis. 
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In species other than sheep, for example in various studies that analysed human sera, up to 490
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, 
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proteins were identified using multidimensional separation coupled with MS. This suggests that 

with improved sample fractionation and adequate protein sequence database resources, there is 

scope to identify more proteins in the circulating proteome of sheep. There is also a report that 

assessed three different lots of foetal bovine serum by NanoLC-MS/MS analysis in which 79, 90, 

and 91 proteins were identified
281

. The preceding study recognised that there is variability in the 

protein content of different lots of foetal bovine serum – a commonly used growth medium for cell 

cultures, which affects the consistency of cell growth. The lot with a higher number of protein IDs 

was associated with higher cell growth rate
281

. Identification of these proteins is important clinically 

to determining health or altered physiology, such as stress
111

. 

The use of 1D SDS-PAGE in this study facilitated serum protein samples to be fractionated to 

reduce protein complexity prior to nanoLC-nanoESI-MS/MS analysis
282

. The first in-gel digestion 

experiment enabled the determination of the quantity of protein from samples and the amount of the 

BSA standard that needed to be loaded onto the gel to ensure that protein bands were visible and 

clearly defined (Figure 4.0). Loading a larger quantity of protein onto the gel was necessary to 

discover as many proteins as possible using DDA
1
. However, the 2 µg lane yielded 41 protein IDs 

in the first in-gel digestion (Figure 4.0), while the 10 µg-lane yielded 20 protein IDs and the 22 µg 

lane yielded 121 protein IDs. The 10 µg lane was analysed initially and the 2 µg and 22 µg lanes 

were analysed 6 weeks later once the extractions had been optimised and the instrument tuned.  

The second in-gel digestion (Figure 4.1) increased the protein coverage by loading more protein 

into the gel wells using a fraction of the acetone precipitated serum sample used in the 1
st
 in-gel 

digestion.  The 100 µg (2 replicates) and 50 µg (3 replicates) protein loads in the 2
nd

 in-gel 

digestion workflow yielded comparable numbers of protein IDs for each of the loaded quantity of 

protein. This suggests that reproducibility of the amount of protein loaded into the gel lanes had 

been achieved
282

.  The second in-gel digestion was an improvement of the 1st in-gel digestion by 

having replicates and having increased quantities of loaded protein per lane, using the same serum 

sample of 1st in-gel digestion from Sheep ID 473. 

The 1D SDS-PAGE preparation of one gel in the third in-gel digestion had a number of visual 

artefacts (Figure 4.2). The distortion in the 10-15kD region of Gel A could have been attributed to a 

defect in the gel possibly due to inconsistency in gel polymerisation creating artefact bands
117

, 

overloading and/or the presence of a pocket between the gel and the cassette housing that allowed 

the protein samples to leak out the gel
283

. This could have also contributed to the low number of 

protein yields made from this gel, compared to the 100 µg × 2 lanes in Gels B and C.  This could  
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be because considerably less protein was extracted from the gels in some samples than others. A 

couple of variables were also introduced in this experiment, in addition to the quantity of proteins 

loaded on to the gel wells as planned. The analysis of fractionated crude serum that had a protease 

inhibitor yielded a higher number of protein IDs, compared to the acetone precipitated sample that 

also had a protease inhibitor. This suggests that a considerable number of proteins were present in 

the acetone precipitation supernatant that was discarded. The discardment of the supernatant from 

acetone precipitation is a routine practice during generic or universal sample preparation for 

proteomic analysis
24

.  

As for the in-solution digestion workflow, the number of protein identifications from analysing 100 

µg of crude serum protein was low when compared with 20 µg. The sample for the first in-solution 

digestion using 10 µg of acetone precipitated serum that was drawn from one healthy pilot sheep  

yielded even a lower number of protein IDs. This sample was prepared and analysed at the same 

time as the 10 µg sample of the first in-gel digestion discussed earlier. Protein detection was 

therefore likely to have been affected by unoptimised experimental processes at the time prior to 

running on the MS instrument. The number of protein IDs from second in-solution digestion using 

20 µg of crude serum from the same sheep was considered substantial and comparable to those of 

other studies
77,79,96,100,102,105,111,113

. Unexpectedly however, the third in-solution that utilised 100 µg 

of pooled crude serum from six sheep under the same experimental conditions much lower yield of 

protein IDs. It is thought that this result was possibly due to the inhibition of trypsin by the presence 

of intravenous agents in the pooled sample from the anaesthetic cocktail used to anaesthetise the 

sheep, as this was not the case with the pilot sheep sample in which the sheep was not anaesthetised 

during sample collection. 

BioVenn Software
252

 was utilised for visualisation of the data presented in Figure 4.3. This tool 

enabled the comparison of a protein identification list derived from in-gel digestion with that from 

in-solution digestion by displaying the data in an area-proportional Venn diagram. It showed protein 

IDs that were exclusive to in-solution and in-gel, and those common between the two digestions.  

Of the 17 protein IDs that were exclusive to in-solution digestion workflow, five were mapped to 

the ox, two to the goat and the remaining 10 IDs were for sheep. Despite having known genes, the 

vast majority of the identified proteins were either uncharacterised or unreviewed in UniProtKB. 

Another interesting observation was that the combined list of 284 protein IDs from in-gel and in-

solution digestion displayed in BioVenn Software was marginally higher than the 274 IDs from a 

composite ProteinPilot™ search of the same datasets. It is likely that the subsequent composite 

ProteinPilot™ search helped to further group proteins, thereby improving the confidence of protein 

IDs by minimising false protein identifications – a known challenge when searching a multi-species 
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protein database to identify proteins. 

The data showed different numbers of protein identifications from different samples which was not 

entirely unexpected as repeat injections of the same sample will give slightly different results every 

time due to the stochastic nature of the peak picking process. In that sense, the individual data 

presented may have not been adequetly useful. It can be argued that perhaps not enough 

experiments were performed to judge the true variability of the different sample preparation 

methods, given the potential variability of the acquisitions. It is necessary to point out the level of 

potential variability here, since this could prove critical in Chapter 7 that deals with label-free 

quantitation. On the other hand, repeat injections are not necessarily considered critical for the 

purposes of constructing a spectral library, given the inherent stochastic nature of the peak picking 

process of DDA experiments. Nevertheless, prior to conducting the experiments serious attempts 

were made to assess how reproducible sample preparation and data acquisition were, in particular 

from in-solution digests of BSA standards and replicate analyses of  ß-galactosidase from E. coli for 

in-house quality control of the instrument. This was done in order to assess the satisfactory 

reproducibility of repeat injections of individual samples (data not shown). 

The comparatively conservative number of protein IDs made by PeptideShaker search is because 

the protein entries were identified using only validated unique peptides. This stringent feature of 

using only unique peptides for protein identification is not readily obvious in either ProteinPilot™ 

or Mascot in a user-friendly manner, whose protein ID entries were based on at least two high-

scoring peptides per protein only, on the assumption that the peptides were unique to the protein. 

For this reason, PeptideShaker was selected as the most appropriate protein ID validation software 

that was used for the ultimate construction of the PSL of the circulating acellular proteome of sheep 

in Chapter 6. 

In this preliminary study however, the results from Mascot search were embraced and utilised for 

further analysis because this software platform has been used in previous studies on sheep
111

 and it 

is widely used by the proteomics community. Mascot software is considered the industry standard, 

because it implements a vast array of applications necessary for protein identification
284

. As of 

September, 2016, the 379 protein IDs complete with UniProtKB accessions was probably the 

highest number of sheep serum proteins to date using nanoLC-nanoESI-MS/MS. This study can 

therefore be considered the first to provide a comprehensive MS/MS protein sequence data of serum 

proteins of normal sheep and by contributing to the efforts of annotating genes and charactering 

sheep proteins. Despite most of the protein IDs not being characterised in UniProtKB, their 

mapping to known genes and the available mass spectrometry-derived peptide sequence data 

alongside verification on more than one software platforms, constitute strong supportive evidence 
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that the identified proteins do exist.  The downside of the Mascot search is that it does not provide a 

user-friendly protein sequence output that can be readily tabulated as in the case of ProteinPilot™ 

IDs. For this reason, only protein names and UniProtKB entries were utilised mostly for the 

purposes the present study. The different search engines produced different results by searching the 

same database possibly because of the disparate manner in how their algorithms work. In addition, 

the sheep genome has not been fully defined compared to that of humans or mice by which these 

software programs were benchmarked upon.  

Regarding GO-term analysis, the significance of many of the enzymes that dominated catalytic 

activity in the molecular function domain (Figure 4.4 A), remains to be documented in sheep, but 

the functions of some are known. For example, adenylyl cyclase-associated protein regulates cofilin 

function, the actin cytoskeleton, and cell adhesion
285

. Alpha-mannosidase participates in 

glycoprotein synthesis and endoplasmic reticulum quality control
286

. It has been reported to be 

downregulated in locoweed (Oxytropis sericea) in sheep
287,288

, for example. The functions of other 

identified enzymes drawn from
189,289-318

 are provided in Appendix 4.9.  

Serum samples of healthy adult female Merino sheep were utilised for this chapter. It is quite 

possible that a relatively low representation of the growth process domain in the biological process 

GO-term was because the serum samples were derived from adult sheep. Also, the cellular 

component fractions could possibly vary depending on the physiological status of the sheep – which 

remains yet to be determined and documented. It can be argued that hormonal changes and the 

influence of age contribute to observations of serum proteome profiles and this should be accounted 

for. For instance, studies in sheep have shown that diurnal variations in metabolic and stress-

responsive hormones do occur
319

.  

In the present study, there were mechanisms in place to mitigate the effects of stress on the 

laboratory sheep. The sheep were reared together and acclimatised to their housing and handling by 

people as a standard management practice prior to blood sampling
10,15

. Also, there was no variation 

in calorie intake because feed was supplemented as required
10,15

 in order to mitigate the well-

established phenomenon of seasonal weight loss – a well-established major nutritional stress factor 

in sheep
320

. During agistment, there were wethers that belonged to other experiments of the research 

group, but there were no entire males to cause ‘ram effect’ that could have caused surges in 

reproductive hormones
321

, for example. Nevertheless, gonadotropic activity would have occurred 

naturally in the ewes to cause hormonal changes
322

, perhaps even with a synchronised 

hypothalamic-pituitary-ovarian axis in all the ewes, as this phenomenon is known to occur 

naturally
323

. All the sheep were approximately 2 years old and were therefore, practically in the 

same metabolic and physiological state during blood sampling. Also, the sheep belonged to an 
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ovine model of blood transfusion
14

, so most preventable adverse attributes had been catered for. 

It can be argued that it would have been better to apply the GO classification to the larger data set 

presented later in the thesis, rather than to the relatively smaller number of identifications in this 

chapter. On the contrary however, this prototype study is discrete in that it contains only protein 

identifications derived from analysing serum of healthy sheep. This can be considered to represent 

the baseline proteome. Later datasets contain protein IDs derived from analysing both serum and 

plasma, and also include data from naturally ill sheep and sheep with experimentally induced 

endotoxaemia, which would make it difficult to separately evaluate the GO classification profiles of 

protein IDs derived only from healthy individuals.  

The knowledge from this prototype study has illuminated a considerable number of bovine-aligned 

gene entries associated with protein pathways that can be valuably exploited by animal model 

studies using sheep serum as their analyte. A downside of the present study is that no males were 

represented in the dataset. Future studies should take into account hormonal changes and be gender 

and age inclusive in order to capture broad aspects of the proteome that could have been missed. 

Secondly, all of the experiments were DDA discovery experiments of single injections using 90 min 

(1.5 h) LC gradients. It can be argued that this may not have given optimal analytical depth, but it 

was adequate for feasibility studies to enable the construction of a peptide spectral library and the 

best match for the SWATH experiments that are detailed in Chapter 7. As long as method 

optimisation processes have been accomplished, there is no contraindication for not using single 

injections for building a spectral library.  A longer LC gradient would have allowed for gaining a 

deep analysis of protein samples. However, from other published studies using the SCIEX 

workflow as in this thesis, a 90 min gradient has been popularly used, especially when building 

spectral libraries to be used by SWATH on the same instrument. And also, a longer LC gradient can 

be a very slow process, given how SWATH works. In future, a longer gradient and the use of repeat 

injections with exclusion lists should be included in the methods. 

Thirdly in hindsight, if the analysis and discussion provided scope for inclusion of information on 

the number of individual peptides identified and the % of MS/MS spectra that led to peptide 

identifications, then the true value of this data and its analysis would be apparent in order to provide 

opportunities for further future method optimisation. These data can be mined to provide much 

greater detail on how efficient the acquisition process was and add some interesting discussion 

points. For example, information on the width of the chromatography peaks is useful and can be 

obtained from XIC of the MS survey scan. It would have been ideal to provide a more detailed 

comparison of the results, for example which proteins were common to which search engines, how 

many individual peptides were identified per protein. The downside of this is that presenting these 
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data here would exceed the word count requirements for this thesis. Nevertheless, this information 

is publicly available at https://tinyurl.com/y7697fde and can also be accessed and have the analysis 

reproduced from the PRIDE archive link provided in the methods section as per the recommended 

publication norms of proteomics datasets. 

In conclusion, this chapter has demonstrated for the first time that it is feasible to identify several 

hundred sheep serum proteins using a traditional sample preparation approach followed by nanoLC-

nanoESI-MS/MS analysis. By utilising the PANTHER tool, this serum-derived prototype of the 

ovine circulating acellular proteome revealed the association of 349 genes with 127 protein pathway 

hits. When used with protein quantitative data that includes plasma samples, these findings have the 

potential to be applied as the foundation for establishing the baseline normal ovine serum proteome 

for comparison with samples from sick sheep. Following on in Chapter 5 are descriptions of plasma 

and serum sample preparation methods that enhance peptide extraction and improve protein 

identifications.  

  

https://tinyurl.com/y7697fde
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CHAPTER 5 

5.0 Strategies for enhancing peptide extraction from the liquid fraction of sheep blood for 

protein identification by nanoLC-nanoESI-MS/MS analysis 

5.1 Abstract 

Separation of proteins in a plasma or serum sample is a critical component of comprehensive 

proteomic analysis. In this chapter, several approaches to separating proteins were investigated. The 

protein yields from using plasma or serum as the analyte protein sample source were also compared. 

The protein fractionation techniques used included comprehensive acetone precipitation, partial 

organic precipitation with ACN, combinatorial peptide ligand library protein enrichment and off-gel 

fractionation. All fractionated samples were also subjected to 1D SDS-PAGE. 

The protein fractions from the samples were then subjected to shotgun proteomics analysis and the 

resulting proteins were identified, as previously described in Chapter 3. Using Mascot IDs as the 

standard, combinatorial peptide ligand library protein enrichment yielded the most protein IDs, 439, 

which represented 207 additional protein IDs to those from undepleted samples. ACN precipitation 

workflow resulted in 376 protein IDs, with plasma contributing the highest number of exclusive 

protein IDs. Acetone precipitation yielded 136 protein IDs, with serum fractions yielding a higher 

number of protein IDs than plasma did. The least sensitive standalone technique was off-gel 

fractionation, which yielded 84 protein IDs, compared to 55 protein IDs from unfractionated serum.  

These results represent the first comprehensive comparative analysis of various protein sample 

fractionation techniques for separation of proteins from the liquid fraction of sheep blood. 

Combinatorial peptide ligand library protein enrichment of plasma and serum samples was 

associated with the highest number of protein ID yields. 

5.2 Introduction 

Protein-level fractionation prior to subsequent separation using chromatography and analysis of the 

resulting tryptic peptides is a well-recognised strategy to enhance protein ID yields in shotgun 

proteomics workflows
67,116,324-327

. This chapter describes four protein sample preparation strategies 

to enhance peptide extraction from protein samples derived from the liquid fraction (the circulating 

acellular proteome) of sheep blood for protein identification, in addition to 1D SDS-PAGE. The 

paragraphs that follow provide some background to the application of these strategies.  

Acetone precipitation of proteins in solution is a commonly used procedure to fractionate plasma 

and serum analytes prior to proteomic investigations
328

. Like other organic solvents, acetone causes 

precipitation through hydrophobic aggregation, by changing the solvation of the protein with 
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water
23

. The efficiency of any precipitating agent depends on the physicochemical characteristics of 

the protein
329

. In most cases, the supernatant fraction after precipitation is seldom required and is 

discarded
330

. The precipitate, containing concentrated proteins, is retained to be used for 

downstream proteomic analysis. It is therefore noteworthy that only a few previous studies have 

examined the usually discarded supernatant fraction
330

. As an aim of the present study, then, the 

comprehensive analysis of fractions of acetone-precipitated sheep plasma and serum would provide 

new insights into the evaluation of the efficiency of acetone precipitation. There is a downside to 

acetone precipitation in that it has been known to modify certain peptides that become evident after 

subsequent proteolysis of the precipitate fraction, which could compromise proteomics outcomes
331

. 

In addition, depending on the structure of individual proteins, precipitation is known to alter the 

protein composition of samples
329

. The intent to explore in detail what might still be left in the 

supernatant was a nested aim within the broader aim of examining the acetone-precipitation 

technique in comparison with other techniques.  

Partial organic precipitation of proteins using ACN
332-336

, followed by analysis of both fractions, is 

an innovative approach used to increase acellular circulating proteome coverage via a pseudo-

depletion strategy of the most abundant proteins
337

. This approach is attractive because optimised 

ovine antibody-based protein depletion kits are still difficult to source. For instance, the ACN 

precipitation workflow of the method previously described by Mostovenko et al.
337

 and that of 

Bluemlein and Ralser
338

, which evaluated the effects of pH and protein concentration in human 

plasma samples resulting in substantial protein yields, could be used to explore samples from sheep. 

In one of the previous studies
337

, a higher number of protein IDs was achieved following ACN 

precipitation at a pH of 5. A higher pH of 9 was not associated with any benefit with respect to 

depletion of abundant proteins, with the added disadvantage that the pellets were difficult to 

resuspend
337

. By adapting these earlier studies
337,338

, it would be possible to ensure a deeper 

coverage of the circulating acellular proteome of sheep in the present study. 

On the basis of recent studies, combinatorial peptide ligand library protein enrichment 

(commercially available as the ProteoMiner™ kit) is poised to become a promising and vital 

inclusion in sample preparation workflows for proteomic analysis
56,72,80,339

. Although there are 

many studies of this enrichment approach performed on human plasma, its application on samples 

from blood fractions of domestic animals, especially sheep, are poorly described. In a study that 

compared ovine and bovine milk whey proteomes by MS analysis, the use of ProteoMiner™ 

enrichment resulted in increased proteome coverage, in comparison to undepleted samples
339

. As an 

aim of this chapter, it was considered necessary to evaluate the effect of depletion of highly 

abundant proteins in the circulating acellular proteome of sheep using ProteoMiner™, prior to 
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nanoLC-nanoESI-MS/MS analysis. 

Another approach to protein separation is off-gel fractionation (isoelectric focussing)
340

. This is a 

composite of in-gel and in-solution methods of protein sample separation, whereby proteins are not 

trapped in-gel, but are recovered in solution before downstream analysis, such as mass 

spectrometry
116,340

. In principle, this method takes advantage of an immobilised pH gradient strip, 

together with a pI gradient, for analyte separation
116

. This approach has been widely used in 

fractionating human peptide samples
341

 and in proteins
116,340

. The method has been suggested as 

suitable for discovery protein analysis of human plasma
340

 and has been used, for example, in a 

study that compared an animal cell lysate and its tryptic peptide digests
342

. The use of off-gel 

fractionation has recently been reported in the sample preparation of meat products
343

 and sheep 

milk whey
339

, but reports on its use on the liquid fraction of blood are not available. Moreover, 

except for one report detailing its use on protein analysis of buffalo and goat meat
344

, the inclusion 

of 1D SDS-PAGE in off-gel workflows is not commonly described in the literature. One 

experiment in this chapter aimed to apply off-gel fractionation to undigested sheep serum and to 

subject the fractions to 1D SDS-PAGE, with a view to increasing protein coverage and to visualise 

protein bands from the fractions. 

In light of the preceding context, a set of experiments was carried out that used four different 

protein fractionation approaches applied across several hundred samples, aiming collectively to 

ensure comprehensive proteome coverage and compare their protein yields.  

5.3 Methods 

5.3.1 A comprehensive analysis of fractions of acetone-precipitated sheep plasma and serum 

Freshly collected pooled plasma in acid citrate dextrose
345,346

 and serum samples from 20 healthy 

adult sheep were obtained from Serum Australis Pty Ltd under refrigeration conditions at 4
o
C 

(Table 5.0). In order to characterise proteins, the crude analytes (untreated plasma and serum), 

acetone precipitates and supernatant fractions of plasma and serum samples were subjected to 1D 

SDS-PAGE (for protein band visualisation only – these gels were not submitted for MS analysis) 

and in-solution digestion (for protein analysis), as described in the generic methods in Chapter 3. A 

separate precast gel was used for plasma and serum 1D SDS-PAGE workflow (Figure 5.0). Proteins 

from the in-solution acetone-precipitation workflow were identified using ProteinPilot™ software 

by searching a composite (sheep, ox and goat) NCBI database in the first instance. This was done 

for comparative purposes only to benefit investigators who prefer performing searches using the 

NCBI database. Proteins were then definitively identified using ProteinPilot, Mascot and 

PeptideShaker, by searching a sheep-only UniProtKB database for inclusion in the PSL. 
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Table 5.0. Details of healthy adult sheep that provided plasma and serum samples obtained 

from Serum Australis (SA). 

No. Sheep ID Sex Body Weight No. Sheep ID Sex Body Weight 

 Plasma Serum 

1 30 Male 70 kg 11 147 Male 70 kg 

2 20 Male 65 kg 12 133 Female 70 kg 

3 186 Male 65 kg 13 117 Female 65 kg 

4 162 Female 60 kg 14 92 Male 70 kg 

5 127 Female 60 kg 15 NT Male 70 kg 

6 22 Male 60 kg 16 50 Female 65 kg 

7 123 Female 65 kg 17 198 Male 60 kg 

8 135 Female 65 kg 18 128 Female 60 kg 

9 119 Female 65 kg 19 184 Male 60 kg 

10 107 Female 60 kg 20 137 Female 65 kg 

5.3.2 A comprehensive analysis of fractions of partial organic precipitation of sheep plasma 

and serum proteins using acetonitrile 

A tripartite experiment was designed to determine the effect of pH, protein dilution and partial 

organic precipitation, using ACN on pooled plasma and pooled serum of healthy sheep, on protein 

ID yields (Figure 5.0). Samples (500 µL) of plasma and serum were centrifuged at 17,500 g at 4°C 

for 1 minute and then six aliquots (50 µL) were made from each of the supernatants. The pH of the 

pooled sheep serum supernatant was 7.6 (control), while that of two additional aliquots was 

adjusted to 3.3 or 8.6 by titrating with acetic acid or by adding 16 drops of 200 mM NH4HCO3 

buffer, respectively. For the pooled sheep plasma, the pH was 7.72 (control), while that of two 

additional aliquots was adjusted to 3.01 by titrating with acetic acid, and to 8.86 by adding 13 drops 

of 200 mM NH4HCO3 buffer directly to the sample aliquots, respectively. To investigate the effect 

of protein concentration on isolation and detection, three other aliquots were diluted 1:10 (v:v %) 

with 100 mM ammonium acetate buffer to achieve corresponding pHs of the plasma and serum 

workflows.  

For protein precipitation, ACN was mixed with the serum or plasma samples 1:1 (v:v %). The 

samples were vortexed vigorously three times at 1,400 g for 5 seconds, and then incubated for 10 

minutes on a vortexing platform at 400 g at RT. Vortexing and sonication steps were repeated twice 

before the samples were centrifuged at 17,500 g at 4°C for 10 minutes. After precipitation, the 

supernatants were collected into 1,500 µL Eppendorf tubes. The pellets and supernatants were 
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separated and vacuum dried at 37°C in a SpeedVac Concentrator (Christ
®
 cat. No. RVC 2-33 IR). 

The dried precipitates and supernatant fractions were vigorously vortexed and sonicated in 100 μL 

and 30 μL of 6 M urea dissolved in 25 mM NH4HCO3 buffer, respectively. The protein 

concentration was then determined using the BCA protein assay method. Each sample 

corresponding to a given pH and dilution was aliquoted in 20 µg quantities in duplicate for in-gel 

digestion (a) and in-solution digestion (b), as illustrated in Figure 5.3. The samples were then 

subjected to generic 1D SDS-PAGE and in-solution digestion prior to nanoLC-nanoESI-MS/MS. 

To determine the reproducibility of the in-gel experiments and to compare ACN-precipitated 

samples under different pH conditions, 20 µg of crude serum (control) was loaded alongside 20 µg 

× 4 lanes of acetone-precipitated serum and 20 µg × 4 lanes of serum supernatant fractions in one 

gel. Similarly, 20 µg of crude plasma (control) was loaded alongside 20 µg × 4 lanes of acetone-

precipitated plasma and 20 µg × 4 lanes of plasma supernatant fractions in another gel. Both gels 

were subjected to generic 1D SDS-PAGE. 
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Figure 5.0. Experimental design for acetonitrile precipitation of proteins in serum and plasma from 

healthy sheep for in-depth proteome coverage for the PSL. Key: ACN = acetonitrile; PPT = 

precipitate; PPTion = precipitation; w/f = workflow. 



63 

 

5.3.3 Combinatorial peptide ligand library enrichment of sheep plasma and serum  

A protein enrichment kit (ProteoMiner™, Bio-Rad Laboratories) was used to prepare pooled 

samples of plasma and serum from healthy sheep according to the manufacturer’s instructions, with 

an additional adapted step for elution (Figure 5.1). Briefly, a spin column was placed in a capless 

collection tube and centrifuged at 1,000 g for 30–60 seconds to remove the storage solution 

supplied with the kit. The collected material was then discarded. The bottom cap of the column was 

replaced, followed by adding 600 μL of wash buffer. The column was rotated end-to-end several 

times over a 5-minute period. The bottom cap was removed and the column was placed in a capless 

collection tube and centrifuged at 1,000 g for 30–60 seconds to remove the buffer, followed by 

discarding the collected material. The preceding procedure was repeated up to this point, followed 

by removing the cap, placing the column in a capless collection tube and then centrifuging at 1,000 

g for 30–60 seconds to remove the wash buffer. The collected material was discarded and the 

bottom cap on the spin column was replaced. At this point, the column contained 100 μL of settled 

beads, ready for sample binding. The elution process was repeated six times before pooling the 

collected elutes for desalting and downstream analysis. One more elution cycle (bead elute) for in-

solution digestion was carried out to identify any proteins left behind by the first standard elution 

cycle. 

5.3.4 Off-gel fractionation of serum proteins 

In this set of serum sample preparation experiments, proteins were separated using the OFFGEL 

Fractionator (Agilent 3100, Agilent Technologies). All fractionation procedures used the default 24 

cm fractionation program, as described in the manufacturer’s instructions, except for the use of 

glycerol. For 24 separations, 400 μg of protein from crude serum samples SC449–SC472 (C1–C24), 

and 400 μg protein from acetone-precipitated serum samples SC473–SC496 (A1–A24) pooled from 

ten healthy sheep were brought to 3.6 mL with carrier ampholytes (GE Healthcare Life Sciences), 

in line with the manufacturer’s specifications (0.96% v/v final concentration). After the 

immobilised pH gradient strips were swollen, the samples were loaded and the wells were sealed as 

per the standard protocol. The pre-defined 24–well focussing protocol (OG24PE00) was then run 

until 60 kilovolt hours was achieved, at which time focussed proteins were held with 10 μA current. 

From each of the 24 fractions of 400 µg samples of crude (SC449-SC472) and acetone-precipitated 

serum (SC473–SC496) from the fractionator, 100 µL was subjected to in-solution digestion. Five 

microlitres of solution from each well was recovered for in-gel digestion and subsequently merged 

into two samples, SC665 (crude serum) and SC666 (acetone-precipitated serum), prior to analysis. 
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Figure 5.1. Experimental design for combinatorial peptide ligand library protein enrichment sheep 

plasma and serum prior to in-gel and in-solution digestion of proteins preceding nanoLC-nanoESI-

MS/MS. Key: GLB = gel loading buffer; vol = volume; MWt. = molecular weight; P qty = protein 

quantity; SC = investigator initials followed by sample number or batch of samples in brackets. 
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5.4 Results 

5.4.1 A comprehensive analysis of fractions of acetone-precipitated sheep plasma and serum 

5.4.1.1 1D SDS-PAGE 

Coomassie-stained 1D SDS-PAGE preparations of acetone precipitation and fractionation studies of 

plasma and serum are presented in Figure 5.2. Note the differences between precipitate and 

supernatant bands, as well as the band differences in the lower molecular mass regions between 

plasma and serum fractions. 

Representative individual gel lanes for each precipitate/supernatant fraction pairs, crude plasma and 

serum protein loadings depicted in Figure 5.2 A and B were spliced and drawn together for visual 

comparison (Figure 5.2 C). Overall, the acetone-precipitated fractions had the most intense gel 

bands. Plasma fractions had visible bands in the 10kD region (red rectangular box in APP and CP 

gel lanes) that were less obvious in the serum lanes. Acetone-precipitated serum lanes had visible 

bands in the 15 kD region (brown rectangular box in the APS gel lane) that were apparent in other 

gel lanes. The serum supernatant band was more visible in the 37kD region than was the plasma 

supernatant.  

5.4.1.2 In-solution digestion 

For protein quantification, in-gel digestion appears to affect recovery of individual peptides moreso 

than in-solution digestion
178

. For this reason, only in-solution samples of this acetone-precipitation 

workflow were further analysed for protein identification. 

5.4.1.3 Composite ox, goat and sheep NCBI protein database search results in ProteinPilot™ 

Protein IDs from the acetone-precipitation workflow are highlighted in Figure 5.3. There were 23 

out of 142 protein IDs exclusive to the serum supernatant and 16 out of 125 protein IDs exclusive to 

the plasma supernatant. Of the combined 39 protein IDs in supernatants of both plasma and serum, 

only six were common to both supernatants. Overall, the analysis of both fractions of plasma and 

serum – and their respective crude analytes – resulted in 154 protein IDs. 
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Figure 5.2. 1D SDS-PAGE preparations of acetone precipitation and fractionation studies using 

pooled serum (A) and plasma (B) samples from 20 healthy adult sheep. A comparison of gel bands 

of lanes spliced from gel (A) and gel (B) are illustrated in (C). The left-most and right-most wells of 

both gels A and B were loaded with 4 µL of a protein molecular weight standard (Precision Plus 

Protein™ Dual Xtra, Bio-Rad Laboratories). The second well from the right of each gel was loaded 

with a BSA standard (5,000 fmol). Other wells were loaded with 20 µg of protein samples each, as 

follows: Gel A – crude serum, serum precipitate of acetone × 3 replicates, and serum supernatant 

from acetone precipitation × 3 replicates; Gel B – crude plasma, plasma precipitate of acetone × 3 

replicates, and plasma supernatant from acetone precipitation × 3 replicates. KEY: MWt. = 

molecular weight marker; CS = crude serum; APS = acetone-precipitated serum; SS = supernatant 

of serum after acetone precipitation; PS = supernatant of plasma after acetone precipitation; APP = 

acetone-precipitated plasma; CP = crude plasma. 
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A B 

Figure 5.3. Protein identifications (IDs) in ProteinPilot™ software using a composite ox, goat and 

sheep NCBI protein database following acetone precipitation and analysis of both the precipitate 

and supernatant fractions of plasma and serum from healthy sheep. Substantial numbers of protein 

IDs were present in the supernatant fractions. Key: A = serum workflow; B = plasma workflow. 

5.4.1.4 UniProtKB sheep protein database search results for ProteinPilot, PeptideShaker and 

Mascot 

The results of searching a sheep-only UniProtKB database are presented in Figure 5.4. Panel A 

shows the comparison of protein IDs in crude plasma and serum with their respective acetone-

precipitated fractions using ProteinPilot, PeptideShaker and Mascot. ProteinPilot yielded the most 

protein IDs across the board, followed by Mascot and then PeptideShaker. The protein numbers 

were comparable in acetone-precipitated factions of plasma and serum, but not in supernatants. 

More proteins were identified from crude plasma than from crude serum, and this difference was 

particularly marked when PeptideShaker was used. Acetone-precipitated serum fractions yielded a 

higher number of protein IDs than did plasma, regardless of which search engine was employed. 

Protein IDs from PeptideShaker were compared (Figure 5.4 B–G). To highlight the differences, 

entries from UniProtKB are provided for protein IDs that were exclusive to individual fractions 

only. Panel B shows the results of the comparison of IDs in crude serum, crude plasma, acetone 

precipitate of serum proteins (Serum PPT), acetone precipitate of plasma proteins (Plasma PPT) and 

their respective supernatants (Serum SUP and Plasma SUP) in samples from healthy sheep. The 

entire acetone-precipitation workflow experiment yielded 105 validated protein ID hits in 

PeptideShaker, 20 of which were collectively exclusive to crude serum, Serum PPT, Plasma PPT, 

Serum SUP and Plasma SUP (Figure 5.4 B). 
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There were 60 protein IDs made from crude serum and crude plasma, with the latter yielding more 

proteins that were exclusive (Figure 5.4 C). Of these 60 IDs, 6 proteins (P68116, C8BKD1, 

W5QDP8, W5NXM1, W5QA07, B3GS77) were exclusive to crude serum and 19 (W5NQ46, 

P02075, W5PHP7, W5P812, W5Q5A6, A5YBU9, W5NUJ7, P32262, W5PHI7, W5PID9, 

F2YQ13, W5P1J8, W5PFC9, W5QH50, W5NXP3, W5Q2E1, W5PJZ1, W5PW21, W5PGT6) were 

exclusive to crude plasma. Acetone-fractionated serum yielded 91 protein IDs. Of these, 4 (4.4%) 

proteins were exclusive to the precipitate of serum and 27 (29.7%) were exclusive to the serum 

supernatant. 

Unlike for serum fractions, as described above, acetone-fractionated plasma yielded 82 IDs, with 

the supernatant yielding 20.7% unique IDs and the precipitate fraction 17.1% unique IDs (Figure 

5.4 E). A comparison of the acetone precipitates of plasma and serum resulted in comparable 

numbers of protein IDs (Figure 5.4 F). There were 79 protein IDs in the combined Serum PPT and 

Plasma PPT. Of these 79 IDs, 14 (17.7%) protein IDs were exclusive to the serum precipitate, while 

15 (19%) protein IDs were exclusive to the plasma precipitate. 

Acetone-precipitation supernatant fractions of both plasma and serum had a combined total of 96 

protein IDs, 28 (29.2%) of which were exclusive to the serum supernatant fraction, while 9 (9.4%) 

were exclusive to the plasma supernatant (Figure 5.4 G).The entire acetone-precipitation workflow 

experiment yielded 136 protein IDs in Mascot.  
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Figure 5.4. Comparison of protein identifications (IDs) from the acetone-precipitation workflow 

(A), and PeptideShaker IDs of the respective fractions of acetone precipitation (B, C, D, E, F and 

G). Key: IDs - identifications; PPT = precipitate; PPTed = precipitated; SUP = supernatant. 
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5.4.2 A comprehensive analysis of fractions of partial organic precipitation of sheep plasma 

and serum proteins using acetonitrile 

5.4.2.1 1D SDS-PAGE  

The analysis of the fractions of plasma and serum derived from ACN precipitation subjected to 1D 

SDS-PAGE are presented in Figure 5.5.  

 

Figure 5.5. 1D SDS-PAGE images of crude and ACN-precipitated fractions of plasma and serum 

from healthy sheep under different pH conditions and protein concentrations. Each gel lane in A, B, 

C, D, E and F (except the BSA lane) was loaded with 20 µg of fractionated sample. Crude serum 

(E) or plasma (F) was loaded in the second lane as a control. Key: MWt. = molecular weight; KD = 

kilodalton; ^ = gel image above; + = with; – = without; ACN = acetonitrile; PPT = precipitate of 

acetonitrile precipitation; BSA = bovine serum albumin standard (5,000 fmol); SUP = supernatant 

of acetonitrile precipitation.  
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There were distinct differences in protein bands between ACN precipitates, supernatants, protein 

concentrations, pH and crude samples of plasma and serum (panels A, B, C and D). Comparative 

precipitate and supernatant bands were reversed in appearance between serum (panel E) and plasma 

(panel F) in the reproducibility experiments.  

The gel lanes from 1D SDS-PAGE of ACN precipitation workflow for serum (A and B) and plasma 

(C and D) in Figure 5.5 were analysed for proteins using ProteinPilot, PeptideShaker and Mascot 

search engines (Figure 5.6). The numbers of protein IDs detected are shown in panel A for serum 

and panel B for plasma. The protein IDs in C and D were those of combined ACN precipitates of 

plasma and serum fractions, respectively, at three different pH conditions and protein 

concentrations, using the three protein search engines.  

5.4.2.2 In-solution digestion 

The protein IDs in panels E and F in Figure 5.6 were those of in-solution digestion of ACN- 

precipitated sheep plasma and serum fractions, respectively. A pH of 8.6 favoured protein 

identification in both plasma and serum. The protein IDs shown in G and H were generated from 

the Mascot search engine for in-solution digestion only, and a composite of in-solution and in-gel 

digestion of combined ACN-precipitated sheep plasma and serum fractions (PPT and SUP), 

respectively, at different pH conditions and protein concentrations. There were subtle differences in 

the number of proteins identified between ACN precipitates, supernatants, protein concentrations, 

pH and crude samples of plasma and serum. Overall, the number of protein IDs in plasma was 

marginally higher than those in serum. 

The number of protein IDs generated by Mascot of a composite of 1D SDS-PAGE of ACN 

precipitation workflow samples of sheep serum (ACN_Gel_Serum) and plasma 

(ACN_Gel_Plasma) are shown in panel I. Of the 338 protein IDs from the combined in-gel 

experiments of plasma and serum, the majority were from plasma. Similarly, the protein IDs from a 

composite of in-solution digestion of ACN precipitation workflow samples of sheep serum 

(ACN_Sol_Serum) and plasma (ACN_Sol_Plasma) are shown in panel J. The analysis of in-

solution digested samples resulted in a total of 185 protein IDs. The number of protein IDs of a 

composite of 1D SDS-PAGE of ACN_Gel_Serum, ACN_Gel_Plasma, ACN_Sol_Serum and 

ACN_Sol_Plasma are shown in K. Overall, the entire ACN precipitation workflow resulted in 376 

protein IDs. Plasma yielded the largest number (30.3%) of exclusive protein IDs. 
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Figure 5.6. Protein identifications and comparisons of ACN precipitation workflow. Key: PPT = 
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precipitate; SUP = supernatant; ACN = acetonitrile, ACN_Gel_Serum = proteins identified from in-

gel digested serum; ACN_Gel_Plasma = proteins identified from in-gel digested plasma; 

ACN_Sol_Serum = proteins identified from in-solution digested serum; ACN_Sol_Plasma = 

proteins identified from in-solution digested plasma.  

5.4.3 Combinatorial peptide ligand library protein enrichment of sheep plasma and serum  

5.4.3.1 1D SDS-PAGE  

Figure 5.7 shows the application of ProteoMiner™ abundant protein depletion technology to sheep 

plasma and serum. The images of the 1D SDS-PAGE workflow following ProteoMiner™ 

depletions are presented in Figures 5.7 A and B. The annotated images of Coomassie-stained 1D 

SDS-PAGE gels of crude and ProteoMiner™ depleted fractions of plasma and serum from healthy 

sheep are represented by panels A and B, respectively. Crude serum and crude plasma were loaded 

using 110 µg of protein per lane. Depleted samples mixed at 1:1 (v:v %) with gel loading buffer 

were loaded at 10 µL/lane for ProteoMiner™ plasma and serum elutes. Although both gels A and B 

were loaded identically and under uniform conditions, including electrophoresis in the same tank, 

there were noticeable gel-related aberrations in the stained gel outcomes. The MWt. marker 

migrated into the 2
nd

 gel lane, while the BSA band shifted to the MWt. lane, visible under the 75 kD 

mark in gel B. The 2
nd

 lane of depleted plasma in gel A was faint, while the 3
rd

 lane of depleted 

plasma in gel B was missing entirely. These gel-related aberrations affected the visual outcome of 

some protein bands. All the loaded lanes (MWt. marker, BSA, crude serum, crude plasma, three 

replicates of each of crude plasma and serum) were represented in gel A, except that the second and 

third plasma lanes appeared faint and distorted, respectively. The gel lanes for plasma and serum for 

the two gels were analysed for proteins using three different search engines, and the results are 

presented in Figures 5.7 C and D. The distortion of the 3
rd

 plasma lane did not impact on the 

number of protein IDs, but the faint 2
nd

 plasma lane had a comparatively low number of protein IDs 

(Figure 5.7 C). In gel B, there was marked distortion in appearance of the bands of MWt. marker 

and BSA lanes; the MWt. marker drifted into the BSA lane and the 3
rd

 depleted plasma lane was 

missing altogether, due to a defect in the outer gel well that caused the sample to be lost (Figure 5.7 

D). Except for some horizontal stretching in appearance in the 71 kD region for crude serum and 

crude plasma lanes, and a vertical streak in the 3
rd

 depleted serum lane, the rest of the bands in all 

the lanes were comparable with those of gel A. The slightly more intense vertical streak in the 3
rd

 

depleted serum lane of gel B was possibly caused by a larger aggregation of sample settling in a 

pocket in an uneven gel well. 
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Figure 5.7. Evaluation of ProteoMiner™ using plasma and serum of sheep. Key: A and B = 1D 

SDS-PAGE workflow; C = protein identification (ID) results of plasma; D = protein ID results of 

serum; E = comparison of crude plasma and serum protein IDs; F = comparison of crude and 
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depleted analytes with protein IDs made from secondary elution; G = Number of protein IDs in 

ProteinPilot, PeptideShaker and Mascot; H = comparison of Mascot protein IDs of crude and 

depleted plasmas and serum.  

Proteins were identified using ProteinPilot, PeptideShaker and Mascot (Figure 5.7 C, D and E). 

Protein IDs were compared between 1D SDS-PAGE and in-solution sample digestion, and depleted 

samples were compared to controls (crude serum and crude plasma). The protein IDs for gels A and 

B are shown in panels C and D, respectively. The combined protein IDs for gels A and B are 

presented in panel E.  

