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Abstract

This Ph.D. thesis studies structured Markov models (SMMs) in the context of applied prob-

ability, stochastic modelling and applied statistics. SMMs are Markov chains on countable

state spaces, whose transition rate matrices have particular structures, such as bidiagonal or

tridiagonal block matrices. From a modelling point of view, applicability, robustness, simplic-

ity, and tractability of SMMs make them a very important tool for studying complex systems.

This is mainly due to the fact that for evaluation of performance measures of SMMs, there

are efficient numerical analysis methods, commonly called matrix analytic methods (MAM).

Some popular classes of SMMs are phase-type (PH) distributions, Markovian arrival pro-

cesses (MAPs) and quasi-birth-and-death (QBD) processes. This thesis describes the out-

comes of three research projects dealing with SMMs and their applications in stochastic

modelling and applied statistics.

In the first project, we introduce the notion of burstiness for a MAP. We call a stationary MAP

bursty if both the squared coefficient of variation of inter-arrival times and the asymptotic

index of dispersion of counts (IDC) are greater than unity. The simplest bursty MAP is a

Hyperexponential renewal process with further classes, as we establish, being the Markov

modulated Poisson process (MMPP), the Markov transition counting process (MTCP) and

the Markov switched Poisson process (MSPP). Of these, MMPP has been used most often

in applications for modelling bursty phenomena. Much of the popularity of MMPP stems

from the intuition that it serves as a good model of bursty traffic. However, when MMPPs are

viewed through the lens of the inter-arrival process, there is no proof to show that MMPPs

are bursty. We provide analytical proofs to show that all of the MAPs mentioned above are

bursty.

Further, we investigate relations between these bursty MAPs. One of our main results is

establishing a duality in terms of first and second moments of counts between MTCPs and

a rich class of MMPPs which we refer to as slow-MMPPs (modulation is slower than the

arrivals). Such a duality further confirms the applicability of MTCP as an alternative to MMPP.

We augment our analytic results with numerical illustrations.

In the second project, we consider a simple discrete-time controlled queueing system, where

the controller has a choice of which server to use at each time slot, and server performance

varies according to a Markov modulated random environment. We explore the role of infor-

mation on the system stability region. At the extreme cases of information availability, that is

when there is either full information or no information, stability regions and maximally stabi-
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lizing policies are trivial. But in the more realistic cases where only the environment state of

the selected server is observed, only the service successes are observed or only the queue

length is observed, finding throughput maximizing control laws is a challenge. To handle

these situations, we devise a partially observable Markov decision process (POMDP) for-

mulation of the problem and illustrate properties of its solution. We further model the system

under given decision rules, using a QBD structure to find a matrix analytic expression for

the stability bound. We use this formulation to illustrate how the stability region grows as the

number of controller belief states increases.

The third project focuses on the statistical methodology of semi-Markov processes, as mo-

tivated by the study of the trajectory of patients in intensive care units (ICUs) in hospitals.

The main result of this project is the comparison of two approaches for defining and esti-

mating semi-Markov models that are applied in ICUs. One approach is based on sojourn

times, and the other approach is based on transition rates of the Markov jump process. We

show that the second model has fewer parameters and its likelihood can be considered as

the product of likelihoods of simpler two-state models. The comparison of these approaches

helps to build models for predicting risks and chances of expected trajectories of patients

through ICUs. Moreover, we extend the model to the case of having a multi-absorption PH

distribution as the sojourn time distribution or intensity distribution of the semi-Markov model.

The result of the projects mentioned above have been published or submitted to prestigious

journals and peer-reviewed conferences, see [8–11, 146]. Further papers are currently in

final stages of preparation.
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Chapter 1

Introduction

This Ph.D. thesis lies in the intersection of applied probability, stochastic modelling and ap-

plied statistics and consists of three main projects associated with structured Markov models

(SMMs). The models considered are continuous or discrete time Markov chains, typically

on countable state spaces, whose transition rate matrices are configured in special struc-

tures, such as bidiagonal or tridiagonal block matrices. Markov models of this type have the

virtue of being amenable to performance analysis using algorithmic methods that utilize the

structured nature of their associated matrices.

SMMs have been heavily analysed in the field of applied probability, often under the title

matrix analytic methods (MAM). Since SMMs preserve the Markovian structure, by using

MAM, the results are algorithmically tractable. This makes them a valuable tool for studying

complex dynamics such as congestion phenomena in queueing systems. Other types of ap-

plications include storage, reliability, epidemics, and population processes. There are three

popular classes of SMMs which we consider in this thesis: Phase-type (PH) distributions,

Markovian arrival processes (MAPs), and quasi-birth-and-death (QBD) process. A PH dis-

tribution is a generalisation of the exponential distribution, and a MAP is a generalisation of

the Poisson process. The QBD process is a generalisation of a birth-and-death process and

a MAP.

In this thesis, we investigate the role of applying SMMs for stochastic modelling, in the frame-

work of three research projects. Here, an overview of these projects is outlined, providing

the reader with motivation for the need of continued research in this area. More background

1



Chapter 1: Introduction

details are provided in Chapter 2.