5.4.3.2 In-solution digestion 

Protein IDs from the in-solution workflow are shown in Figure 5.7 F. Depleted plasma and serum 

had a higher number of protein IDs than did the crude respective undepleted analytes. There were 

substantial numbers of proteins identified in the secondary elution, with IDs from serum being 

marginally higher than IDs from plasma. For in-solution digested samples, ProteinPilot yielded the 

most protein IDs, with Mascot performing less well in this regard. Crude serum, primary depleted 

serum elution and secondary depleted serum elution had 62, 130 and 41 ProteinPilot IDs, 

respectively. Crude plasma, primary depleted plasma elution and secondary depleted plasma elution 

had 46, 130 and 24 ProteinPilot IDs, respectively.  

A comparison of the protein IDs in all three search engines is provided in panel G. The distribution 

of protein IDs made in Mascot across all samples is shown in panel H. Overall, Mascot was 

superior to ProteinPilot and PeptideShaker in identifying proteins after combining in-gel and in-

solution digestion results (Figure 5.7 G). Using ProteoMiner™ resulted in 439 protein IDs from the 

entire workflow. These IDs comprised 207 additional protein IDs (66 + 53 + 88 IDs) to the 

undepleted samples, of which 15% (66 IDs) and 20% (88 IDs) were exclusive to depleted serum 

and depleted plasma, respectively (Figure 5.7 H).  

5.4.4 Off-gel fractionation of serum proteins 

5.4.4.1 1D SDS-PAGE  

Panels A to F of Figure 5.8 represent the results of Coomassie-stained 1D SDS-PAGE preparations 

of 24 protein solution harvests from off-gel fractionation of 400 μg of pooled crude serum (CS1–

CS8, A; CS9–CS16, B; CS17–CS24, C) and pooled acetone-precipitated serum protein (AS1–AS8, 

D; AS9–AS16, E; AS17–AS24, F). Prior to nanoLC-nanoESI-MS/MS, CS1–CS8, CS9–CS16 and 

CS17–CS24 gel lane digests were pooled into one sample (SC665) and AS1–AS8, AS9–AS16 and 

AS17–AS2 gel lanes digests were pooled into another sample (SC666). The combined pooled 
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samples (SC665 and SC666) resulted in 57 protein IDs in Mascot. 

 

Figure 5.8. Off-gel fractionation workflow using sheep serum. Coomassie-stained 1D SDS-PAGE 

preparations of 24 protein solution harvests from off-gel fractionation of 400 μg of pooled crude 

serum A = CS1–CS8; B = CS9–CS16; C = CS17–CS24; and pooled acetone-precipitated serum 

protein D = AS1–AS8; E = AS9–AS16; F = AS17–AS24; G = Comparisons of protein ID yields 

from ProteinPilot, PeptideShaker and Mascot in the entire off-gel workflow; H = Comparison of 

Mascot protein IDs from the contributing workflow elements. Key: BSA = bovine serum albumin 

standard (5,000 fmol) arrow; CS = crude serum; AS acetone-precipitated serum; IDs = 

identifications; PPT = precipitate. 
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5.4.4.2 In-solution digestion 

The individual off-gel fractions (CS1–CS24 and AS1–AS24) of in-solution digests were merged 

into the respective sample categories. Comparisons of protein ID yields from ProteinPilot, 

PeptideShaker and Mascot in the entire off-gel workflow are presented in Figure 5.8 G. Using 

Mascot as an example because of this software’s popular standing in the industry, this workflow 

contributed 29 (34.5%) protein IDs (3 + 4 + 22 IDs) compared to crude serum (control). Eighty-four 

proteins were identified in this entire workflow (Figure 5.8 H). 

The ultimate goal of this thesis was to construct a PSL using only high-quality data from validated 

peptide IDs derived from PeptideShaker search as detailed in Chapter 6. Comparisons of protein 

IDs for the different sample preparation methods using this software platform are illustrated in 

Figure 5.9.  The 133 protein IDs reported in Chapter 4 were essentially from an acetone 

precipitation workflow, and 7 of these protein IDs were unique to this workflow. The ACN 

precipitation workflow yielded 198 protein IDs, 37 of which were unique to this workflow. 

ProteoMiner™ fractionation yielded protein 305 IDs, 145 of which were unique to this workflow, 

and the Off-Gel fractionation yielded 70 protein IDs, 3 of which were unique this workflow. Of the 

fractionated samples, it is evident that the ACN precipitation workflow produced novel protein IDs 

that were not also discovered through ProteoMiner™. 

 

Figure 5.9. Comparison of protein ID yields 

using PeptideShaker software from different 

sample preparation techniques of sheep 

plasma and serum. Acetone precipitation 

(Acetone_PPT) was compared with 

acetonitrile precitipation (ACN_PPTion), 

ProteoMiner and Off-Gel workflows. 

ProteoMiner enrichment produced the highest 

number of protein IDs. ACN_PPTion,  

produced novel protein IDs that were not 

discovered through ProteoMiner™. 

5.5 Discussion and conclusion 

The overall goal of this chapter was to explore strategies for enhancing peptide extraction from 

sheep plasma and serum samples in order to identify more proteins and to determine which 

workflow gave the most yields. The results of this chapter produced a large body of data that has 

significantly increased the protein identification and analytical depth from what was achieved in 
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Chapter 4. A considerable effort went into comparing the different techniques using the UniProtKB 

sheep-only database by applying the analytical strategy described in the methods in order to acquire 

useful data to build a PSL from the circulating acellular proteome of sheep. The discussion that 

follows covers the observations that were made in the four approaches described.  

In the present study, the output from the acetone-precipitation experiment represents the first 

comprehensive examination of sample (serum versus plasma) and technique (acetone-precipitation) 

variables on downstream protein identification yields in samples derived from the liquid fraction of 

sheep blood. This set of observations is important in that it will assist investigators who wish to 

choose either plasma or serum for their studies to make informed decisions on which medium to use 

if considering acetone precipitation in the sample preparation pipeline.  

It is now evident that supernatant fractions of acetone-precipitated samples contain a considerable 

number of proteins that are not captured in the other fractions. The proteins that remained in the 

supernant fractions were likely to be those that failed to aggregate by the known hydrophopic 

mechanism induced by organic precipitation
23,329

. The distinct gel band enrichment regions from 

acetone preciptation of these samples (for example, the 10–15 kD region of plasma precipitate, the 

17 kD region of serum precipitates and the 30 kD region of serum supernatant in 1D SDS-PAGE 

preparations; Figure 5.0) are interesting findings that could be useful in studies targeting proteins in 

these molecular weight regions. The enriched 10–15 kD region band in the plasma fractions could 

be α- and β-globulin
347

, suggesting that there may have been some degree of haemolysis in the 

plasma, or possibly that this band is a characteristic unique to plasma. A common protein in the 30 

kD region in human blood is peroxiredoxin
347

, and this could be the case for sheep blood too. These 

highlighted differences between plasma and serum samples have not been reported previously. 

A composite NCBI protein sequence database containing ox, goat and sheep was also used in this 

workflow, in conjunction with the ProteinPilot search engine, to capture homologous sequences. It 

was necessary to have protein identification data from this database because of the wide use of its 

non-redundant protein sequences in several other studies
348

. Multispecies protein sequence 

databases are known to be associated with increased false positive protein identifications, and in 

some cases yield spurious results that make protein ID difficult, due to highly homologous 

sequences and isoform variations of proteins
348

. However, the use of related-species composite 

protein sequence databases is widely advocated, especially for non-model organisms whose 

genomes have not yet been fully sequenced
7
. This is because the traditional approach for non-model 

organism proteomics is to have a protein sequence database derived from annotated genome(s), 

either from the non-model organism itself (sheep in this case), from the most closely related 

organism that has been sequenced or from a composite of closely related organisms, to be able to 
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interpret the data
7
. The UniProtKB database was chosen for the definitive protein searches because 

its use is preferred and supported by protein search engines for downstream processes, such as 

PeptideShaker
245

 and Scaffold
187

.  

From these repeatable results, it is evident that the serum supernatant from acetone preciptation 

yields a comparatively higher number of protein IDs (30%) exclusive to this fraction than does the 

plasma supernantant (Figure 5.4 G). The higher number from serum confirms that the fractionation 

of samples reduces the complexity of samples and improves the protein number available for 

identification
337,349

, especially after taking into consideration that serum is a fraction of plasma. The 

depletion of clotting factor proteins, including high-abundance fibrinogen, possibly played a role in 

identifying more proteins in serum than in plasma. This is because the removal of any high-

abundance proteins improves protein detection yields
18

. These results are the first known studies 

with regard to acetone precipitation of sheep plasma and serum to show that supernatant fractions 

contain a considerable number of proteins. Proteins in supernatant fractions are missed during 

routine proteomic analysis, yet these proteins could be potentially important biomarkers, 

particularly in many animal models whose proteomes have not been fully characterised. 

The ACN precipitation experimental workflow was adapted from earlier studies
337,338

. In the present 

study, a higher number of protein IDs was achieved from both the plasma supernatant and pellet at a 

higher pH of 8.86 than in other pH conditions (Figure 5.5 H). This observation contrasts with that 

of an earlier study in which ACN treatment in a higher pH did not improve protein yields
337

. The 

novelty here was the simplification of the mode of adding optimally standardised quantities of 

acetic acid and ammonium bicarbonate solutions to adjust the pH of the samples. In addition, the 

1D SDS-PAGE results were superior in that they exhibited characteristic differences in protein 

bands. For example, the reversal in the appearance of ACN-treated plasma and serum and their 

respective supernatants in the reproducibility experiments (Figure 5.5 E and F) have not been 

previously reported. The protein bands in the ACN precipitate fractions of serum were more 

pronounced than were the supernatant fractions. By contrast, the protein bands in the ACN 

precipitate fractions of plasma were lighter than were the supernatant fractions. This suggests that 

treatment with ACN enriches a wider spectrum of protein species in the plasma supernatant fraction 

than in the serum supernatant, based on the band appearance of the 1D SDS-PAGE preparations. 

Conversely, treatment with ACN enriches a wider spectrum of protein species in the serum 

precipitate fraction than in the plasma precipitate fraction, based on the band appearance of the gels. 

It would have been interesting to analyse and compare the protein yields from the gel lanes and 

bands; this is a consideration for future studies.  
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While plasma produced the most protein IDs overall in the ACN precipitation workflow, it was 

serum at pH 8.6 that stood out prominently in showing the combined effect of pH and sample 

dilution with buffer, especially in the in-gel digestion workflow, on protein IDs. In the 1D SDS-

PAGE experiments, plasma yielded twice as many (39.1%) exclusive protein IDs as did serum 

(21%), whereas the number of exclusive protein IDs was comparable for plasma and serum in the 

in-solution workflow. This observation suggests that it is important to consider 1D SDS-PAGE 

when designing DDA protein discovery workflows. If the goal of the experiment is to identify as 

many proteins as possible (for example, in the generation of a PSL), then the inclusion of 1D SDS-

PAGE of plasma is suggested, because this is associated with a wider protein coverage. Therefore, 

within pH limits that are yet to be defined, the overall conclusion from this experiment is that with 

ACN precipitation, a higher pH, coupled with sample dilution, appears to favour protein IDs when 

both fractions of ACN precipitation are analysed. 

Taking into consideration the preceeding discussion, it can be advanced that ACN precipitation 

workflow was more successful with numerous small proteins becoming more abundant in the 

supernatants (Figure 5.5). The most abundant proteins (albumin and immunoglobulins) still 

dominated the gels, indicating that the dynamic range problem had not been properly resolved. The 

data acquisition in this chapter was not only devoted to the analysis of proteins that had been 

successfully identified in Chapter 4 that utilised only serum derived from healthy experimental 

female sheep colony belonging to QUT and the ARCB in Brisbane. The samples used were sourced 

from healthy commercially farmed sheep from Serum Australis Ltd. in NSW and it involved the 

analysis of both serum and plasma from male and female sheep as described in the methods. This 

therefore represented a different set of physiological conditions that could have influenced the 

composition of the circulating acellular proteome. 

The combinatorial peptide ligand library protein enrichment experiments evaluated a commercial 

kit called ProteoMiner™, using sheep plasma and serum as the protein source. This is because this 

kit has been reported as having the capabilities of capturing and facilitating the detection of low-

abundance proteins in complex samples
72

. The findings of ProteoMiner™ use in the present study 

were consistent with the increase in protein IDs observed in one other study that used it on ovine 

and bovine whey
339

, meaning that this approach of enrichment improves protein ID outcomes. An 

important consideration in this workflow is that the standard method was modified by including an 

additional elution cycle for the beads using the buffer in order to determine if substantial proteins 

were left behind during the standard elution recommended by the manufacturer of the kit. 

Overall, the effect of ProteoMiner™ was evident in the band appearance of 1D SDS-PAGE 

workflow and this was reflected in the number of protein IDs (Figures 5.7 C, D, E and F). There 
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was noticeable enrichment of a band in the 25 kD region for the depleted fractions of plasma and 

serum (Figures 5.7 A and B). The 15 kD region band present in the crude plasma lanes were barely 

visible in the depleted fractions in both gels. These differential observations are important in that 

they could be used to target proteins of interest if depletion or enrichment is required, depending on 

the experimental goal. Observations from the in-solution digestion workflow mirrored those of in-

gel digestion. Most importantly, a considerable number of proteins were present in the beads after 

the standard elution recommended by the manufacturer of ProteoMiner™.  

In this ProteoMiner™ workflow, depleted plasma was a superior substrate to serum with respect to 

the number of proteins identified following tryptic digestion, as evidenced by ProteinPilot and 

Mascot search engine searches. This observation should not be interpreted as plasma being superior 

to serum or vice-versa; rather, it simply means that ProteoMiner™ was better-optimised for plasma 

than for serum, as per the manufacturer’s recommendation that it should be used on plasma 

samples.  

The off-gel fractionation workflow was evaluated using crude and acetone-precipitated sheep serum 

as well as 1D SPD-PAGE. Despite being smudged, the Coomassie staining of the 1D SDS-PAGE 

gel bands had a characteristic pattern depending on the off-gel fraction analysed (Figures 5.8 A to 

F). The contents of the buffers, including the relatively high urea concentration in the fractions 

commonly used as per the protocol of this workflow, possibly contributed to the diffuse appearance 

of the lane boundaries and smudging. Nevertheless, there were distinct protein bands in the 71 kDa 

region for crude serum gels from fractions CS10–CS22. For example, one particular band was most 

intense in the C11 fraction and then had faded gradually by the CS22 fraction. There were 1–2 other 

faint bands around the same 71 kDa region in fractions CS13–CS16. These 71 kDa-region bands 

were not present in the gels loaded with acetone-precipitated serum fractions. This suggests that 

acetone precipitation played a role in depleting the albumin fraction responsible for the appearance 

of bands in this region. Even though 1D SDS-PAGE data were not shown in the study by 

Maheswarappa and colleagues
344

, a single band in the 71 kDa region was observed in the present 

study.  

The low number of proteins identified following in-gel digestion of the off-gel fractionated samples 

was reflected in the poorly resolved gel bands. Again, it is possible that the high urea content and 

the buffers could have interfered with tryptic digestion of the recovered intact proteins. For this 

reason, the samples were pooled together for protein database searching. This was also the case 

with in-solution digestion samples, for which the raw data sample files were pooled for protein 

sequence database searching. In addition, off-gel fractionation workflow was considered 

exploratory, with a view to including this workflow in the proteomics workflows of the QUT-
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CARF laboratory. After this initial experiment, the next step would have been to evaluate peptides 

derived from the digestion of crude and acetone-precipitated serum by off-gel fractionation prior to 

nanoLC-nanoESI-MS/MS; however, this was outside the scope of the current work. For 

comparison, a similar evaluation would also be done for plasma. Nonetheless, this workflow 

contributed peptide data that enabled the identification of 84 proteins in Mascot (Figure 5.8 H) and 

70 protein IDs in PeptideShaker (Figure 5.9) for the purposes of inclusion in the PSL in Chapter 6. 

In a poorly defined serum proteome such that of sheep, 70 high quality protein IDs  is considered 

substantial as compared to an earlier study
111

. From information available in UniProtKB, the three 

proteins that were unique to the Off-Gel workflow in PeptideShaker identifications were W5P627 – 

an  uncharacterised protein pointing to GSN gene with possible molecular functions of actin, 

calcium and myosin II binding; P68116 – a characterised fibrinogen beta chain protein derived from 

FGB gene with known biological processes that include adaptive immune response, blood 

coagulation and innate immune response; and W5PZI0 – an uncharacterised protein pointing to 

LOC101113728 gene locus which is possibly clusterin that is known to be a chaperone protein in 

human literature. Considering that an interest of this thesis was about characterising the proteome of 

the liquid fraction of sheep blood, with specific emphasis on the application of the PSL to identify 

proteins that take part in inflammation (Chapter 7), the identification of a characterised protein 

involved in blood coagulation that was not picked up by other workflows, albeit only one, was in 

itself, a significant addition to the PSL. This means that there should now be sufficient peptide 

spectral data to enable the development of an MRM assay for identifying ovine fibrinogen beta 

chain protein (P68116) in future.  To illustrate this observation further, cattle for example, currently 

have nearly 6,000 characterised proteins in UniProtKB as opposed to only 457 sheep proteins. By 

taking this close species comparison into consideration, it was necessary to retain every unique 

protein ID derived from this workflow to contribute to the PSL, without dismissing the entire 

experiment, despite the sub-optimal overall number of protein ID yields that could have been 

otherwise interpreted as a negative experimental outcome, as compared to protein ID yields from 

ProteoMiner™ and ACN workflows.  It is also important to note that there are currently no other 

comparable studies have used this workflow on sheep serum to be benchmarked on. 

This chapter was probably the most successful chapter in the entire thesis but there could still be 

reservations regarding the strategy that was adopted. The ideal strategy should have been the 

depletion of abundant proteins followed by a high-level fractionation strategy. Presently, there are 

no antibody based protein depletion products that have been produced for sheep. However, a 

previous generation of plasma depletion products based on cibachrom blue and protein A/G are 

available (ProteoPrep® Immunoaffinity Albumin & IgG Depletion Kit, (PROT-IA)). At the outset, 
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this project implemented the analysis of the undepleted circulating acellular proteome of sheep in 

the foundation study in Chapter 4 in order to have a baseline serum proteome data for comparison 

with fractionated protein samples. Therefore, this chapter was the cradle of experimenting on 

depletion and fractionation of the circulating acellular proteome samples of sheep using several 

known effective strategies that have been used in other studies, including horses
68

 and cattle
69,70

 and 

pigs
70

. This ambition could be explored further in future if there is access to sufficient financial 

resources to purchase these kits, which in part, could explain the missed opportunity for this thesis. 

In summary, the experiments described in this chapter have provided the first in-depth insight into 

alternative sheep plasma and serum sample preparation approaches with the goal of protein 

identification by nanoLC-nanoESI-MS/MS that improved on traditional methods. In addition to 

using different protein sequence database search algorithms to ID proteins, each of the four 

experimental workflows added a novel dimension of sample preparation. The acetone-precipitation 

experiment added previously unreported protein ID data from supernatant fractions. The ACN 

experiments provided protein data due to the effects of higher pH and sample dilution, as well as 

analysing both fractions of ACN precipitation as factors that favour protein IDs from samples. The 

additional elution step for ProteoMiner™ showed that a considerable number of proteins were 

present in the beads after the standard elution recommended by the manufacturer. The off-gel 

fractionation experiments added data from 1D SDS-PAGE. In terms of protein yields using Mascot 

IDs as the standard, ProteoMiner™ enrichment contributed the highest number, followed by ACN 

precipitation, acetone precipitation and off-gel fractionation, in that order. Based on the  

observations made in this chapter, it is suggested that ACN precipitation and ProteoMiner™ 

workflows being the methods that worked best, should be preferentially included in future sample 

preparation workflows. Following on, in Chapter 6 is a description of the construction of the PSL 

from data drawn from this chapter and Chapter 4, which also results in the determination of the 

number of proteins from a composite of all the DDA experiments. 
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CHAPTER 6 

6.0 Bioinformatics strategy for assembling an encyclopaedic peptide spectral library derived 

from plasma and serum samples of sheep 

6.1 Abstract 

This chapter describes the bioinformatics approach used for the construction of a PSL using peptide 

data derived from healthy sheep in Chapters 4 and 5. Data from diseased and endotoxin-treated 

sheep, as well as synthesised in silico predicted peptides of some proinflammatory cytokines, were 

analysed and added to generate a comprehensive PSL. The objective was to form a PSL that can be 

applied in targeted proteomics workflows to simultaneously analyse several proteins. 

The first step in the identification of proteins using bioinformatics is the requirement for a protein 

sequence database for search algorithms to utilise. The PSL was assembled by searching MS/MS 

data from a composite of 501 input .mgf files derived from DDA experiments against a generated 

custom Ovis aries UniProtKB database using ProteinPilot™, resulting in the identification of 563 

proteins and 41,288 distinct peptides from 3,195,890 spectra at 1% FDR. The same dataset was 

searched using Mascot search engine and validated using PeptideShaker software which identified 

398 proteins. ProteinPilot™, Mascot and PeptideShaker, collectively identified 1,103 proteins from 

spectral data derived from both plasma and serum samples. Only the high-quality data from 

PeptideShaker identifications were retained for construction of the PSL.  

These results represent the first encyclopaedic PSL constructed entirely from the liquid fraction of 

sheep blood, with data drawn from healthy and sick individuals. If implemented, this PSL could be 

of practical significance to veterinary science in future for identifying proteins of sheep and closely 

related species such as cattle and goats. The functions of these proteins and how they relate to each 

other can then help in understanding various physiological perturbations and to the scientific 

community seeking to use sheep as a model for studying human disease. 

6.2 Introduction 

This chapter describes a bioinformatics strategy for the construction of a PSL from the liquid 

fraction of sheep blood (the circulating acellular proteome) and its enrichment from DDA data. 

Bioinformatics refers to the use of various computer applications to organise and understand the 

molecular information in a biological context
350

. The generation of this PSL was motivated by the 

lack of such a tool for exploring large numbers of plasma and serum proteins. The overarching 

objective was to construct a comprehensive peptide spectral repository that could be applied to 

wide-ranging downstream MS/MS protein assays.    
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The previous chapters have identified a large number of peptide sequences and these now need to 

be associated with specific proteins.  Once validated, a spectral library can permit identification of 

proteins in subsequent plasma or serum samples by using software tools capable searching MS/MS 

data to rapidly identify proteins.  Spectral libraries can be also be utilised for validating pepetide 

and protein ID results of searches performed using tools such as ProteinPilot and X!Tandem. 

Spectral library search strategy has emerged as a promising alternative for peptide identification, in 

which MS/MS spectra are directly compared against a reference library of confidently assigned 

spectra
351

. This approach relies heavily on a comprehensive set of known spectra that have been 

assigned to amino acid sequences
351

. The PSL is central to the discovery of novel peptides and 

proteins – a previously unobserved spectrum can be identified by comparing it to all prospective 

hits in the library for the most similar match
352

. This makes proteomics information derived from 

MS/MS a powerful tool for profiling proteins
6-8,351

. A well curated PSL can also improve the 

identification of known and novel proteins, including those with post-translation modifications 

(PTM) because spectra of unmodified peptides are in principle similar to the spectra of PTM-

modified peptides
353

. 

This chapter brings together DDA data from Chapters 4 and 5 that were derived from analysing 

healthy sheep plasma and serum samples. The PSL was also enriched with data derived from 

analysing samples from sick sheep. Having data from healthy and diseased sheep is considered 

essential to assemble an inclusive and comprehensive PSL that can be a reference tool or databank 

for future targeted proteomic investigations, including those where pathophysiology is a major 

focus
351,354

 – which is key to the quality and usefulness of the PSL.  

Peptide data from plasma and serum of endotoxin-treated sheep from earlier studies
14,15

 was also 

acquired. The inclusion of this sample set was crucial, because the capstone study (Chapter 7) 

employed the PSL to evaluate proteome profiles of sheep plasma samples of sheep exposed to 

endotoxin
14,15

. As a preparatory step, it was essential to acquire tryptic peptide data from samples of 

endotoxaemic sheep for inclusion in the PSL for downstream SWATH applications of the PSL.  

Finally for the validation of the approach to protein identification and enrichment of this PSL, in 

silico predicted synthetic peptides of selected proinflammatory cytokines of sheep were injected 

into the instrument, analysed and added. Cytokines are regulators of mammalian responses to 

injury
17,355

. In human medicine, proinflammatory cytokines such as IL-1 and TNF-α  are known to 

escalate the pathological effects
355

, and this is expected to apply to sheep as well. Many cytokines 

have low abundancy in circulation and often escape identification by global proteomics 

approaches
356

. The detection of cytokines in the plasma and serum of veterinary patients has 

traditionally relied on species-specific antibody ELISAs as evidenced in studies in dogs,
357,358
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cats,
359

 cattle,
360,361

 and sheep
362

, but these are not amenable to multiplexing
356

. Owing to the 

relatively considerable expense of using individual ELISAs for each protein assay in veterinary 

species, an attractive alternative is to generate spectral data from predicted unique peptides of 

selected sheep proinflammatory cytokines. This strategy makes the PSL potentially useful in 

simultaneously quantifying the levels of many cytokines in a single assay in future, by using 

experimentally derived spectral data not currently available in MS/MS repositories
356

. 

To assemble the PSL, all DDA data were analysed in ProteinPilot™ in the first instance. The 

handling of protein identification information after being derived from raw data using the 

Paragon™ algorithm
164

 in ProteinPilot™ is detailed in this chapter. Data were exported for 

secondary protein identification using Mascot and X!Tandem search engines and the results of the 

searches conducted using the above three search engines were validated by PeptideShaker 

bioinformatic software. By using an established target-decoy approach, PeptideShaker by default, 

enables it to to merge peptide/spectrum matches of multiple search engines thereby giving it a better 

edge of improved confidence and sensitivity in peptide and protein ID outcomes  as compared to 

using a single search platform
363

. 

6.3 Methods 

6.3.1 Generation of a custom sheep UniProtKB protein sequence database   

A step-by-step method that was used to generate a sheep-only protein sequence file from 

UniProtKB in FASTA format is illustrated in APPENDIX 6.0. This database provided protein 

sequence information that was utilised by search engines and protein ID validation software to 

assign peptide signals to spectra.    

6.3.2 Data sources for the assembly of the peptide spectral library  

The encyclopaedic PSL was assembled by combining DDA data derived from a composite of eight 

nanoLC-nanoESI-MS/MS experiments. In the first instance, ProteinPilot™ was used to search data 

from each experiment separately against the generated sheep protein sequence database. Data from 

the resulting individual group files were exported as .mgf files which were inturn searched 

concurrently in ProteinPilot™ software to generate a composite .group file, a corresponding .mgf 

file and a protein list. The individual .mgf files were also searched using Mascot search engine to 

generate a composite protein list and corresponding .dat files. PeptideShaker was then used to 

validate protein hits as illustrated in Figure 6.0, and detailed below. 

6.3.2.1 Peptide data from healthy sheep plasma and serum samples 

The foundation data for constructing the PSL was obtained from serum proteome characterisation
16
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in Chapter 4 which also represents the baseline PSL (Experiment 1) in Figure 6.0. Additional data 

were drawn from Chapter 5 in which there was enhanced peptide extraction from both plasma and 

serum samples (Experiments 2, 3, 4 and 5). 

 

Figure 6.0 Experimental workflow – A; A summary of the number of proteins identified from the 

individual experiments in Panel A that contributed to the peptide spectral library – B.   
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6.3.2.2 Peptide data from sick sheep serum 

Data from serum samples of sick sheep with a range of different conditions were obtained from 

UQ’s School of Veterinary Science clinical pathology laboratory (Experiment 6). The samples were 

subjected to in-solution and in-gel digestion using generic methods as described Chapter 3 to yield 

peptides for analysis as presented in APPENDIX 6.1. There were 21 proteins that were identified in 

Chapter 4, but not in sick sheep serum suggesting that these proteins probably diminish during 

illness. 

6.3.2.3 Peptide data from plasma and serum of endotoxin-treated sheep  

Data from plasma and serum samples of sheep treated with endotoxin based on earlier 

observations
15

 were added to the PSL (Experiment 7). The samples were subjected to 1D SDS-

PAGE and in-solution digestion and analysed to extract peptide data as detailed in APPENDIX 6.2. 

6.3.2.4 Data from in silico predicted synthetic peptides of selected proinflammatory cytokines 

Peptide data of five candidate proinflammatory cytokines of sheep were selected as targets, based 

on reports in the literature
17,291,364-367

, for inlcusion in the PSL (Experiment 8), by using an 

established approach
368,369

. Homologous peptide sequences between Bos taurus and Ovis aries of 

IL-6, IL-3, IL-1α, IL-1β and TNF-α were obtained from UniProtKB/Swiss-Prot or  the non-

redundant protein database of NCBI and imported into Skyline software
172

. The description of 

obtaining data from the selected peptides is presented in APPENDIX 6.3.  

6.3.3 Validation of protein identifications in the PSL    

6.3.3.1 ProteinPilot™ search  

The .mgf files derived from the primary searches of the experiments in Figure 6.0 A were subjected 

to a composite ProteinPilot™ search using a sheep-only UniProtKB database as described in 

Chapter 3 to generate a single .group file – which is in itself, a PSL when using the SCIEX SWATH 

protein analysis pipeline, and a protein list. 

6.3.3.2 Mascot search 

The .mgf files from the primary search of all the experiments illustrated in Figure 6.0 A were 

submitted to Mascot Server v2.5.1 for searching using a Daemon client. The concatenated 

target/decoy database was configured to be compliant with PeptideShaker
245

 as well, prior to being 

uploaded to the Mascot Server. The Mascot searches were conducted as described in Chapter 3 

using the parameters shown in Figure 6.1. The same UniProtKB protein sequence database used by 

the ProteinPilot™ was used in these searches.  
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Figure 6.1. Mascot Daemon user interface showing submission parameters for searches in Mascot 

Server v2.5.1 using a concatenated target/decoy database that was configured to be compliant with 

PeptideShaker searches as well. Note that the Decoy database box was unselected – a requirement 

for the results output to be compatible with downstream PeptideShaker searches.  

6.3.3.3 PeptideShaker search 

The mzIdentML files from the primary searches in ProteinPilot™ in Figure 6.0 A and .dat files 

from Mascot searches were loaded into PeptideShaker to validate the protein IDs using the same  

UniProtKB database used by ProteinPilot™, by applying the same search parameters and protein 

identification criteria as described in Chapter 3. Native mzIdentML (.mzid) format files created in 

ProteinPilot™ were not supported in PeptideShaker. This required code substitution by way of 

editing the mzIdentML files in order for the downstream file processing in PeptideShaker to 

function (Figure 6.2). The protein ID results were exported into Microsoft
®

 Excel™ for evaluation. 
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Figure 6.2. Fixing native mzIdentML file to work in PeptideShaker using Notepad++. According to 

a technical brief from SCIEX, PeptideShaker required the MS:1001171 score flag to identify 

peptide spectrum matches (PSM) scores in mzIdentML (*.mzid) files, meanwhile the native 

mzIdentML from ProteinPilot has MS:1001167. Therefore, MS:1001167 was replaced with 

MS:1001171 in all the mzIdentML files prior to loading into PeptideShaker. The mzIdentML files 

were opened in either Notepad++ editor (notepad-plus-plus.org) or (EditPro editor (Alentum 

Software Ltd) for larger files). In Notepad++, the score flag replacement was performed by going to 

‘Search’ menu (or Ctrl+H) to activate the ‘Replace’ dialog above, followed by the steps 1, 2 and 3 

(red arrows) and the files were saved and ready to be processed in PeptideShaker. 

6.3.3.4 Analysis of synthetic peptides to validate protein identifications and search parameters  

Synthetic peptide standards of five cytokines (two unique peptides per cytokine) were spiked into a 

subset of samples and analysed on the instrument and then appended to the library to confirm the 

validity of search parameters and the bioinformatics pipeline, for quality control of DDA 

experiments as described in APPENDIX 6.3. No peptides were missing in the results generated 

from all the three search platforms used, including PeptideShaker at 1% FDR, which confirmed the 

validity of bioinformatics pipeline and its parameters. 

6.4 Results 

6.4.1 Generation of a sheep-only custom UniProtKB protein sequence database  

The custom concatenated target/decoy protein sequence database that was generated consisted of 

54,786 sequences; 26,229,144 residues. 
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6.4.2 ProteinPilot™ search results 

The protein identification statistics from searching all the input files from eight DDA experiments 

illustrated in Figure 6.0 in ProteinPilot™ are presented in Figure 6.3. 

 

Figure 6.3. Screenshot of protein identification statistics in ProteinPilot™ after searching 501 .mgf 

files from eight experimental workflows using a UniProtKB database for the assembly of the 

peptide spectral library. These results represent a crude overview that includes decoy protein hits 

and contaminants such as keratin. A decoy protein is a protein identified against a decoy (nonsense) 

protein sequence database. A contaminant protein is a protein that did not originate from the sample 

but was introduced during sample processing. 

Within ProteinPilot™ software, reports were automatically created in spreadsheet format 

(Microsoft
®
 Excel™) that included the protein search summary  as illustrated in Figure 6.4.  

The exported protein list was inspected and curated as described in the generic methods in Chapter 

3. Briefly, proteins with zero confidence, decoy (reversed) protein identifications and hits from the 

cRAP database (http://www.thegpm.org/crap/) were removed (Figure 6.5) by using a similar 

method as previously described in another earlier study
13

. Only proteins with 2 or more high-

scoring peptides were considered for further analysis. 

Data were also exported in mzIdentML and .mgf formats to be used by Mascot and PeptideShaker 

searches for spectral and protein ID validation. 
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Figure 6.4 Protein search summary report in ProteinPilot™ Software showing identification yields and database search properties of assembled data 

from sheep serum and plasma of eight data dependent acquisition (DDA) experiments using a TripleTOF 5600 (SCIEX) instrument for the 

construction of a peptide spectral library (PSL). The protein identification yield at 1% global false discovery rate (FDR) was considered further. This is 

an automatically generated report. 
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Figure 6.5. Inspection of  a protein list output from ProteinPilot™ Software  for the peptide spectral 

library showing the removal of proteins (light blue rows) with zero (0) unused confidence and hits 

from the common Repository of Adventitious Proteins (cRAP) database 

(http://www.thegpm.org/crap/).  

After curating the protein list manually, ProteinPilot™ yielded 564 protein IDs from the entire PSL 

based on maximum FDR of 1% and a minimum of 2 high-scoring distinct peptides per protein for 

identification. The full list of these protein IDs is presented in APPENDIX 6.4.  Only 25 of the 564 

(4.4%) sheep proteins identified by ProteinPilot had been reviewed in UniProtKB. The UniProtKB 

entry numbers of the reviewed proteins are P14639, P29701, Q9XT27, P12303, P02083, Q7M2U8, 

P00922, A2SW69, P49920, O77642, Q28579, P02190, P11839, Q29400, Q06435, P67976, 

P62262, Q5MIB5, P09670, P68253, P49929, Q9XSM0, P23383, P50413 and P62297. 

6.4.3 Mascot search results 

After Mascot searches, protein identification lists at significance threshold of p<0.05 which equates 

to 1% FDR were exported via the report builder option in csv format for the immediate evaluation 

of the protein IDs as shown in Figure 6.6.  The csv files were opened in spreadsheet (Microsoft
®
, 

Excel™) for inspection and removal of cRAP database proteins before merging the output files. 

Only proteins identified by at least 2 or more high-scoring and unique peptides were considered for 

further analysis.  Also, .dat files were exported for further processing in PeptideShaker workflow as 

required. After merging all the results from the Mascot searches, a total of 830 proteins were 

identified. The UniProtKB entries for the identified proteins are presented in APPENDIX 6.5. 
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Figure 6.6. Mascot search results user interface showing the procedure (red arrows) for exporting 

protein lists in csv and .dat file formats.  Using a significance threshold of p<0.05 (in the format 

controls) or target decoy of 1% FDR (in decoy search summary) to generate protein IDs lists, the 

Report Builder tab was clicked (1), followed by Export as CSV tab (2) directly into Microsoft
®

 

Excel™ for evaluation. The Export tab was clicked again to export Mascot .dat file (3) and .mgf 

peak list file to be utilised by PeptideShaker as required. 

6.4.4 PeptideShaker search results 

The protein lists from the searches in PeptideShaker of the individual experiments in Figure 6.0 

were merged in Microsoft
®
 Excel™.  A total of 398 proteins were identified based on 1% FDR and 

2 high-scoring validated unique peptides per protein. The full list of UniProtKB entries for the 

identified proteins is presented in APPENDIX 6.6. 

6.4.5 Consensus protein identifications from ProteinPilot, Mascot and PeptideShaker searches 

The protein lists from ProteinPilot™, Mascot and PeptideShaker searches were compared as 

illustrated in Figure 6.7. The UniProtKB entries of the cumulative 1,103 proteins identified in the 

PSL by the three search engines are presented in APPENDIX 6.7. 

6.4.6 Data archive for the PSL 

The MS data, with validated spectra along with the identification results were exported from 

PeptideShaker and deposited to ProteomeXchange Consortium
231

 via the proteomics identifications 

(PRIDE) partner repository
269

 with the dataset identifiers PXD005002 and DOI: 

10.6019/PXD005002. The URL is https://www.ebi.ac.uk/pride/archive/projects/PXD005002 and 

can be accessed with username reviewer82838@ebi.ac.uk and password woBane0z. 
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Figure 6.7. Comparison of the results of ProteinPilot™, Mascot and PeptideShaker searches 

showing protein identification yields using data from sheep serum and plasma of eight data 

dependent acquisition (DDA) experiments using a TripleTOF 5600 (SCIEX) instrument for the 

construction of the peptide spectral library (PSL). A total number of 1,103 proteins were identified 

collectively using all the three software platforms by searching  subset of a sheep-only UniProtKB 

protein sequence database. Only the 398 validated high-quality protein identifications from 

PeptideShaker were retained for the PSL. 

6.5. Discussion and conclusion  

The initial part of this chapter presented details for the generation of a custom sheep-only 

UniProtKB protein sequence database by providing a step-by-step approach.  Readers will find this 

useful, because many studies either do not provide explicit details for creating their in-house protein 

sequence databases for conducting protein searches, or it is probably assumed that it is common 

knowledge. The resulting database had fundamental use in the various protein sequence search 

algorithms employed in this thesis. As of October 2016, only 455 (1.67%) sheep proteins in the 

entire UniProtKB protein sequence database of 27,293 proteins had been reviewed (APPENDIX 

6.0, Step No. 3). This was a small number of proteins compared, for example, to the bovine protein 

sequence database that had 6,870 out of 32,159 (21.4%) reviewed proteins
20

. Apart from having a 

reviewed status, the number of characterised sheep proteins was even lower. Despite the largely 

unreviewed and uncharacterised sheep proteins in UniProtKB, the utilisation of the principle of 

conserved genes between related species enables the use of the reasonable assumption that the 

known proteins and genes in the ox for example, are analogous to those of sheep
20,254,370

.   
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Both canonical and isoform protein sequences were selected for inclusion into the database during 

its generation. The preceding strategy of protein sequence inclusion was to broaden the database 

due to the exploratory or method-development nature of the project of this thesis. In addition, given 

that the sheep genome annotation is still a work in progress
230,273

, information on sheep protein 

functionality is still largely deficient
339

 and it is therefore reasonable to utilise as much related 

protein data available as possible to identify sheep proteins. The use of databases containing not 

only the canonical, but also known isoforms of proteins has a small impact on the number of 

reported proteins
371

. Protein isoforms are however known to complicate protein inference during 

downstream bioinformatics analysis, as noted by the developers of PeptideShaker
245

.   

The reviewed proteins belong to the Swiss-Prot subset of UniProtKB and their protein identification 

tags have the suffix ‘>sp’ in the FASTA database
20,189

. All the unreviewed proteins belong to the 

TrEMBL subset of the UniProtKB, and have the suffix ‘>tr’ in the FASTA database. Each protein 

in this chapter was identified by their UniProtKB subset tag (sp/tr) followed by the entry number, 

accession number, protein name (where available), organisms species (OS), gene (GN) evidence of 

protein existence (PE) and sequence version (SV)
20,189

. According to UniProtKB, there are five 

levels of evidence for PE; 1 = protein level means the protein has been detected by mass 

spectrometry and/or ELISA, 2 = detection of protein transcript, 3 = inference from homology, 4 = 

predicted protein, and 5 = uncertain
20

. For example, the notation for Transforming growth factor 

beta-1 FASTA is >tr|W5PC52|W5PC52_SHEEP Transforming growth factor beta-1 OS=Ovis aries, 

GN=TGFB1 PE=3 SV=1. Similarly, the notation for Tumour necrosis factor FASTA is 

>sp|P23383|TNFA_SHEEP Tumour necrosis factor OS=Ovis aries GN=TNF PE=2 SV=2.  

It was necessary to append FASTA sequences of protein contaminants in the database to enable 

them to be identified and filtered out during the generation of protein lists for performing data 

analysis
372

. Here, cRAP FASTA sequences (http://www.thegpm.org/crap/index.html) were used. 

There are also other repositories whose contaminants could have been used, however, these are 

focused mainly on human and yeast samples for example the CRAPome expandable repository of 

contaminants
372

. 

The second part of this chapter concerned the validation of protein identifications in the PSL using 

alternative software platforms and also by analysing synthetic peptide standards.  Mascot and 

PeptideShaker bioinformatic platforms were also used to analyse the same dataset. The PSL was 

enriched with peptide data obtained from sick sheep serum (APPENDIX 6.1). This workflow that 

used ex-diagnostic sick sheep serum captured a different protein set to that from healthy sheep, 

thereby supporting the hypothesis that there will be proteins not captured from healthy sheep. 

According to Mascot results, this workflow, that included sick sheep and healthy sheep (control), 
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contributed peptide data that enabled the identification of 314 proteins for enriching the PSL . 

Peptide data was also obtained from archived plasma and serum samples of endotoxin-treated sheep 

from a published model for transfusion-related acute lung injury (TRALI)
14

 and from samples of the 

incremental arm of that study
15

 (APPENDIX 6.2). Peptide recovery from these samples was lower 

than expected compared to the other experiments discussed here that also contributed data to enrich 

the PSL. It was for this reason that this experimental set was repeated in order to rule out the 

influence of other factors such as sample preparation. It is probable that there were substances in the 

samples that interfered with peptide extraction, considering that the samples were obtained while 

the sheep were receiving total intravenous anaesthesia with a cocktail of anaesthetics
10

, which is an 

important finding in this thesis. The substances in the anaesthetic cocktail comprised of alfaxalone, 

ketamine, fentanyl and butorphanol, which may have affected protein extraction, possibly by 

inhibiting trypsin. A possible hypothesis is that these interfering substances could have possibly 

even caused protein proteins to alter structurally in a manner that prevented the ability of trypsin to 

function normally to enhance protein digestion
373

.  The presence of these substances in the samples 

may have co-precipitated with the proteins during acetone precipitation, thereby causing the poor 

definition of protein bands in most of the 1D SDS-PAGE experiments (APPENDIX 6.2). Another 

suggested possible hypothesis to explain the low number of proteins extracted from this workflow 

is that the anaesthetic agents could have interfered with the BCA protein assay (a simple assay but 

more prone to interferences than other protein assays), leading to an overestimation of protein 

concentration in the samples. If less protein was being prepared for digestion, then the amount of 

peptides detected in the samples would be less. But then it can also be argued that this was unlikely 

to have been the case because 1D SDS-PAGE gel images clearly showed that there were sufficient 

quantities of protein loaded in the gels, given that every gel had a visible BSA control band that had 

far less amount of protein (5,000 fm) loaded. Considering that this study utilised archived samples 

from an unrelated study conducted many years ago by the ARCBS/QUT and UQ’s School of 

Medicine, there was no opportunity to have control samples from non-anaesthetised sheep. 

Consequently, experiments should be performed in future that include spiking the suspected 

anaesthetic agents into identical plasma samples to determine if this observed effect is reproducible.  

Also, it would be interesting to have both a positive control, such as a molecular marker band from 

the same gel as the samples, and a negative control such a blank gel piece, analysed together to rule 

out any technical issues
373

 prior to determining the presence of interfering substances in the 

samples. Alternative digestion strategies such as FASP digestion
233

, could also be used to remove 

interfering substances from the samples. Overall, this endotoxin-treated sheep workflow contributed 

peptide data of at least 100 protein IDs for PSL enrichment. 
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Considered collectively, the sick sheep and end endotoxaemic sheep workflows added 80 proteins 

to the PSL pool as shown in Figure A6.2(b) (APPENDIX 6.2). This therefore underscores the 

rationale for having added data from non-healthy sheep to contribute to the PSL. 

Constructing an effective PSL that can potentially have capabilities of being applied to identify 

several proteins simultaneously necessitates having information of certain known peptides of 

targeted proteins; for example, by selecting only unique peptide sequences to a single cytokine and 

also peptide fragmentation information, a suitable data acquisition strategy and instrumentation. 

The representative results of one out of two top-ranking unique peptides each from five cytokines of 

sheep that were predicted in silico presented in APPENDIX 6.3 were full MS/MS mass spectra 

acquired on a TripleTOF 5600+ instrument identifying each of the unique peptides of the selected 

cytokine present in the PSL. The collected full MS/MS scans produced high-quality MS/MS spectra 

for the PSL. In addition, the labelled peptides will provide an additional robust internal standard for 

the peptides during future use of the library.  

The goal of the in silico prediction of cytokine peptides was to generate peptide fragmentation data 

for inclusion in the PSL and to validate protein identifications. During inflammation or infection, 

members of the proinflammatory cytokine families of IL-1, IL6 and TNF-α are released from 

macrophages and monocytes, which in turn stimulate the acute phase response, leading to a chain of 

events in the inflammatory cascade, while IL-3, which belongs to colony stimulating factor family, 

is known to have overlapping functions that collectively modulate inflammation
17

. Cytokines are 

biological mediators of physiological responses to disease and the immune system
17,374,375

. They 

recognise and modulate the response of an organism to infection by regulating activation, 

replication, chemotaxis and apoptosis of immune cells
17

. 

The MS/MS spectra of the in silico predicted peptides were ideal as they all resulted in validated 

spectrum annotation matches by being recognised as unique peptides to the selected cytokines. 

Having the ability to identify endogenous low-abundance selected cytokines (for example, in 

samples derived from sheep plasma and serum using the PSL alongside targeted proteomics 

bioinformatics software platforms)
356

, is a substantial achievement of the present work.  The 

presence of spectral data for the selected peptides makes the library considerably valuable, as it can 

be used to identify these selected important markers of inflammation using targeted proteomics 

approaches that could potentially rival antibody ELISA technology in future. 

An important feature of this chapter was the description of the fine details of the assembly of the 

PSL that illustrated the  validation of 398 proteins by PeptideShaker from a pool of 1,103 proteins 

collectively identitied by other software. This strategy brought together data of interesting proteins 

from the three individual search platforms that resulted in a total of 438 proteins that were identified 
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by at least two search engines. Of these protein identifications, 251 were highly confident hits as 

they were identified by all three search engines. The other 187 protein identifications were 

moderate confidence hits. The remaining 665 protein low confidence hits that were identified by a 

single search engine only (Figure 6.7). Whilst the merging of protein identifications of several 

search platforms does not always increase the number of proteins identified, this strategy is 

supported because it increases the number of peptides per protein
371

. It is however quite possible 

that other search engines could identify further subsets of proteins in the nascent PSL in addition to 

what was identified by ProteinPilot, Mascot and validated by PeptideShaker. When interpreting the 

results from multiple protein identification search platforms, it was important to ensure that protein 

hits were truly unique other than from the redundant information in the FASTA file. The datasets 

were also processed using correct input parameters and by applying FDR statistics. 

In conclusion, the bioinformatics strategy and data assembly processes described in this chapter 

constitutes the first encyclopaedic PSL constructed entirely from the liquid fraction of sheep blood, 

with peptide data drawn from healthy and sick animals. The use of more than one search engine 

enabled the identification and validation of an unprecedented number of proteins in the PSL. If 

implemented, this PSL could be of practical significance to veterinary science in understanding 

various physiological perturbations involving proteins in the liquid fraction of blood, and to the 

scientific community seeking to use sheep as a model for studying human disease. This nascent 

PSL was needed for protein quantitation using SWATH-MS in Chapter 7 and it could also be useful 

for proteogenomics applications in future. 
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CHAPTER 7 

7.0 Application of the peptide spectral library for identifying plasma proteins involved in 

early-phase acute systemic inflammation  

7.1 Abstract 

Identifying proteins involved in systemic inflammation in plasma is fundamental to diagnosis and 

monitoring response to treatment. The availability of targeted protein data extraction using 

SWATH-MS analysis provides a prospect for developing a platform capable of detecting numerous 

proteins in plasma simultaneously, many of which are not routinely measured. In this chapter, 

SWATH-MS analysis was used to evaluate the effectiveness of the PSL developed in Chapter 6 to 

characterise the response in sheep to endotoxaemia. Plasma samples were available from a study in 

which sheep were injected with endotoxin (lipopolysaccharide (LPS)) from Escherichia coli and 

blood collected (before the plasma separated) before and after 75 min after LPS exposure. The 

proteins in these plasma samples were identified by LC-SWATH-MS, with 243 proteins able to be 

quantified in plasma from healthy and endotoxaemic sheep. Forty-one of these proteins are known 

to be involved in the inflammatory process, while a further 42 proteins may also be involved in 

early-phase acute systemic inflammation.  This is the first time SWATH-MS analysis has been used 

to distinguish proteins that may be used to diagnose and characterise early-phase acute systemic 

inflammation in sheep.  

7.2 Introduction 

Sheep have an important role in food, fibre and scientific research as models for human 

disease
10,376,377

, yet there is only limited information about inflammation-related plasma proteins in 

this species. There are some reports that have proposed methods for identifying circulating proteins 

involved in early-phase acute systemic inflammation in sheep or related species using SWATH-

MS
17

. Having the ability to profile multiple proteins involved in inflammation is fundamental in 

understanding acute pathophysiology in animals
17,22,110,111,378,379

.  

Prior to this, ovine antibody immunoassays have been used for protein detection in plasma 

samples
21,22,380,381

. However, this is cumbersome, relies on a different kit for each protein (and 

therefore is expensive) and often has to be validated for the species of interest. A proteomics 

approach using a PSL permits large numbers of proteins to be simultaneously identified and 

quantified, significantly increasing the ability to monitor changes in pathophysiology
382

. In this 

chapter, a subset of the novel PSL developed as part of this thesis in Chapter 6 was used to identify 

proteins and potentially their alterations in plasma of sheep during early-phase experimentally 

induced endotoxaemia. Here, SWATH-MS
383,384

 approach using SWATH™ MicroApp Software 
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(SCIEX) for data extraction alongside the PSL, was applied to interrogate a small number of 

archived plasma samples from a separate study
14,385

 in which sheep were exposed to acute 

Escherichia coli lipopolysaccharide (LPS) endotoxaemia as the disease model in order to achieve a 

comprehensive analysis of proteins
1,383

 and to determine if plasma proteins involved in early-phase 

acute inflammation can be detected. The intent was to use these proteins to distinguish between 

normal sheep and sheep with endotoxaemia as a proof of concept. As a prospect, this approach 

could potentially complement antibody-based methods for protein detection and quantitation
188

. 

Additionaly, the MS/MS data will be much welcome in aiding the characterisation of sheep proteins 

in publicly available protein sequence repositories for future biotechnological applications.  

7.3 Methods  

7.3.1 Background of the experimental sheep selection and endotoxin treatment procedures 

The plasma samples used for this study were obtained from a primary study whose animal ethics 

clearance details are found in the generic methods section in Chapter 3. The experimental sheep 

selection and procedures were as previously described
15

 and included here as APPENDIX 7.0. In 

brief, the primary study used LPS to prime the immune system after allocating sheep to receive an 

infusion containing LPS from E. coli serotype O55:B5 (Sigma-Aldrich, Castle Hill, NSW, 

Australia)
14

. The samples were obtained opportunistically from archived samples stored during the 

study. Following on here is the proteomics analysis of the archived plasma samples from healthy 

and endotoxaemic sheep experiments of that study
14

 as cited earlier
15

.  

7.3.2 Sample selection, preparation and nanoLC-nanoESI-MS/MS analysis.  

The primary studies from which the plasma samples were derived from did not have MS-based 

proteomics analysis as part of the experimental protocol
14,385

.  Six sheep per group (3 groups in 

total) were sampled from all the sheep enrolled in the original studies
14,385

, based on the 

observations of the report in APPENDIX 7.0.  This number of samples was determined with the 

consideration of acquiring representative samples across the cohorts of the different sheep traits 

(Wool production, Parasite resistance and the unknown sheep trait (SYSS))
15

. The samples 

comprised of pre- and post-endotoxin treatment time-points (Table 7.0). The samples were taken at 

baseline and after 75 min of LPS endotoxaemia
15

. Sample aliquots containing 100 µg of plasma 

protein were prepared for protein analysis by following the generic in-solution digestion of proteins 

workflow and desalted prior to nanoLC-nanoESI-MS/MS analysis on a TripleTOF
®
 5600 

instrument using SWATH-MS™ acquisition method as described in the in Chapter 3.  
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Table 7.0. Sheep plasma samples used in SWATH-MS analysis experiments.  

 

Sheep ID and Trait 

Plasma Samples (Lab No./[protein](µg/µL) vol. (µL)) 

Before LPS Rx After LPS Rx 

90 (Wool) SC569 (86.4) 1.3 SC570 (77.6) 1.3 

97 (Wool) SC573 (68.8) 1.5 SC574 (74.4) 1.3 

100 (Wool) SC577 (68) 1.5 SC578 (76.8) 1.3 

101 (Wool) SC581 (57.6) 1.7 SC582 (88) 1.1 

102 (Wool) SC585 (82.4) 1.2 SC586 (84.8) 1.2 

103 (Wool) SC589 (73.6) 1.4 SC590 (88) 1.1 

66 (Parasite) SC593 (72) 1.4 SC594 (65.6) 1.5 

67 (Parasite) SC597 (84) 1.2 SC598 (80) 1.3 

71 (Parasite) SC601 (74.4) 1.3 SC602 (76.8) 1.3 

72 (Parasite) SC605 (67.2) 1.5 SC606 (72) 1.4 

74 (Parasite) SC609 (73.6) 1.4 SC610 (69.6) 1.4 

75 (Parasite) SC613 (56) 1.8 SC614 (85.6) 1.2 

602 (SYSS) SC617 (84) 1.2 SC618 (69.6) 1.4 

710 (SYSS) SC621 (76) 1.3 SC622 (77.6) 1.3 

719 (SYSS) SC625 (83.2) 1.2 SC626 (84.8) 1.2 

729 (SYSS) SC629 (82.7) 1.2 SC630 (67.2) 1.5 

814 (SYSS) SC633 (94.4) 1.1 SC634 (87.2) 1.1 

815 (SYSS) SC637 (90.4) 1.1 SC638 (58.4) 1.7 

Key: Table headers represent sheep identities (ID), production traits, laboratory sample numbers 

(Lab No.), protein concentration [protein] (µg/µL) in parentheses after acetone precipitation and 

dissolution of the protein pellet in 8 M urea/25 mM NH4HCO3 and volume (vol) (µL) that 

contained 100 µg of plasma protein from 18 sheep in groups of six, based on strain/experimental 

category showing samples taken before and after E. coli LPS endotoxin treatment (Rx). 
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7.3.3 Set-up of the SWATH-MS analysis experiment and workflow 

The plasma samples representing the time-points before and after treatment with endotoxin of each 

individual sheep in Table 7.0 of the primary experiment together with the summary of the workflow 

are provided in Figure 7.0.  

 

Figure 7.0. Identification of candidate early-phase inflammation-related proteins in plasma samples 

of endotoxaemic sheep. Samples were obtained from 18 adult merino ewes that were grouped based 

on strain cohort: Wool production (Wool), Parasite resistance (Parasite) and Stockyard sourced 

sheep of unknown strain (SYSS) from a study in which the subjects were treated with E. coli 

lipopolysaccharide (LPS) endotoxin
15

. The samples represented baseline time point i.e. the one 

before treatment (Before Rx) and the other after treatment (After Rx). Each of the samples were 

individually analysed using the SWATH-MS pipeline. Only eight paired samples met the criteria 

for further comparative analysis for protein quantitation during this proof of concept study. The 

individual raw data files (.wiff and .wiff.scan) appear in QUT Proteo dive archive with SC in each 

sample name replaced by the prefix 20150624_SC_SWATH-MS_.  

This study aimed to analyse plasma samples from 18 experimental sheep representing one time 

point before and the other after endotoxin treatment which would have resulted in 36 samples in all. 

In the end however, only 16 samples derived from 8 sheep were used owing to considerably low 

peptide signals due to possible effects of anaesthetics (as discussed in Chapter 6) in a set of samples 

for an entire cohort of sheep and the TIC characteristics in some of the samples, leading to their 

exclusion from further analysis for protein identification (see Figure 7.0). The aberrant TICs could 

have been attributed to inadvertent contamination or to some extent due to batch effects
386,387

 during 

sample collection in the primary study.  The use of TICs to evaluate the similarity of analytical 
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peptide samples based on reproducible overlapping morphology of the traces is simple and 

straightforward and it has previously been used in SWATH-MS studies
188

. An alternative objective 

approach would have been to extract known peptides from the samples and evaluate their 

covariance in order to select the data files for further analysis. With further exclusion of samples 

that were considered outliers after PCA-DA, five pairs (10 samples) were used to the definitive 

protein quantitation. 

7.3.4 Peptide spectral library clean-up and SWATH-MS analysis parameters 

The PSL was imported into PeakView
®
 using the SWATH-MS™ MicroApp in the first instance as  

described elsewhere
388

. This was followed by loading the .wiff files for SWATH-MS processing. 

The library was inspected for contaminants and decoy (reversed) proteins and unselected if they 

were found. A decoy protein is a protein identified against a decoy (nonsense) protein sequence 

database. A contaminant protein (such as keratin) is a protein that did not originate from the sample 

but was introduced during sample processing.  Peptide retention times were recalibrated by 

selecting peptides identified with the best (cleanest) six transitions in their XICs (Figure 7.1) and 

mass spectrum showing MS/MS hits in the PSL (pink sticks) and extracted ions from SWATH data 

(blue sticks) (Figure 7.2) from proteins common across all samples and then applied to generate a 

calibration curve (APPENDIX 7.1).   This was followed by entering the processing settings for 

filtering peptides. The SWATH-MS™ MicroApp is a plugin to PeakView
®
 software that is 

embedded in the “Quantitation” tab on the menu. Navigating to, and clicking on SWATH-MS 

processing in the dropdown Quantitation menu activated the screen that is illustrated in APPENDIX 

7.2. 

 

Figure 7.1. Example of XICs of a selected identified calibration peptide TYDSYLGDDYVR. 
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Figure 7.2. Tandem mass spectrum – MS/MS (pink sticks) of the doubly charged calibration 

peptide – TYDSYLGDDYVR that was used to extract corresponding ions from SWATH data (blue 

sticks) 

7.3.5 Data analysis 

Peptide and protein peak areas were automatically imported into MarkerView™ Software version 

1.3 (SCIEX) for visualisation. Prior to further analysis, data were normalised using Median Peak 

Ratios feature. Each sample was normalised to the raw file SC_SWATH-MS_569.wiff that was 

derived from analysing the healthy sheep sample SC569 (reference sample) for the peaks which the 

samples had in common. The underlying assumption for this normalisation approach was that all 

samples contained many ‘background’ peaks in common with the respective reference sample
389

. 

For each sample, the ratios of the peak areas (for the sample and the reference sample) were 

calculated for all peaks which were greater than 1% of the largest peak. The median ratio from the 

previous step was then used as the scaling factor for each sample. In the event of less than ten peaks 

in common between the two samples, normalisation was not performed and the scale factor was set 

to 1.0.   

After normalisation of the data, supervised principal component analysis  also known as PCA 

discriminant analysis (PCA-DA) was performed. This approach was chosen because of prior 

knowledge of how the samples were treated (i.e. before and after endotoxin treatment) to define and 



106 

 

improve sample separation in the resulting scores plots. Data were displayed as charts. The PCA-

DA scores plot displayed the scores for the first principal component against the second. Similarly 

the PCA-DA loadings plot displayed loadings for the first principal component against the second.  

In order to identify proteins that potentially altered during endotoxaemia, peak areas of proteins 

constituted from individual peptides in the samples before, and after endotoxin treatment were 

compared using the paired t-test tool in MarkerView™ Software after automatically excluding 

outliers. Protein identification entries were exported in .xlsx format (Microsoft
®
 Excel™) into 

spreadsheet. Data were displayed in the default MarkerView™ Software spreadsheet output with 18 

protein-level categories as headings, namely: row (numerical identification), index (protein 

abundance hierarchy), peak name (UniProtKB protein accession number), m/z (not applicable in  

this dataset), retention time (not applicable in this dataset), protein group (protein name and status 

in UniProtKB), use (application of the protein data for statistical comparison – true), the 

conventional paired t-test outputs (t-value, p-value, mean 1, mean 2, median 1, median 2, sigma 1, 

sigma 2), delta (observed numerical change in protein concentration), fold change (a standardised 

measure of quantitative change in protein concentration, and log (fold change). The spreadsheet 

data format enabled user-level inspection, further curation and annotation of the protein IDs. Protein 

sequences of identified uncharacterised or unnamed proteins were retrieved from UniProtKB 

database and then analysed individually and named using the Basic Local Alignment Search Tool 

(BLAST) in NCBI database. For the scope and purpose of this thesis as a proof of concept study, 

only filtered data that included the UniProtKB accession number, gene name, NCBI name, protein 

status, UniProtKB name and fold change of individual proteins after treatment of the sheep with 

endotoxin from E. coli were presented in the results.  

7.4 Results 

7.4.1 Outcome of sample comparison and protein data  

PeakView
®
 Software was used for an initial examination of consistency and quality of collected 

data. The summed peptide signals (total ion chromatograms, TICs) of samples as displayed in this 

software are presented in Figure 7.3. 
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Figure 7.3. Total ion chromatograms (TICs) of peptides representing before (upper panel) and after 

(lower panel) endotoxin treatment in sheep plasma samples. There were 18 paired samples for 

comparison represented in both panels.  

After all the raw data sample files were examined in the graphical interface of PeakView
®
 software, 

it became apparent that there was considerable variability in the appearance of the TICs whereas 

more consistent, almost overlapping TIC signals were expected since the samples were derived 

from an original study that assumed that the study subjects and therefor the samples, had similar 

characteristics
14

. An interesting observation during the inspection of TIC morphology data was that 

most of the TICs with comparatively low peptide intensities that peaked at the hydrophilic end of 

the TIC were those of the SYSS cohort of sheep (Figure 7.3).  Based on the preceding observation 

and the background that SYSS sheep had a different anaesthetic protocol
15

, these data files and  

other files whose TICs differed considerably from the rest were excluded from further analysis. 

This resulted in the final analysis of eight paired samples (Figure 7.4).  

In order to determine if there were any associations or correlation between the samples, the 

remaining 16 samples (8 pairs) that met the inclusion criteria based on TIC characteristics and 

uniform anaesthetic protocol were subjected to supervised PCA discriminant analysis (PCA-DA) in 

MarkerView™ Software as illustrated in Figure 7.5. 
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Figure 7.4. Total ion chromatograms (TICs) of peptides representing before (upper panel) and after 

(lower panel) endotoxin treatment in sheep plasma samples after filtering out aberrant and those 

with low peptide intensities. There were 8 paired samples for comparison represented in both 

panels.  
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A B 

Figure 7.5. Supervised PCA of 16 SWATH-MS-analysed plasma samples and protein data in MarkerView® software after normalisation. The samples 

comprised of eight treatment pairs representing before and after endotoxin treatment (Rx) time-points. The score plot (A) summarises the relationship 

between the samples and the loadings plot (B) illustrates the protein peak patterns identified in the samples in the score plot. The data points on the 

PCA-DA scores plot were colour-coded showing before and after endotoxin treatment. The blank data points (while circles) were considered to be 

outliers based on plot characteristics. In the loadings plot, the peaks for after endotoxin treatment were denser that those before treatment. 
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7.4.2 Identification of proteins and their potential alterations in plasma of endotoxaemic sheep 

Up to 243 proteins were identified and quantitated by SWATH-MS analysis by comparing plasma 

samples from healthy sheep (i.e. before treatment with endotoxin) and sheep with endotoxaemia. 

The signals of high-scoring individual peptides were extracted which enabled the identification of 

proteins and the comparison of their peak areas, for example a peptide of serotransferrin (Figure 

7.6) and pentaxin (C-reactive protein) (Figure 7.7). 

  

A 

  

B 

Figure 7.6. Quantitation of serotransferrin. Panel A shows an example of XICs of SAGWNIPMGR  

extracted from SWATH using five fragment ions specific to this particular selected peptide  of 

serotransferrin in sheep plasma before and after treatment with endotoxin. Panel B shows a 

comparison of SWATH signal (blue) for one particular sample to library MS/MS signal (pink), 

which confirms the ID of the peptide. Serotransferrin is known to decrease during inflammation. 
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A 

  

B 

Figure 7.7. Quantitation of C-Reactive protein. Panel A shows an example of XICs of AFVFPK - a 

selected identified peptide of pentaxin (C-Reactive protein) in sheep plasma before and after 

treatment with endotoxin. Panel B shows the corresponding mass spectrums of this doubly charged 

AFVFPK peptide in Panel A which confirms the ID of the peptide. C-Reactive protein is known to 

increase during inflammation. 

The full details of proteins that were quantitated by SWATH-MS analysis alongside their fold-

chage values are listed in Table A7.5 in APPENDIX 7.3.  For the purposes of this proof of concept 

study, within the limitations of only 75 minutes of induced endotoxaemia in sheep, any protein that 

had a fold change above or below 1.0 based on t-test results was considered to have the tendency of 

protein alteration criteria during endotoxaemia as compared to healthy status, i.e. before the sheep 

were treated with endotoxin. It is therefore reasonable to suggest that known and potentially 

inflammation-related proteins showed the most alteration during endotoxaemia and had peak area 

ratios far greater or far less than 1.0. 

Some 40 well-recognised proteins involved in systemic inflammation and their corresponding gene 
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names in parentheses that were quantitated  include albumin (ALB), serotransferrin (TF), amine 

oxidase (AOC3), C-X-C motif chemokine (PF4), alpha-2-glycoprotein 1, zinc-binding (AZGP1), 

angiotensinogen (AGT), apolipoprotein M (APOM), apolipoprotein B (APOB), fibrinogen alpha 

(FGA), fibrinogen beta chain (FGB), alpha-1-antiproteinase precursor (SERPINA1), ceruloplasmin 

(CP), L-lactate dehydrogenase B chain (LDHB), alpha-1-microglobulin/bikunin precursor (AMBP), 

apolipoprotein A-1 (APOA1), Alpha-1-acid glycoprotein (ORM1), antithrombin-III (SERPINC1), 

haptoglobin (LOC101102413), alpha-1-macroglobulin (A2M), Serum amyloid A4 protein 

(LOC101120613), apolipoprotein A4 (APOA4), apolipoprotein F (APOF), Pentaxin (CRP), 

apolipoprotein H (APOH), apolipoprotein C3 (APOC3), Plasminogen (PLG), apolipoprotein A2 

(APOA2), lipopolysaccharide binding protein (LBP), Alpha-1B-glycoprotein (A1BG), mannan 

binding lectin serine peptidase 2 (MASP2), apolipoprotein D (APOD), alpha 2-HS glycoprotein 

(AHSG), retinol-binding protein 4 (RBP4), beta-2-microglobulin (B2M), monocyte differentiation 

antigen (CD14), inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1), inter-alpha-trypsin inhibitor 

heavy chain 2 (ITIH2), inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3), inter-alpha-trypsin 

inhibitor heavy chain 4 (ITIH4) and apolipoprotein E (APOE). 

In addition to proteins that are already well-recognised to be involved in acute systemic 

inflammation, there were 42 other proteins that showed considerable alteration during early-phase 

acute endotoxaemia either by increasing or decreasing – these proteins could potentially be 

recognised as markers of inflammation in future. These candidate proteins extracted from Table 

A7.5 in APPENDIX 7.3, with their corresponding gene names in parentheses followed by their fold 

change values that occurred during early-phase acute endotoxaemia were: tRNA methyltransferase 

11 homolog (TRMT11) 16.2, family with sequence similarity 105 member A (FAM105A) 15.9, 

sentrin-specific protease 8-like (LOC101116576) 6.2, lysine methyltransferase 2A (KMT2A) 5.1, 

family with sequence similarity 13 member B (FAM13B) 4.4, T cell receptor delta variable 2 

(TRDV2) 3.1, elongation factor 1-alpha 1-like (EEF1A1)2.8, Titin (TTN) 2.7, Histone cluster 2 

H2A family member b (HIST2H2AB) 2.6, ceramide synthase 4 (CERS4) 2.6, platelet basic protein 

(PPBP) 2.5, angiopoietin like 6 (ANGPTL6) 2.5, serpin family A member 5 (SERPINA5) 2.5, 

leukocyte cell derived chemotaxin 2 (LECT2) 2.4, proline rich 14(PRR14) 2.3, glucose-6-phosphate 

isomerase (GPI) 2.3, antigen WC1.1 (WC11) 2.2, casein alpha s1 (CSN1S1) 2.2, insulin like growth 

factor 2 (IGF2) 2.2, leucine rich repeat LGI family member 2 (LGI2) 2.2 choline O-

acetyltransferase (CHAT) 2.2, pentraxin 3 (PTX3) 2.1, proteasome subunit alpha 2 (PSMA2) 2.1, 

osteoglycin (OGN) 2.1, enolase 1 ENO1 2.0, cystatin C (CST3)1.9, short palate, lung and nasal 

epithelium carcinoma-associated protein 2B-like (LOC101107619) 1.9, zinc finger protein 512B 

(ZNF512B) 0.6, inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3) 0.6 myeloblastin (PRTN3) 0.6, 
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alpha globin chain (HBA1) 0.6, junction plakoglobin (JUP) 0.5, haemoglobin, beta (HBBA) 0.5, 

complement factor D (CFD) 0.5, insulin-like growth factor binding protein acid labile subunit 

(IGFALS) 0.5, myosin light chain 1 (MYL1) 0.5, lysozyme C, milk isozyme (LOC101102714) 0.5, 

fibulin 5 (FBLN5) 0.5, biotinidase (BTD) 0.4, Histone H2B type 1 (LOC101108086) 0.4, quiescin 

sulfhydryl oxidase 1 (QSOX1) 0.4, Beta-C globin (LOC100134870) 0.4 and alanyl aminopeptidase, 

membrane (ANPEP) 0.3. 

7.5 Discussion and conclusions 

This study used a sensitive method previously reported in human studies to analyse and identify 

plasma proteins that alter during acute endotoxaemia (i.e. biomarkers of acute inflammation).  The 

ultimate goal was to develop a pipeline, using a PSL, as a proof of concept that is able to support 

quantitation a long list of proteins in sheep plasma that could be fished in future studies for acute 

inflammation biomarker candidates.  

This chapter also discusses problems with the analytical samples that were used, for example the 

possible presence of intravenous anaesthetic drug residues in the samples that could have interfered 

with protein extraction from plasma samples. It outlines the potential future applications of this 

research effort as a considerable addition to the  quantitative profiling of proteins involved in early-

phase acute inflammation and their alterations.  

The plasma samples used represented the early phase of induced endotoxaemia in experimental 

sheep of archived samples from a previously published ovine model of intensive care on acute 

pulmonary injury
14

. A subset of the nascent PSL assembled in Chapter 6 was used alongside the 

SWATH-MS approach to interrogate the samples to identify proteins and their alterations during 

endotoxaemia. As label-free quantitation is not a trivial process, inherent analytical challenges were 

identified and optimisation experiments were performed to ensure that any alterations identified 

awere not due to technical variation. Validation of the adopted analytical procedure was performed 

prior to the actual application of the method to evaluate the plasma samples. Replicate LPS treated  

samples were analysed by injecting every sample three times and they produced equivalent results 

and did not themselves show up significant changes (data not shown).   

Changes in plasma proteins are useful to study in animal models of disease involving 

inflammation
17,390,391

 and can assist in defining the course of disease processes and the response to 

treatment
17,378

. It should be noted that in clinical practice, normally relative changes in plasma 

protein concentration are commonly considered, although proteomics also permits comparison of 

absolute changes. Because such proteins are used to inform (or select) medical interventions, they 

are useful yardsticks in monitoring disease pathophysiology if their profiles are determined
17,392

 and 
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having the ability to do so en masse in future if the current approach ever gets to be applied 

clinically would therefore be paramount. The advantage of this would be that the analysis of many 

proteins simultaneously helps to understand more physiological perturbations compared to when 

only individual or small numbers of biomarkers are monitored.    

According to reports in the literature, the number of proteins recognised to be involved in systemic 

inflammation by being either up-or downregulated is in the lower hundreds
17,378,390,391

. The findings 

from the present study on sheep plasma suggest that in addition to recognised APPs that were 

induced by LPS, a substantial number of other proteins tended to suggest altered intensities during 

endotoxaemia. In this study, circulating albumin – which is known to be a negative APP was 

increased, albeit by only 1.1 fold. During inflammation albumin usually decreases because it is 

mobilised by the liver to synthesise other proteins involved in the immune response
393

. A possible 

hypothesis to explain the observed subtle increase here is that there was a momentary upregulation 

of albumin during early phase acute inflammation before perhaps subsequently decreasing, 

considering that acute endotoxaemia had been established in the sheep for only 75 minutes. 

The major APPs in sheep are haptoglobin and serum amyloid A, while alpha 1β- glycoprotein and 

C-reactive protein are regarded as moderate APPs
17,390

. In the present study, serum amyloid A-4 

(LOC101120613) increased 1.4 times in response to LPS, whereas haptoglobin (LOC101102413) – 

which still remains to be unequivocally characterised by MS-based proteomics in sheep, increased 

by 1.2 times and alpha 1β- glycoprotein increased by 1.2 times. It should be noted, however, that 

different diseases may induce different acute inflammation protein profiles
378

, meaning that the 

current model of endotoxaemia may not be representative of all acute systemic inflammation 

disease states. Furthermore, the current study collected samples only 75 minutes after endotoxin 

administration, so this could be considered as only being representative of an early phase of 

inflammation.  

The proteomic profiling of acute inflammation profiling using MS/MS is still an emerging field in 

the veterinary science
390

 and further work is required to determine the biological or clinical 

relevance
17

.  A major advantage of the current (proteomic) approach is that many of the protein 

changes following LPS treatment are mediated by cytokines
17,394

 
374,375,395,396

 and these, including 

C-X-C motif chemokine (PF4), pro-platelet basic protein (PPBP), leukocyte cell-derived 

chemotaxin-2 (LECT2), and possibly interleukin-1 beta (IL1b) can also be measured, but they could 

have been below limits of detection or beyond the capabilities of the technology that was used, due 

to the considerable WDR created by abundant proteins.   

This study had limitations, including the fact that the samples were collected opportunistically from 

a specific group of sheep initially for two desirable animal production traits: Endoparasite resistance 
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(Parasite) and wool production (Wool). These traits may have influenced the extent of response or 

the specific proteins altered in response to treatment of the sheep with endotoxin. Repeating this 

study with other types of sheep and disease processes would therefore be prudent.  

Another limitation was that protease inhibitors were not added to samples to minimise endogenous 

protease activity. Furthermore, the sheep were anaesthetised using total intravenous anaesthesia 

whereby chemical residues in blood may  have interfered with protein extraction as compared to if 

inhalation anaesthesia were used. It can also be argued that there could have been technical 

problems in the acquisition of the data because of the disqualification of  nearly half the dataset due 

to lower signals. While these problematic changes were sufficiently large to be noted, there may 

have been more subtle differences that were in other samples that may have been significant but 

went undetected. It is also important to note that the plasma samples that were utilised in this study 

were for a single time-point only, representing protein alterations in samples drawn after 75 min 

from the commencement infusion of LPS after instrumentation (tracheostomy for ventilation and 

invansive cannulation of blood vessels) of the sheep and during anaesthesia. This may have 

provided limited information about protein changes before instrumentation or after this period. For 

example in other studies, serum amyloid A and haptoglobin have been monitored over longer 

periods, up to days after the initial challenge
397,398

.  It would therefore have been interesting to have 

more blood collections over the 12 – 24 hr period following LPS administration.  

In this study, a number of proteins were identified as having altered concentrations after LPS 

treatment. The data were presented in a comprehensible manner to satisfy the objectives of this 

proof of concept study that utilised archived plasma samples and this was within the scope of the 

thesis as explained in the methods above. Each protein had up to 5 different peptides that were 

measured as proxies for the protein. Unfortunately, because of the protein-level output of the 

results, the use of SWATH™ Acquisition MicroApp in conjunction with MarkerView™ Software 

pipeline from SCIEX employed in this study did not permit the user to evaluate the average change 

in concentration or standard deviations of individual peptides. Nevertheless, the data should allow 

other investigators or reviewers to objectively assess its value in its current form and also after the 

data are made available in a public archive, especially having reported protein alterations as fold 

change values, representing before and after treatment of the sheep with LPS from E. coli.  

Much as the functionality of the PSL has been demonstrated, it is important to note that the results 

of the identified protein alterations during acute endotoxaemia have not been validated and should 

be best considered as preliminary or proof of concept only. Given that the study was carried out 

using plasma, the possible validation strategies are by antibody enzymatic analysis, western blotting 

and possibly HR-MRM as discussed earlier in Chapter 2. There are currently very limited validated 
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antibody and enzymatic assays for sheep and therefore, validating these results would be a life-long 

study and is out of scope for this thesis. However, in a limited number of cases such as serum 

amyloid,  some cytokines and haptoglobin, quantitative assays are available and routinely used. In 

future, these could be used and compare the results with ELISA or colorimetric assays, in the case 

of haptoglobin. Proteins that do change due to LPS have previously been documented elsewhere
17

, 

so this could be used to compare with the proteins detected in this thesis.   

In conclusion, this is the first time a SWATH-MS analysis pipeline has been used to investigate 

plasma samples of a large animal model to quantitate a large number of proteins simultaneously. Up 

to 243 proteins were quantitated, with 40 proteins identified as APPs and a further 42 proteins 

potentially related to early-phase systemic inflammation. These findings have major implications in 

veterinary pathology and animal welfare
17

, particularly when considering that this technology could 

be further developed to be more reliable and useful to rival  the current gold standard for protein 

identification – immunoassays, plus that it can also analyse proteins for which there is not kit 

available.  
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CHAPTER 8 

8.0 General discussion, conclusions and future directions 

8.1 General discussion 

Key points: 

 The development of a peptide spectral library from ovine blood is considered an excellent area 

of research. Given that the technology is now relatively well developed through the analysis of 

other species, the project was largely an analytical challenge. The scale of the work required to 

perform a comprehensive analysis of the proteins present in the ovine circulating acellular 

proteome is such that it is compatible with an original contribution, and the information 

gathered adds to the sum of knowledge known about human plasma/serum proteome analysis. 

 The primary output of this method development thesis was the compilation of a novel 

encyclopaedic PSL, comprising high-quality spectra of 398 proteins derived from plasma and 

serum of sick and healthy sheep, using shotgun proteomics. Headway was made in optimising a 

bioinformatics approach to validate the developed proteomics package. This PSL can be used 

for targeted protein data extraction, using strategies such as SWATH-MS assays for the 

identification of a wide range of proteins
259,399

 and proteogenomics applications. The work 

performed in this project was unique in that it was performed on sheep blood and its real value 

is in having the highest quality data that subsequent researchers may find useful. 

 The work in this thesis aimed to identify proteins involved in early-phase acute inflammation 

because doing so helps in defining the predictors of mammalian response to illness
17

. This in 

turn translates into understanding resilience to disease, and in monitoring progression of disease. 

The project explored a timely molecular approach to understanding injury in sheep by focussing 

on proteomic characterisation of potential circulating acute phase markers. This was achieved 

by applying a subset of the nascent PSL on samples from healthy and ill sheep to detect 

candidate markers of inflammation after 75 minutes of exposure to endotoxin. To this end, a 

considerable number of candidate markers of inflammation were identified simultaneously for 

the first time in the liquid fraction sheep blood, using SWATH quantitation.  

 Several difficulties and costs associated with traditional protein assay methods, such as ELISA, 

make MS-based proteomic assays an attractive alternative. In the absence of abundant protein 

depletion strategies for samples from a majority of veterinary species, the problem of the WDR 

between low- and high-abundant proteins can be minimised by combining different proteomic 

strategies, such as protein fractionation and chromatography
27

. It is evident that working with 
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non-model organisms calls for the need to optimise bioinformatics steps in order to minimise 

false positive protein identification and ensure a high degree of assay sensitivity. On the basis of 

currently available protein detection approaches, the SWATH technique appears to be 

preferable for quantifying known and novel proteins on a large scale
1,3-5,17

. A high-capacity trap 

column and a long (e.g. 50 cm) heated analytical column or changing nanoflow column to 

capillary flow columns, for example, would enable the loading of higher amounts of protein to 

improve chromatographic resolution and enhance the detection of more proteins by the MS 

instrument. In addition, MS-based proteomic studies of non-model organisms require 

considerable time-consuming computing resources because of limited or incomplete protein 

sequence databases and the need for manual curation of the output data (human interface).  

 This proteomics approach using the nascent PSL, which has room for further optimisation, was 

applied in a proof of concept study – with promising results – using ill sheep with induced 

endotoxaemia as the model disease state. The PSL is considered to be one of  the most 

developed and comprehensive to be derived from the circulating acellular proteome sheep and 

has several potential future applications.  

 Overall, four objectives were addressed in this thesis, namely  (1) the development a feasible 

proteomic method to characterise the ovine acellular circulating proteome, (2) construction of a 

PSL repository for serum and plasma, (3) optimisation of a bioinformatics approach to validate 

the developed proteomics package and (4) application of the method to potentially detect 

candidate markers of inflammation in plasma.  

 In this chapter, an opportunity is provided to look back over the project and highlight the 

successes and challenges of the methods that were described in the thesis and what their 

outcomes mean on a broader scale. Further, the discussion relates to how the number of proteins 

identified from the various strategies compare with other animal studies and those of humans in 

the literature by describing what was done to ID proteins and explains why these steps enhanced 

the ID of proteins. An explanation is also given of how the software programs for identifying 

the proteins were selected. The discussion then moves to the practical application of the 

methods for identifying proteins in sheep plasma and an investigation into how the relative 

expression of the proteins could be used to detect alterations in pathophysiology. The optimal 

workflow for the analysis of plasma proteins in sheep blood is discussed as comprising of 

depletion, effective fractionation and analysis on high-resolution MS instrument. An account on 

what would have been done differently in hindsight (lessons learnt) is provided, including 

experiments that should be performed to discover more about the inflammatory response in 

sheep given the limited observations from SWATH experiments in Chapter 7. Later, it is 
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proposed that proteomics could be used to investigate species differences in response to disease 

and why some individuals are more or less susceptible to disease insult. 

Despite the progress that has been made in the field of human plasma and serum proteomics, a 

review of the literature in Chapter 2 of this thesis highlighted the existence of many knowledge gaps 

in our understanding of the circulating acellular proteome of veterinary species. Considerable work 

still remains to be done in defining various proteomes of veterinary species, as most are non-model 

organisms
7,38

. This is important because MS-based proteomics approaches are heavily reliant on the 

extent of sequencing and annotation of the genome of the species under study
67,400,401

. Some well-

established aspects of circulating acellular proteomics in veterinary species, with references to 

human studies, were introduced and discussed in the literature review. The arguments presented 

there were focussed entirely on the developments relevant to the scope of this thesis, such as the 

well-established challenges posed by the WDR encountered when analysing proteins derived from 

shotgun proteomics pipelines and suggested approaches for dealing with it. This background was 

sufficient to enable the formulation of an appropriate choice and development of the ultimate 

methodology for the thesis project.  

The methodology developed for this thesis was founded on generic methods used in plasma and 

serum proteomic studies that were described in Chapter 3
16

. It relied upon commonly used 

processes of sample preparation, such as acetone precipitation and desalting, for the clean-up of 

proteins prior to analysis. Because proteomic sample preparation is tedious and error-prone but 

crucial for the generation of reliable results
402

, it was considered necessary to benchmark to and 

build this initial aspect of the project upon existing works in order to obtain comparable and 

reproducible results
403

 prior to the innovations applied in the subsequent chapters. Hence, this thesis 

focussed upon sample preparation strategies to enhance protein identification in plasma or serum 

for construction of the PSL and its subsequent application in the proof of concept in Chapter 7.  

Desalting of peptides prior to MS analysis was considered a priority step during sample preparation 

because of the large number of samples (over 900) processed for this project. The effect of desalting 

of peptides prior to analysis and its reproducibility as a critical element of the entire proteomic 

method was evaluated. Early observations identified a substantial workflow bottleneck regarding 

the manual desalting of many samples reproducibly during method optimisation stage. Chapter 3 

workflow therefore represented a fundamental keystone methodology for the generation of the draft 

reference ovine serum-based baseline acellular circulating proteome described in Chapter 4
16

.  

The observations made in Chapter 4 highlight the feasibility of establishing a reference serum 

proteome for sheep, thereby addressing the first objective of the thesis
16

. Previously, there were 

limited data and no studies exploring an optimum MS-proteomics approach suitable for veterinary 
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species. Once the feasibility of establishing a baseline PSL was realised, this ambition was 

broadened to further explore the circulating acellular proteome and additional enrichment and 

enhancement of its contents. This was accomplished by an array of strategic protein sample 

preparation approaches described in Chapter 5. 

The characterisation of the baseline circulating acellular proteome was accomplished by adaptation 

of two universal sample preparation strategies for proteome analysis
233

, namely, by separation and 

tryptic digestion of in-gel trapped
404,405

 and in-solution proteins
35,123

. The peptides derived from the 

protein digestions were then subjected to separation by chromatography before being MS/MS 

analysed. The MS/MS data were then processed using multiple vendor-specified algorithms 

bundled in a number of bioinformatics software programs to aid in identifying proteins from the 

tryptic peptides. Consequently, the baseline acellular circulating proteome was characterised 

following the development and optimisation of proteomic methods using serum samples obtained 

from healthy laboratory sheep through discovery proteomics experiments that included in-gel and 

in-solution digestion workflows. Taking into consideration the conventions for reporting detected 

proteins
265,266

, the platform used in this study showed the capability of simultaneously detecting 

hundreds of key serum proteins using sheep as a model.  

Pathway analysis is used to reveal the association between identified proteins and  their known 

pathway interactions
216

. The Ingenuity Pathway Knowledge Base, for example, displays 

interactions between genes, proteins and other biological molecules to reveal biological pathways 

and to generate global canonical pathway protein interactions
216,217

. By utilising the PANTHER 

pathway analysis tool
220

 in this thesis, the serum-derived prototype of the ovine circulating acellular 

proteome revealed the association of 349 genes with 127 protein pathway hits
16

. The viability of 

this workflow was accomplished using generic methods, which cemented the first step in the 

construction of the PSL. These results were considered as a prototype for the normal ovine 

circulating acellular proteome based on serum that could then be used as a reference benchmark 

tool for testing protein alterations during physiological perturbations, such as during illness, in any 

ovine model. A similar approach for determining the baseline proteome could be applied to other 

veterinary species. The advantage of understanding better how animals such as sheep respond to 

inflammation with long-term benefits has long been recognised
17

. 

In Chapter 5, the assorted sample preparation strategies facilitated the capture of as much 

incremental peptide information as possible under different conditions, to enable the subsequent 

construction of a novel encyclopaedic PSL in Chapter 6 – the primary thrust of this thesis by 

conglomerating data from seven experiments to enrich the baseline proteome established in Chapter 

4. Considering biotechnical work on human plasma as the benchmark
406

, and by drawing parallels 
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to it, this work has demonstrated that it is possible to construct an in-depth PSL for characterising 

the circulating acellular proteome of a non-model species using serum and plasma samples from, 

for example, healthy and sick sheep. In order to fulfil the requirements of the second objective of 

the thesis, the prime aspects of its construction are highlighted in the discussion that follows. 

Acetone precipitation of proteins is a well-established sample preparation procedure
24

 that is usually 

performed to rid samples of substances in the supernatant that interfere with protein analysis
25,26

. 

However, there are few studies that have investigated the supernatant fraction that is usually 

routinely discarded, even though some proteins are lost in the process
407

. For instance, one 

particular study observed that a substantial number of proteins were present in the supernatant of 

acetone precipitated rat brain homogenate that were not present in the precipitate
407

. These findings 

are consistent with those of the present study, where considerable numbers of proteins were present 

in the supernatant after acetone precipitation of sheep serum and plasma, some of which were 

unique to this fraction. For the purposes of building a PSL, it is suggested that both fractions of 

acetone precipitation samples be analysed in future.   For example, there is a possibility of proteins 

with specific qualities i.e. those that fail to precipitate by known mechanisms
23,329

, that aggregate in 

the supernatant and that could be important for biomarker studies. It is therefore reasonable to assert 

that some previous studies have been biased by excluding families of proteins with particular 

chemistry that did not favour precipitation with acetone. This is a very important finding of the 

present work. 

The rationale for partial organic precipitation using ACN during sample preparation was to reduce 

the footprint of abundant proteins, such as albumin, globulins and lipoproteins, thereby enriching 

the less abundant protein species in the supernatant
332,337,408,409

. This approach was attractive for this 

thesis because it has been trialled in samples from several species, including humans
337

, with 

promising results of improved protein identification, but data for sheep were lacking. The findings 

of the experiments from this thesis support the use of ACN precipitation for enhanced protein 

identification capacity. A notable observation in the present study which differed from an earlier 

report
337

 is that more protein detections were made in buffer-diluted ACN treated samples with a 

higher pH than with a lower pH. This could be because a higher pH favours the digestion of protein 

by trypsin into tryptic peptides
410

. Overall, ACN precipitation workflow improved protein detection 

considerably compared to untreated samples derived from sheep plasma and serum and should be 

considered for inclusion in pipelines that seek to deepen the proteome coverage of their DDA 

experiments.   

Combinatorial peptide ligand library plasma treatment has been known to enlarge the visibility of 

medium to low abundant proteins and has potential in biomarker research
411

. This technology has 



122 

 

made headway in preparing samples derived from animals; for example, it was used to deplete 

plasma samples of cattle during biomarker studies for Johne’s disease
412

 and investigation of type 2 

diabetes in mice
413

. It has been utilised in a number of human study pipelines, such as in 

identification of candidate biomarkers for hepatitis B–associated liver cirrhosis in humans
414

 and 

other conditions
415-417

,  all with improved numbers of proteins identified. This thesis thus utilised 

ProteoMiner™ technology to acquire protein data for sheep serum and plasma for the first time and 

was by far the most successful experiment.  

Off-gel fractionation was trialled in the present study, with the goal of gaining additional 

information on the analytes – compared to other fraction methods – because it has been reported 

that it performs better than SDS-PAGE when analysing human plasma samples
418

. Other than a 

recent study on sheep whey, there are currently no other studies that have used this fractionation 

approach on sheep serum or plasma. The advantage of off-gel fractionation is that crude protein 

samples can be analysed, as well as peptides. In this thesis, only serum was used but future studies 

could also acquire data from plasma for inclusion in the PSL to cover proteins that were not in 

serum. 

In principle, PSLs are to be derived from a wide range of observed high-quality MS/MS spectra 

from DDA experiments that are as inclusive as possible for future investigations when mining the 

library
5
. For this reason, it was imperative to include peptide data from the serum of ill sheep (both 

naturally sick and experimentally induced endotoxaemia) in order to establish a comprehensive 

library that would capture proteins that might only be upregulated during systemic illness. The 

endgame here was to have a library that focussed upon the inflammation/systemic states angle – this 

was more the emphasis than exploring more general biology. 

The PSL contains peptide sequences of five pro-inflammatory cytokines that were synthesised and 

added. These synthetic cytokines acted both as quality control internal standards to ensure that data 

were processed correctly for protein identification and will in future hopefully aid in detecting 

endogenous cytokines that are usually in low abundance.   In addition, the library is considerably 

more extensive than any publicly available animal PSL, such as those present in the PRIDE 

Archive
19

, and it is potentially versatile due to its homology with bovine protein sequences. The in 

silico predicted and synthesised peptides for the five cytokines were in fact selected on the basis of 

their homology between sheep and cattle. The PSL could therefore be adapted as a building block to 

complement existing and future efforts for construction of a plasma- and serum-derived bovine 

PSL. Although a synthetic library can result in additional proteins hits and be very useful, it is 

significantly more expensive and more time-consuming to construct because it requires in silico 

prediction of the best and high-scoring unique peptide candidates. An impediment associated with 
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combining libraries derived from samples of different species, although beyond the scope of this 

thesis, is the uncertainty concerning how bioinformatic platforms, such as PeakView, Skyline or 

similar, interpret homologous peptides.  This would inevitably call for the non-trivial task of 

manually going through large peptide lists in order to retain only high-scoring peptide and protein 

homologues while minimising redundant sequences in the library. Even with a single species PSL 

such as the one constructed for sheep in this thesis, it is still necessary to mine it using multiple 

search platforms in order to establish its protein and peptide content. The spectra of peptides from 

the five synthesised cytokines were visible in the graphical interface of PeptideShaker, confirming 

their presense in the PSL. Given the strigency in validating protein IDs, it is for this reason that a 

bioinformatics strategy using this software platform was utilised in this thesis in order to retain only 

high-quality data for the PSL.  

This being a method development project, several optimisation experiments were necessary to 

realise the goal of being able to identify proteins isolated from the circulating acellular proteome of 

sheep. This was achieved by the trialling of various alternative approaches for proteome analysis 

and bioinformatics tools, as detailed in Chapter 6. The choice of the software platforms used in this 

thesis was determined by (1) the requirement of the primary instrument bundle – in the case of 

ProteinPilot™ and TripleTOF 5600+ instrument; (2) availability of a high performance computing 

host for the Mascot Server at QUT; (3) cost and quality of the software (PeptideShaker is free, open 

source and has the ability to interpret data from different search engines
245

); and 4) human resource 

expertise and supervisory support.   

One software package with capabilities for validating protein identifications on a single platform 

that was trialled is Scaffold Software
187

 (data not included). It enabled the comparison of different 

sample datasets and search engines
187

. Within Scaffold, X! Tandem
162,163

 protein identifications 

were compared to Mascot
200

 identifications. In addition, Scaffold intrinsically used peptide prophet 

and protein prophet algorithms to identify proteins
187,419

. Scaffold takes into consideration the 

universal determination of FDR when using decoy databases for protein sequence searches
420

. 

Protein inference in Scaffold depends on the basis of spectral counting prior to the assembly of the 

identified peptides
421

. This same approach has previously been used in protein identification and 

validation studies of uterine luminal fluid during early pregnancy in sheep
370

. Later in the project, 

the size of the library exceeded the capacity of the available computing resources at QUT to fully 

utilise this potentially useful bioinformatics tool; nevertheless, some notable observations were 

made. Scaffold identified 377 proteins in the PSL compared to 564 protein IDs made by 

ProteinPilot, 830 IDs made by Mascot and 398 IDs made by PeptideShaker, as reported in Chapter 

6.  In terms of the number of protein IDs, the performance of Scaffold was therefore comparable to 
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that of Mascot but since Mascot is widely considered the quasi-industry standard and the most 

widely used protein sequence search engine
284

, it would be reasonable to benchmark Scaffold 

searches to those of Mascot.  

The findings from the baseline proteome study (Chapter 4)
16

, represented the identification of 

medium to high abundance protein IDs in serum within the capabilities and limitations of the 

available software platforms at the time. It would have been more desirable to derive quantitative 

data from the analysed samples of that study. The use of Scaffold would have determined the 

differences in protein identifications and relative quantities between normal and sick sheep serum 

samples from this dataset, for example. Some research efforts have used a similar approach to 

evaluate sheep serum proteome, such as the one that investigated scrapie
264

 and another that 

investigated respiratory disease
111

. The study on scrapie utilised SELDI-TOF-MS and LC-MS/MS 

and was able to detect elevated levels of serum amyloid in infected sheep compared to normal 

sheep. The earlier study was able to distinguish the scrapie group from the healthy control sheep
264

.  

In the latter study, two-dimensional electrophoresis (2-DE) map analysis followed by SELDI-TOF 

was used to compare healthy sheep serum profiles with those of sheep with respiratory disease, 

which detected alterations in at least six known acute phase proteins
111

. In comparison, the approach 

of the present study has the potential to analyse several proteins simultaneously. The currently 

available reports of proteomics studies on the liquid fraction of blood with this same approach are 

few in number, as most reports are focussed on other body fluids of ruminants
370,112,293,339,379,422-424

. 

The present study is therefore a valuable addition to literature on the plasma and serum of sheep. 

One advantage of using Scaffold is that it is possible to browse or view protein alterations that are 

comparatively up- or downregulated or those that do not show any changes between normal and 

diseased serum states, for example. It is also possible to determine fold changes using the statistical 

analytical tool, which can be useful in determining candidate biomarkers. The level of significant 

protein alterations can also be determined using this platform. The stated features that Scaffold has 

are currently lacking in the ProteinPilot™, Mascot and PeptideShaker software platforms that were 

used in this thesis. The utility of a single bioinformatic analytical platform to validate proteins is an 

area for future research endeavours. 

The concurrent use of ProteinPilot™, Mascot and PeptideShaker to interrogate the same dataset of 

PSL samples facilitated an optimum evaluation of the number of proteins in the PSL for this 

particular project. The three tools collectively identified over 1000 proteins in the PSL. Whenever 

computing, financial and time resources permit, it makes reasonable sense to utilise various 

software platforms to analyse a given PSL, because each tool has additional peculiar ways 

(algorithms) of identifying proteins that may not be shared by others. This is because each platform 
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employs a different technique for spectrum identification
425

. Considering all efforts to improve 

protein identifications from samples, it is recommended to combine results from multiple search 

strategies
425

. It is therefore quite possible that if other software tools are used to analyse the present 

PSL derived from the ovine circulating acellular proteome, the collective number of identified 

proteins could even be higher.  The difference in the ability of the different software packages to ID 

proteins is a significant finding of this thesis. The proteins missed or detected by specific software 

platforms is therefore dependent on the algorithms used by the different packages. 

This nascent PSL was applied in a proof of concept capstone SWATH-MS study using archived 

plasma samples from sheep with induced endotoxaemia in Chapter 7 with promising results. The 

key outcomes of the capstone study was the  quantitation of 243 proteins in plasma of endotoxaemic 

sheep which includes 40 established APPs and at least additional 42 proteins that appear to correlate 

with early-phase acute systemic inflammation.  This illustrated the relevance and practical 

applications of the PSL relating to detection of plasma proteins, thereby fulfilling the fourth 

objective of this thesis.  The other downstream relevance of Chapter 7 is the possibility of its 

application to observe any differences between the normal and disease states in terms of proteins 

found. It can however be argued that the experiment performed in Chapter 7 was limited in part 

because it used archived samples collected several years ago from a completely different study on 

sheep that was not designed for MS proteomics for the purpose of evaluating the PSL only. In order 

to discover more about the inflammatory response in sheep, future experiments should be designed 

with MS proteomics objective in mind, and with appropriate controls, use of identical sheep, 

appropriate sample collection, current sample preparation methods, well-researched analytical 

strategy, together with a comprehensive and consistent data analysis process. However this is a 

methods thesis, with the method development having greater prominence than clinical outcomes. 

Elaborating on clinical outcomes is an appropriate way to explore the potential applications of the 

developed method, which is in line with the current trend of protein biomarker studies.  

Sheep are an excellent model for translational research, particularly since the sheep genome is yet to 

be completely sequenced
230

. Furthermore, the relatively low cost per head and ease of handling 

make sheep an attractive potential model for translational studies. An important next step in 

capturing this potential is the establishment of a proteogenomics study model to accurately define a 

sheep’s response to stimuli, such as acute injury, before sheep can be used successfully as a model 

for other species, including humans. Aside from the obvious wider benefits to society, there is a 

clear link between biomedical potential and opportunity for industry, because supply of sheep to 

translational study investigators would represent an additional marketing avenue for the producer.  
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8.1.1 Lessons learnt 

A successful proteomic analysis requires the adoption of a well-researched analytical strategy at the 

beginning of the project, along with a comprehensive and consistent data analysis process. Mass 

spectrometry run time is often limited by demand for the required technology, as well by as the cost 

of accessing it. It is vital that a solid analytical framework is also supported by adequate access to 

trained personnel with appropriate expertise and interest in veterinary proteomics. Successful 

proteomics workflows are therefore dependent upon a range of important factors, and it is vital that 

project teams collectively consider these factors and plan accordingly. 

As canvassed in the review of literature in this thesis, the optimum strategy for in depth proteomic 

analysis of plasma proteins requires that the following conditions are met: a) depletion of abundant 

plasma proteins, b) efficient fractionation of the proteins present in the sample into many different 

pools, and c) the analysis of these samples on a modern high-resolution mass spectrometer. The 

utilisation of sheep blood in this project was met with challenges, particularly because specific 

abundant protein depletion kits that have been developed for analysing human and mouse blood 

could not be used for depletion of these proteins from sheep plasma. There were, however, other 

options that were not explored in this project due to unprecedented financial and time limitations, 

despite them being used in other animals
68,69

.  For example, the use of the ProteoMiner™ kit 

provided an effective abundant protein depletion strategy, although it could only be used for a 

relatively small part of the overall project workflow due to cost and time considerations. Once 

depletion is accomplished, the sample is then split into multiple fractions for individual analysis. 

This was achieved, in part, by the use of 1D SDS-PAGE, whereby the gel lanes were divided into 

several fractions and analysed individually to achieve adequate fractionation. An attempt was also 

made using the Agilent OFFGEL Fractionator, however, this experiment was unsuccessful and this 

platform was not pursued further. Another available option that was not explored in this thesis was 

the use of offline SCX fractionation. By comparing and contrasting ACN precipitation results with 

the gel output from the ProteoMiner™ bead system (Figure 5.7), it is evident that this latter system 

led to the greatest number of protein identifications. Perhaps this system process might have been 

explored in greater detail by varying the sample loading quantity. It is possible that a greater 

quantity of sample loaded might enhance the overall workflow by permitting the identification of 

more proteins. 

During the early stages of the project, a predicted approach to peptide identification, incorporating 

amino-acid substitution with reduced identification stringency, coupled with the utility of multiple 

databases and search engines was used to maximise the likelihood of protein identifications. Such 

an explorative strategy casts a wide net, and from the outset seeks to achieve sensitivity at a cost to 
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specificity. It was therefore essential that the downstream workflow sought to validate preliminary 

results through the use of synthesised peptide standards. After this, a more stringent data processing 

strategy that included detecting spiked-in synthetic peptides was employed to minimise the chances 

of false identifications. The strategy incorporated interrogation of a sheep-only UniProtKB 

database. The rationale of using multiple search engines to search a single database underpinned an 

important hypothesis for this work; that the search engine itself represents a significant variable in 

the overall proteomics workflow. Employing a range of different search engines allowed for 

informed comparison, and highlighted strengths and weaknesses of each different search engine.  

As the goal of this project was to develop a PSL for use by future researchers, there was the 

obligation to include only those peptides that had been identified under the most rigorous 

conditions, and to highlight which combination of techniques, platforms and search engines yielded 

the highest quality output. For this reason, only identifications from PeptideShaker compiled from 

all experiments were retained for assembling the PSL. 

Spectra from synthetic peptides of cytokines were developed to be used for SISCAPA-MRM-MS 

(https://espace.library.uq.edu.au/view/UQ:347312 – data not shown). This approach was later 

abandoned due to time constraints and scope of the PhD project and therefore, spectra were simply 

added to the PSL to enhance its analytical depth. SWATH technology has advanced the proteomics 

frontier, because it facilitates the rapid quantitation of a large number of proteins. However, it is 

only useful for quantitation of more abundant proteins, largely due to wide dynamic range 

constraints encountered by the technology. Currently, it is known that unenriched protein samples 

pose particular difficulties when using the SWATH platform, notably where quantitation is sought 

for proteins that exist below 10 ng/ml. The five endogenous cytokines that were emulated by means 

of synthetic peptides exist at concentrations well below this, which explains why none of them were 

identified by DDA without enrichment. The background to the synthesis of these cytokines was led 

by the informed understanding that their concentrations are expected to elevate following induced 

acute endotoxaemia. It was intended to include these cytokines in the overall analysis; however this 

aspiration did not take into consideration the major dynamic range limitations of the current 

SWATH technology, and therefore such a goal could not be achieved in the scope of this thesis. 

Nevertheless, these synthetic cytokine peptides were useful for in-house purposes only in 

determining if SWATH data processing parameters were correct. It is also important to note that 

endogenous cytokines (as well as many other proteins present in the PSL) were not detected using 

SWATH which was expected, given their low abundance. Theoretically, mass spectrometry can be 

used to detect plasma protein alterations during illness, however it is true that the most important 

and specific changes generally occur in proteins of low abundance. This therefore warrants their 
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enrichment to enable detection. 

8.2 Conclusions 

Proteomic analysis of the circulating acellular proteome, and modern mass spectrometry data 

acquisition approaches such as SWATH-MS, comprise a promising field that has a wide variety of 

applications in veterinary science. This project has delivered the foundation of the much-needed 

experiments benchmarked on studies in humans that can be used for detection of pathology in 

domestic animals. A vital attribute of the contribution of this work is the optimisation of serum and 

plasma sample preparation, which is now available for widespread use.  

A platform capable of identifying several hundred sheep serum proteins using nanoLC-nanoESI-

MS/MS using serum from healthy sheep has now been developed. This approach can now be used 

with protein quantitative data to potentially establish baseline proteomes of healthy domestic 

animals to be applied in comparison with samples from sick individuals and most importantly, it is 

a useful tool for quantifying proteins in closely related mammals (e.g. cattle and goats). 

This thesis is probably the first to have developed a novel encyclopaedic PSL for the ovine 

circulating acellular proteome with the capability of identifying a large number of proteins. If 

implemented, this proteogenomic tool could be of practical significance for veterinary science in 

understanding physiological perturbations in the liquid fraction of blood, and for the scientific 

community seeking to use sheep or related species as a model for studying human disease. The use 

of multiple protein sequence database search engines enabled the identification and validation of 

proteins in the PSL constructed from the liquid fraction of sheep blood.  

This work pioneered the use of a SWATH-MS pipeline on a large scale to interrogate archived 

plasma samples of a sheep model of intensive care. It made it possible to distinguish between 

samples from untreated and endotoxin treated sheep in order to quantitate several proteins, 

including their alterations in the circulating acellular proteome. It also confirmed that the samples of 

the sheep model were non-identical. The several proteins quantitated during induced endotoxaemia 

suggest the potential practical outcome of this approach, by showing proteins that were potentially 

upregulated or downregulated during early-phase acute inflammation.  

In summary, this project has developed a novel encyclopaedic PSL using the liquid fraction of 

sheep blood. It can be asserted that this work has clearly pioneered the basis for the exploration of 

the circulating acellular proteome of sheep – a non-model organism – although there are still many 

proteins that remain to be characterised.  
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8.3 Future directions 

The research questions that formed the premise of this thesis arose from previous work (see 

Introduction to the thesis). Similarly, the findings of the experiments conducted and described in the 

thesis have generated new research ideas.  

In continuing this line of research, it will be necessary to take note of the existence of certain 

experimental factors when interpreting the results. For example, the LC-MS conditions used for the 

thesis were standard, based on the protocols developed for the instrument that largely ran peptide 

samples from humans and model organisms. At this stage, it is not possible to ascertain if peptide 

samples from sheep plasma and serum would require different instrument settings. Overall, the 

thesis focussed on optimisation of sample preparation and set a foundation for the development of a 

bioinformatics pipeline for data analysis on the assumption that all peptides can be analysed 

similarly, irrespective of the species of origin. In future, a high-capacity trap column and a longer 

heated analytical column (50 cm, for example) or a combination of a capillary flow rates and 

capillary columns would enable the loading of higher amounts of protein for deeper peptide 

analysis. This could be utilised together with variable SWATH windows to collect cleaner signals 

with reduced interference and a more sensitive MS platform, such as the TripleTOF 6600 (SCIEX) 

instrument, that has a better dynamic range. Further optimisation of the digestion procedure (for 

example introducing FASP digestion instead of in-solution digestion) could provide more 

reproducible data and improved protein coverage. On the bioinformatics front, an application of de 

novo sequencing approaches could potentially enable annotating more spectra and to permit more 

proteins to be quantified. 

The experiments that were associated with the majority of protein identifications during DDA runs 

were ACN precipitation and ProteoMiner™ workflows. There is a need to have several replicates 

from the samples of these workflows in order to potentially increase proteome coverage for 

inclusion in the PSL. The off-gel fractionation workflow needs to be further optimised and applied 

for sheep plasma samples as well.  

The PSL of the ovine circulating acellular proteome was built using a workflow based on the 

commercial tools developed by SCIEX. This workflow had limited avenues for user interface to 

permit the editing of critical factors such as FDR determination and automatic filtering of cRAP and 

other unwanted protein entries, except in the SWATH MicroApp user interface. In order to further 

enhance and make the PSL more versatile, it would be reasonable to process the data using an 

alternative workflow like that of the established TPP and OpenSWATH workflow
5
. 

There is need to perform GO analysis using the high-quality protein IDs in the PSL. I deally, this 
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would be followed by a discussion on how the results could include certain classes of proteins 

present in plasma/serum and possibly the failure to detect proteins that are already known to be 

present most likely due to dynamic range limitations. 

Because the current PSL was built using only the liquid fraction of sheep blood, it will be prudent to 

broaden its capabilities by including data from cellular components of blood and other tissues. 

Representative tissues for genomic and proteomic analysis could be obtained from the nervous 

(brain), musculoskeletal (muscles and bone), integument, lymphatic (lymph nodes), respiratory 

(lungs), endocrine (adrenals, thyroid, pituitary) or gastro-intestinal tissues (intestines, pancreas, 

liver) and gonads of sheep. This will enable the drafting of an inclusive protein database. Genomic 

information derived from this composite of experiments alongside the proteomics data would be 

fundamental in complementing the efforts of the ovine genome annotation. Also, future experiments 

should be designed with the consideration of SWATH-MS proteomics analysis pipeline in mind in 

order to achieve reproducibility in the samples as evident from bovine samples (unrelated, but 

reliant on the methods and findings of this thesis) analysed at QUT Laboratory (Sadowski, P., 

Personal Communication).  For example, automated robotic liquid handling is proposed to perform 

certain steps of the workflow during sample preparation that could improve reproducibility by 

eliminating errors that could be introduced by humans. The ultimate immediate future application 

for advancing the scope of the findings of these additional proteomics experiments has been 

identified to be in proteogenomics studies. 

The foundation of the present work has been exploratory in nature by looking at innovative methods 

of protein detection. It will therefore be necessary for future experiments to be designed to repeat, 

reproduce and validate what has been observed thus far. Most importantly, there is a need to have 

several replicates from the samples of the workflows used in this thesis in order to potentially 

increase the proteome coverage of the PSL. 
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Appendices 

APPENDIX 4.0.  The UniProtKB accession numbers of 267 proteins from a ProteinPilot 

search of a composite database search of Bos taurus, Ovis aries and Capra hircus database of 

combined first, second and third in-gel digestion samples.  

P14639, W5Q7J0, W5PF65, Q2UVX4, W5NSA6, W5P6F4, W5NUX8, W5P4S5, D6PZY4, 

W5PH95, W5NY95, W5QDG8, W5P3R3, W5NX51, W5PTG9, W5NQW4, W5NRG7, W5P627, 

W5PZS7, W5NPK5, W5QAB1, W5P0Q4, C8BKD1, W5PTR4, W5NXW9, W5PW21, W5Q124, 

W5P5I3, W5NSH2, W5P1J8, W5PGT6, W5P8R7, W5PH81, W5PBY2, Q1RMN8, W5QH50, 

W5PFC9, W5QH46, W5PHP7, W5NY46, W5QH56, W5QH54, W5NTW3, E1BH06, E1BKT9, 

W5NWM2, W5PXX3, W5P101, W5PID9, W5Q0X5, W5NYJ9, W5PXU6, W5PXI3, W5PJZ1, 

W5PDR5, W5Q268, W5NRI1, Q8SPJ1, W5PI61, W5Q9A2, I6W7A2, W5P812, W5PKA9, 

W5P338, W5QI29, W5P3J3, W5Q750, W5Q4Q3, Q3LRQ1, W5PHI7, W5PXC8, W5PE53, 

W5PGT9, W5NRR7, W5PZI1, Q29437, W5P7S6, W5PDE5, W5PD71, W5QGG0, W5PEI4, 

G3N0V0, W5Q0L2, Q1KYZ7, W5PHP8, P12303, W5QFP0, W5QGP4, Q06AV9, G3MZE0, 

W5P4C6, B5B304, W5NXP3, Q28745, W5NRH2, W5Q0R1, W5PFJ0, Q2KJF1, Q28161, 

W5PPQ8, W5PYG2, W5QAA3, W5QGD1, A2P2H9, G5E5V0, Q32PJ2, A6QP30, F1MIW8, 

V6F9A2, W5P2Q8, W5PDS4, W5Q2E1, W5QGB5, W5P229, Q32S29, F1N514, P04272, A2I7N1, 

Q09TE3, W5PLL2, A8YXZ2, I3WAE6, A6QPP2, W5NYF4, Q3SWW8, W5NX96, W5Q3K6, 

W5PD84, W5Q961, W5PDQ9, A6QM09, W5QAR2, E1BFN5, F1MLW8, W5QBW5, F1MLP3, 

W5PDP6, G8JL00, A4IFI0, W5Q0V2, W5P880, W5NXJ3, W5PVL4, W5PAB5, X4ZFS1, 

W5Q5A6, F1MH40, E1BNR0, W5Q9D5, Q29439, H6WVW6, W5QE21, W5PJ97, W5QA54, 

W5PTU7, D6PX64, W5PIJ5, A7MAZ5, W5NZ47, W5PDN1, Q0P5K6, W5PGS4, W5P3H8, 

W5PSM6, E1BI98, W5Q3R0, F1MCF8, W5PZH5, E1BB91, W5NVM6, W5QH21, O46544, 

E1BF59, W5QAA1, W5PG63, Q9XT27, A6NBZ0, G5E5V1, P17690, W5NUW3, W5Q4Z3, 

W5PVH9, G3MXG6, W5Q038, Q9MZS8, W5PJ66, W5PB04, W5Q517, W5PD62, W5P2V6, 

G8JKZ8, W5PB46, W5NS93, G3MWI3, W5PMY0, W5PW62, A5D9D2, W5QIK8, F1N3M0, 

W5PZM1, W5PTL2, W5PB07, W5Q5H8, W5P1X9, W5QFL0, P00974, W5NPN4, E1BBS9, 

E1BD43, W5NUU8, W5PC09, W5PIC9, W5NVT0, W5PK04, W5NQ91, Q29RQ1, W5NTD9, 

I7CT57, W5NQP5, W5NZQ2, W5QCX2, E1B9D7, Q2KI85, G3X6N3, F2YQ13, Q28085, P34955, 

F1MMP5, E1B726, Q95121, Q3ZEJ6, G3X6I0, W5QFH1, W5Q5N5, Q6LBN7, A5YBU8, 

A5PJT7, Q5GN72, Q05B55, W5PAL4, W5NWU4, E1BC09, E1B9F8, W5QJ27, F6RAG5, 

W5PQH2, W5QID7, W5Q5T2, A5D7A2, W5P7M5, Q9TTA5, W5PIA1, A7MBB0, W5PB00, 

Q32T06, W5Q7R8, Q3ZCH5, E1BFG1, W5Q7Z7, E1BLN6, W5QHN0, Q1A2D1, W5P9U4, 

E1BCV0, W5P964, C5ISA2 and W5Q505. 
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APPENDIX 4.1. The UniProtKB accession numbers of 102 proteins from a ProteinPilot 

search of a composite database search of Bos taurus, Ovis aries and Capra hircus database of 

the first, second and third in-solution digestion samples.  

P14639, W5PF65, W5NSA6, W5NX51, W5PTG9, A0A0F6QNP7, W5P3R3, W5QH56, W5PSQ7, 

W5PZS7, W5P4S5, W5P101, W5NXW9, W5Q268, W5PH95, W5QAB1, C8BKD1, D6PZY4, 

W5QH45, W5PJ97, W5NY95, W5NRG7, W5PTR4, W5NWM2, W5PHP7, W5P5I3, W5P0Q4, 

W5P812, W5PID9, W5PZI1, W5PBY2, W5NQW9, W5Q0X5, Q28745, W5P1J8, W5NY46, 

W5NRI1, W5NTW3, G5E604, W5QDG8, W5NPK5, W5QH50, W5NRH2, W5PXC8, Q2KJF1, 

W5PZF0, W5NWX6, Q1KZF3, P12303, W5PPQ8, W5Q9A2, W5QH54, W5P6F4, W5PH81, 

W5P627, W5PW21, W5PXU6, V6F9A2, W5PJZ2, W5P8R7, W5QDP8, W5PDR7, W5PD71, 

W5NSH2, W5PGT9, W5PN97, W5PXI6, W5QGP4, F1N3Q7, W5QI29, F1MLW8, E1BFN5, 

W5PGT6, W5NYJ9, G3MZE0, W5NZ47, W5Q124, O46544, W5NXP3, W5Q750, W5Q4Q3, 

F1N514, W5Q961, W5PTL2, W5PIC9, W5PI61, W5P3J3, W5PDE5, W5Q2E1, P17690, W5QFP0, 

Q9XT27, C6ZP49, Q1RMN8, Q95121, W5PHI7, G3X6I0, W5PAL4, F1MCF8, G3N346, Q3ZCH5 

and Q3SYR8. 

APPENDIX 4.2. The UniProtKB accession numbers of 67 previously known proteins 

identified from a ProteinPilot search of a composite database search of Bos taurus, Ovis aries 

and Capra hircus database of the combined first, second and third in-gel and in-solution 

digestion samples. 

P14639, Q2UVX4, D6PZY4, C8BKD1, E1BH06, E1BKT9, Q8SPJ1, Q1RMN8, I6W7A2, 

Q3LRQ1, Q29437, P12303, G3N0V0, Q06AV9, Q2KJF1, B5B304, Q28161, A2P2H9, Q32PJ2, 

A6QP30, P04272, A8YXZ2, Q09TE3, I3WAE6, Q3SWW8, A6QPP2, F1MCF8, A6H7J7, 

X4ZFS1, H6WVW6, E1BNR0, F1MZ96, D6PX64, A7MAZ5, Q32T06, E1BI98, Q0P5K6, 

P00974, E1BB91, O46544, E1BF59, Q3MHN5, Q9XT27, A6NBZ0, P17690, Q9MZS8, G8JKZ8, 

A5D9D2, F1N3M0, Q3ZCH5, E1BD43, Q2KI85, G3X6N3, F2YQ13, Q28085, P34955, Q95121, 

Q6LBN7, A5PJT7, Q5GN72, Q3SYR8, Q05B55, A5D7A2, Q9TTA5, A7MBB0, A4IFI0 and 

C5ISA2. 

APPENDIX 4.3. The UniProtKB accession numbers of 207 novel proteins identified from a 

ProteinPilot search of a composite database search of Bos taurus, Ovis aries and Capra hircus 

database of the combined first, second and third in-gel and in-solution digestion samples. 

W5PF65, W5Q7J0, W5NSA6, W5P6F4, W5P3R3, W5NUX8, W5P4S5, W5PTG9, W5NX51, 

W5NY95, W5QDG8, W5PH95, W5NQW4, W5NRG7, W5P627, W5QH56, W5PZS7, W5QAB1, 

W5NPK5, W5PTR4, W5P0Q4, W5NXW9, W5P5I3, W5PW21, W5Q124, W5NSH2, W5NWM2, 
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W5QH50, W5P1J8, W5QH45, W5PBY2, W5P8R7, W5PGT6, W5PHP7, W5P101, W5PH81, 

W5NY46, W5PFC9, W5NTW3, W5QH54, W5PID9, W5Q268, W5NYJ9, W5PXX3, W5Q0X5, 

W5PJZ1, W5PXI3, W5PXU6, W5NRI1, W5PDR5, W5P812, W5PJ97, W5PI61, W5Q9A2, 

W5QI29, W5P3J3, W5Q4Q3, W5Q750, W5PXC8, W5P338, W5PKA9, W5PZI1, W5PGT9, 

W5PHI7, W5PE53, W5PD71, Q1KYZ7, W5NRR7, Q28745, W5PEI4, W5QFP0, W5P7S6, 

W5PDE5, W5QGP4, W5QGG0, W5Q0L2, W5PHP8, W5PPQ8, W5P4C6, W5NXP3, W5NRH2, 

W5Q0R1, G3MZE0, W5PFJ0, E1BFN5, W5Q2E1, W5PYG2, W5QAA3, F1MIW8, G5E5V0, 

W5QGD1, F1N514, V6F9A2, W5PDS4, W5P2Q8, W5Q961, W5QGB5, W5P229, Q32S29, 

W5PZF0, W5PLL2, W5NWX6, W5NZ47, W5NYF4, W5NX96, W5Q3K6, W5PD84, W5PDQ9, 

A2I7N2, W5QAR2, W5QBW5, F1MLP3, W5PDP6, G8JL00, W5Q0V2, W5P880, W5PN97, 

W5NXJ3, W5PVL4, W5PAB5, W5QE21, W5Q5A6, W5Q9D5, Q29439, W5QA54, W5PTU7, 

W5NS93, W5PIJ5, W5PDN1, W5PGS4, W5P3H8, F1MLW8, W5PSM6, W5Q3R0, W5NVM6, 

W5QH21, W5PW62, W5PZH5, W5QAA1, W5PAL4, W5PG63, G5E5V1, W5NUW3, W5Q4Z3, 

W5PVH9, G3MXG6, W5PXI0, W5Q038, W5PJ66, W5PB04, W5Q517, W5PTL2, W5PD62, 

W5P2V6, W5PMY0, W5PB46, G3MWI3, W5QIK8, W5PB07, W5Q5H8, W5P1X9, W5QFL0, 

W5NPN4, E1BBS9, W5NUU8, W5PC09, W5PIC9, W5NVT0, W5NQ91, F1N045, W5NTD9, 

W5PIA1, W5NZQ2, W5NQP5, W5QCX2, E1B9D7, F1MMP5, E1B726, G3X6I0, C6ZP49, 

W5QFH1, W5Q5N5, A5YBU8, W5QDP8, W5NWU4, E1BC09, E1B9F8, W5QJ27, F6RAG5, 

W5PQH2, W5QID7, W5Q5T2, W5P7M5, W5PZM1, W5PK04, W5PB00, W5Q7R8, E1BFG1, 

W5Q7Z7, E1BLN6, W5QHN0, Q1A2D1, W5P9U4, E1BCV0, W5P964, W5Q505 and W5PDG4. 

APPENDIX 4.4. The UniProtKB accession numbers of 83 disease-associated proteins 

identified from a ProteinPilot search of a composite database search of Bos taurus, Ovis aries 

and Capra hircus database of the combined first, second and third in-gel and in-solution 

digestion samples. 

P14639, W5PF65, W5Q7J0, W5P4S5, W5NX51, W5NRG7, W5P627, W5QH56, W5PZS7, 

W5QAB1, W5PTR4, C8BKD1, W5P0Q4, W5NXW9, W5PW21, W5P1J8, W5NTW3, W5QH54, 

W5PJZ1, W5PXU6, I6W7A2, W5Q4Q3, W5PXC8, W5PD71, Q1KYZ7, W5NRR7, Q28745, 

W5PEI4, W5QFP0, Q29437, P12303, W5P7S6, W5QGP4, W5Q0L2, Q06AV9, Q2KJF1, G5E5V0, 

A2P2H9, W5QGD1, V6F9A2, W5PDS4, P04272, W5PZF0, Q09TE3, W5PLL2, I3WAE6, 

Q3SWW8, W5PDQ9, A2I7N2, A6QPP2, W5QBW5, W5PVL4, W5Q5A6, W5PTU7, W5NS93, 

W5P3H8, W5PZH5, Q9XT27, P17690, W5NUW3, W5Q4Z3, Q9MZS8, G8JKZ8, W5PB07, 

W5Q5H8, W5P1X9, Q3ZCH5, E1BD43, W5PC09, W5PIA1, W5NQP5, G3X6N3, P34955, 

F1MMP5, E1B726, Q5GN72, Q3SYR8, Q05B55, E1BC09, W5PZM1, Q1A2D1, W5P9U4 and 

W5P964. 
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APPENDIX 4.5. The UniProtKB accession numbers of 77 previously known serum proteins 

identified from a Mascot search of an Ovis aries protein sequence database of the combined 

first, second and third in-gel and in-solution digestion samples. 

W5QAA1, W5QG16, A0A0M4KDI9, W5P7S6, I1WXR3, W5QH56, W5PS45, W5P1J8, 

W5NYJ9, A2SW69, W5PTR4, W5P1Q0, W5PI61, W5PWY0, W5NUG0, Q1KYZ7, W5PTU7, 

W5PAM4, W5PA54, W5P4S0, W5QCP0, W5NTD9, W5PZI1, W5PLL0, W5PWU1, I0CF13, 

D4P8S5, W5PZF0, D6PX64, W5NZB4, W5Q828, D6PZY4, W5Q5H8, W5QDP8, W5PFR8, 

F2YQ13, W5PDJ6, W5PDG3, A0MPT5, A8DR93, W5PHK5, W5QAH2, W5QFL0, W5PHH3, 

W5PGW2, B3GS77, Q29400, U3N1L1, W5QGD1, A0A0P0QND2, Q06AV9, B3SV56, W5Q9H4, 

W5Q7C0, W5PD71, K4P1S5, W5QGW8, W5P3R3, W5PDT4, W5NS93, W5PC09, W5P9U4, 

W5QD30, W5QIY3, W5QE19, W5P987, W5Q2D7, C8BKD1, P14639, W5NQP5, W5NRR7, 

W5P7X3, P12303, C5ISA2, W5PPT6, W5PWL1 and A2P2H1. 

APPENDIX 4.6. The UniProtKB accession numbers of 302 novel serum proteins identified 

from a Mascot search of an Ovis aries protein sequence database of the combined first, second 

and third in-gel and in-solution digestion samples. 

W5QFE4, W5NX51, W5QFP0, W5PJ97, W5NWM2, W5NPN4, W5PDC8, W5QBW5, W5PF65, 

W5QDH9, W5PXC8, W5QGG0, W5QGP4, W5PQL6, W5Q4Q3, W5PYG2, W5PGT9, W5P812, 

W5Q4W5, W5NTL7, W5PWW5, W5PV54, W5PDS4, W5Q2U7, W5Q754, W5PX97, W5PW21, 

W5P6U4, W5QAB1, W5P5I0, W5PAB5, W5PBY0, W5NSH2, W5P880, W5Q4P0, W5Q3K6, 

W5PZY7, W5PXU6, W5PKV4, W5QC26, W5P2U2, W5NVN1, W5QH54, W5NS65, W5P691, 

W5Q749, W5QAX3, W5P9B0, W5Q268, W5Q2E1, W5PXI0, W5NSA6, W5PDE5, W5P9V7, 

W5NRI1, W5PID9, W5PDR5, W5P8R7, W5PXI3, W5P0Q4, W5Q5C2, W5PH81, W5P4C6, 

W5PGS0, W5QJ00, W5P336, W5NRG7, W5PIK2, W5QCP9, W5QAA3, W5P101, W5P6F4, 

W5PPN5, W5PEI4, W5NY95, W5QFK2, W5P229, W5Q9D5, W5QHH3, W5PGT6, W5PG63, 

W5PPQ8, W5PKA9, W5PVG5, W5QAR2, W5Q224, W5P3J3, W5PJZ1, W5PVL4, W5PXX3, 

W5Q0R1, W5NXW9, W5QH21, W5NY46, W5QJ69, W5PD12, W5NYG1, W5QI29, W5P3H8, 

W5QH45, W5P7L5, W5Q0L2, W5PFJ0, W5PTG9, W5Q038, W5QH06, W5PIJ5, W5Q5A6, 

W5PVX0, W5NVC1, W5P0B2, W5PT48, W5NX89, W5P041, W5PD15, W5PYQ3, W5NY68, 

W5PW62, W5Q1W4, W5NUL7, W5PEL1, W5P1Y8, W5QA54, W5PG04, W5PMY0, W5Q9B7, 

W5PSM6, W5NYF4, W5P895, W5PG55, W5P3A7, W5QCH5, W5NXR3, W5Q2R6, W5PDQ3, 

W5P3G6, W5PTL2, W5QDW7, W5PJE4, W5P9W4, W5PAE2, W5Q910, W5QBN7, W5QF95, 

W5QBT8, W5PZ27, W5NRV1, W5P0P1, W5NV45, W5Q950, W5PG50, W5NVT0, W5PN97, 

W5P988, W5QFP2, W5PB04, W5P640, W5PKN2, W5PLJ9, W5PD62, W5PDQ6, W5PDY2, 

W5PEJ5, W5NZQ2, W5QG19, W5PXN1, W5PQM7, W5PJP9, W5PQ53, W5PYL5, W5QIW7, 
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W5Q8Y3, W5PWT9, W5PDN1, W5P808, W5QIK8, W5NX74, W5Q9L9, W5PH55, W5Q5F0, 

W5NSI7, W5PJ85, W5PD75, W5P8Y7, W5P143, W5NT24, W5NTQ9, W5PL69, W5QET9, 

W5Q370, W5Q9P0, W5PA78, W5P092, W5PHI3, W5Q620, W5PPJ4, W5PVG2, W5PZH5, 

W5P9V5, W5PZK2, W5PG36, W5QC28, W5P2V3, W5PP29, W5NUU7, W5PIG7, W5P9A6, 

W5QBV7, W5PKK4, W5P1D3, W5PAJ9, W5Q564, W5PZJ0, W5P1N7, W5PTE9, W5QE21, 

W5QIM3, W5PEY4, W5P985, W5QD80, W5PX18, W5P4X7, W5PK74, W5Q0N1, W5PLC4, 

W5PQ63, W5PKW9, W5P9C3, W5QI75, W5PV57, W5NW67, W5PQH3, W5Q5W3, W5Q5R2, 

W5NSZ2, W5Q517, W5PJ66, W5PZW5, W5QH43, W5Q6L3, W5QHC2, W5Q5P5, W5P4R6, 

W5PQH2, W5NT03, W5PC99, W5Q7J0, W5Q7R8, W5QH50, W5P5T4, W5Q7T8, W5PE53, 

W5PIC9, W5Q7Z7, W5PHP8, W5Q4B1, W5PDQ9, W5PVH9, W5Q961, W5PES2, W5Q4Z3, 

W5PDP6, W5NX96, W5Q9A2, W5NQJ8, W5P248, W5P2I4, W5PD84, W5NSV3, W5NWX6, 

W5NPK4, W5NQ85, W5PME8, W5P2L1, W5NXV2, W5PGS4, W5QHD7, W5P964, W5PUG1, 

W5P149, W5PZ65, W5PHA9, W5P2Y4, W5NZ47, W5QCX2, W5P8T8, W5PY75, W5PB46, 

W5PUJ4, W5Q0V2, W5Q9K6, W5PNU9, W5NXI6, W5PA64, W5NQM5, W5NSH6, W5PXV7, 

W5PPT3, W5P1X7, W5Q0U9, W5PGZ8 and W5P5V0.  

APPENDIX 4.7. The UniProtKB accession numbers of 83 disease-associated serum proteins 

identified from a Mascot search of an Ovis aries protein sequence database of the combined 

first, second and third in-gel and in-solution digestion samples. 

P14639, W5PF65, W5Q7J0, W5P4S5, W5NX51, W5NRG7, W5P627, W5QH56, W5PZS7, 

W5QAB1, W5PTR4, C8BKD1, W5P0Q4, W5NXW9, W5PW21, W5P1J8, W5NTW3, W5QH54, 

W5PJZ1, W5PXU6, I6W7A2, W5Q4Q3, W5PXC8, W5PD71, Q1KYZ7, W5NRR7, Q28745, 

W5PEI4, W5QFP0, Q29437, P12303, W5P7S6, W5QGP4, W5Q0L2, Q06AV9, Q2KJF1, G5E5V0, 

A2P2H9, W5QGD1, V6F9A2, W5PDS4, P04272, W5PZF0, Q09TE3, W5PLL2, I3WAE6, 

Q3SWW8, W5PDQ9, A2I7N2, A6QPP2, W5QBW5, W5PVL4, W5Q5A6, W5PTU7, W5NS93, 

W5P3H8, W5PZH5, Q9XT27, P17690, W5NUW3, W5Q4Z3, Q9MZS8, G8JKZ8, W5PB07, 

W5Q5H8, W5P1X9, Q3ZCH5, E1BD43, W5PC09, W5PIA1, W5NQP5, G3X6N3, P34955, 

F1MMP5, E1B726, Q5GN72, Q3SYR8, Q05B55, E1BC09, W5PZM1, Q1A2D1, W5P9U4 and 

W5P964. 

APPENDIX 4.8. List of 349 bovine aligned gene entries derived from inputting 379 Ovis aries 

protein entries in the PANTHER classification tool.  

CA2, MYCBP2, F2, LRG1, OAS2, MAN2B1, KCTD19, PSMA4, PSMB2, KLKB1, CNTRL, F10, 

PLXNA3, APOH, CPB2, SERPING1, HGFAC, VTN, GPX3, fH, PLG, SRSF7, C1S, PLA1A, F12, 

EXOC3L1, VDAC1, RRP1B, XPO1, TAF2, TALDO1, JUP, SELENBP1, VCL, BRIX1, C7, 

RPS27A, GC, TTC28, LRP2, CTSA, TMEM62, C2CD2L, CGN1, HABP2, TF, PDE3A, A2M, 
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ITIH4, FABP5, IGFBP5, CCHCR1, VDAC2, DOPEY2, BLMH, ZNF804A, PHYHIPL, ALKBH1, 

MACF1, DNM1, CDH13, ITIH2, LCP1, AHSG, PSMA1, HPX, ABCA13, ATRN, NCAPH, C6, 

AVL9, KPNA5, ITIH3, NFATC2, SERPIND1, TTR, FSIP2, ECM1, AFG3L2, NR1D1, DHX37, 

FAM72A, HSPA8, LUM, CFD, CTTN, POGZ, CPN1, SMCHD1, ORM1,OMD, INTS4, MBL2, 

SYNCRIP, PRG4, SKA1, TNXB, LRRC15, F13B, RBP4, EME1, IQSEC2, SETBP1, GHR, 

MYO7A, TGM3, CWC22, NSL1, VWF, HSP90AA1,HSPCA, DSP, C9, SEPP1, LAP3, AHNAK, 

TUBA4A, NOX1, FZD6, F13A1, PSMA5, AMBP, OTOF, CASP14, GGH, PF4, ASB2, SFN, 

PCOLCE, SERPINF2, SMURF1, ADIPOQ, ERCC6, IDE, KIF27, CLEC3B, CEP104, C1QB, C8B, 

PLTP, PEPD, CTNNBL1, ANPEP, MYO1B, TBC1D23, CDH5, BTD, MGAM, PLEKHM1, 

NEK5, APC2, SERPINA5, MASP1, ADGRF2, AP1B1, GOT2, COL6A3, GC, PLEKHG1, 

SYNGAP1, CHMP4C, MROH6, C1QA, C8A, THBS1, MST1, THBS4, RASGRF1, FGG, 

C11orf63, DYM, SHANK1, A1BG, LARP6, TUBB, Lats1, SAMM50, HEPHL1, IFT172, PROS1, 

IGFBP2, LRRC9, APOA1, EPG5, C1QC, ANXA2,ANX2, SERPINA7, IFT140, F5, IGHM, 

BTBD9, ABHD14B, AZGP1, HRG, SERPINF1, POLA1, ZMYM4, PRKG2, TBC1D5, DPEP2, 

PHKA1, NTN4, PSMA6, PPIA, MST1, CCAR2, APOD, Crisp3,CRISP3, TBC1D32, ALOX5, 

LRRK2, NCAM1, C1R, FGA, COL6A1, CFI, UHRF1BP1L, WDR47, CHI3L1, LDHB, CDSN, 

MBIP, FBP1, SNX25, SERPINC1, TF, APOF, DSG1, TRMT11, TXNL4B, LRRC17, ACTG1, 

TICRR, CDK5R1, AP1B1, RYR1, AASDH, C1orf204, GALNT13, FBXO3, PTPRC, TRPM4, 

ALMS1, GSN, HIST1H1D, IGF2R, OSMR, ARG1, FETUB, APOB, ZNF638, ENO1, VPS9D1, 

CDH19, DSG4, CAP1, APOC3, HCFC1R1, SERPINB13, PRG4, CRABP2, DSC3, C2, CP, 

DNAH17, IGFALS, PROC, MASP2, TGM1, CRP, AFM, INPP5B, AGT, CSMD1, OMD, SAFB2, 

WHSC1L1, KNG1, BTAF1, TCN2, HIVEP1, ANKRD11, MOB3B, KLHL8, F9, ITGA6, CD14, 

COLEC11, PSMA7, FCGBP, ZNF248, SART3, APOE, DSC1, FBLN1, CABYR, PDE4DIP, 

FNBP1L, G6PC, SUSD1, DNAH2, PLA2G7, SERPINB5, PLEC, C5, NUP155, ALB, MANSC1, 

IGHE, FAM78B, CCDC89, PGLYRP2, FLG2, GAPDH, ADAM15, TTN, PKP1, TFRC, ICOSLG, 

DRP2, LBP, CFP, GPLD1, CCDC177, XIRP2, HIST1H2AD, PON1, GOLIM4, PIGR, PSMA3, 

PKN3, SERPINB12, SERPINA1, BST1, ANK1, APOA4, LMNA, VNN1, BROX, NACA, APOM, 

SERPINA10, KIAA1751, OSBPL6, GRK7, ABCC5, SHBG, CD44, RND3, APOA2 and C4BPA. 
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APPENDIX 6.0. Generating a UniProtKB sheep-only protein FASTA sequence database 

Figure A6.0. Steps for generating a UniProtKB sheep-only protein FASTA sequence database 

Step 1. Navigate to www.uniprot.org and type Ovis aries and then search (red arrows). 

 

 

Step 2. Under popular organisms on the left side of the screen, select Sheep (red arrow). 
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Step 3. Click Download (1), Download all (2), Uncompressed (3), Format (4), FASTA (Canonical 

& isoform)(6), and then Go (6). 

 

 

Step 4. Saving the downloaded sequence fasta file: Take note of the file name (1), Save File, click 

OK (3). 
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Step 5. Open the FASTA file in a text code editor such as Notepad++ or EditPad and inspect. 

 

 

Step 6. Download and append common Repository of Adventitious Proteins (crap.fasta) sequences 

to the open FASTA file from http://www.thegpm.org/crap/, by following the arrows 1, 2, 3 and 4. 

Add indexed retention time (iRT) peptide sequences and save the FASTA file. Create a 

concatenated target/decoy database from this FASTA file using PeptideShaker.   
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APPENDIX 6.1. Extraction of protein data from ex-diagnostic sheep serum  

Ex-diagnostic frozen serum samples from nine sheep that presented with a range of different 

conditions were obtained from UQ’s School of Veterinary Science clinical pathology laboratory 

(UQ.O) (Table 6.1). These samples (SC502–SC510), a pooled variant representing all samples 

(SC511) and a pooled variant representing healthy free-range sheep samples (SC512) as a control, 

were subjected to in-gel digestion and in-solution using generic methods as described Chapter 3. 

Table A6.1. Sick sheep serum samples for the derivation of peptide data for PSL enrichment. 

UQ.O 

ID 
UQ lab no 

Unique Lab 

sample ID 

Crude serum 

protein (µg/µL) 

Reconstituted acetone-

precipitated 

serum protein (µg/uL) 

1 66943 SC502 65 76 

2 67737 SC503 57 64 

3 68327 SC504 78 72 

4 68354 SC505 78 64 

5 68364 SC506 56 80 

6 68447 SC507 47 76 

7 68494 SC508 69 68 

8 70192 SC509 69 80 

9 70802 SC510 - 80 

10 Pooled (1-9) SC511 - 76 

11 Pooled SA SC512 - 15 

Key: UQ; The University of Queensland; UQ Lab; UQ School of Veterinary Science clinical 

pathology laboratory; UQ.O; serum samples from UQ Lab; SA: serum samples from healthy sheep 

from Serum Australis Pty Ltd. 

The results of Coomassie-stained 1D SDS-PAGE gels used for acetone-precipitated serum samples 

from sick and healthy sheep are presented in Figure A6.1 A and B, and protein IDs are presented in 

panel C.   The gels in panel A and panel B were used for fractionating reconstituted acetone-

precipitated pooled serum from healthy sheep (SA11) and serum from sick sheep (UQ.O 1 to UQ.O 

10). The two gels had a lane each loaded with 4 µL of a molecular weight (MWt.) marker and BSA 

standard (arrows). Sample lanes were loaded with 200 µg of protein. Note the differences in 

appearance of the bands for each sample and the replicates of UQ.O 10 in the two gels. 

Panel C of Figure A6.1 shows the protein IDs from in-gel digestion of sick sheep serum samples 

(SC502–SC510, SC511 [pooled]) and a control in ProteinPilot, PeptideShaker and Mascot search 
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engines; meanwhile, the protein IDs for in-solution digestion workflow are shown in panel D. The 

number of protein IDs from in-gel digestion was marginally higher than those yielded by in-

solution digestion.  

The results of protein IDs for in-solution digestion are presented in Figure A6.1 D. The combined 

number of protein IDs in the Mascot search engine from in-gel and in-solution digestion from the 

entire workflow are provided in Figure A6.1E.    

The total number of combined protein IDs yielded by Mascot from in-gel and in-solution digestion 

of serum samples from sick sheep (SC502–SC511 [UQ.O1-UQ.O9]) and a pooled control sample 

(SC511) from healthy sheep are shown in Figure A6.1 E. Except for two samples (SC502 and 

SC506), the number of protein IDs were comparable for all other samples. The overall outcome of 

this entire workflow, using the Mascot platform, was the identification of 314 proteins. 

It was evident from the results of 1D SDS-PAGE that profiles of the individual samples had distinct 

differences based on the appearance of protein bands in the individual case lanes compared to the 

control sample from healthy sheep (Figure A6.1 A and B). The pooled sick sheep serum sample 

replicates (UQ.O10) were comparable within the gels, but there was an inter-gel difference in the 

appearance of the bands. Despite the gels being prepared and run identically together in the same 

tank, the protein bands of the UQ.O10 sample in gel A appeared dense and diffuse, and yet the 

bands were well separated in the three replicate lanes in gel B. Intrinsic gel properties or a variation 

in the physical nature of the sample during loading could have contributed to this visual difference 

(for example, gel A was loaded before gel B). This illustrates a known challenge of 1D SDS-PAGE: 

inter-gel reproducibility
116

. 

The numbers of protein IDs from in-gel and in-solution workflows from sick sheep serum samples 

were comparable, averaging approximately 125 IDs in the combined results of each individual 

sheep (Figure A6.1 C and D). ProteinPilot™ had the highest number of IDs, followed by Mascot 

and then PeptideShaker.  

The UniProtKB accession numbers of the 183 protein IDs from PeptideShaker for inclusion in the 

PSL were W5Q7J0, W5NSA6, W5NX51, W5PF65, W5Q5H8, W5NRI1, W5P0Q4, P14639, 

W5NRG7, W5NQ46, W5P6F4, W5NWM2, W5NQW4, W5QDG7, W5Q124, W5PW21, P32262, 

Q9XT27, W5Q5A6, W5PZI1, P02075, W5PJ97, W5PHP7, A5YBU9, F2YQ13, W5PTG9, 

W5NXW9, W5PI61, W5NTW3, W5NY46, W5PJZ1, W5PFC9, Q1A2D1, P20757, W5NSH2, 

P29701, W5QAB1, W5P1J8, W5PXC8, W5P5I0, W5Q9A2, W5Q0X5, W5PKA9, P12303, 

W5PID9, W5PHI7, W5PGT6, W5PXI3, W5PD71, W5P7S6, W5Q9D5, B6UV62, W5QFP0, 

W5P101, W5QBW5, W5P3R3, W5PGT9, W5Q0L2, W5PTU7, P52210, W5P1X9, W5QH46, 

W5QH54, W5Q961, P02190, C8BKD1, W5PE53, W5QI29, D6PZY4, W5NWX6, W5QH50, 
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W5NXP3, W5Q4Q3, W5PYG2, P42819, W5NZ47, W5PHP8, W5NPK5, W5NRH2, W5P812, 

W5PDJ6, C8BKC5, W5QGD1, W5Q0R1, W5PIA1, A2SW69, Q1KYZ7, W5PVL4, W5PJR0, 

W5Q749, W5Q2E1, W5NTT7, W5PDS4, W5PDE5, W5P336, P50450, W5PH81, W5P3J3, 

W5Q268, W5NS74, O46544, W5QA64, W5NXP6, W5PBY0, W5PUC1, Q29439, W5QA54, 

W5NYF4, C5IS96, W5Q4Z3, W5PJG0, W5QGP4, W5QA07, W5NUJ7, A2P2H1, W5NUU7, 

B0BL71, A0A0U1YZ59, W5PJ69, W5Q3K6, W5NXM6, W5PDQ9, W5PEI4, W5QDF3, 

W5PDR5, W5NXJ3, W5P880, W5NX96, W5PZH5, W5PPQ8, W5Q7Z7, W5Q7R8, P68056, 

W5QDP8, W5PN97, W5PS88, W5PJR5, W5PDP6, W5P5W9, D6PX64, W5P9J8, W5PG63, 

W5NQP5, W5PV54, W5PLL0, P49920, D7RIF5, W5P4C6, W5PLC9, Q4TVY4, W5PUJ4, 

W5PJ66, W5NXM1, W5NR06, W5NU00, W5Q2U7, W5PI92, W5PAJ9, W5PLQ1, W5NQ21, 

W5PD62, A0A077JGJ6, P11839, W5P481, W5Q7T8, C5IJA0, W5NYA7, H9CJU6, W5PD84, 

P0C276, W5QFQ0, W5PK04, A9YUY8, W5NYA1, W5NV73, W5QBV7, C0LQH2, K4P494, 

W5P5K9, W5PPG6, W5P323, A0A0H3V7A0 and W5Q723. 

This workflow added 71 proteins that were not identified in Chapter 4 – the analysis of  the 

circulating acellular proteome of healthy sheep, apart from 112 protein IDs that were common 

between the two workflows. The UniProtKB accession numbers of the sick sheep-associated 

proteins are W5Q5H8, W5NQ46, P02075, F2YQ13, Q1A2D1, B6UV62, P52210, W5P1X9, 

W5QH46, P02190, P42819, W5PDJ6, C8BKC5, W5PIA1, W5PJR0, W5NTT7, W5NS74, 

W5QA64, W5NXP6, W5PUC1, W5QA54, C5IS96, W5PJG0, W5QA07, W5NUU7, B0BL71, 

W5PJ69, W5NXM6, W5QDF3, W5PDR5, W5PZH5, P68056, W5PN97, W5PS88, W5PJR5, 

W5P5W9, W5P9J8, W5PG63, W5NQP5, P49920, D7RIF5, W5PLC9, Q4TVY4, W5PUJ4, 

W5NR06, W5NU00, W5Q2U7, W5PI92, W5PAJ9, W5PLQ1, W5NQ21, W5PD62, A0A077JGJ6, 

P11839, W5P481, W5Q7T8, C5IJA0, W5NYA7, H9CJU6, W5QFQ0, W5PK04, A9YUY8, 

W5NV73, W5QBV7, C0LQH2, K4P494, W5P5K9, W5PPG6, W5P323, A0A0H3V7A0 and 

W5Q723. 

Also, there were 21 proteins that were identified in Chapter 4, but not in sick sheep serum 

suggesting that these proteins probably diminish during illness. The UniProtKB accession numbers 

of these proteins were W5P8R7, W5PXU6, W5PXX3, W5P4S0, W5P9B0, W5PHH3, B5B304, 

W5QGG0, W5QAA3, W5PIJ5, W5PIC9, W5PVH9, W5PWE9, W5NVM6, W5PTE9, P30035, 

W5P229, W5QH45, W5P3H8, W5P2V3 and W5QAR2. 
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Figure A6.1. Extraction of protein data from ex-diagnostic sheep serum. A and B = Coomassie-

stained 1D SDS-PAGE preparations for fractionating acetone-precipitated pooled serum from 

healthy sheep (SA11) and serum from sick sheep (UQ.O 1 to UQ.O 10); C = protein identifications 

(IDs) from  in-gel digestion; D = protein IDs from in-solution digestion; E = total number of protein 

IDs from in-solution and in-gel digestion of the individual, pooled and healthy control samples. 
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APPENDIX 6.2. Derivation of peptide data from plasma and serum of endotoxin-treated 

sheep 

Plasma and serum samples of sheep that were treated with endotoxin were used for this experiment 

(Table A6.2). The  samples were categorised based on trait/strain or experimental group of the 

sheep model of intensive care based on earlier findings
15

. The samples were subjected to 1D SDS-

PAGE and in-solution digestion as described in the generic methods in Chapter 3.  

Table A6.2. Plasma and serum samples pooled from 24 sheep in groups of six showing 

samples taken before and after endotoxin treatment for in-solution and in-gel workflows.
 †
  

Experiment/Samples→ 

Workflow 

B4 E. Rx 

Plasma 

After E. Rx 

Plasma 

B4 E. Rx 

Serum 

After E. Rx 

Serum ↓Sheep trait/Strain 

Wool production 
In-solution SC537/717 SC538/718 SC539/719 SC540/720 

In-gel SC553/734 SC554/735 SC555/736 SC556/737 

Parasite resistance 
In-solution SC541/721 SC542/722 SC543/723 SC544/724 

In-gel SC557/738 SC558/739 SC559/740 SC560/741 

SYSS 
In-solution SC545/725 SC546/726 SC547/727 SC548*/728 

In-gel SC561/742 SC562/743 SC563/744 SC564/745 

Saline  

(endotoxin control) 

In-solution SC549*/729 SC550/730 SC551/731 SC552/732 

In-gel SC565/746 SC566/747 SC567/748 SC568/749 

†
 The experiments were repeated due to sub-optimal protein recoveries, thus the double sample 

numbers; for example, SC537/717. Key: B4 = before; E. = endotoxin; Rx = treatment; SYSS = 

stockyard sourced sheep; SC = unique laboratory sample identification (investigator initials 

followed by sample serial number); * = No peptide peaks detected. 

Coomassie-stained 1D SDS-PAGE gels of pooled plasma and serum samples from 24 sheep from a 

sheep model of intensive care are presented in panels A, B, C and D of Figure A6.2(a). The gel 

grouping was based on the sheep trait/strain or experimental groups (4 groups × 6 sheep): A –wool 

production, B – parasite resistance, C – SYSS (unknown strain/trait), D – SYSS saline (sham 

challenge; unknown strain/trait).  The results represent samples drawn before and after treating the 

sheep with endotoxin (A, B & C), and experimental controls that received saline (D). Sample lanes 

were loaded with 200 µg of protein in duplicate. Note the differences in P1P lanes (gel A), BLP 

lanes (gel C) and BLS lanes (gel D). Serum lanes had an intense band in the 15 kD region that were 
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less distinct in plasma lanes. Protein yields from 1D SDS-PAGE are shown in panel E, which 

shows that protein extraction from the first 1D SDS-PAGE was better than that from the second. 

 

Figure A6.2(a).  Protein data of endotoxin-exposed sheep workflow. Coomassie-stained 1D SDS-

PAGE gels of pooled plasma and serum samples from 24 sheep from a sheep model of intensive 

care based on strain: A = wool production; B = parasite resistance; C = stock yard sourced sheep 

(SYSS)(unknown strain/trait); D = SYSS saline (sham challenge); E = protein IDs from in-solution 

workflow of the first (SC537–SC552) and second (SC717–SC732) digestions of samples from 
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sheep exposed to endotoxin in ProteinPilot, PeptideShaker and Mascot; F = Mascot protein IDs 

from the entire workflow of endotoxin-treated sheep. Key: Rx = treatment; BLP = before endotoxin 

Rx (plasma); P1P = after endotoxin Rx (plasma); BLS = before endotoxin Rx (serum); P1S = after 

endotoxin Rx (serum); IDs = identifications; In-Sol_Endotoxin = protein IDs from combined 1st 

and 2nd in-solution digestion of endotoxin workflow; In-Gel_Endotoxin = protein IDs from 

combined 1st and 2nd in-gel digestions of the endotoxin workflow. 

Figure A6.2(a) E shows the number of protein IDs from the in-solution workflow of the first 

(SC537–SC552) and second (SC717–SC732) digestions of samples from sheep exposed to 

endotoxin in ProteinPilot, PeptideShaker and Mascot. Protein yields from the second in-solution 

digestion were better than the first. Mascot identified 100 proteins in the combined in-solution (In-

Sol_Endotoxin) and 1D SDS-PAGE (In-Gel_Endotoxin) from the entire workflow of endotoxin-

treated sheep, including controls, as shown in Figure A6.2(a) F, and PeptideShaker identified 84 

proteins.  

The 84 PeptideShaker protein IDs in UniProtKB from this workflow for inclusion in the PSL were 

W5Q5H8, P14639, P29701, W5NSA6, W5PF65, W5NRI1, W5QDG7, W5NX51, W5NQ46, 

Q9XT27, W5Q5A6, F2YQ13, W5Q7J0, W5PW21, W5PHP7, W5NRG7, P32262, A5YBU9, 

P12303, W5PTG9, W5P1J8, W5NTW3, W5NQW4, W5PZS7, W5NU00, W5P6F4, W5QAB1, 

P21621, W5PJ97, W5NXW9, W5P3R3, W5NSH2, W5NWM2, W5PJZ1, W5NRH2, W5PID9, 

W5NY46, O46544, W5PPQ8, W5Q124, P20757, W5P0Q4, W5Q4Q3, Q1A2D1, W5P101, 

W5QH46, W5PZI0, P42819, A2P2H1, W5PDE5, W5Q0X5, W5PXC8, W5NPK5, W5QH50, 

C8BKD1, D6PZY4, W5PD71, W5PFC9, W5QH54, W5PG63, W5PHI7, B6UV62, Q1KYZ7, 

W5Q1R5, W5NXP3, P29455, Q28579, P30035, W5QAR2, W5PVL4, W5PE53, W5Q0L2, 

W5NXM1, W5QA64, W5NYA1, Q7M2U8, W5NXJ3, W5PGT6, W5QFP0, W5P0H0, W5PJG0, 

W5NZ47, W5QI29 and P23383. Of these protein IDs, only 63 were common between proteins 

identified in Chapter 4 that were derived from evaluating the circulating acellular proteome of 

healthy sheep, and  those from endotoxaemic sheep. As compared with protein IDs in Chapter 4, a 

total of 69 protein IDs were not identified in endotoxaemic blood, but there were additional 20 

protein IDs generated from this workflow. The UniProtKB accession numbers of these 20 proteins 

are W5Q5H8, W5NQ46, F2YQ13, W5PZS7, W5NU00, P21621, Q1A2D1, W5QH46, W5PZI0, 

P42819, W5PG63, B6UV62, W5Q1R5, P29455, Q28579, W5QA64, Q7M2U8, W5P0H0, W5PJG0 

and P23383.  

Considered collectively, the sick sheep and endotoxaemic sheep workflows contributed 80 proteins 

to the PSL pool (Figure A6.2(b)). 
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Figure A6.2(b). Comparison of protein IDs from the analysis of 

the circulating acellular proteome of healthy sheep compared 

with IDs drawn from sick sheep (UQ.O) and sheep treated with 

endotoxin from E. coli (UQ.E). The UQ.O and UQ.E workflows 

collectively contributed 80 protein IDs to the PSL that were not 

detected in healthy sheep (Chapter 4). 

 

APPENDIX 6.3. Generation of in silico predicted synthetic peptides of selected 

proinflammatory cytokines 

Briefly, complete tryptic peptide sequences of homologous peptide sequences between Bos taurus 

and Ovis aries of IL-6, IL-3, IL-1α, IL-1β and TNF-α suitable for Fmoc synthesis or solid phase 

peptide synthesis
426

 were predicted by in silico digestion with the aid of Skyline software
172

. The 

basic selection criteria was that peptide candidates were allowed a maximum of one missed tryptic 

cleavage site while excluding reactive cysteine and methionine residues and histidine where 

possible, in order to avoid higher charge states during electrospray ionisation. The length of 

peptides was limited to 8 - 15 amino acids to assure reasonable yield in peptide synthesis. Two top-

ranking unique peptides per protein with capabilities of being detected by mass spectrometry that 

met this basic selection criteria were chosen as targets for proteomics experiments with Skyline. 

Each of the 10 target peptides was then synthesised by Mimotopes Pty Ltd, (Clayton, Victoria, 

Australia) in automated synthesisers using the mild Fmoc chemistry method. The peptides were 

synthesised as unlabelled and K [13C6: 15N2]-labelled by introducing stable isotope labels: heavy 

lysine (K)-containing 
13

C and 
15

N atoms were incorporated at the C-terminal tryptic residue (Table 

A6.3). The heavy and light peptides were mixed in equimolar proportions and 1000 fmol were 

spiked into 16 samples (SC717-SC732) or analysed directly in one sample (SC733) using the 

TripleTOF 5600+ instrument in a DDA mode as decribed in Chapter 3, to collect fragment ion 

spectra (full MS/MS scans) as illustrated by the examples in Figure A6.3.  
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Table A6.3. Unlabelled and K[13C6: 15N2]-labelled H- and -OH termini synthetic peptides of 

five sheep cytokines.  

Peptide Hydrophobicity 

index 

Molecular 

Weight 

Length Peptide sequence 

K*= (1042) labelled 

Cytokine 

1 0.295 914.1 8 LLLTTPEK 
Interleukin 6 

2 0.037 1108.2 9 MQSSNEWVK 

3 -0.020 1473.6 14 ITPSPEGSLNSDEK 
Interleukin 3 

4 0.214 1625.8 15 AFMTFATDTFGSDSK 

5 0.074 1245.4 11 FMSLDTSETSK 
Interleukin 1a 

6 0.055 1267.4 11 SAHYSFQSNVK 

7 0.352 1202.5 11 QVVSVIVAMEK 
Interleukin 1b 

8 0.049 1541.7 14 GDTPTLQLEEVDPK 

9 0.154 909.1 8 IAVSYQTK 
TNF-α 

10 0.344 857.1 8 VNILSAIK 

11 0.295 922.2 8 LLLTTPEK* 
Interleukin 6 

12 0.037 1116.3 9 MQSSNEWVK* 

13 -0.020 1481.6 14 ITPSPEGSLNSDEK* 
Interleukin 3 

14 0.214 1633.8 15 AFMTFATDTFGSDSK* 

15 0.074 1253.4 11 FMSLDTSETSK* 
Interleukin 1a 

16 0.055 1275.4 11 SAHYSFQSNVK* 

17 0.352 1210.5 11 QVVSVIVAMEK* 
Interleukin 1b 

18 0.049 1549.7 14 GDTPTLQLEEVDPK* 

19 0.154 917.1 8 IAVSYQTK* 
TNF-α 

20 0.344 865.1 8 VNILSAIK* 
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Figure A6.3. Representative MS/MS spectra of one unique in silico predicted and synthesised 

peptide each of five proinflammatory cytokines present in the peptide spectral library as displayed 

in PeptideShaker Software.  

 

APPENDIX 6.4. The UniProtKB entries of 564 proteins identified by ProteinPilot™ Software 

in the peptide spectral library. 

 P14639, W5PWE9, W5PH95, W5PF65, P29701, W5NX51, W5NSA6, W5PSQ7, W5NXW9, 

W5QDG7, W5NRI1, W5PTG9, W5NPK5, W5QCY8, Q28743, W5P0Q4, Q1A2D1, D6PZY4, 

W5NQW4, W5PMR1, O46544, A2P2G4, W5PJ97, I1WXR3, W5PZS7, W5Q5H8, W5PBY0, 

W5NQ46, Q9XT27, W5P4S0, W5Q5A6, A6NBZ0, W5NRG7, W5NUJ7, W5QAB1, W5PHI7, 
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A0A0F6YFJ0, W5NY46, W5NWM2, W5Q7J0, P12303, W5Q0X5, W5P3R3, W5PID9, W5NRH2, 

P02083, W5NY95, F2YQ13, W5PTR4, C8BKD1, W5NVM6, W5P627, W5P101, W5NXP6, 

W5NZ47, W5PW21, W5P1J8, O02762, W5PHP7, W5PZF0, W5NTW3, W5NSH2, W5PFC9, 

W5NXM1, W5QAN8, W5Q268, W5QDP8, Q7M2U8, W5Q6D3, W5PI61, W5PGT6, W5PH81, 

W5Q6U2, W5QFP0, W5PKA9, W5P812, W5PFP1, W5Q6A0, W5PPQ8, W5Q7Z7, W5P5I0, 

W5P3J3, W5QGP4, W5QI29, W5PD71, W5NWX6, A0A0F6VY37, W5NUW3, W5NVB2, 

W5P338, W5NYJ9, W5QH54, W5NXP3, W5QH45, W5PXI3, W5NWU4, W5Q9A2, W5NXJ3, 

B7TJ06, W5PG63, W5PDS4, W5PE53, W5PDR5, W5PXC8, W5QH50, W5PTL2, Q29439, 

W5Q2K7, D7RIF5, W5Q4Q3, W5Q505, W5Q9D5, W5P7S6, W5NVG2, W5PN97, W5NS48, 

W5QA07, B5B304, W5Q961, W5Q2U8, W5PDQ9, W5PDP6, W5PGT9, W5PTU7, W5PAJ9, 

W5PDJ6, W5QA64, W5PZK7, W5Q6G0, P00922, W5QBW5, W5PXX3, W5Q0L2, W5Q754, 

W5P880, W5Q749, W5PCA0, W5PVL4, W5NPI9, W5PHP8, W5Q3K6, W5PJG0, W5Q9K1, 

W5PZ55, W5Q2E1, C8BKC5, W5NZH3, W5P988, W5PD62, W5Q3I7, W5PIA1, W5Q517, 

W5P4C6, W5P9V5, D7R7V6, W5PIN8, W5P229, W5PD84, W5PPT6, W5NRR7, C5ISA2, 

A2SW69, W5PEI4, W5PAB5, P49920, W5QAW7, A5YBU8, W5QGD1, O77642, Q06AV9, 

W5PYG2, W5QC41, W5QIK8, W5Q0R1, C5IS96, W5PI92, W5P9B0, W5P1X9, W5NYF4, 

W5P1W2, W5PJR0, W5PDN1, W5QFR6, M4WG34, W5NUS6, K4P494, W5P195, W5PZH5, 

W5PTS4, W5QGG0, W5QCY7, Q28579, A0A077JGJ6, W5PLL2, P02190, W5PSM6, W5QH21, 

W5PQD8, W5PJ66, P11839, W5QBD7, Q7JFW9, W5PB04, W5NUI0, W5PFJ0, C7EDS5, 

W5PB46, W5NX96, W5NPN4, A0A0U1YZ59, W5P2V3, W5NU34, W5PGS4, W5NV45, 

W5NRV6, W5NTG5, W5PLB7, W5PEY4, Q29400, W5P5W9, W5Q4Z3, W5QAA3, W5PHA3, 

W5P9J8, W5Q7T8, W5Q5L6, W5PJ69, Q06435, W5NQP5, W5NTT7, C0LQH2, W5P4W8, 

W5Q2U7, W5Q038, M4WGF1, W5P430, D6BJI0, W5PV69, W5NXN8, W5QET9, W5P915, 

W5PUC1, W5Q0V2, W5PVM3, W5QA54, W5PUU8, W5PYX7, W5PJR5, P67976, W5PBS4, 

W5NY50, D6PX64, W5NX91, W5Q224, W5PV74, W5PH03, W5NSF6, W5QFL0, W5QFR8, 

W5PC09, P62262, W5PTR5, W5P3A7, W5PLF8, D5HKJ4, W5P565, W5PQ96, W5PES2, 

W5PQH2, W5NSR4, W5PH45, W5PD87, Q5MIB5, P09670, W5NXM6, W5PVH9, W5Q0Y3, 

W5PZT3, W5NZQ2, W5Q723, W5NSZ2, W5Q9K6, W5NS65, A9YUY8, W5QDM2, W5PSZ5, 

W5P082, W5NYP8, W5PCP3, W5P9W4, W5NWH4, W5PDG4, W5NZW5, P68253, B0LRN3, 

W5PTZ9, W5P448, W5QEL6, W5P663, W5QJ27, W5NUU7, W5Q7C7, W5NS93, W5PSC8, 

W5NRA9, W5NTB3, W5PLV2, W5QE46, B3GS77, W5PIC9, W5PTE9, W5QCP9, W5P5V0, 

W5PEM0, W5PG55, W5QIV5, W5PWY0, W5QIW1, W5QE21, W5P8T8, W5QJB0, W5QAI5, 

W5PQK6, W5Q8B1, W5PPG6, W5QIG9, P49929, W5PZ65, W5PDF4, W5PBM4, W5QBV7, 

C5IJA0, W5PB07, W5PIG7, W5P481, W5P094, W5NZU3, W5PJC2, A8DR93, W5PMH6, 

W5P323, W5P044, W5PKC9, W5P3Q3, W5PJA0, W5QD30, W5P9U4, W5NT47, W5QGV5, 
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W5P3H8, W5P491, W5P620, W5PBN5, W5QHS2, W5P671, W5QGX2, W5P9V7, W5PEP7, 

W5PQA8, W5P0B2, W5PIN6, W5P0I5, W5NQ91, W5Q2A8, W5PZJ5, W5P311, W5NUP9, 

W5PAM4, W5PPN8, W5QBT3, W5NV73, W5P742, W5PG95, W5PYQ3, W5PF71, W5PS88, 

W5PIJ5, W5NR63, W5P5K9, W5PG36, W5NYA7, W5P060, W5Q9P7, W5PER5, W5Q3T5, 

W5P352, W5Q6D6, W5PKQ5, W5PDD0, W5PZ59, W5NTD9, W5PJV7, W5P644, W5PR13, 

W5PA19, W5QE19, Q4LBE5, W5P1N0, W5P326, W5PL69, W5P0X0, W5PIC7, W5P7M5, 

W5QG17, W5Q0G8, W5Q809, W5P731, W5NUL9, W5PMA2, W5P0T8, W5NQK0, W5NZ75, 

W5QBR9, W5P5F4, W5NRL0, W5QID7, W5PTL7, W5NXZ1, W5PEB0, W5Q1R4, W5PA64, 

W5P2Y4, W5PTU9, Q9XSM0, W5PHT8, W5QF71, W5Q097, W5PXH5, W5Q5D7, W5Q9L9, 

W5QIM9, W5Q6B0, W5PQ53, W5NPH5, W5P1Y8, W5Q0L1, W5PCI1, W5PEL1, W5Q8J9, 

W5P7G7, W5QDT2, W5NW13, A5YBV0, P23383, W5PGZ8, W5P2M3, W5NY22, W5PRG8, 

W5PEJ5, W5P7B1, W5NUA9, W5PXL4, W5PMY0, W5PNM5, W5QGV4, W5NW78, W5Q0G0, 

W5NS18, W5PSL9, W5QI70, W5QIY3, W5NZJ3, W5NX11, W5Q670, W5QGM7, W5QIL2, 

W5P689, W5PYR8, W5QD37, W5Q759, W5NXK9, W5PNP1, W5PMI8, W5PLP6, B2LU28, 

W5PNI5, W5Q8Z1, W5QEV3, W5PAT6, W5NS44, W5P964, W5PGS0, W5PXB4, W5Q254, 

W5PP57, W5PBX6, W5PTS2, W5Q5D8, W5QGN4, W5PE89, W5P908, W5QAJ7, W5PBH6, 

W5P8V3, P50413, W5PVY5, W5PGA9, W5PU57, W5QAK3, W5PQT7, W5PVW3, W5PIW6, 

W5NYJ2, W5P5V2, W5QBV3, W5QGN6, W5PVX3, W5Q6L3, W5Q3D0, W5Q0U9, W5PCG5, 

W5QDG4, W5PM28, W5PHX1, W5P8G7, W5NWD0, W5P7E0, W5PUU0, W5QF94, W5QBE7, 

W5PW91, W5PKF3, W5PJH9, Q7M355, W5QG48, W5NR00, W5NSE9, W5NU20, W5PS94, 

W5NR56, W5PD49, W5PKZ0, W5P8Y7, W5NS27, W5NQD5, W5QH53, W5P2S9, W5P6T2, 

W5PAJ2, W5Q540, W5PWG6, W5PVG2, W5PGC2, W5PM15, W5PBC2, W5NSA5, W5QGB7, 

W5QBD4, W5PKQ7, W5PVV7, W5PWQ1, W5PDQ0, W5PTZ3, W5PCK5, W5P578, W5PBU5, 

W5PLC9, P62297, W5P0H0, W5NYM6, W5P3D1, W5PKF8, W5P691 and W5PMS1. 

APPENDIX 6.5. The UniProtKB entries of 830 proteins identified by Mascot in the peptide 

spectral library. 

W5Q7J0, P14639, W5NSA6, W5PF65, W5P6F4, W5Q754, W5NUX8, W5P5T4, W5NY95, 

W5P4S0, D6PZY4, W5P3R3, W5NRI1, W5NRG7, W5PTG9, F2YQ13, W5Q7Z7, W5NX51, 

W5QAB1, W5PW21, W5P8R7, C8BKD1, W5PTR4, W5NSH2, W5PGT6, W5P0Q4, W5P5I0, 

I1WXR3, W5PH81, W5PBY0, W5QH45, W5Q2U7, W5QH50, W5NXW9, W5P1J8, W5NWM2, 

W5NY46, W5QH54, W5PXX3, W5QFK2, W5NYJ9, W5PXI3, W5Q5C2, W5QH56, W5P101, 

W5PXU6, W5PI61, W5P336, W5Q268, W5PID9, W5PDR5, W5Q7R8, W5PFJ0, W5QI29, 

W5P2U2, W5PJZ1, W5P812, W5P3J3, W5Q749, W5PEI4, W5PKA9, W5QGG0, W5Q4Q3, 
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W5PZI1, W5Q9A2, W5P248, W5PXC8, W5QAX3, W5PHP8, W5QFP0, W5QH06, W5PQL6, 

W5PE53, W5Q0L2, W5PGT9, W5NRR7, W5Q4B1, W5P691, Q1KYZ7, W5PD71, W5Q9D5, 

W5P7S6, Q06AV9, W5Q038, W5Q224, W5QFE4, P12303, W5PDE5, W5QDP8, W5QCP9, 

W5P6U4, Q28743, W5P229, W5P880, W5PWW5, W5QGP4, W5Q2E1, W5P4C6, W5PV54, 

A2SW69, W5Q4P0, W5PPQ8, W5PJ97, W5Q0R1, W5PPN5, W5QJ00, W5NVN1, W5P2I4, 

W5QHH3, W5Q961, W5PVL4, W5QAH2, W5QAA3, W5PHH3, W5NX96, W5QGD1, W5PD84, 

W5Q7T8, W5P3H8, W5PDC8, W5PIK2, W5QC26, A2P2H1, W5Q3K6, W5PDP6, W5PIC9, 

W5PZY7, W5PVH9, W5P9B0, W5QFL0, W5NS65, W5PAB5, W5PG63, W5PGS0, W5PD12, 

W5QCP0, W5P9V7, W5Q4W5, W5QJ69, W5QDH9, W5PKV4, W5NTL7, W5NYG1, W5NQJ8, 

W5P7L5, W5PDQ9, W5Q4Z3, W5PYG2, W5PDS4, W5PLL0, W5QBW5, W5QH21, W5QAR2, 

W5PZF0, W5PVG5, I0CF13, W5NPN4, W5PX97, W5PXI0, W5PES2, W5NTD9, W5PJ85, 

W5PQM7, W5PEL1, W5NSV3, W5PJE4, W5NUU7, W5P640, W5PP29, W5PWT9, W5Q2D7, 

W5PXN1, W5Q1W4, W5Q620, W5PYL5, W5PAE2, W5PME8, W5PJP9, W5PG04, W5PG50, 

W5PZK2, W5P0B2, W5PAM4, W5PY75, W5PKN2, A0MPT5, W5NZ47, A0A0M4KDI9, 

W5NYF4, W5PTU7, W5Q0V2, W5PSM6, W5PB46, W5P2V3, W5Q5A6, W5PB04, W5PPT6, 

W5PZ65, W5QG19, W5QCX2, W5P149, W5P895, W5PC09, W5NS93, W5P964, W5PYQ3, 

W5NZQ2, W5PG36, W5QAA1, W5PN97, W5PS45, W5PTL2, W5P9W4, W5NTQ9, W5PDY2, 

W5P3A7, W5NUG0, W5NQ85, W5PDQ6, W5Q9L9, W5NXR3, W5PEJ5, W5Q2R6, W5NY68, 

W5Q828, W5PVG2, W5QDW7, W5P092, W5Q9P0, W5QBT8, W5NX74, W5PHI3, W5P041, 

W5PA54, W5PIG7, W5Q8Y3, W5Q5F0, W5NT24, W5NWX6, W5PIJ5, W5QIK8, W5PGW2, 

W5NQP5, D6PX64, W5NXI6, W5Q5H8, W5NVT0, W5P988, W5QIW7, W5P9V5, W5PGS4, 

W5P2Y4, W5P9U4, W5QF95, W5PVX0, W5Q9K6, W5PDN1, W5PD15, K4P1S5, W5NPK4, 

W5QFP2, W5QET9, W5PMY0, W5P8Y7, W5PHA9, W5Q910, W5PUG1, W5PM86, W5QHD7, 

B2ZA84, W5PZ27, W5Q9B7, W5PA64, W5PW62, W5PZH5, W5P8T8, W5PD75, W5P143, 

W5NV45, W5PL69, W5PUJ4, W5PWU1, W5NUL7, W5Q370, W5Q7C0, W5PWL1, W5PLJ9, 

W5P0P1, W5PQ53, W5PDQ3, W5PH55, W5PDG3, W5P808, W5QC28, W5PT48, W5QBN7, 

W5PPJ4, W5Q950, W5P1Y8, B3SV56, W5P3G6, W5QGW8, W5NX89, W5QCH5, W5NSI7, 

U3N1L1, W5PA78, W5NRV1, W5PNU9, W5NVC1, W5P1Q0, Q7M371, W5P2L1, W5PHK5, 

W5Q9H4, W5NXV2, W5P9A6, W5QA54, W5PG55, W5PD62, W5P9C3, W5PAJ9, W5PJ66, 

W5PTE9, W5NSZ2, W5QD30, W5Q517, W5P4X7, W5P7X3, W5QHC2, W5QBV7, W5QE21, 

W5QIY3, W5QG16, W5PKW9, W5PQH2, W5PXV7, Q29400, W5PWY0, A8DR93, W5QH43, 

W5PPT3, W5P1D3, W5P4R6, D0VWZ0, W5P987, W5PV57, B3GS77, W5PGZ8, W5Q6L3, 

W5PQH3, W5QD80, D4P8S5, W5P5V0, W5P985, W5Q0N1, W5NZB4, W5NT03, W5Q5W3, 

W5PX18, A0A0P0QND2, W5QIM3, W5PZJ0, C5ISA2, W5QI75, W5PC99, W5NQM5, W5PDJ6, 

W5Q5P5, W5P1N7, W5PLC4, W5PK74, W5Q564, W5QE19, W5P1X7, W5Q0U9, W5PKK4, 
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W5PQ63, W5NW67, W5PDT4, W5Q5R2, W5NSH6, Q5XUI1, W5PEY4, W5PZW5, W5PFR8, 

W5NQ46, Q1KYZ6, W5PHP7, W5NTW3, Q28745, P02075, W5QDG7, W5NQW4, O46544, 

A5YBU9, W5NPK5, W5NRH2, W5P1L7, P30035, W5PIA1, W5PZ55, P68116, C8BKC5, 

W5Q9H1, W5QA07, O02762, W5P3Q3, W5NY78, K4P494, B5B304, W5QA64, B0BL71, 

W5Q5V4, W5NSC7, W5Q293, W5NXP3, W5PHI7, A5YBU8, A2P2G1, W5Q3I7, W5PXZ3, 

P68214, A3QP67, W5NYG7, W5QHS2, W5QD06, W5Q0D7, W5PME2, W5Q124, W5PWE9, 

Q9XT27, W5PZS7, W5P627, W5NU00, Q7M2U8, W5Q0X5, W5NUJ7, Q1A2D1, W5NQ45, 

W5NVB2, W5P060, Q29439, P09670, P49920, W5NR06, C5IS96, W5Q369, W5P9J8, W5Q226, 

A4ZVY6, W5NUW3, W5PXE2, W5P620, W5PBX1, W5P9L8, W5PTB4, W5PKH2, W5NYP8, 

W5PBN5, P0C276, W5NTB3, W5Q2A5, W5PI10, W5PD87, W5NR63, W5PEC1, W5P881, 

W5PHG0, W5Q0Y3, W5NQ51, W5PNI5, W5NQ38, W5QF60, W5NUS6, W5Q367, W5NTL6, 

B0LRN3, W5P5K9, W5P4K7, W5P8L9, W5NVM6, W5PI92, W5PFI7, W5Q5D7, W5PP57, 

W5P8S5, W5NYA7, W5P671, W5PPK7, W5P2D1, C0LQH2, Q28893, W5PE96, W5NZW9, 

W5Q0C0, W5PQQ8, W5Q1N4, W5Q3J3, W5PGV3, W5Q5I4, W5PLU0, W5PZM1, W5QJ31, 

W5NQB8, W5Q5V9, W5P596, W5QEF4, W5Q7H9, W5PZQ8, W5NPR6, W5PKP8, W5PJ43, 

W5P4E6, W5Q9T3, W5PSI1, W5PD73, R4R2H5, D6BJI0, W5PMS1, W5NQ08, W5PNY6, 

W5PTU9, W5Q417, W5NYR7, W5P0C1, P32237, W5PY00, W5Q4E1, W5P078, W5NVG4, 

W5PY15, W5P4S8, W5QGN6, W5PZR6, H2DGR2, W5QA34, W5Q8B1, D5HKJ4, W5NVW9, 

D0VWY9, W5PLN7, W5NSR4, W5Q8S4, W5PZU0, W5PFY4, W5NRZ7, W5PIN4, W5P094, 

W5PAI7, W5NST9, W5PM69, W5PL67, W5PJR0, W5PCA0, W5Q4U7, A2VBC7, I3RWJ0, 

W5P673, W5PF26, Q9XSM0, B9VGZ6, W5NVY5, W5P6L3, W5PL06, W5PMF4, W5P736, 

W5PIU1, W5PFD3, W5NSB9, W5QJA2, W5NU34, W5NY22, W5PV93, P50413, W5Q9T2, 

W5Q7I2, W5PH95, W5PTS4, W5PZI0, W5Q6R7, W5PLB7, W5NQW9, W5Q9K1, W5NVG2, 

W5QH46, W5NZH3, W5QC41, W5QCY7, W5Q0F3, W5NS74, W5PEL7, W5P195, W5QC38, 

Q5MIB5, C7EDS5, W5NTJ3, A0A077JGJ6, W5PE90, P22793, W5Q5L6, W5NTE3, W5PT09, 

W5NPI9, W5QIV5, W5PF71, W5PV74, W5PAG8, W5NY50, W5PDF4, W5PN84, W5QDM2, 

P62262, W5NUY7, W5PH03, W5PVM3, W5PSC8, W5PQK6, W5PPG6, Q1RPQ7, W5PMH6, 

W5Q2K6, W5PT68, W5QFP3, W5PT38, W5PXV3, W5PJC2, W5NQ22, H9CJU6, W5NT47, 

W5PHT8, W5NU40, W5PZT3, D3IU20, W5PLQ1, W5NSF6, W5QE46, W5PK67, W5NRP7, 

W5QCK9, W5PGT0, W5PSM2, W5PSP1, W5PWH2, W5QB36, W5PKG7, W5P2R3, W5P5W9, 

W5QE14, W5PLV2, W5PC67, W5QDT2, W5PQD8, W5PXA3, W5P915, W5PBG2, K4P231, 

W5NYX4, W5PPZ8, W5PIF0, W5NXZ4, W5PBM4, W5QBD7, W5Q670, W5PBX6, W5QIL2, 

W5PSX0, W5P657, W5P1Y5, W5QA91, W5NX11, W5PEM0, W5NRF4, W5QIG9, W5Q3N2, 

W5PMZ6, W5P0X0, W5PCQ3, W5QDP7, W5PB37, W5P300, W5NRS4, W5NW52, W5QGM9, 

W5PIV4, W5PRK9, W5NX57, W5PGV9, W5Q6W6, W5QGQ0, W5NZR2, W5NXK6, W5P7W5, 
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W5NZU3, W5NQ21, W5PZC0, W5PHE6, W5PN22, W5P0W5, B5DC89, W5PI70, W5QIW1, 

W5NZJ3, D7RH37, W5PEP7, W5P1U6, W5PYK0, W5PZ59, W5QCG2, W5PFW3, M4T8F1, 

W5QGM7, W5PNG2, W5PCR1, W5Q9P7, W5PI34, W5Q0L1, W5P1T7, W5Q043, W5QA42, 

W5NW86, W5PLB4, W5PJA0, W5PB07, W5NY84, W5PBY1, W5PBS4, W5Q334, W5P377, 

W5Q5H7, W5PVU5, W5PD49, W5QDT9, W5PWR1, W5NRA9, Q28884, W5PTS0, W5PM28, 

W5QF71, W5PLB6, C5IJA0, W5QDN3, Q7M355, W5Q6C4, W5PAI3, W5PA65, W5PK97, 

W5PYT3, W5PR03, W5P148, A0A0A7ETA6, W5PHI8, W5PW49, W5P7I2, W5P393, W5Q1J8, 

W5Q8M7, W5Q5C7, W5QI89, M4WG34, W5PR13, W5PG12, W5PX41, W5NYZ0, W5Q6W3, 

W5Q1R5, W5PJE0, W5NYX8, P02083, W5P1W2, W5P1X9, P42819, P02190, W5PUC1, 

W5QDF3, W5Q723, A4ZVY8, W5PJ69, W5NXM6, W5Q5L3, P67976, W5NTT7, D7RIF5, 

A2I7L0, W5NXJ3, W5P082, A0A0U1YZ59, W5PS88, W5PGC9, P07846, W5QAH1, W5NU63, 

W5PKC9, W5QFQ0, W5P481, A2P2I3, W5NVS8, W5Q684, W5PJG0, W5P323, P17607, 

A9YUY8, W5P656, A0A0H3V7A0, W5QD47, W5P044, W5QJ62, W5QAM3, W5PLC9, 

W5QIV1, W5PIW6, W5PYI1, W5PVY5, W5NQ83, W5QDH3, W5PZ95, W5PX84, Q30DP7, 

W5PIF6, W5NQ91, W5NTZ6, W5PGG9, W5Q4B0, W5NRC0, W5PSB1, W5QDR0, W5QGQ3, 

W5Q627, W5P525 and W5NYJ2. 

APPENDIX 6.6. The UniProtKB entries of 398 proteins identified by PeptideShaker in the 

Peptide spectral library.  

W5NSA6, W5Q7J0, W5NX51, W5PF65, W5NRI1, W5P6F4, W5NRG7, W5NSH2, W5PHP7, 

W5NQW4, W5QDG7, W5NWM2, W5NY46, W5PW21, W5PTG9, W5NTW3, W5Q124, 

W5P0Q4, W5PJZ1, W5QAB1, P32262, W5NXW9, P20757, W5PID9, W5Q7Z7, W5PGT6, 

W5P5I0, W5Q4Q3, W5P1J8, W5QH54, W5QH50, W5PFC9, W5Q0X5, W5P8R7, W5PXC8, 

W5PKA9, W5P101, P29701, C8BKD1, W5Q749, W5PJ97, W5Q9A2, W5Q7R8, W5PD71, 

W5NRH2, W5PDR5, W5PE53, W5Q0L2, W5QI29, W5NPK5, W5PGT9, P12303, W5PXI3, 

W5P3J3, W5QFP0, P50450, W5PHI7, A2P2I0, W5PH81, W5P336, W5Q2E1, W5P7S6, 

W5QGG0, W5NXM1, W5NXP3, W5Q9D5, W5P9B0, W5PD84, A2SW69, W5Q0R1, W5PV54, 

W5P812, W5Q2U7, W5Q268, W5P4S0, W5PPQ8, O46544, W5PDQ9, W5QDP8, W5PHP8, 

W5PHH3, D6PZY4, W5PEI4, Q29439, W5PDE5, W5QGD1, W5P229, W5Q3K6, W5PXX3, 

W5PDS4, W5NWX6, W5QGP4, Q1KYZ7, W5PAB5, W5Q5H8, W5NUU7, W5Q0V2, W5Q4Z3, 

W5PBY0, W5PYG2, W5NS65, W5QE21, W5QCP9, W5NYF4, W5Q961, W5PDP6, W5NQP5, 

A0A0U1YZ59, W5NX96, W5P627, W5QIK8, W5Q5A6, W5NXP6, W5P2V3, W5NXJ3, 

W5QBW5, W5P060, W5Q038, W5QAR2, W5PQH0, W5P323, W5NS93, W5P880, W5P640, 

B6EBS6, W5P988, O77642, W5P9U4, P14639, W5QIM3, W5PIJ5, W5P4C6, W5P2Y4, W5PLF8, 
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W5PDN1, W5Q6A0, W5NUJ7, W5P3R3, P02075, W5NQ46, W5PZI1, W5PIA1, W5QH45, 

A5YBU9, B6UV62, W5P9V5, W5NZ47, P30035, W5QA64, Q7M2U8, P68056, P00922, 

W5QA07, B3GS77, W5PZ55, W5PJ66, W5NU00, W5PDJ6, W5NYA1, W5QA54, B0BL71, 

F2YQ13, W5PSQ7, Q9XT27, W5PTU7, W5PI61, C8BKC5, W5QH46, A2P2H1, W5P9J8, 

W5PN97, W5PLL0, P49920, C5IS96, W5PD87, P0C276, W5PG63, W5PD62, W5P430, W5PZS7, 

D7RIF5, W5PI92, W5PAJ9, W5NYA7, W5P671, W5NU34, W5NTB3, W5P5K9, D6PX64, 

W5PJR0, W5PES2, W5PSM6, W5QDR0, W5Q0Y3, W5PIW6, A3QP67, Q1A2D1, W5QBV7, 

W5NR63, W5Q2A5, W5PVL4, W5Q419, W5PJH9, P50413, W5Q0G0, W5PM28, W5NVT0, 

W5QA34, W5PQS3, W5NUS6, W5PZA0, W5P8T8, Q9XSM0, W5PEW5, W5PWU7, W5Q0U9, 

B5B304, W5NR06, K4P494, W5QE46, W5PLQ1, W5NQ08, W5QCX2, W5PMS1, W5Q2N2, 

W5NSZ2, W5NZ71, W5QEC3, W5NWL0, P68116, W5PZI0, P52210, W5PTS4, W5QDG8, 

W5NQW9, W5Q687, W5NVG2, W5Q9K1, W5Q6L8, W5QC41, W5NTJ3, W5NZH3, W5Q6D3, 

W5PB46, C5ISA2, W5NS74, W5Q517, Q70TH4, W5Q0F3, W5Q3I7, Q5MIB5, W5PEY4, 

D7R7V6, W5PV74, W5NS48, W5Q5L6, W5PZH5, W5QH21, W5PN84, W5NPN4, W5PT38, 

W5NY50, W5PDF4, W5P195, W5PH03, W5PEL7, W5PMH6, W5QET9, W5PF71, W5PLV2, 

W5QDM2, W5PLB7, W5Q224, A0A077JGJ6, W5PVM3, W5PSC8, W5QA42, P22793, W5Q6E8, 

W5PUG1, A9YUY8, W5PTR5, W5NV45, W5PZ59, W5NZQ2, W5NUI0, W5PPT6, W5PJC2, 

P79360, W5PQD8, W5QD30, W5QB36, W5PB07, A9P323, W5PBM4, W5Q1C7, W5PZT3, 

P68253, P11839, K4P231, P29361, W5Q5D7, W5NSF6, W5PMY0, A5YBU8, W5NSB0, 

W5PZ65, W5Q888, W5PWU4, W5P0E1, W5QHL7, W5PUJ4, W5PEM0, W5Q5Z3, Q6TMG6, 

W5NQ21, W5QEL6, W5QDT2, W5P352, W5QIW1, W5QAJ7, W5PG36, W5PEP7, W5NSR5, 

W5QGM7, W5NRL0, P62262, W5PLN8, W5QIL2, W5PTE9, W5PBS4, W5QE19, W5QEV3, 

W5PZF7, W5PB04, W5PJA0, W5QIY3, W5P9W4, W5PTL2, P50415, W5P7G7, W5PS94, 

W5PSZ4, W5QHS2, W5P8W6, W5NZU3, W5NRA9, W5PHI4, W5QDS5, W5PDG5, P68251, 

C8BKD8, W5NX11, W5QAI5, W5PFI7, W5QFS0, W5NS09, W5NXZ1, W5PYQ3, W5P0X0, 

W5PW91, W5Q972, W5PH51, W5PDV8, W5P5S5, W5PTS2, W5NY78, C5IJA0, P21621, 

P42819, W5Q1R5, P29455, Q28579, W5P0H0, W5PJG0, P23383, W5P1X9, P02190, W5NTT7, 

W5PUC1, W5PJ69, W5NXM6, W5QDF3, W5PS88, W5PJR5, W5P5W9, W5PLC9, Q4TVY4, 

W5P481, W5Q7T8, H9CJU6, W5QFQ0, W5PK04, W5NV73, C0LQH2, W5PPG6, 

A0A0H3V7A0, and W5Q723. 
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APPENDIX 6.7. The UniProtKB entries of 1,103 proteins in the peptide spectral library from 

a combined identification by ProteinPilot, Mascot and PeptideShaker. 

P14639, W5PF65, W5NX51, W5NSA6, W5NXW9, W5QDG7, W5NRI1, W5PTG9, W5NPK5, 

W5P0Q4, Q1A2D1, D6PZY4, W5NQW4, O46544, W5PJ97, W5PZS7, W5Q5H8, W5PBY0, 

W5NQ46, Q9XT27, W5P4S0, W5Q5A6, W5NRG7, W5NUJ7, W5QAB1, W5PHI7, W5NY46, 

W5NWM2, W5Q7J0, P12303, W5Q0X5, W5P3R3, W5PID9, W5NRH2, F2YQ13, C8BKD1, 

W5P627, W5P101, W5NZ47, W5PW21, W5P1J8, W5PHP7, W5NTW3, W5NSH2, W5Q268, 

W5QDP8, Q7M2U8, W5PI61, W5PGT6, W5PH81, W5QFP0, W5PKA9, W5P812, W5PPQ8, 

W5Q7Z7, W5P5I0, W5P3J3, W5QGP4, W5QI29, W5PD71, W5NWX6, W5QH54, W5NXP3, 

W5QH45, W5PXI3, W5Q9A2, W5NXJ3, W5PG63, W5PDS4, W5PE53, W5PDR5, W5PXC8, 

W5QH50, W5PTL2, Q29439, D7RIF5, W5Q4Q3, W5Q9D5, W5P7S6, W5NVG2, W5PN97, 

W5QA07, B5B304, W5Q961, W5PDQ9, W5PDP6, W5PGT9, W5PTU7, W5PAJ9, W5PDJ6, 

W5QA64, W5QBW5, W5PXX3, W5Q0L2, W5P880, W5Q749, W5PVL4, W5PHP8, W5Q3K6, 

W5PJG0, W5Q9K1, W5PZ55, W5Q2E1, C8BKC5, W5NZH3, W5P988, W5PD62, W5Q3I7, 

W5PIA1, W5Q517, W5P4C6, W5P9V5, W5P229, W5PD84, W5PPT6, C5ISA2, A2SW69, 

W5PEI4, W5PAB5, P49920, A5YBU8, W5QGD1, W5PYG2, W5QC41, W5QIK8, W5Q0R1, 

C5IS96, W5PI92, W5P9B0, W5P1X9, W5NYF4, W5PJR0, W5PDN1, W5NUS6, K4P494, 

W5P195, W5PZH5, W5PTS4, W5QGG0, A0A077JGJ6, P02190, W5PSM6, W5QH21, W5PQD8, 

W5PJ66, W5PB04, W5PB46, W5NX96, W5NPN4, A0A0U1YZ59, W5P2V3, W5NU34, 

W5NV45, W5PLB7, W5PEY4, W5P5W9, W5Q4Z3, W5P9J8, W5Q7T8, W5Q5L6, W5PJ69, 

W5NQP5, W5NTT7, C0LQH2, W5Q2U7, W5Q038, W5QET9, W5PUC1, W5Q0V2, W5PVM3, 

W5QA54, W5PBS4, W5NY50, D6PX64, W5Q224, W5PV74, W5PH03, W5NSF6, P62262, 

W5PES2, W5PD87, Q5MIB5, W5NXM6, W5Q0Y3, W5PZT3, W5NZQ2, W5Q723, W5NSZ2, 

W5NS65, A9YUY8, W5QDM2, W5P9W4, W5NUU7, W5NS93, W5PSC8, W5NRA9, W5NTB3, 

W5PLV2, W5QE46, B3GS77, W5PTE9, W5QCP9, W5PEM0, W5QIW1, W5QE21, W5P8T8, 

W5PPG6, W5PZ65, W5PDF4, W5PBM4, W5QBV7, C5IJA0, W5PB07, W5P481, W5NZU3, 

W5PJC2, W5PMH6, W5P323, W5PJA0, W5QD30, W5P9U4, W5QHS2, W5P671, W5PEP7, 

W5PYQ3, W5PF71, W5PS88, W5PIJ5, W5NR63, W5P5K9, W5PG36, W5NYA7, W5P060, 

W5PZ59, W5QE19, W5P0X0, W5P2Y4, Q9XSM0, W5Q5D7, W5QDT2, W5PMY0, W5QIY3, 

W5NX11, W5QGM7, W5QIL2, P50413, W5PIW6, W5Q0U9, W5PM28, W5PLC9, W5PMS1, 

W5P6F4, W5P8R7, W5P336, W5Q7R8, W5PJZ1, W5PZI1, Q1KYZ7, W5PDE5, W5PV54, 

W5PHH3, A2P2H1, W5PLL0, W5QAR2, W5P640, W5QCX2, W5NVT0, W5PUG1, W5PUJ4, 

W5QIM3, P02075, A5YBU9, P30035, P68116, W5NY78, B0BL71, A3QP67, W5Q124, W5NU00, 

W5NR06, P0C276, W5Q2A5, W5PFI7, W5NQ08, W5QA34, W5PZI0, W5NQW9, W5QH46, 
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W5Q0F3, W5NS74, W5PEL7, W5NTJ3, P22793, W5PN84, W5PT38, H9CJU6, W5PLQ1, 

W5QB36, K4P231, W5NQ21, W5QA42, W5Q1R5, P42819, W5QDF3, W5QFQ0, A0A0H3V7A0, 

W5QDR0, P29701, W5PSQ7, W5NXP6, W5PFC9, W5NXM1, W5Q6D3, W5Q6A0, W5NS48, 

P00922, D7R7V6, O77642, Q28579, P11839, W5NUI0, W5P430, W5PJR5, W5PTR5, W5PLF8, 

P68253, W5QEL6, W5QAI5, W5NV73, W5P352, W5NRL0, W5NXZ1, W5P7G7, P23383, 

W5Q0G0, W5QEV3, W5PTS2, W5QAJ7, W5PW91, W5PJH9, W5PS94, W5P0H0, W5PWE9, 

W5PH95, Q28743, I1WXR3, P02083, W5NY95, W5PTR4, W5NVM6, O02762, W5PZF0, 

W5NUW3, W5NVB2, W5NYJ9, W5Q754, W5PCA0, W5NPI9, W5NRR7, Q06AV9, W5P1W2, 

M4WG34, W5QCY7, W5QBD7, W5PFJ0, C7EDS5, W5PGS4, Q29400, W5QAA3, D6BJI0, 

W5P915, P67976, W5QFL0, W5PC09, W5P3A7, D5HKJ4, W5PQH2, W5NSR4, P09670, 

W5PVH9, W5Q9K6, W5P082, W5NYP8, B0LRN3, W5PIC9, W5P5V0, W5PG55, W5QIV5, 

W5PWY0, W5PQK6, W5Q8B1, W5QIG9, W5PIG7, W5P094, A8DR93, W5P044, W5PKC9, 

W5P3Q3, W5NT47, W5P3H8, W5P620, W5PBN5, W5P9V7, W5P0B2, W5NQ91, W5PAM4, 

W5Q9P7, W5NTD9, W5PR13, W5PL69, W5PA64, W5PTU9, W5PHT8, W5QF71, W5Q9L9, 

W5PQ53, W5P1Y8, W5Q0L1, W5PEL1, W5PGZ8, W5NY22, W5PEJ5, W5NZJ3, W5Q670, 

W5PNI5, W5P964, W5PGS0, W5PP57, W5PBX6, W5PVY5, W5NYJ2, W5QGN6, W5Q6L3, 

Q7M355, W5PD49, W5P8Y7, W5PVG2, W5P691, P32262, P20757, P50450, A2P2I0, W5PQH0, 

B6EBS6, B6UV62, P68056, W5NYA1, W5Q419, W5PQS3, W5PZA0, W5PEW5, W5PWU7, 

W5Q2N2, W5NZ71, W5QEC3, W5NWL0, P52210, W5QDG8, W5Q687, W5Q6L8, Q70TH4, 

W5Q6E8, P79360, A9P323, W5Q1C7, P29361, W5NSB0, W5Q888, W5PWU4, W5P0E1, 

W5QHL7, W5Q5Z3, Q6TMG6, W5NSR5, W5PLN8, W5PZF7, P50415, W5PSZ4, W5P8W6, 

W5PHI4, W5QDS5, W5PDG5, P68251, C8BKD8, W5QFS0, W5NS09, W5Q972, W5PH51, 

W5PDV8, W5P5S5, P21621, P29455, Q4TVY4, W5PK04, W5NUX8, W5P5T4, W5QFK2, 

W5Q5C2, W5QH56, W5PXU6, W5P2U2, W5P248, W5QAX3, W5QH06, W5PQL6, W5Q4B1, 

W5QFE4, W5P6U4, W5PWW5, W5Q4P0, W5PPN5, W5QJ00, W5NVN1, W5P2I4, W5QHH3, 

W5QAH2, W5PDC8, W5PIK2, W5QC26, W5PZY7, W5PD12, W5QCP0, W5Q4W5, W5QJ69, 

W5QDH9, W5PKV4, W5NTL7, W5NYG1, W5NQJ8, W5P7L5, W5PVG5, I0CF13, W5PX97, 

W5PXI0, W5PJ85, W5PQM7, W5NSV3, W5PJE4, W5PP29, W5PWT9, W5Q2D7, W5PXN1, 

W5Q1W4, W5Q620, W5PYL5, W5PAE2, W5PME8, W5PJP9, W5PG04, W5PG50, W5PZK2, 

W5PY75, W5PKN2, A0MPT5, A0A0M4KDI9, W5QG19, W5P149, W5P895, W5QAA1, 

W5PS45, W5NTQ9, W5PDY2, W5NUG0, W5NQ85, W5PDQ6, W5NXR3, W5Q2R6, W5NY68, 

W5Q828, W5QDW7, W5P092, W5Q9P0, W5QBT8, W5NX74, W5PHI3, W5P041, W5PA54, 

W5Q8Y3, W5Q5F0, W5NT24, W5PGW2, W5NXI6, W5QIW7, W5QF95, W5PVX0, W5PD15, 

K4P1S5, W5NPK4, W5QFP2, W5PHA9, W5Q910, W5PM86, W5QHD7, B2ZA84, W5PZ27, 

W5Q9B7, W5PW62, W5PD75, W5P143, W5PWU1, W5NUL7, W5Q370, W5Q7C0, W5PWL1, 
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W5PLJ9, W5P0P1, W5PDQ3, W5PH55, W5PDG3, W5P808, W5QC28, W5PT48, W5QBN7, 

W5PPJ4, W5Q950, B3SV56, W5P3G6, W5QGW8, W5NX89, W5QCH5, W5NSI7, U3N1L1, 

W5PA78, W5NRV1, W5PNU9, W5NVC1, W5P1Q0, Q7M371, W5P2L1, W5PHK5, W5Q9H4, 

W5NXV2, W5P9A6, W5P9C3, W5P4X7, W5P7X3, W5QHC2, W5QG16, W5PKW9, W5PXV7, 

W5QH43, W5PPT3, W5P1D3, W5P4R6, D0VWZ0, W5P987, W5PV57, W5PQH3, W5QD80, 

D4P8S5, W5P985, W5Q0N1, W5NZB4, W5NT03, W5Q5W3, W5PX18, A0A0P0QND2, 

W5PZJ0, W5QI75, W5PC99, W5NQM5, W5Q5P5, W5P1N7, W5PLC4, W5PK74, W5Q564, 

W5P1X7, W5PKK4, W5PQ63, W5NW67, W5PDT4, W5Q5R2, W5NSH6, Q5XUI1, W5PZW5, 

W5PFR8, Q1KYZ6, Q28745, W5P1L7, W5Q9H1, W5Q5V4, W5NSC7, W5Q293, A2P2G1, 

W5PXZ3, P68214, W5NYG7, W5QD06, W5Q0D7, W5PME2, W5NQ45, W5Q369, W5Q226, 

A4ZVY6, W5PXE2, W5PBX1, W5P9L8, W5PTB4, W5PKH2, W5PI10, W5PEC1, W5P881, 

W5PHG0, W5NQ51, W5NQ38, W5QF60, W5Q367, W5NTL6, W5P4K7, W5P8L9, W5P8S5, 

W5PPK7, W5P2D1, Q28893, W5PE96, W5NZW9, W5Q0C0, W5PQQ8, W5Q1N4, W5Q3J3, 

W5PGV3, W5Q5I4, W5PLU0, W5PZM1, W5QJ31, W5NQB8, W5Q5V9, W5P596, W5QEF4, 

W5Q7H9, W5PZQ8, W5NPR6, W5PKP8, W5PJ43, W5P4E6, W5Q9T3, W5PSI1, W5PD73, 

R4R2H5, W5PNY6, W5Q417, W5NYR7, W5P0C1, P32237, W5PY00, W5Q4E1, W5P078, 

W5NVG4, W5PY15, W5P4S8, W5PZR6, H2DGR2, W5NVW9, D0VWY9, W5PLN7, W5Q8S4, 

W5PZU0, W5PFY4, W5NRZ7, W5PIN4, W5PAI7, W5NST9, W5PM69, W5PL67, W5Q4U7, 

A2VBC7, I3RWJ0, W5P673, W5PF26, B9VGZ6, W5NVY5, W5P6L3, W5PL06, W5PMF4, 

W5P736, W5PIU1, W5PFD3, W5NSB9, W5QJA2, W5PV93, W5Q9T2, W5Q7I2, W5Q6R7, 

W5QC38, W5PE90, W5NTE3, W5PT09, W5PAG8, W5NUY7, Q1RPQ7, W5Q2K6, W5PT68, 

W5QFP3, W5PXV3, W5NQ22, W5NU40, D3IU20, W5PK67, W5NRP7, W5QCK9, W5PGT0, 

W5PSM2, W5PSP1, W5PWH2, W5PKG7, W5P2R3, W5QE14, W5PC67, W5PXA3, W5PBG2, 

W5NYX4, W5PPZ8, W5PIF0, W5NXZ4, W5PSX0, W5P657, W5P1Y5, W5QA91, W5NRF4, 

W5Q3N2, W5PMZ6, W5PCQ3, W5QDP7, W5PB37, W5P300, W5NRS4, W5NW52, W5QGM9, 

W5PIV4, W5PRK9, W5NX57, W5PGV9, W5Q6W6, W5QGQ0, W5NZR2, W5NXK6, W5P7W5, 

W5PZC0, W5PHE6, W5PN22, W5P0W5, B5DC89, W5PI70, D7RH37, W5P1U6, W5PYK0, 

W5QCG2, W5PFW3, M4T8F1, W5PNG2, W5PCR1, W5PI34, W5P1T7, W5Q043, W5NW86, 

W5PLB4, W5NY84, W5PBY1, W5Q334, W5P377, W5Q5H7, W5PVU5, W5QDT9, W5PWR1, 

Q28884, W5PTS0, W5PLB6, W5QDN3, W5Q6C4, W5PAI3, W5PA65, W5PK97, W5PYT3, 

W5PR03, W5P148, A0A0A7ETA6, W5PHI8, W5PW49, W5P7I2, W5P393, W5Q1J8, W5Q8M7, 

W5Q5C7, W5QI89, W5PG12, W5PX41, W5NYZ0, W5Q6W3, W5PJE0, W5NYX8, A4ZVY8, 

W5Q5L3, A2I7L0, W5PGC9, P07846, W5QAH1, W5NU63, A2P2I3, W5NVS8, W5Q684, 

P17607, W5P656, W5QD47, W5QJ62, W5QAM3, W5QIV1, W5PYI1, W5NQ83, W5QDH3, 

W5PZ95, W5PX84, Q30DP7, W5PIF6, W5NTZ6, W5PGG9, W5Q4B0, W5NRC0, W5PSB1, 
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W5QGQ3, W5Q627, W5P525, W5QCY8, W5PMR1, A2P2G4, A6NBZ0, A0A0F6YFJ0, 

W5QAN8, W5Q6U2, W5PFP1, A0A0F6VY37, W5P338, W5NWU4, B7TJ06, W5Q2K7, 

W5Q505, W5Q2U8, W5PZK7, W5Q6G0, W5PIN8, W5QAW7, W5QFR6, W5PLL2, Q7JFW9, 

W5NRV6, W5NTG5, W5PHA3, Q06435, W5P4W8, M4WGF1, W5PV69, W5NXN8, W5PUU8, 

W5PYX7, W5NX91, W5QFR8, W5P565, W5PQ96, W5PH45, W5PSZ5, W5PCP3, W5NWH4, 

W5PDG4, W5NZW5, W5PTZ9, W5P448, W5P663, W5QJ27, W5Q7C7, W5QJB0, P49929, 

W5QGV5, W5P491, W5QGX2, W5PQA8, W5PIN6, W5P0I5, W5Q2A8, W5PZJ5, W5P311, 

W5NUP9, W5PPN8, W5QBT3, W5P742, W5PG95, W5PER5, W5Q3T5, W5Q6D6, W5PKQ5, 

W5PDD0, W5PJV7, W5P644, W5PA19, Q4LBE5, W5P1N0, W5P326, W5PIC7, W5P7M5, 

W5QG17, W5Q0G8, W5Q809, W5P731, W5NUL9, W5PMA2, W5P0T8, W5NQK0, W5NZ75, 

W5QBR9, W5P5F4, W5QID7, W5PTL7, W5PEB0, W5Q1R4, W5Q097, W5PXH5, W5QIM9, 

W5Q6B0, W5NPH5, W5PCI1, W5Q8J9, W5NW13, A5YBV0, W5P2M3, W5PRG8, W5P7B1, 

W5NUA9, W5PXL4, W5PNM5, W5QGV4, W5NW78, W5NS18, W5PSL9, W5QI70, W5P689, 

W5PYR8, W5QD37, W5Q759, W5NXK9, W5PNP1, W5PMI8, W5PLP6, B2LU28, W5Q8Z1, 

W5PAT6, W5NS44, W5PXB4, W5Q254, W5Q5D8, W5QGN4, W5PE89, W5P908, W5PBH6, 

W5P8V3, W5PGA9, W5PU57, W5QAK3, W5PQT7, W5PVW3, W5P5V2, W5QBV3, W5PVX3, 

W5Q3D0, W5PCG5, W5QDG4, W5PHX1, W5P8G7, W5NWD0, W5P7E0, W5PUU0, W5QF94, 

W5QBE7, W5PKF3, W5QG48, W5NR00, W5NSE9, W5NU20, W5NR56, W5PKZ0, W5NS27, 

W5NQD5, W5QH53, W5P2S9, W5P6T2, W5PAJ2, W5Q540, W5PWG6, W5PGC2, W5PM15, 

W5PBC2, W5NSA5, W5QGB7, W5QBD4, W5PKQ7, W5PVV7, W5PWQ1, W5PDQ0, W5PTZ3, 

W5PCK5, W5P578, W5PBU5, P62297, W5NYM6, W5P3D1 and W5PKF8. 
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Abstract 

Recent observations show that some sheep appear to be more susceptible to the effects of 

Escherichia coli lipopolysaccharide (LPS) endotoxin than others despite being the same age and 

breed. This incidental observation made during a study with a translational benefit to human 

emergency medicine prompted further investigations focused on the background of the base model 

(sheep) and peri-experimental practices. A predetermined dose of 15 µg/kg of LPS from E. coli 

serotype O55:B5 was planned to be infused into a number of sheep to prime their immune system 

prior to blood transfusion studies. Some sheep subsequently received a lesser dose of LPS due to 

unexpected heighted susceptibility to endotoxin. It was hypothesised that genetic, environmental or 

managemental practices could have been contributing factors to this observation. Sheep that were 

more robust to endotoxin were raised in open pasture, whereas the more susceptible ones were 

essentially from a controlled scientific breeding colony. Epigenetic factors need to be considered 

when designing protracted large animal experiments as these aspects can influence the host’s 

response to endotoxin challenge. It is suggested that an understanding of the proteogenomics of 

serum or plasma could help to understand LPS morbidity in sheep and similar pathology in other 

mammals, including humans. 

KEY-WORDS: Selective resistance to endotoxin; Sheep; Escherichia coli; Lipopolysaccharide 

(LPS); disease challenge; Large animal models; serum and plasma proteogenomics. 

Introduction 

Recent reports indicate that some sheep appear to be more susceptible to the effects Escherichia 

coli lipopolysaccharide (LPS) endotoxin challenge than others, regardless of having the same 

characteristics
1,2

. This unexpected observation was made during the continuation of primary studies 

that had different objectives and involved simulation of infection in sheep prior to blood transfusion 
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using LPS
1-3

 in a laboratory environment.  Given this background, it is reasonable to hypothesise 

that genetic, environmental, managemental and peri-experimental practices could have been 

contributing factors to the observation apparent selective susceptibility of sheep to endotoxin.  

Endotoxin is commonly used to mimic infection in experimental animals. Whilst there are 

guidelines for scientists whose work involves the use of animal models in research establishments 

around the world, the basic understanding of the factors associated with predisposition to, and/or 

simulation of infection in animals may be short of emphasis in the overall scheme of peri-

experimental processes, particularly when large animals are involved. Infection is when a 

microorganism invades a susceptible host, starts to multiply and gets established
4
.  It takes time for 

signs of the infection to appear after a pathogen enters the host’s body.  The pathogen has to 

overcome the host’s defences, before it can be considered established. Therefore, the injection of 

endotoxin especially directly into blood vessels may not be an accurate model for infection
1
. Even if 

infected, the host may still resist the development and establishment of an infection the by way of 

active immunity. Immunity may be inherited or due to antibody stimulation via vaccine or previous 

exposure to the disease, leading to freedom from clinical signs of disease after challenge
5
. 

The aim of this paper is to report observations made based on a sheep model that appeared to show 

differential resilience to LPS endotoxin alongside controls during priming of the immune system 

with LPS from E. coli in a protracted primary study with a different trajectory of objectives in 

translational medicine. It also reports findings on studies on the background, source, genetic 

selection information and management practices of the sheep, with the expectation of using 

archived samples for proteogenomic studies in future. Some early observations on the base model 

from the primary study have been published
3
, however, incremental data from the primary study are 

beyond the scope of the present report. An understanding of the apparent selective susceptibility or 

morbidity to LPS in sheep may help to understand or predict similar pathology in other mammals, 

including humans. The knowledge could also provide useful insights that may be applicable to other 

food animal producers by way of predicting disease susceptibility of their livestock. 

 

Materials and methods 

Ethical approval 

Animal ethics approval for the sheep studies used in the manuscript was obtained from the 

University Animal Ethics Committee of the Queensland University of Technology (QUT) – 

reference 0800000555 and ratified by The University of Queensland. The studies were conducted in 

accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific 

Purposes
6
. 
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Study design 

This was an observational experimental study based on incidental findings of a primary study with 

different objectives using sheep that showed selective resistance to the effects of endotoxin. The 

investigative component of the present study was based on the premise that the archived serum and 

plasma samples from experimental sheep of the primary study, could be useful in providing clues to 

the observed differential susceptibility to endotoxin with the help of targeting circulating acute 

phase proteins (APP) and micro ribonucleic acids (miRNAs) using proteogenomic approaches. 

Whilst it is conceivable that improper sample storage may lead to protein degradation, however, as 

of yet, there are no studies that have investigated the effects that deep frozen samples at -80
o
C 

storage and handling could have on the outcome of downstream processes using mass spectrometry 

for example
7
.  

A pseudo-randomisation protocol was used to allocate animals into experimental groups in the 

primary study as previously described
3,8

. The incremental part of the primary study was continued 

under the same protocol.  In brief, for each experiment, sheep were selected at random and then 

assigned to a pre-determined experiment according to a planned schedule and proportional numbers 

of animals in the groups. Each group was allocated sheep throughout the entire period in which the 

study was conducted in order to minimise the effects of any seasonal variation of the different 

batches. The sheep were then subjected to pre-experimental complete veterinary clinical 

examination that included body temperature, pulse, respiratory (TPR) and body weight parameter 

checks as previously described
2
. In brief, the sheep were restrained in a sling cage and the ventral 

aspect of the neck is shaved to facilitate venous vascular access. 

Experimental animals and procedures 

Background of animals 

An animal bio-data request was made to the Biological Research Facility (BRF) housed within the 

Medical Engineering Research Facility of the Queensland University of Technology (QUT-MERF). 

The information request was essential in order to trace the background and source of the 

experimental sheep enrolled for the primary studies, based on ear tag number identification of the 

sheep prior to agistment between January 2009 and May 2013. Detailed documentation including 

strain, breed, genetic line information and management practices (vaccination, drenching, mulesing, 

docking history and other relevant standard operating procedures as appropriate) was tracked and 

processed including further records from the sheep vendors and BRF as appropriate. This 

information was necessary in order to investigate the relative importance of genetics, managemental 

and environmental factors that could help to piece together and explain the variation in LPS 

susceptibility in experimental sheep of the primary study. A field visit to the commercial sheep 
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agistment property that QUT-MERF was the lessee was made in order to capture relevant farm 

information and document on the pasture, housing and management practices. 

Animal selection 

Animal selection and experimental procedures for the primary study have previously been described 

1,3
. In brief, batches of approximately 2-year old healthy adult Merino ewes (Ovis aries) were 

agisted as a flock in an open pasture farm to be used as part of, and a continuation of previously 

described primary studies
3
. The sheep were handled as per standard operating procedures that have 

been described in detail elsewhere
2
 and briefly outlined below.   

Housing and husbandry 

All the sheep were reared at a farm with improved pastures, natural shade from trees with free 

access to water before being transferred to a purpose-built animal experimental laboratory of the 

Queensland University of Technology
2
.  

Pre-anaesthetic care 

Within two weeks of experiments, animals were housed at a purpose built animal facility and 

managed as previously described
2,3

 . Briefly, the sheep were fed proprietary sheep pellets, lucern 

and had free access to water. Shelter was provided in built concrete-floored sheds in which the 

sheep had free access. Shade was also provided by large trees in the paddocks and the sheep 

interacted freely with each other. Animals were fasted overnight (for approximately 24 h) with free 

access to drinking water until two hours before the procedure.  

Anaesthesia, monitoring and assessment of LPS priming 

The sheep were anaesthetised and maintained under ICU conditions. The management of 

anaesthesia, mechanical ventilation, supplemental oxygen, hydration and infusion have been 

described
2,3,8

. Briefly, a central venous line was placed in the external jugular vein (EJV) of the 

awake sheep. This catheter was used for intravenous (IV) administration of the pre-medication, 

induction agents, drugs, fluids and total intravenous anaesthesia (TIVA). The sheep were pre-

medicated with midazolam (0.5 mg/kg) and buprenorphine (0.01mg/kg) by slow IV injection. An 

8Fr sheath was placed in the opposite EJV for subsequent placement of a pulmonary artery catheter. 

General anaesthesia was induced with alfaxalone (3 mg/kg) IV. In early experiments
3,9

, anaesthesia 

was induced maintained by intravenous ketamine/midazolam anaesthesia supplemented with 

butorphanol if indicated. In later experiments
8
, anaesthesia was maintained with ketamine, 

midazolam, fentanyl and alfaxalone combination. Animals were placed in right lateral recumbency 

and monitored as reported earlier
2,3,8

. For the purposes of this report, only the first 2 h and 15 min 

after completion of instrumentation of the sheep are relevant. 
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An hour of stabilisation was allowed after which baseline monitoring parameters were noted, and 

then 40 min thereafter, LPS priming events and monitoring followed as illustrated in Figure A7.1.  

 

Figure A7.1. Schematic of Escherichia coli lipopolysaccharide (LPS) endotoxin-treated sheep 

showing LPS assessment time points. The sheep were anaesthetised, instrumented and monitored 

under intensive care unit (ICU) to conditions. After an hour and 40 mins, a saline solution 

containing 15µg/kg of LPS was infused at 0.5 µg/kg/min (a) over a period of 30 min (b), or as it 

turned out unexpectedly in the case of sheep that were more susceptible to LPS, the infusion was 

stopped in the LPS titration zone between (a) and (b) due to early onset of signs of LPS 

endotoxaemia. After completion of the LPS infusion, the sheep were monitored to a predetermined 

time-point (c). The sheep then proceeded to the primary study beyond the scope of this study. 

To study the effects of LPS, 76 sheep were allocated to receive 30 ml infusion containing LPS as 

previously described
3,8,9

. In brief, a 15 µg/kg dose of the endotoxin LPS from Escherichia coli 

serotype O55:B5 (Sigma-Aldrich, Castle Hill, NSW, Australia) was chosen and infused at 0.5 

µg/kg/min to prime the sheep’s immune system before proceeding with the requirements of the 

primary study. The monitoring of the systemic effects of LPS (endotoxaemia) was based on a 

predetermined assessment criterion of priming guided by global haemodynamics, alveolar–arterial 

gradient (A–a gradient) of oxygen and the ratio of partial pressure arterial oxygen and fraction of 

inspired oxygen (PaO2/FiO2 ratio) as described previously
3,8

. Briefly, relative to baseline readings, 

endotoxaemia was confirmed by >50% increase in mean pulmonary artery pressure (MAP) and at 

least one of the following: >10% decrease in mean arterial pressure, >10% increase in heart rate 

(HR), >10% decrease in cardiac index (CI) >10% decrease in oxygenation saturation from mixed 

venous blood (SvO2) and increase of A-a gradient or decrease in PaO2/FiO2 ratio
3
. If signs of severe 

endotoxaemia developed such as MAP < 50% of baseline and or a gradient of <10 mmHg between 

MAP and MPAP being a sign of impending haemodynamic collapse, before the completion of the 

calculated LPS dose, the infusion, was stopped and the animal was monitored. The assessment of 

endotoxaemia and monitoring data during the early cohort of sheep has been published with the 

base model
3
. If the animal decompensated further, euthanasia was indicated for as previously 
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reported
2
.   After monitoring the effects of LPS the sheep proceeded for the requirements of the 

primary study outside the scope of this report. The sheep were subsequently euthanized thereafter 

and managed as previously described
2
. 

Statistical methods  

One hundred and five sheep were categorised into two main groups based on outcomes of 

susceptibility to LPS i.e. the more LPS susceptible n=41 (titrated LPS dose group), and the less 

susceptible n= 64 (fixed LPS dose group). Animals that received placebo as the priming event, 

those that were used for optimisation of experimental processes and those that experienced adverse 

effects or those that were used as untreated controls were excluded from analysis. Body weight data 

of the two groups of sheep were checked for normality using D'Agostino & Pearson omnibus 

normality test. The mean, median, standard deviations of the weights of sheep were determined and 

tabulated. The titrated LPS dose group were further categorised into two sub-groups based on 

desirable production traits from the findings of the breeding backgrounds of the sheep. LPS dose 

differences between the titrated LPS, and fixed LPS groups of sheep were compared. LPS doses of 

the two sub-groups of the titrated LPS group of sheep were compared against each other, and 

against the sheep of the unknown trait (less susceptible group) using unpaired two-tailed t-test and 

one-way analysis of variance (ANOVA). All p-values were two-sided and less than 0.05 was 

considered statistically significant. All statistical calculations were performed using GraphPad 

PRISM 6 software (GraphPad Software, La Jolla, CA).  

Results 

Animal backgrounds, selection and study design  

A total of 105 Merino ewes were enrolled in an ongoing primary study between January 2009 and 

May 2012 (Table A7.1). The animals were procured in 6 batches during this period from two 

different vendors corresponding to the dates of the experiments of 27 Jan to 18 Jun 2009; 06 Oct to 

10 Dec 2009; 02 Feb to 30 Mar 2010; 16 Aug 2011 to 06 Mar 2012; 23 Jul 2012 to 28 Nov 2012; 

and 07 Mar 2012 to 21 May 2013. The last two batches comprising 41 sheep were sourced from the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) FD McMaster Laboratory 

(Armidale, NSW, Australia). The CSIRO sheep (CSIROS) were agisted jointly as a flock in an open 

pasture commercial farm at Mt Cotton on the outskirts of South-East Brisbane with 64 fine-wool 

resident Merino ewes that had earlier been sourced from a sale yard vendor (Sale yard sourced 

sheep [SYSS]) at a commercial livestock market (The Australian Livestock Markets Association 

Inc., Warwick, QLD, Australia). All the sheep were to be used as part of, and a continuation of 

previously described primary studies
3,9

. It was found that the CSIROS group had two production 

traits namely an endoparasite resistant line (Parasite RL), and a wool production line (Wool PL). 
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The Parasite RL sheep were identified by ear tag numbers below 200 (A0***) and the Wool PL 

sheep tag numbers were the ones over 3 thousand (A3***) (Table 1). After the randomisation 

processes for the primary study, of the 105 enrolled sheep, 76 were allocated to be treated (primed) 

with LPS. The LPS primed animals constituted the study subjects for this report (Figure A7.2). 

Agisted together were also several other sheep of mixed ages, gender (wethers) and breeds such as 

Border Leicester cross breeds belonging to other projects of the animal facility. 

 

Figure A7.2. The total number of Merino (105) ewes that were enrolled to study the priming 

effects of Escherichia coli lipopolysaccharide (LPS) between 27/01/2009 and 21/05/2013. 

Further background studies showed that the ewes were purchased from two vendors: 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) FD McMaster Laboratory 

(Armidale, NSW, Australia)(CSIROS), and The Australian Livestock Markets Association Inc., 

(Warwick, QLD, Australia) (SYSS). For this study, only 76 ewes that received LPS priming were 

included. After 3 ewes were excluded (1 had no weight recorded, 1 had no LPS dose recorded and 1 

suffered an adverse event) of CSIROS, were ewes that had been selected for two production traits 

comprising of the internal parasite resistant line (Parasite RL [n=27]), and the wool production line 

(Wool PL [11]).    The sheep that received saline placebo (n=18), those that were used for 

optimisation of experimental procedures (n=4), those that had adverse events (n=1), those with 

missing data (n=2) and untreated sheep used as controls (n=4) were excluded from data analysis for 

this report. 

Housing and husbandry 

Husbandry practices prior to agistment 

There were certain standard husbandry operations that took place every year for CSIROS. All 

animals were grazed in paddocks on natural grass with improved pastures and not housed indoors. 

They were supplemented with grain in drought conditions when and if necessary. The animals were 

vaccinated against caseous lymphadenitis (CLA) and clostridial diseases according to standard 
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practices and vaccine manufacturer’s instructions. Mobs of sheep had monthly faecal monitoring 

for gastrointestinal worm eggs. Samples were taken at random from a few sheep in the mob. Then 

the whole mob was drenched with proprietary anthelmintics if it was necessary. The sheep were all 

shorn once a year, as weaners in September and as adults in July. The animals were crutched in 

February to March. The animals were monitored for external parasites and treated if indicated. All 

treatments were mob based and not individual animal based. Husbandry operations for the SYSS 

were not available. 

Husbandry practices during agistment 

The commercial farm where the sheep were agisted had a dog-proof perimeter wire fencing, 

improved pastures, natural shade from trees and the animals had free access to fresh drinking water 

(Figure A7.3). At the time of agistment of the last two batches of sheep (CSIROS), pasture feed was 

supplemented with processed proprietary sheep pellets (RIVERINA HOBBY FARM PELLETS, 

West End, QLD, Australia) when required once every couple of days. The farm had a purpose built 

shed with raised grated wooden floors to allow free drainage of urine and droppings (Figure A7.4). 

Sheep handling infrastructure including, mustering pens, crush, weighing sling, sheering gear and a 

loading rump were available (Figure A7.5).  

 

Figure A7.3. Part of a paddock of a 

commercial farm that sheep were agisted 

between 27/01/2009 and 21/05/2013 on behalf 

of Queensland University of Technology 

Medical Engineering Facility (QUT-MERF) 

for experimental studies. 

Note the improved pasture in the foreground and the dog-proof fencing to the right of the 

photograph to protect the sheep from predatory dog attacks. 

 

 

Figure A7.4. A purpose built mustering pen 

at a commercial farm that was used by 

Queensland University of Technology 

Medical Engineering Facility (QUT-MERF) 

for agistment of experimental sheep. Note the 

raised wooden grate flooring to allow free 

drainage of urine and droppings. 
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Figure A7.5. An ewe suspended on 

a sling while being weighed at 

purpose built shed at a commercial 

farm that was used by Queensland 

University of Technology Medical 

Engineering Facility (QUT-MERF) 

for agistment of experimental 

sheep. Other sheep handling 

infrastructure at the property (not 

pictured) included a crush, sheering 

gear and a loading rump. 

The husbandry operations at the farm included routine drenching with triple combination drench as 

per veterinary and manufacturer’s advice for the control and treatment of internal parasites and for 

selenium and cobalt supplementation for sheep. The triple drench (TRIGUARD®, Merial, NSW, 

Australia) contained (Abamectin 1.0 g/L, Oxfendazole 22.7 g/L, Levamisole hydrochloride 33.9 

g/L, Sodium selenate (selenium) 0.5 g/L and Cobalt disodium EDTA 2.2 g/L. Ectoparasites were 

controlled with Amitraz 125g/L (TAKTIC® EC, Virbac Animal Health, Milpera, NSW, Australia) 

diluted at 2ml / L of water and sprayed onto the sheep according to manufacturer’s 

recommendations. The sheep were also regularly treated with ivermectin (IVOMEC Injection®, 

Merial, NSW, Australia), for added protection against sucking lice and gastrointestinal worms.  The 

sheep had regular veterinary checks, hoof care and were shorn at the end of winter. At the time of 

the field visit to the farm, one sheep was found to have a paralysis tick (ixodes holocyclus) on the 

neck. After removal of the tick, the sheep was treated conservatively and recovered fully within 3 

days. 

When the sheep were transferred to holding pens at animal facility (usually two weeks prior to 

experiments), they were fed high quality lucern chaff. The last two batches of sheep (CSIROS) 

were fed pellets at 100-300g/head/day in addition to chaff. This heightened level of nutrition was 

not associated with any recorded health issues. 

Anaesthesia and experimental outcomes of LPS priming 

In the experiments involving the first four batches of sheep, the animals were premedicated with 

butorphanol (0.5 mg/kg iv) and midazolam (0.5 mg/kg iv). General anaesthesia was induced with 

ketamine (5 mg/kg iv) and maintained by ketamine (8 mg/kg/hr iv)/midazolam (0.7 mg/kg/hr iv). 

Anaesthesia was supplemented with boluses of butorphanol titrated to effect as required. In the last 

two batches of sheep, the animals were premedicated with buprenorphine (0.01mg/kg iv) and 
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midazolam (0.5 mg/kg iv).  Anaesthesia was induced with alfaxalone (3 mg/kg iv) and maintained 

with ketamine (up to 5 mg/kg/hr iv)/, midazolam (up to 0.5 mg/kg/hr iv), fentanyl (5 µg/kg/hr) and 

alfaxalone (4-6 mg/kg/hr) combination. From the induction of anaesthesia to the baseline time point 

of the primary study (Figure A7.1), all the seep received Hartmann's Solution at 15 mL/kg/hr iv, 

and then dropped to 1 mL/kg/hr iv thereafter. Of the 76 sheep that were challenged with LPS, 

animals that exhibited higher susceptibility to, and those that exhibited less susceptibility to the 

effects of LPS resulted in being equally split into two groups. There was a significant difference (p 

= 0.02) in their normally distributed weights between the groups (Figure A7.6). Table A7.2 shows 

the descriptive statistics of the two groups of sheep based on susceptibility to LPS.  

Table A7.2. Weight groups of sheep that exhibited selective susceptibility to E.coli LPS. 

Weight Parameter 

LPS dose group of sheep by weight (kg) 

Fixed LPS dose Titrated LPS dose 

Number of sheep in group 38 38 

Minimum 25.7 30.3 

Maximum 50 53.5 

Median   36 39.5 

Mean 36.3 39.5 

Standard Deviation 6.1 5.6 

Standard Error of Mean 0.98 0.93 

D'Agostino & Pearson omnibus normality test 

Passed normality test (α=0.05)? Yes Yes 

P value summary Ns Ns 

Legend: There was a significant difference (p = 0.0211, two tailed t test) between the 

weights of sheep that got a fixed LPS dose and those that got a titrated LPS dose. 

There was a significant difference (p<0.001) in mean LPS dose required for priming the immune 

system between the two groups of sheep (Table A7.3). Table A7.4 shows the two groups of sheep 

based on animal production traits. The more susceptible sheep required considerably small doses of 

LPS  based on defined criteria of haemodynamic instability for priming the immune system 

compared to the less LPS susceptible (more resistant) sheep that received a fixed dose of LPS 

(Figure A7.7). The Parasite RL sheep showed marginally higher resistance to LPS challenge 

compared to the Wool PL sheep, and SYSS showed even considerably higher and unmatched 

resistance to LPS (Figure A7.8). 
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Table A7.3. Sheep that exhibited selective susceptibility to E. coli LPS.  

Group based  

on LPS Susceptibility 

No. of 

Sheep 

Weight 

(Mean± SD)(kg) Total LPS dose (µg/kg) 

Fixed LPS dose 38 36.31 ± 6.07 15 

Titrated LPS dose 38 39.51 ± 5.75 3.4±3.6 

Legend: Sheep that received a fixed dose LPS to prime their immune system were less 

susceptible to effects of endotoxin than those that required LPS to be titrated. SD=Standard 

deviation. 

Regarding archived samples for future use were samples of serum, plasma and formalin fixed 

/mounted tissue samples for the SYSS. In addition, CSIROS archived tissue samples preserved for 

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) analysis which SYSS did not have.  

Table A7.4. Merino ewes from the same mob with two production traits (endoparasite 

resistance and wool production) treated with a titrated dose of E. coli LPS.    

 

Parameter 

Sheep selection trait 

Endoparasite resistance Wool production 

Number of sheep (n) 27 11 

Weight (kg) ± SD (Range) 38 ± 5.6 (23.2 - 30.3) 43 ± 4.5 (35.5 - 49.8) 

LPS dose (µg/kg) ± SD (Range) 4.2 ± 4.0 (1.12 - 15) 1.3 ± 0.2 (1.02 – 1.69) 

Legend: Sheep selected for endoparasite resistance and were more tolerant to the effects of 

endotoxin than those selected for wool production. SD=Standard deviation. 

 

 

Figure A7.6. Merino ewes from the same mob that showed selective resistance to Escherichia 

coli lipopolysaccharide (LPS) endotoxin challenge. The sheep that were less resistant to the 
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effects of LPS (< resistant) were sourced from the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) FD McMaster Laboratory (Armidale, NSW, Australia)(CSIROS). 

The sheep that were more resistant to the effects of LPS (> resistant) were sourced from The 

Australian Livestock Markets Association Inc., (Warwick, QLD, Australia) (SYSS). There was a 

significant difference (p<0.001) between CSIROS and SYSS on the amount to LPS required to 

cause endotoxaemia. 

Discussion 

There is growing need and recognition for using large animals for purposes of research and 

teaching
2
. This study was a retrospective, observational assessment of experimental animals and 

presents associations suggested to be involved with lipopolysaccharide susceptibility/resistance in 

experimental sheep from previously published transfusion model research on acute pulmonary 

injury. The first thing that comes into the minds of readers about this paper is that although it deals 

with an interesting topic, there are concerns because of lack of any genetic or physiological 

(haematological, immunological or biochemical) data that would fully support the observations that 

some sheep appear to be more susceptible to the effects of E. coli LPS endotoxin than others despite 

being the same age and breed. The observations made in this report were made with those 

background concerns in mind, but would then raise the question of how the base model of the 

primary study
3
 was validated without the need for a complete biochemical panel or genetic analysis 

of the ovine model. Obviously, having the necessary data to support all observations is good 

science; however it is not always possible due to inherent challenges facing retrospective studies 

and logistical constraints. This then calls for the question that what lessons can be learnt from the 

validated base model referred to in this study?  
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Figure A7.7. Merino ewes from the same mob 

showing selective resistance to Escherichia 

coli lipopolysaccharide (LPS) endotoxin.   

There was a significant difference (p<0.001) in 

mean 

 

Figure A7.8. Outcomes of Merino ewes with 

different selection traits challenged with 

Escherichia coli lipopolysaccharide (LPS) 

endotoxin. The sheep that were sourced from 

the Commonwealth Scientific and Industrial 

Research Organisation FD McMaster 

Laboratory (Armidale, NSW, Australia) 

(CSIROS) were found to be of two selection 

traits:   Endoparasite resistant line (Parasite RL) 

and Wool production line (Wool PL).  

The Parasite RL (a) appeared to have an edge (p<0.02) of resistance to LPS challenge over the 

Wool PL (b): Sheep selected for wool production.  The sheep of an unknown trait (SYSS) that were 

sourced from The Australian Livestock Markets Association Inc., (Warwick, QLD, Australia) 

showed considerable resistance to LPS challenge (c) compared to a CSIROS (a, b). There were 

significant differences in LPS dose (Mean ± SD) between a and c (p<0.0001), and b and c 

(p<0.0001). 

This report provides a snapshot of the effects of E. coli LPS endotoxin injected into batches of 

sheep that were procured over a study period of nearly 3½ years. From the observations of the 

apparent selective susceptibility of the sheep to E. coli LPS, it would seem that the primary study 

required “approximately 2 year-old healthy female sheep” to be supplied by the host animal facility 

over a protracted period of time for the purposes of continuing studies based on an earlier model
3
.  
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The primary study had taken steps to minimise the effects of seasonal variation by allocating the 

sheep to the various arms of the experiment through randomisation. As it turned out, the possibility 

of having sheep from different backgrounds and having sheep of different traits may not have been 

considered and factored into the methods. It is now evident multiple confounding factors may have 

contributed to the observed variability of the effects of endotoxin in sheep from the same mob.  

The husbandry practices of CSIROS were well documented. The vendor had records for this cohort 

of sheep and standard operating procedures were in place. This group of sheep were essentially 

from a controlled breeding colony, which explains why information on the two desirable animal 

production traits of endoparasite resistance (Parasite RL) and wool production line (Wool PL) were 

traceable. From the observations so far, it appears that the Parasite RL were more resistant to the 

effects of LPS than the Wool PL. On the other hand, it can however be argued that perhaps the 

variability could have been due to un-optimised LPS dose, considering that the CSIROS response to 

LPS was much different, compared to that of SYSS, and that the experimental team was still 

readjusting to the drastic response of CSIROS to endotoxin.  

Regarding feeding, Australia is known to have a history of many climate related challenges that 

affects many agricultural industries as the latter are climate reliant
10

. Grazing sheep on natural grass 

with improved pastures certainly makes a great deal of economic sense and it is associated with 

optimal productivity
10-12

. Grain supplementation during drought conditions is a well-recognised 

practise in sheep husbandry despite the associated shortcomings such as such as lactic acidosis 

(grain poisoning) and enterotoxaemia
13-17

. During supplementation, feed is provided to animals in 

order to improve their performance and, in some cases to allow the pasture to improve
18

.  

As with animal health, caseous lymphadenitis (CLA) is a disease of immense economic importance 

in sheep production worldwide. In Australia, sheep are routinely vaccinated against CLA
19-23

. It is 

also a recommended practice to vaccinate sheep against clostridial diseases such as botulism, black 

leg, black disease, tetanus and enterotoxaemia
24-27

. Without pre-purchase records of SYSS, it is not 

possible to comment on any husbandry practices related to that cohort of sheep, except for known 

sheep growing practises in Australia. It is reasonable however to assume that since this group of 

sheep was grown on open pasture and having been at a sale yard, it is quite possible that  they had 

some form of active immunity that could, at least in part, explain the relative resistance to LPS as 

compared to CSIROS.    

In sheep husbandry, in addition to disease, a major cause of stock losses is attributable to predation 

by feral or wild canines if there are no control measures in place
28-31

. The commonest native wild 

predators for sheep in Australia are dingoes. The property at which the sheep were agisted in this 

report, had dog-proof fencing – which may have worked to keep away grown up dingoes as well. 
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Perhaps as an added measure to protect sheep in similar establishments, donkeys could be kept 

alongside the sheep as recent reports have suggested that donkeys can be very effective deterrents to 

wild dogs and dingoes when reared together with sheep
32-34

. The addition of donkeys in a colony of 

research sheep would probably attract additional layers of concerns of their welfare, safety around 

people and their “non-native or feral” status as donkeys are considered introduced pests in 

Australia.  

The control of ectoparasites was based on established principles of management targeting specific 

parasites, to prevent animal welfare issues and ill health
35-37

. The targeted external parasites were 

flies, ticks, lice and mites. Even with prevention strategies in place, paralysis ticks in Queensland 

could still pose a risk to animals as in that one asymptomatic sheep that had a paralysis tick.  

During the pre-anaesthetic period, interestingly, the heightened level of nutrition at the animal 

holding facility leading up to the experiments for CSIROS was not associated with any metabolic 

disturbances that are usually seen when sheep are suddenly introduced to a high carbohydrate 

source. This may suggest that this cohort of sheep were probably accustomed to a high plane of 

feeding prior to agistment. As the sheep were fasted for 24h with free access to water until 

approximately 2 hours prior to anaesthetic induction
2
, it is quite possible that CSIROS were not 

accustomed to their food being withheld for that long. Except for pre-anaesthetic veterinary 

physical examination, pre-anaesthetic or pre-interventional laboratory investigations were not 

included in the primary study.  Baseline samples for the primary study were collected after 

induction of anaesthesia and after invasive instrumentation (Figure A7.1). Without a pre-anaesthetic 

laboratory panel, it is not possible to objectively determine the metabolic status or reference point of 

the experimental animal prior to any interventions for downstream studies that routinely require 

pre-interventional parameters. It can be argued that CSIROS were probably in a physiological state 

of negative energy balance prior to the experiments – a predisposition that may have contributed to 

the sheep to be comparatively susceptible to the effects of LPS.  

The preparation of sheep for anaesthesia and physiological monitoring to enable the assessment of 

LPS priming and experimental outcomes were well optimised. However, there were concerns about 

the alterations in the protocol for premedication and general anaesthesia in the course of the 

experiments. These alterations may have influenced the outcome of LPS assessment. For example, 

the individual roles of ketamine and alfaxalone as anaesthetics on the effects of LPS in sheep are 

unknown.  Ketamine has long been known to increase the vascular tone in sheep
38

; it is therefore 

plausible to assert that the type of anaesthetic may have contributed to the observed selective 

susceptibility to LPS in sheep as the LPS endotoxaemia assessment was heavily reliant on the 

assessment of haemodynamic parameters.    
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There were some shortcomings worth noting in the study. Based on the findings of this report, 

caution ought to be exercised before arriving at the conclusion that there was selective resistance to 

LPS endotoxin in sheep with similar characteristics. This is because certain procedures were not 

standardised. Albeit the sheep were of the same breed, they had different backgrounds, 

environmental conditions, vendors and production traits. There was also variability in the 

anaesthetic protocol as expounded in the preceding section. Other than the variability noted in the 

experimental subjects, there were no published studies on basic serum/plasma biochemistry on the 

validation studies of the model for which the primary study
3
 was based on. The confounding factors 

of time, age, transportation, stress, and interventions prior to sampling may not have been fully 

accounted for. The study was gender biased - no males were recruited.  Perhaps the most crucial set 

back is that there was no pre-anaesthetic laboratory work factored into the primary study. In 

veterinary practice, sampling for baseline parameters prior to any intervention is widely considered 

as a standard operating procedure. Samples for RNA and DNA analysis for future studies were not 

uniformly collected across the board. The archived samples may therefore not be suitable for 

planned comprehensive comparative proteogenomic studies of SYSS and CSIROS because no pre-

interventional samples that could act individual subjects’ controls were collected. Only archived 

serum and plasma samples could be of use in future comparative studies for all the sheep. 

Haemodynamic (MPAP, MAP, SvO2, CCO), respiratory ([A-a] gradient, PaO2/FiO2 ratio, arterial 

blood gas analysis), haematology, serum/plasma biochemistry and urinalysis findings are not 

available for reasons beyond the purpose of this report.  

Finally, as a future perspective, in order to fully determine if selective susceptibility to E. coli 

endotoxin in sheep is apparent, all the sources of variation identified and discussed in this report 

need to be taken into consideration and minimised. This research could benefit from more concrete 

mechanistic support for genetic, epigenetic, immune, and/or other factor involvement. It is 

important to strongly consider exploring potential innate immune factors to support the assertion of 

selective susceptibility to endotoxin. Baseline samples and parameters should be taken before any 

form of intervention is done to represent the “normal” state or of the experimental animal. The 

analysis of baseline samples will therefore act as a benchmark for comparison with outcomes of 

interventions downstream. The present discussion is heavily focused on experimental animal use in 

research as these factors are proposed as being crucial in the development of optimum large animal 

experimental methods for better study outcomes. Detailed attention to mechanisms of variable 

immune recognition of LPS should also be taken into consideration by way of further studies. With 

this in mind, studies are planned to develop a method that will first establish the normal circulating 

acellular proteome, followed by validation of the method using samples from LPS primed sheep, 
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potentially identifying  acute phase acute phase proteins (APP) as recently published
1
.  

Conclusions 

In conclusion, cautiously taking all observations into perspective, some merino sheep appear to be 

more susceptible to the effects of E. coli LPS endotoxin than others despite being the same age and 

breed. It should be noted that the observations that have been advanced in the current study are 

potentially interesting physiological and/or pathophysiological findings that warrant subsequent 

exploration of genetic, epigenetic, innate immune system involvement. Genetic and physiological 

data are needed in order to fully back these observations – calling for further studies and the 

inclusion of such data to the methods of protracted large animal models with potential translational 

applications. Sheep brought up under hardy conditions may be more resistant to the effects of 

endotoxin than those grown under more optimal conditions. It appears that sheep that have the 

endoparasite resistance trait may also be resistant to E. coli LPS compared to sheep with the wool 

production trait.   There are a variety of known mitigating environmental and unknown epigenetic 

factors that need to be taken into consideration when designing protracted large animal experiments 

as they can influence the host’s outcomes in regards to exposure to endotoxin. These observations 

could be relevant in understanding the relative importance of phenotype and managemental 

differences, and could set a foundation for further proteogenomic studies on plasma and serum to 

elucidate the apparent variation in LPS susceptibility in sheep. Individual genetic characteristics 

may also contribute in defining and predicting response to an infection challenge in sheep. The 

clues in understanding of the mechanism of the selection to LPS morbidity in sheep could be due to 

changes in plasma/serum proteins, whose elucidation may help to understand similar pathology in 

other mammals, including humans. 
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Table A7.1. Ewes used by Queensland University of Technology for a project from January 

2009 - May 2013. 

Date Experiment Sheep 

Weight 

(kg) Treatment 

LPS dose 

(µg/kg) 

27-Jan-09 1 582 40 LPS @ 8 ug/kg/min 240 

10-Feb-09 2 571 54 LPS @ 1 ug/kg/min 30 

03-Mar-09 3 619 33 LPS @ 0.5 ug/kg/min 15 

17-Mar-09 4 625 40 LPS @ 0.5 ug/kg/min 15 

18-Mar-09 5 613 34 LPS @ 0.5 ug/kg/min 15 

19-Mar-09 6 617 40 LPS @ 0.5 ug/kg/min 15 

24-Mar-09 7 618 43 LPS @ 0.5 ug/kg/min 15 

25-Mar-08 8 624 34 N/A 

 26-Mar-09 9 605 48 N/A 

 07-Apr-09 10 612 37 LPS @ 0.5 ug/kg/min 15 

08-Apr-09 11 608 30 LPS @ 0.5 ug/kg/min 15 

09-Apr-09 12 622 45 saline (30mL) 0 

14-Apr-09 13 602 37 LPS @ 0.5 ug/kg/min 15 

16-Apr-09 14 620 46 LPS @ 0.5 ug/kg/min 15 

21-Apr-09 15 621 42 saline (30mL) 0 

23-Apr-09 16 611 39 saline (30mL) 0 

28-Apr-09 17 665 41 saline (30mL) 0 

30-Apr-09 18 677 44 saline (30mL) 0 

05-May-09 19 673 46 saline (30mL) 0 

07-May-09 20 706 40 saline (30mL) 0 

12-May-09 21 702 47 N/A 

 14-May-09 22 703 33 saline (30mL) 0 

02-Jun-09 23 698 37 LPS @ 0.5 ug/kg/min 15 

03-Jun-09 24 697 36 LPS @ 0.5 ug/kg/min 15 

04-Jun-09 25 699 ‡ N/A 

 09-Jun-09 26 701 45 LPS @ 0.5 ug/kg/min 15 

11-Jun-09 27 745 36 LPS @ 0.5 ug/kg/min 15 

16-Jun-09 28 719 39 LPS @ 0.5 ug/kg/min 15 

18-Jun-09 29 710 43 LPS @ 0.5 ug/kg/min 15 

06-Oct-09 30 729 38 LPS @ 0.5 ug/kg/min 15 
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Date Experiment Sheep 

Weight 

(kg) Treatment 

LPS dose 

(µg/kg) 

27-Oct-09 31 704 40 N/A 

 29-Oct-09 32 720 40 saline (30mL) 0 

10-Nov-09 33 711 37 LPS @ 0.5 ug/kg/min 15 

12-Nov-09 34 742 46 saline (30mL) 0 

19-Nov-09 35 667 39.2 saline (30mL) 0 

24-Nov-09 36 708 33 LPS @ 0.5 ug/kg/min 15 

26-Nov-09 37 713 40 N/A 

 01-Dec-09 38 670 43 LPS @ 0.5 ug/kg/min 15 

03-Dec-09 39 671 45 LPS @ 0.5 ug/kg/min 15 

08-Dec-09 40 714 37.5 LPS @ 0.5 ug/kg/min 15 

10-Dec-09 41 764 54 saline (30mL) 0 

2-Feb-10 42 773 37 saline (30mL) 0 

4-Feb-10 43 792 38.4 saline (30mL) 0 

9-Feb-10 44 789 46 saline (30mL) 0 

11-Feb-10 45 781 39 saline (30mL) 0 

16-Feb-10 46 786 35.5 LPS @ 0.5 ug/kg/min 15 

23-Feb-10 47 780 33 saline (30mL) 0 

25-Feb-10 48 A252 36 LPS @ 0.5 ug/kg/min 15 

2-Mar-10 49 794 31 LPS @ 0.5 ug/kg/min 15 

4-Mar-10 50 778 38 LPS @ 0.5 ug/kg/min 15 

9-Mar-10 51 805 50 LPS @ 0.5 ug/kg/min 15 

11-Mar-10 52 820 36 LPS @ 0.5 ug/kg/min 15 

16-Mar-10 53 815 48 LPS @ 0.5 ug/kg/min 15 

18-Mar-10 54 814 34 LPS @ 0.5 ug/kg/min 15 

23-Mar-10 55 816 41 saline (30mL) 0 

30-Mar-10 56 828 26 LPS @ 0.5 ug/kg/min 15 

16-Aug-11 57 1100 30.5 LPS @ 0.5 ug/kg/min 15 

18-Aug-11 58 1101 30.1 LPS @ 0.5 ug/kg/min 15 

23-Aug-11 59 1098 29.2 LPS @ 0.5 ug/kg/min 15 

30-Aug-11 60 1067 33.7 LPS @ 0.5 ug/kg/min 15 

27-Feb-12 61 1190 29.2 LPS @ 0.5 ug/kg/min 15 

27-Feb-12 62 1186 27.9 LPS @ 0.5 ug/kg/min 15 
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Date Experiment Sheep 

Weight 

(kg) Treatment 

LPS dose 

(µg/kg) 

6-Mar-12 63 1195 25.7 LPS @ 0.5 ug/kg/min 15 

6-Mar-12 64 1192 29.6 LPS @ 0.5 ug/kg/min 15 

23-Jul-12 ‡ 09A0066 29.3 N/A Terminated 

14-Aug-12 65 09A0079 32 LPS titration 15 

14-Aug-12 66 09A0016 30.3 LPS titration 15 

16-Aug-12 67 09A0126 31.8 LPS titration 7.67 

16-Aug-12 68 09A0092 31 LPS titration 3.75 

7-Sep-12 69 09A0113 34.9 LPS titration 1.5 

7-Sep-12 70 09A0100 33.7 LPS titration 3.75 

13-Sep-12 71 09A0035 36.4 LPS titration 7.67 

13-Sep-12 72 09A0021 38.7 LPS titration 7.67 

20-Sep-12 73 09A0074 34.1 LPS titration 7.67 

20-Sep-12 74 09A0037 36.4 LPS titration 7.67 

17-Oct-12 75 09A0140 33.6 LPS titration 5.95 

17-Oct-12 76 09A0102 33.5 LPS titration 5.37 

24-Oct-12 77 09A0039 38.2 LPS titration 3.92 

24-Oct-12 78 09A0072 40.5 LPS titration 2.22 

31-Oct-12 79 09A0064 40.5 LPS titration 1.98 

31-Oct-12 80 09A0076 38.8 LPS titration 1.8 

1-Nov-12 81 09A0071 43.7 LPS titration 1.37 

1-Nov-12 82 09A0073 43 LPS titration 1.4 

8-Nov-12 83 09A0096 39.8 LPS titration 1.5 

-Nov-12 84 09A0078 36.2 LPS titration 1.38 

9-Nov-12 85 09A0093 35 LPS titration 1.43 

9-Nov-12 86 09A0071 33.2 LPS titration 1.2 

27-Nov-12 87 09A0114 41.2 LPS titration 1.7 

27-Nov-12 88 09A0116 45 LPS titration 1.33 

28-Nov-12 89 09A3023 39.5 LPS titration 1.27 

28-Nov-12 90 09A3032 40 LPS titration 1.25 

7-Mar-13 91 09A3061 39.5 LPS titration 1.43 

7-Mar-13 92 1187 ‡ LPS titration 1.43 

17-Apr-13 93 09A3192 39.8 LPS titration 1.5 
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Date Experiment Sheep 

Weight 

(kg) Treatment 

LPS dose 

(µg/kg) 

17-Apr-13 94 09A3084 43.1 LPS titration 1.62 

18-Apr-13 95 09A3157 35.5 LPS titration 1.69 

18-Apr-13 96 09A3153 32 LPS titration ‡ 

9-May-13 97 09A3190 45.1 LPS titration 1.55 

9-May-13 98 09A0127 45.6 LPS titration 1.32 

10-May-13 99 09A0117 47.1 LPS titration 1.27 

10-May-13 100 09A3063 46.9 LPS titration 1.17 

20-May-13 101 09A3159 45.5 LPS titration 1.1 

20-May-13 102 09A3204 49.8 LPS titration 1.1 

21-May-13 103 09A3021 48.9 LPS titration 1.02 

21-May-13 104 09A0079 53.5 LPS titration 1.12 

Legend: Experiment details (date of experiment, experiment number, sheep identification 

and treatment) of ewes (n = 105) that were agisted as a mob at a commercial farm for 

Queensland University of Technology Medical Engineering Facility (QUT-MERF). The 

sheep were purchased from 2 separate vendors: The Australian Livestock Markets 

Association Inc., (Warwick, QLD, Australia) – for experiments 1-64, and 92; and the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) FD McMaster 

Laboratory (Armidale, NSW, Australia) – for the terminated experiment, experiments 65-

91 and 93-104.  Key: LPS = Lipopolysaccharide from Escherichia coli; N/A = No 

treatment given: control experiments; ‡ = missing data.  Experiments 1 & 2 were used for 

LPS optimisation experiments. All experiments in bold were excluded from the analysis of 

the results of the present report. 
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APPENDIX 7.1. Steps for generating a retention time (RT) calibration curve 

 

Highlight and select calibration peptides, followed by the steps 1 and 2 and apply it – 3. The RT 

calibration curve can be accessed by clicking 4 in the main home screen. 

APPENDIX 7.2. Entering SWATH-MS processing settings 

 

How SWATH-MS processing settings (red arrow) for the PSL in PeakView
®
 Software user 

interface were entered. Sample .wiff files 1 were loaded, followed by steps 2, 3, 4 and 5 above.  
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APPENDIX 7.3 List of proteins that were quantitated by SWATH-MS analysis in plasma of endotoxaemic sheep 

Table A7.5. The UniProtKB accession numbers, gene names, NCBI names, protein status, UniProtKB names and fold change values of 243 sheep 

plasma proteins that altered during E. coli lipopolysaccharide-induced endotoxaemia. Fold change represents how the quantity of protein changed from 

before and after 75 minutes of acute endotoxaemia based on their protein peak area comparisons that were processed in MarkerView™ Software 

(SCIEX).     

UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5PD76_SHEEP TRMT11 tRNA methyltransferase 11 homolog Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=TRMT11 PE=4 SV=1 

16.2 

W5PUH0_SHEEP FAM105A Family with sequence similarity 105 

member A 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=FAM105A PE=4 

SV=1 

15.9 

W5QJ60_SHEEP LOC101116576 Sentrin-specific protease 8-like Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=LOC101116576 

PE=4 SV=1 

6.2 

W5QGD1_SHEEP LDHB L-lactate dehydrogenase Predicted L-lactate dehydrogenase OS=Ovis aries 

GN=LDHB PE=3 SV=1 

6.0 

W5PJD1_SHEEP KMT2A Lysine methyltransferase 2A Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=KMT2A PE=4 SV=1 

5.1 

W5Q2A5_SHEEP FAM13B Family with sequence similarity 13 

member B  

Predicted Uncharacterised protein OS=Ovis aries 

GN=FAM13B PE=4 SV=1 

4.4 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5QDU3_SHEEP TRDV2 T cell receptor delta variable 2  Predicted Uncharacterised protein OS=Ovis aries 

GN=TRDV2 PE=4 SV=1 

3.1 

W5PHP2_SHEEP EEF1A1 Elongation factor 1-alpha 1-like Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries PE=4 SV=1 

2.8 

W5Q754_SHEEP TTN Titin Predicted Uncharacterised protein OS=Ovis aries 

GN=TTN PE=4 SV=1 

2.7 

W5PV69_SHEEP HIST2H2AB Histone cluster 2 H2A family member 

b 

Predicted Histone H2A OS=Ovis aries 

GN=HIST2H2AB PE=3 SV=1 

2.6 

W5P084_SHEEP CERS4 Ceramide synthase 4 Predicted Uncharacterised protein OS=Ovis aries 

GN=CERS4 PE=4 SV=1 

2.6 

W5PZ55_SHEEP PPBP Platelet basic protein Predicted C-X-C motif chemokine OS=Ovis aries 

GN=PPBP PE=3 SV=1 

2.5 

W5PZT2_SHEEP ANGPTL6 Angiopoietin like 6 Predicted Uncharacterised protein OS=Ovis aries 

GN=ANGPTL6 PE=4 SV=1 

2.5 

W5Q0L2_SHEEP SERPINA5 Serpin family A member 5 Predicted Uncharacterised protein OS=Ovis aries 

GN=SERPINA5 PE=3 SV=1 

2.5 

W5PZT3_SHEEP LECT2 Leukocyte cell derived chemotaxin 2 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=LECT2 PE=4 SV=1 

2.4 

W5PA83_SHEEP PRR14 proline rich 14 Predicted Uncharacterised protein OS=Ovis aries 

GN=PRR14 PE=4 SV=1 

2.3 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5P323_SHEEP GPI glucose-6-phosphate isomerase  Predicted Glucose-6-phosphate isomerase OS=Ovis 

aries GN=GPI PE=3 SV=1 

2.3 

W5NYP1_SHEEP WC11 Antigen WC1.1 Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

2.2 

G3LUQ4_SHEEP CSN1S1 Casein alpha s1 Predicted Alpha s1 casein OS=Ovis aries 

GN=CSN1S1 PE=4 SV=1 

2.2 

A2P2G7_SHEEP VH VH region Predicted VH region (Fragment) OS=Ovis aries 

GN=VH PE=2 SV=1 

2.2 

W5P082_SHEEP IGF2 Insulin like growth factor 2 Predicted Insulin-like growth factor II OS=Ovis 

aries GN=IGF2 PE=3 SV=1 

2.2 

W5PKA9_SHEEP F5 F5 coagulation factor V Predicted Uncharacterised protein OS=Ovis aries 

GN=F5 PE=3 SV=1 

2.2 

W5P8V3_SHEEP LGI2 Leucine rich repeat LGI family 

member 2 

Predicted Uncharacterised protein OS=Ovis aries 

GN=LGI2 PE=4 SV=1 

2.2 

W5NVP3_SHEEP CHAT choline O-acetyltransferase Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=CHAT PE=3 SV=1 

2.2 

W5NXM6_SHEEP PTX3 Pentraxin 3  Predicted Uncharacterised protein OS=Ovis aries 

GN=PTX3 PE=4 SV=1 

2.1 

W5Q7C7_SHEEP PSMA2 proteasome subunit alpha 2 Predicted Proteasome subunit alpha type OS=Ovis 

aries GN=PSMA2 PE=3 SV=1 

2.1 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5PEL2_SHEEP OGN Osteoglycin Predicted Uncharacterised protein OS=Ovis aries 

GN=OGN PE=4 SV=1 

2.1 

W5PIG6_SHEEP ENO1 Enolase 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=ENO1 PE=3 SV=1 

2.0 

K4P494_SHEEP CST3 Cystatin C Predicted Cystatin OS=Ovis aries GN=CST3 PE=2 

SV=1 

1.9 

W5P915_SHEEP LOC101107619 Short palate, lung and nasal 

epithelium carcinoma-associated 

protein 2B-like 

Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101107619 PE=4 SV=1 

1.9 

W5Q0X5_SHEEP LOC101115576 Serpin A3-5 Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101115576 PE=3 SV=1 

1.9 

W5PGE9_SHEEP IGHA immunoglobulin alpha heavy chain Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries PE=4 SV=1 

1.9 

W5P293_SHEEP CPEB4 cytoplasmic polyadenylation element 

binding protein 4 

Predicted Uncharacterised protein OS=Ovis aries 

GN=CPEB4 PE=4 SV=1 

1.9 

W5Q0R1_SHEEP SHBG Sex hormone binding globulin Predicted Uncharacterised protein OS=Ovis aries 

GN=SHBG PE=4 SV=1 

1.9 

W5NS74_SHEEP ACAA1 Acetyl-CoA acyltransferase 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=ACAA1 PE=3 SV=1 

1.9 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5Q2E1_SHEEP LUM Lumican Predicted Uncharacterised protein OS=Ovis aries 

GN=LUM PE=4 SV=1 

1.9 

W5NVM6_SHEEP LOC101119889 Ig heavy chain V region PJ14-like Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119889 PE=4 SV=1 

1.8 

W5PEI4_SHEEP KLKB1 Kallikrein B1 Predicted Uncharacterised protein OS=Ovis aries 

GN=KLKB1 PE=3 SV=1 

1.8 

B5B304_SHEEP CFH Complement factor H Predicted Complement factor H (Fragment) 

OS=Ovis aries GN=CFH PE=2 SV=1 

1.8 

W5PAJ9_SHEEP APOM Apolipoprotein M Predicted Uncharacterised protein OS=Ovis aries 

GN=APOM PE=4 SV=1 

1.8 

W5Q124_SHEEP LOC101119509 Serpin A3-8 Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119509 PE=3 SV=1 

1.7 

W5P481_SHEEP COL1A1 Collagen type I alpha 1 chain  Predicted Uncharacterised protein OS=Ovis aries 

GN=COL1A1 PE=4 SV=1 

1.7 

W5PDG3_SHEEP GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase 

Predicted Glyceraldehyde-3-phosphate 

dehydrogenase OS=Ovis aries 

GN=GAPDH PE=3 SV=1 

1.7 

W5QBB1_SHEEP C8G Complement component C8 gamma 

chain, partial 

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.7 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5P880_SHEEP PRG4 Proteoglycan 4 Predicted Uncharacterised protein OS=Ovis aries 

GN=PRG4 PE=4 SV=1 

1.7 

W5PHI7_SHEEP LOC101116892 Serpin A3-1-like Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101116892 PE=3 SV=1 

1.7 

W5Q868_SHEEP RFX4 Regulatory factor X4 Predicted Uncharacterised protein OS=Ovis aries 

GN=RFX4 PE=4 SV=1 

1.6 

W5NSA6_SHEEP A2M Alpha-2-macroglobulin Predicted Uncharacterised protein OS=Ovis aries 

GN=A2M PE=4 SV=1 

1.6 

W5P4C6_SHEEP F12 Coagulation factor XII Predicted Uncharacterised protein OS=Ovis aries 

GN=F12 PE=3 SV=1 

1.6 

W5QH54_SHEEP FETUB Fetuin B Predicted Uncharacterised protein OS=Ovis aries 

GN=FETUB PE=4 SV=1 

1.6 

W5PJZ1_SHEEP SERPING1 Serpin family G member 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=SERPING1 PE=3 SV=1 

1.6 

W5NXW9_SHEEP IGHM Transcription factor binding to IGHM 

enhancer 3 

Predicted Uncharacterised protein OS=Ovis aries 

GN=IGHM PE=4 SV=1 

1.6 

W5PF69_SHEEP C2CD4C C2 calcium dependent domain 

containing 4C 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=C2CD4C PE=4 SV=1 

1.6 

F2YQ13_SHEEP GSN Gelsolin Predicted Gelsolin isoform b OS=Ovis aries 

GN=GSN PE=2 SV=1 

1.6 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5PZF0_SHEEP PF4 Platelet factor 4 Predicted C-X-C motif chemokine OS=Ovis aries 

GN=PF4 PE=3 SV=1 

1.6 

W5NQW4_SHEEP LOC101104482 alpha-1-macroglobulin-like Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101104482 PE=4 SV=1 

1.6 

W5Q5A6_SHEEP FGG Fibrinogen gamma chain Predicted Uncharacterised protein OS=Ovis aries 

GN=FGG PE=4 SV=1 

1.5 

W5P8R7_SHEEP FCGBP Fc fragment of IgG binding protein Predicted Uncharacterised protein OS=Ovis aries 

GN=FCGBP PE=4 SV=1 

1.5 

O46544_SHEEP C3 Complement C3 Predicted Complement component C3 (Fragment) 

OS=Ovis aries GN=C3 PE=2 SV=1 

1.5 

W5PJ97_SHEEP APOA2 Apolipoprotein A2 Predicted Uncharacterised protein OS=Ovis aries 

GN=APOA2 PE=4 SV=1 

1.5 

W5PQK6_SHEEP TLN1 Talin 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=TLN1 PE=4 SV=1 

1.5 

W5PXI3_SHEEP AFM Afamin Predicted Uncharacterised protein OS=Ovis aries 

GN=AFM PE=4 SV=1 

1.5 

W5PBY0_SHEEP C4BPA Complement component 4 binding 

protein alpha 

Predicted Uncharacterised protein OS=Ovis aries 

GN=C4BPA PE=4 SV=1 

1.5 

W5PVL4_SHEEP MBL2 Mannose-binding lectin (protein C) 2, 

soluble 

Predicted Uncharacterised protein OS=Ovis aries 

GN=MBL2 PE=4 SV=1 

1.5 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5NSF6_SHEEP RARRES2 Retinoic acid receptor responder 2 Predicted Uncharacterised protein OS=Ovis aries 

GN=RARRES2 PE=4 SV=1 

1.5 

W5PNS6_SHEEP TDRD7 Tudor domain containing 7 Predicted Uncharacterised protein OS=Ovis aries 

GN=TDRD7 PE=4 SV=1 

1.5 

W5P663_SHEEP ENO3 Enolase 3 Predicted Uncharacterised protein OS=Ovis aries 

GN=ENO3 PE=3 SV=1 

1.5 

W5PID9_SHEEP C9 Complement C9 Predicted Uncharacterised protein OS=Ovis aries 

GN=C9 PE=4 SV=1 

1.5 

Q06AV9_SHEEP CD14 CD14 molecule Predicted Monocyte differentiation antigen CD14 

OS=Ovis aries GN=CD14 PE=2 SV=1 

1.4 

W5QHZ5_SHEEP LOC106990772 Ig kappa chain - sheep Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.4 

W5NWX6_SHEEP APOC3 Apolipoprotein C3 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=APOC3 PE=4 SV=1 

1.4 

W5NX51_SHEEP APOA1 Apolipoprotein A-1 Predicted Uncharacterised protein OS=Ovis aries 

GN=APOA1 PE=3 SV=1 

1.4 

W5P7S6_SHEEP ORM1 Orosomucoid 1 Predicted Alpha-1-acid glycoprotein OS=Ovis aries 

GN=ORM1 PE=3 SV=1 

1.4 

W5PJR0_SHEEP LOC101120613 Serum amyloid A-4 protein Predicted Serum amyloid A protein OS=Ovis aries 

GN=LOC101120613 PE=3 SV=1 

1.4 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5NV14_SHEEP IGL immunoglobulin V lambda chain Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.4 

W5Q4Q3_SHEEP SERPIND1 serpin family D member 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=SERPIND1 PE=3 SV=1 

1.4 

W5PQI4_SHEEP EDEM2 ER degradation enhancing alpha-

mannosidase like protein 2 

Predicted alpha-1,2-Mannosidase OS=Ovis aries 

GN=EDEM2 PE=3 SV=1 

1.4 

W5PCA0_SHEEP ALDOB Aldolase, fructose-bisphosphate B Predicted Fructose-bisphosphate aldolase OS=Ovis 

aries GN=ALDOB PE=3 SV=1 

1.3 

W5PCG1_SHEEP TTC39C Tetratricopeptide repeat domain 39C Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=TTC39C PE=4 SV=1 

1.3 

W5NY46_SHEEP PON1 Paraoxonase 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=PON1 PE=4 SV=1 

1.3 

W5NQ46_SHEEP FGB Fibrinogen beta chain Predicted Fibrinogen beta chain OS=Ovis aries 

GN=FGB PE=4 SV=1 

1.3 

W5PYG2_SHEEP VNN1 Vanin 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=VNN1 PE=4 SV=1 

1.3 

W5QA64_SHEEP LOC101119895 Protein HP-20 homolog Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119895 PE=4 SV=1 

1.3 

W5PD62_SHEEP CPB2 Carboxypeptidase B2 Predicted Uncharacterised protein OS=Ovis aries 

GN=CPB2 PE=4 SV=1 

1.3 
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UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5P5I0_SHEEP CFI Complement factor I Predicted Uncharacterised protein OS=Ovis aries 

GN=CFI PE=3 SV=1 

1.3 

W5P6F4_SHEEP C5 Complement C5 Predicted Uncharacterised protein OS=Ovis aries 

GN=C5 PE=4 SV=1 

1.3 

W5PDR5_SHEEP C8A Complement C8 alpha chain Predicted Uncharacterised protein OS=Ovis aries 

GN=C8A PE=4 SV=1 

1.3 

W5QCP9_SHEEP COL6A3 Collagen type VI alpha 3 chain Predicted Uncharacterised protein OS=Ovis aries 

GN=COL6A3 PE=4 SV=1 

1.3 

W5NTT7_SHEEP COL1A2 Collagen type I alpha 2 chain Predicted Uncharacterised protein OS=Ovis aries 

GN=COL1A2 PE=4 SV=1 

1.3 

W5PD71_SHEEP CRP Pentaxin Predicted Pentaxin OS=Ovis aries GN=CRP PE=3 

SV=1 

1.3 

W5PTR4_SHEEP SERPINC1 Serpin family C member 1 Predicted Antithrombin-III OS=Ovis aries 

GN=SERPINC1 PE=3 SV=1 

1.3 

A6NBZ0_SHEEP C3 Complement component C3d  Predicted Complement component 3d (Fragment) 

OS=Ovis aries PE=2 SV=1 

1.3 

W5P101_SHEEP A1BG Alpha-1-B glycoprotein Predicted Uncharacterised protein OS=Ovis aries 

GN=A1BG PE=4 SV=1 

1.3 

W5PDG4_SHEEP HMCN2 Hemicentin 2 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=HMCN2 PE=4 SV=1 

1.2 
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W5PFP1_SHEEP LTF Lactotransferrin Predicted Uncharacterised protein OS=Ovis aries 

GN=LTF PE=3 SV=1 

1.2 

A2P2H6_SHEEP VH Ig mu heavy chain V region precursor Predicted VH region (Fragment) OS=Ovis aries 

GN=VH PE=2 SV=1 

1.2 

W5PDE5_SHEEP LOC101120001 Zona pellucida sperm-binding protein 

3 receptor-like 

Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101120001 PE=4 SV=1 

1.2 

W5PLQ1_SHEEP LOC101111190 Hepatitis A virus cellular receptor 1-

like 

Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101111190 PE=4 SV=1 

1.2 

W5NYF4_SHEEP PGLYRP2 Peptidoglycan recognition protein 2 Predicted Uncharacterised protein OS=Ovis aries 

GN=PGLYRP2 PE=4 SV=1 

1.2 

W5PFC9_SHEEP LOC101117129 inhibitor of carbonic anhydrase-like  Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=LOC101117129 

PE=4 SV=1 

1.2 

W5Q9D5_SHEEP VTN Vitronectin Predicted Uncharacterised protein OS=Ovis aries 

GN=VTN PE=4 SV=1 

1.2 

W5QH45_SHEEP KNG1 Kininogen 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=KNG1 PE=4 SV=1 

1.2 

W5PDJ6_SHEEP GPX3 Glutathione peroxidase 3 Predicted Glutathione peroxidase (Fragment) 

OS=Ovis aries GN=GPX3 PE=3 SV=1 

1.2 
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W5QH50_SHEEP HRG Histidine rich glycoprotein Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=HRG PE=4 SV=1 

1.2 

W5QAB1_SHEEP HPX Hemopexin Predicted Uncharacterised protein OS=Ovis aries 

GN=HPX PE=4 SV=1 

1.2 

APOE_SHEEP APOE Apolipoprotein E Exists Apolipoprotein E OS=Ovis aries 

GN=APOE PE=2 SV=1 

1.2 

D6PZY4_SHEEP fH Fumarate hydratase Predicted Factor H (Fragment) OS=Ovis aries 

GN=fH PE=2 SV=1 

1.2 

TTHY_SHEEP TTR Transthyretin Exists Transthyretin OS=Ovis aries GN=TTR 

PE=2 SV=1 

1.2 

W5Q6C4_SHEEP GCLM Glutamate-cysteine ligase modifier 

subunit  

Predicted Uncharacterised protein OS=Ovis aries 

GN=GCLM PE=4 SV=1 

1.2 

W5NY95_SHEEP C2 Complement C2 Predicted Uncharacterised protein OS=Ovis aries 

GN=C2 PE=3 SV=1 

1.2 

W5PF71_SHEEP KPNB1 Karyopherin subunit beta 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=KPNB1 PE=4 SV=1 

1.2 

W5PG63_SHEEP VWF von Willebrand factor Predicted Uncharacterised protein OS=Ovis aries 

GN=VWF PE=4 SV=1 

1.2 
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W5QJ65_SHEEP GALNT16 Polypeptide N-

acetylgalactosaminyltransferase 16 

Predicted Polypeptide N-

acetylgalactosaminyltransferase 

(Fragment) OS=Ovis aries 

GN=GALNT16 PE=3 SV=1 

1.2 

W5PXX3_SHEEP F13B Coagulation factor XIII B chain Predicted Uncharacterised protein OS=Ovis aries 

GN=F13B PE=4 SV=1 

1.2 

W5NRR7_SHEEP SERPINA7 Serpin family A member 7 Predicted Thyroxine-binding globulin OS=Ovis 

aries GN=SERPINA7 PE=3 SV=1 

1.2 

W5PGZ8_SHEEP APOF Apolipoprotein F Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=APOF PE=4 SV=1 

1.2 

W5PVM3_SHEEP MYOC Myocilin Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=MYOC PE=4 SV=1 

1.2 

W5P3B1_SHEEP PNLDC1 PARN like, ribonuclease domain 

containing 1 

Predicted Uncharacterised protein OS=Ovis aries 

GN=PNLDC1 PE=4 SV=1 

1.2 

W5PF65_SHEEP TF Serotransferrin Predicted Uncharacterised protein OS=Ovis aries 

GN=TF PE=3 SV=1 

1.2 

W5QBW5_SHEEP LBP Lipopolysaccharide binding protein Predicted Uncharacterised protein OS=Ovis aries 

GN=LBP PE=4 SV=1 

1.2 

W5NUX8_SHEEP C4 Complement C4 precursor Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.2 
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W5PSQ7_SHEEP IGL Immunoglobulin lambda light chain Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.2 

W5QA54_SHEEP LOC101119629 Protein HP-25 homolog 2 Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119629 PE=4 SV=1 

1.2 

I1WXR3_SHEEP SERPINA1 Serpin family A member 1 Predicted Alpha-1-antitrypsin transcript variant 1 

OS=Ovis aries GN=SERPINA1 PE=2 

SV=1 

1.1 

W5PLC2_SHEEP CSN2 casein beta Predicted Beta-casein OS=Ovis aries GN=CSN2 

PE=3 SV=1 

1.1 

W5PZG5_SHEEP OCRL OCRL, inositol polyphosphate-5-

phosphatase 

Predicted Uncharacterised protein OS=Ovis aries 

GN=OCRL PE=4 SV=1 

1.1 

W5NTW3_SHEEP ITIH1 Inter-alpha-trypsin inhibitor heavy 

chain 1 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=ITIH1 PE=4 SV=1 

1.1 

W5PHU4_SHEEP UBAP1 Ubiquitin associated protein 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=UBAP1 PE=4 SV=1 

1.1 

W5P812_SHEEP AMBP Alpha-1-microglobulin/bikunin 

precursor 

Predicted Uncharacterised protein OS=Ovis aries 

GN=AMBP PE=4 SV=1 

1.1 

W5PH45_SHEEP NUP205 Nucleoporin 205 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=NUP205 PE=4 SV=1 

1.1 
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ALBU_SHEEP ALB Albumin Exists Serum albumin OS=Ovis aries GN=ALB 

PE=1 SV=1 

1.1 

W5PGT9_SHEEP IGHE Immunoglobulin epsilon-chain Predicted Uncharacterised protein OS=Ovis aries 

GN=IGHE PE=4 SV=1 

1.1 

X4ZFS1_SHEEP AdipoQ Adiponectin, C1Q and collagen 

domain containing 

Predicted Adiponectin OS=Ovis aries GN=AdipoQ 

PE=2 SV=1 

1.1 

W5PW21_SHEEP ITIH2 Inter-alpha-trypsin inhibitor heavy 

chain 2 

Predicted Uncharacterised protein OS=Ovis aries 

GN=ITIH2 PE=4 SV=1 

1.1 

W5QC38_SHEEP LOC101119975 Tubulin alpha-1A chain Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119975 PE=1 SV=1 

1.1 

Q29439_SHEEP C4 Complement 4 Predicted Complement component C4 (Fragment) 

OS=Ovis aries GN=C4 PE=4 SV=1 

1.1 

W5P3J3_SHEEP C1S Complement C1s Predicted Uncharacterised protein OS=Ovis aries 

GN=C1S PE=3 SV=1 

1.1 

W5Q9A2_SHEEP AZGP1 Alpha-2-glycoprotein 1, zinc-binding Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=AZGP1 PE=3 SV=1 

1.1 

W5PDN3_SHEEP SPTBN2 Spectrin beta chain, non-erythrocytic 

2 

Predicted Uncharacterised protein OS=Ovis aries 

GN=SPTBN2 PE=4 SV=1 

1.1 

W5PHP8_SHEEP LRG1 Leucine rich alpha-2-glycoprotein 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=LRG1 PE=4 SV=1 

1.1 
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W5PUE9_SHEEP ZSCAN2 Zinc finger and SCAN domain 

containing 2 

Predicted Uncharacterised protein OS=Ovis aries 

GN=ZSCAN2 PE=4 SV=1 

1.1 

W5NZ47_SHEEP RBP4 Retinol binding protein 4 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=RBP4 PE=4 SV=1 

1.1 

W5Q002_SHEEP PLAG1 PLAG1 zinc finger Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=PLAG1 PE=4 SV=1 

1.1 

W5Q5D7_SHEEP CCDC18 Coiled-coil domain containing 18 Predicted Uncharacterised protein OS=Ovis aries 

GN=CCDC18 PE=4 SV=1 

1.1 

C8BKD1_SHEEP F2 Coagulation factor II, thrombin Predicted Prothrombin OS=Ovis aries GN=F2 PE=2 

SV=1 

1.1 

W5QI29_SHEEP ECM1 Extracellular matrix protein 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=ECM1 PE=4 SV=1 

1.1 

W5QHZ8_SHEEP IGK Immunoglobulin kappa-4 light chain 

variable region 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries PE=4 SV=1 

1.1 

ANXA2_SHEEP ANXA2 Annexin A2 Exists Annexin A2 OS=Ovis aries GN=ANXA2 

PE=1 SV=1 

1.1 

CERU_SHEEP CP Ceruloplasmin Exists Ceruloplasmin OS=Ovis aries GN=CP 

PE=2 SV=1 

1.1 

W5PN97_SHEEP CLEC3B C-type lectin domain family 3 

member B 

Predicted Uncharacterised protein OS=Ovis aries 

GN=CLEC3B PE=4 SV=1 

1.1 
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W5PSH4_SHEEP LOC105614527 immunoglobulin lambda-6b light 

chain variable region [Ovis aries] 

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.1 

W5PDQ9_SHEEP C1QC complement C1q C chain Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=C1QC PE=4 SV=1 

1.1 

W5PTS4_SHEEP RNASE4 ribonuclease A family member 4 Predicted Uncharacterised protein OS=Ovis aries 

GN=RNASE4 PE=3 SV=1 

1.1 

W5PIC9_SHEEP BST1 bone marrow stromal cell antigen 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=BST1 PE=4 SV=1 

1.1 

W5NYJ9_SHEEP AGT Angiotensinogen (Fragment)  Predicted Angiotensinogen (Fragment) OS=Ovis 

aries GN=AGT PE=3 SV=1 

1.1 

W5P791_SHEEP ASXL3 Additional sex combs like 3, 

transcriptional regulator 

Predicted Uncharacterised protein OS=Ovis aries 

GN=ASXL3 PE=4 SV=1 

1.1 

W5P1J8_SHEEP AOC3 Primary amine oxidase, lung isozyme Predicted Amine oxidase OS=Ovis aries 

GN=LOC101113086 PE=3 SV=1 

1.1 

W5P0Q4_SHEEP LOC101102413 Haptoglobin Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101102413 PE=3 SV=1 

1.1 

W5Q961_SHEEP LOC101107947 Apolipoprotein F-like Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=LOC101107947 

PE=4 SV=1 

1.0 
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W5PXI0_SHEEP SHANK1 SH3 and multiple ankyrin repeat 

domains 1 

Predicted Uncharacterised protein OS=Ovis aries 

GN=SHANK1 PE=4 SV=1 

1.0 

W5QDP8_SHEEP FBLN1 Fibulin 1 Predicted Fibulin-1 OS=Ovis aries GN=FBLN1 

PE=3 SV=1 

1.0 

W5NX96_SHEEP ATRN Attractin Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=ATRN PE=4 SV=1 

1.0 

W5PD84_SHEEP F10 Coagulation factor X Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=F10 PE=3 SV=1 

1.0 

W5Q268_SHEEP APOH Apolipoprotein H Predicted Uncharacterised protein OS=Ovis aries 

GN=APOH PE=4 SV=1 

1.0 

W5PE53_SHEEP C8B complement C8 beta chain Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=C8B PE=4 SV=1 

1.0 

W5QDG8_SHEEP FN1 Fibronectin 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=FN1 PE=4 SV=1 

1.0 

W5QAA1_SHEEP SFN Stratifin Predicted 14-3-3 protein sigma OS=Ovis aries 

GN=SFN PE=3 SV=1 

1.0 

W5PTL2_SHEEP CFP Complement factor properdin Predicted Uncharacterised protein OS=Ovis aries 

GN=CFP PE=4 SV=1 

1.0 

W5P3Q3_SHEEP LOC100101238 Regakine 1-like protein Predicted C-C motif chemokine OS=Ovis aries 

GN=LOC100101238 PE=3 SV=1 

1.0 
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W5NX95_SHEEP IGL Ig lambda chain V-I region NIG-64 Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.0 

W5P1X9_SHEEP ALDOA Aldolase, fructose-bisphosphate A Predicted Fructose-bisphosphate aldolase OS=Ovis 

aries GN=ALDOA PE=3 SV=1 

1.0 

A4ZVY9_SHEEP B2M Beta-2-microglobulin Predicted Beta-2-microglobulin OS=Ovis aries 

GN=B2M PE=2 SV=1 

1.0 

W5Q2T6_SHEEP IGF1 Insulin like growth factor 1 Predicted Insulin-like growth factor I OS=Ovis aries 

GN=IGF1 PE=3 SV=1 

1.0 

W5Q9W2_SHEEP IGL Immunoglobulin lambda-2b light 

chain variable region 

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

1.0 

W5QH56_SHEEP AHSG Alpha-2-HS-glycoprotein (Fragment) Predicted Alpha-2-HS-glycoprotein (Fragment) 

OS=Ovis aries GN=AHSG PE=4 SV=1 

1.0 

W5P9V5_SHEEP PIGR Polymeric immunoglobulin receptor Predicted Uncharacterised protein OS=Ovis aries 

GN=PIGR PE=4 SV=1 

1.0 

W5PHP7_SHEEP LOC101117146 Serpin A3-7-like Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101117146 PE=3 SV=1 

1.0 

W5NRG7_SHEEP ITIH4 Inter-alpha-trypsin inhibitor heavy 

chain family member 4 

Predicted Uncharacterised protein OS=Ovis aries 

GN=ITIH4 PE=4 SV=1 

1.0 

MYG_SHEEP MB Myoglobin Exists Myoglobin OS=Ovis aries GN=MB PE=1 

SV=2 

1.0 
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W5PXU6_SHEEP SERPINF1 Serpin family F member 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=SERPINF1 PE=3 SV=1 

1.0 

W5QGP4_SHEEP APOD Apolipoprotein D Predicted Uncharacterised protein OS=Ovis aries 

GN=APOD PE=3 SV=1 

1.0 

W5NWM2_SHEEP APOA4 Apolipoprotein A4 Predicted Uncharacterised protein OS=Ovis aries 

GN=APOA4 PE=3 SV=1 

1.0 

IBP4_SHEEP IGFBP4 Insulin like growth factor binding 

protein 4 

Predicted Insulin-like growth factor-binding protein 

4 OS=Ovis aries GN=IGFBP4 PE=1 

SV=1 

1.0 

Q1A2D1_SHEEP HBBK Beta-K globin chain Predicted Beta-K globin chain OS=Ovis aries 

GN=HBBK PE=3 SV=1 

1.0 

W5QA07_SHEEP LOC101119384 Protein HP-25 homolog 1 Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101119384 PE=4 SV=1 

1.0 

W5PH95_SHEEP IGH1 Immunoglobulin gamma-1 chain Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries PE=4 SV=1 

1.0 

B7SH79_SHEEP NFIL3 Nuclear factor, interleukin 3 regulated Predicted Nuclear factor interleukin-3-regulated 

protein OS=Ovis aries GN=NFIL3 PE=2 

SV=1 

1.0 

W5Q517_SHEEP PCOLCE Procollagen C-endopeptidase 

enhancer 

Predicted Uncharacterised protein OS=Ovis aries 

GN=PCOLCE PE=4 SV=1 

1.0 
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W5P1W2_SHEEP FOLR3 Folate receptor alpha Predicted Uncharacterised protein OS=Ovis aries 

GN=FOLR3 PE=4 SV=1 

1.0 

W5PQ53_SHEEP ICOSLG inducible T-cell costimulator ligand Predicted Uncharacterised protein OS=Ovis aries 

GN=ICOSLG PE=4 SV=1 

0.9 

W5NU33_SHEEP TREML1 triggering receptor expressed on 

myeloid cells like 1 

Predicted Uncharacterised protein OS=Ovis aries 

GN=TREML1 PE=4 SV=1 

0.9 

W5QBV7_SHEEP CD44 CD44 molecule (Indian blood group) Predicted Uncharacterised protein OS=Ovis aries 

GN=CD44 PE=4 SV=1 

0.9 

W5PTG9_SHEEP GC GC, vitamin D binding protein Predicted Uncharacterised protein OS=Ovis aries 

GN=GC PE=4 SV=1 

0.9 

W5Q5H8_SHEEP FGA Fibrinogen alpha chain Predicted Fibrinogen alpha chain OS=Ovis aries 

GN=FGA PE=4 SV=1 

0.9 

W5PH81_SHEEP C7 Complement C7 Predicted Uncharacterised protein OS=Ovis aries 

GN=C7 PE=4 SV=1 

0.9 

W5P3R3_SHEEP PLG Plasminogen Predicted Plasminogen OS=Ovis aries GN=PLG 

PE=3 SV=1 

0.9 

W5PZI1_SHEEP LOC101113728 Clusterin Predicted Clusterin OS=Ovis aries 

GN=LOC101113728 PE=3 SV=1 

0.9 

W5Q7Z7_SHEEP DSP Desmoplakin Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=DSP PE=4 SV=1 

0.9 
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W5PJA0_SHEEP CUTA CutA divalent cation tolerance 

homolog 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=CUTA PE=4 SV=1 

0.9 

W5PSM6_SHEEP HABP2 Hyaluronan binding protein 2 Predicted Uncharacterised protein OS=Ovis aries 

GN=HABP2 PE=3 SV=1 

0.9 

W5NV16_SHEEP IGH Immunoglobulin heavy chain 

precursor 

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

0.9 

W5PPQ8_SHEEP JCHAIN Joining chain of multimeric IgA and 

IgM 

Predicted Uncharacterised protein OS=Ovis aries 

GN=JCHAIN PE=4 SV=1 

0.9 

W5QI15_SHEEP IGK Immunoglobulin kappa-1 light chain 

variable region 

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

0.8 

W5P229_SHEEP MASP2 Mannan binding lectin serine 

peptidase 2 

Predicted Uncharacterised protein OS=Ovis aries 

GN=MASP2 PE=3 SV=1 

0.8 

W5PTU7_SHEEP CA2 Carbonic anhydrase 2 Predicted Carbonic anhydrase 2 (Fragment) 

OS=Ovis aries GN=CA2 PE=4 SV=1 

0.8 

CBG_SHEEP SERPINA6 Serpin family A member 6 Predicted Corticosteroid-binding globulin OS=Ovis 

aries GN=SERPINA6 PE=2 SV=1 

0.8 

W5QHR3_SHEEP RMND5A Required for meiotic nuclear division 

5 homolog A 

Predicted Uncharacterised protein OS=Ovis aries 

GN=RMND5A PE=4 SV=1 

0.8 

W5Q9K0_SHEEP TTC25 Tetratricopeptide repeat domain 25 Predicted Uncharacterised protein OS=Ovis aries 

GN=TTC25 PE=4 SV=1 

0.8 
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W5QGG0_SHEEP TFRC Transferrin receptor Predicted Uncharacterised protein OS=Ovis aries 

GN=TFRC PE=4 SV=1 

0.8 

C0LQH2_SHEEP IGFBP Insulin like growth factor binding 

protein 2 

Predicted Insulin-like growth factor-binding 

protein-3 OS=Ovis aries GN=IGFBP-3 

PE=2 SV=1 

0.8 

W5Q9P7_SHEEP CFL1 Cofilin 1 Predicted Cofilin-1 (Fragment) OS=Ovis aries 

GN=CFL1 PE=3 SV=1 

0.8 

W5PGT6_SHEEP C6 Complement C6 Predicted Uncharacterised protein OS=Ovis aries 

GN=C6 PE=4 SV=1 

0.8 

W5PLL2_SHEEP F9 Coagulation factor IX Predicted Coagulation factor IX OS=Ovis aries 

GN=F9 PE=3 SV=1 

0.8 

HBBF_SHEEP LOC101106199 Hemoglobin fetal subunit beta  Exists Hemoglobin fetal subunit beta OS=Ovis 

aries PE=1 SV=1 

0.8 

W5PVH9_SHEEP HGFAC HGF activator Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=HGFAC PE=3 SV=1 

0.8 

W5QH21_SHEEP MASP1 Mannan binding lectin serine 

peptidase 1 

Predicted Uncharacterised protein OS=Ovis aries 

GN=MASP1 PE=3 SV=1 

0.8 

W5PB46_SHEEP PLTP Phospholipid transfer protein Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=PLTP PE=4 SV=1 

0.8 
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W5PAL4_SHEEP LOC105612802 CD5 antigen-like isoform X1 Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

0.7 

W5PLH8_SHEEP KAZN Kazrin, periplakin interacting protein Predicted Uncharacterised protein OS=Ovis aries 

GN=KAZN PE=4 SV=1 

0.7 

W5Q7J0_SHEEP APOB Apolipoprotein B Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=APOB PE=4 SV=1 

0.7 

W5PSK4_SHEEP IGL Immunoglobulin lambda-like 

polypeptide 1  

Predicted Uncharacterised protein OS=Ovis aries 

PE=4 SV=1 

0.7 

W5PTS2_SHEEP MAMDC2 MAM domain containing 2 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=MAMDC2 PE=4 

SV=1 

0.7 

W5Q6N9_SHEEP AP3B1 Adaptor related protein complex 3 

beta 1 subunit 

Predicted AP-3 complex subunit beta OS=Ovis 

aries GN=AP3B1 PE=3 SV=1 

0.7 

W5PXC8_SHEEP SERPINF2 Serpin family F member 2 Predicted Uncharacterised protein OS=Ovis aries 

GN=SERPINF2 PE=3 SV=1 

0.7 

W5QCY7_SHEEP SPP2 Secreted phosphoprotein 2 Predicted Secreted phosphoprotein 24 OS=Ovis 

aries GN=SPP2 PE=4 SV=1 

0.7 

D7RIF5_SHEEP ACTB Actin beta Predicted Beta-actin variant 2 OS=Ovis aries 

GN=ACTB PE=2 SV=1 

0.6 



255 

 

UniProtKB 

Accession 

Gene Name NCBI Name Protein 

Status 

UniProtKB Name Fold 

Change 

W5PBX6_SHEEP ARHGEF17 Rho guanine nucleotide exchange 

factor 17 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=ARHGEF17 PE=4 

SV=1 

0.6 

W5PHM6_SHEEP ZNF512B Zinc finger protein 512B Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=ZNF512B PE=4 

SV=1 

0.6 

W5NSH2_SHEEP ITIH3 Inter-alpha-trypsin inhibitor heavy 

chain 3 

Predicted Uncharacterised protein OS=Ovis aries 

GN=ITIH3 PE=4 SV=1 

0.6 

W5PIW6_SHEEP PRTN3 Myeloblastin Predicted Uncharacterised protein OS=Ovis aries 

GN=PRTN3 PE=3 SV=1 

0.6 

Q28745_SHEEP HBA1 Alpha globin chain Predicted Alpha globin chain OS=Ovis aries PE=3 

SV=1 

0.6 

W5Q7R8_SHEEP JUP Junction plakoglobin Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=JUP PE=4 SV=1 

0.5 

Q1KYZ7_SHEEP HBBA Haemoglobin, beta Predicted Beta-A globin chain OS=Ovis aries 

GN=HBBA PE=3 SV=1 

0.5 

W5PJ66_SHEEP CFD Complement factor D Predicted Uncharacterised protein OS=Ovis aries 

GN=CFD PE=3 SV=1 

0.5 

W5Q4Z3_SHEEP IGFALS Insulin like growth factor binding 

protein acid labile subunit 

Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=IGFALS PE=4 SV=1 

0.5 
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W5QD16_SHEEP MYL1 Myosin light chain 1 Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=MYL1 PE=4 SV=1 

0.5 

W5QGQ3_SHEEP LOC101102714 Lysozyme C, milk isozyme Predicted Uncharacterised protein OS=Ovis aries 

GN=LOC101102714 PE=3 SV=1 

0.5 

W5PSC8_SHEEP FBLN5 Fibulin 5 Predicted Uncharacterised protein OS=Ovis aries 

GN=FBLN5 PE=4 SV=1 

0.5 

W5Q0V2_SHEEP BTD Biotinidase Predicted Uncharacterised protein (Fragment) 

OS=Ovis aries GN=BTD PE=4 SV=1 

0.4 

W5NR06_SHEEP LOC101108086 Histone H2B type 1 Predicted Histone H2B OS=Ovis aries 

GN=LOC101108086 PE=3 SV=1 

0.4 

W5Q9K1_SHEEP QSOX1 Quiescin sulfhydryl oxidase 1 Predicted Sulfhydryl oxidase OS=Ovis aries 

GN=QSOX1 PE=4 SV=1 

0.4 

A0A0F6YFJ0_SHEEP LOC100134870 Beta-C globin Predicted Beta-C globin OS=Ovis aries PE=3 SV=1 0.4 

W5PQH2_SHEEP ANPEP Alanyl aminopeptidase, membrane Predicted Uncharacterised protein OS=Ovis aries 

GN=ANPEP PE=4 SV=1 

0.3 

 