1.1 Bursty MAPs

Point processes on the line generated by transitions of CTMCs have been studied intensely

by the applied probability community over the past few decades under the umbrella of

matrix analytic methods (MAM), see for instance [119]. These have been implemented

to Teletraffic [3], business networks [88], social operations research [199], and biological

systems [159]. The typical model referred to as the Markovian arrival process (MAP) is

comprised of a finite state irreducible CTMC which generates arrivals at selected instances

of state change according to Poisson processes modulated by the CTMC. So, a MAP can

be considered as a generalisation of the Poisson process where the inter-arrival times of a

MAP are not necessarily independent of each other, nor exponentially distributed. Introduc-

ing correlation between times of events for point processes often makes them more complex

models and usually computationally intractable. However, MAPs are Markovian and hence

analytically more tractable than general point processes. MAPs have been shown to be

dense in the class of point processes on the line so that they can essentially approximate

any point process, see [18].

A standard way to characterise a MAP is through the matrices C and D whose sum is

the Q-matrix of the background CTMC, see Section 2.3.2. The matrix D is non-negative

and contains intensities of transitions that count as arrivals or events. The matrix C has

strictly negative diagonal elements and non-negative off-diagonal elements and represents

transitions of intensities that do not count as events. Some notable descriptions of MAPs

are in Chapter XI of [15], Chapter 2 of [83], Chapter 3 of [119], and [130,149].

Let N(A) denote the number of events of the MAP occurring on the set A ⊂ R. As with

general point processes, a MAP is time-stationary if the distribution of N(A) and N(A + t)

is the same, where A + t := {u : u − t ∈ A}. Further use {Tn} to denote the sequence

of inter-event times. As with general simple point processes on the line, a MAP is event-

stationary if the joint distribution of Tk1 , . . . , Tkm is the same as that of Tk1+`, . . . , Tkm+` for any

integer sequence of indices k1 . . . , km and any integer shift `. For MAPs, time-stationarity and

2



Chapter 1: Introduction

event-stationarity are easily characterized by the initial distribution of the background CTMC.

Starting the CTMC at its stationary distribution yields time-stationarity and starting at the

stationary distribution of the embedded Markov chain (jump chain) yields event-stationarity.

In describing and measuring simple stationary point processes on the line, first and second

order quantities are often very useful. The first order measure is the rate of the point process,

λ∗, which specifies the mean number of events occurring during a unit time. For the time

stationary version, E[N(t)] = λ∗t and for the event-stationary version, E[Tn]−1 = λ∗. Then,

typical second order measures of interest are the limiting index of dispersion of counts and

the squared coefficient of variation, given respectively by:

d2 = lim
t→∞

Var
(
N(t)

)
E
[
N(t)

] , and c2 =
Var(T1)

E2 [T1]
,

where T1 is taken from the event-stationary version.

In point process modelling, the Poisson process, often used as a benchmark, exhibits both

d2 = 1 and c2 = 1. Values greater than unity indicate high variability (burstiness) and values

less than unity are nearing more deterministic arrival patterns. Although there is not a single

precise definition for describing burstiness, see [98] and [121], yet in applications c2 ≥ 1 is

often considered as a sign of burstiness by practitioners. Here, we call a MAP bursty if it

satisfies c2 ≥ 1 and d2 ≥ 1.

Our main contribution is in identifying the following classes of MAPs as being bursty and

further in finding relationships between them. Here, we take the view of presenting a MAP

based on its parameters, even though it is known that MAPs are not identifiable, see [170].

1. The (well-known) Markov modulated Poisson process (MMPP) – A MAP with a diag-

onal matrix D, so when there is an event, there is no transition between states of the

background CTMC.

2. The Markov transition counting process (MTCP) – This is a MAP with diagonal C where

the diagonal elements of D are all 0. We call such a MAP, MTCP since this process ex-

actly counts all ordinary transitions of a CTMC. Note that MTCPs have been analysed

in classic works such as [175] as well as [147] under different names.

3. Hyperexponential (H) renewal process – A MAP with a diagonal matrix C and rank-one
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Chapter 1: Introduction

matrix D. In fact, D = −C1η, where 1 is a column vector of 1’s and η is the initial

distribution of the hyperexponential distribution.

4. The Markov switched Poisson process (MSPP) – This is a MAP with a diagonal C, so

all transitions are counted (both ordinary and self-transitions). Note that, both MTCP

and hyperexponential renewal process are sub-classes of the MSPP.

Between the above-mentioned MAPs, MSPPs (the class of MAPs with diagonal matrix C)

have received much less attention in the literature. On the other hand, the MMPP (the class

of MAPs with diagonal matrix D), as a doubly stochastic Poisson process, is a highly popular

model from both a theoretical and applicative point of view. For a detailed outline of a variety

of classic MMPP results, see [70] and references therein. Regarding applications, MMPPs

are useful for modelling phenomena where bursty point processes are present such as in

telecommunications, health-care, earth-quakes modelling and finance. To date, MMPPs

have been used in thousands of research papers with hundreds of new papers appearing

yearly. In addition, theoretical properties of MMPP generalizations are of recent research

interest, as in [165].

However, are all the elementary properties of the basic MMPP known? In Chapter 3, we

establish an elementary result for MMPPs that has often been taken for granted in mod-

elling folklore. Modellers often use MMPPs to represent bursty temporal patterns as in for

example [49], [90] and [127], among hundreds of other important research works. In fact,

showing that d2 ≥ 1 is straightforward (for example Chapter 6 of [108]). However, to the best

of our knowledge, a proof that for MMPPs, c2 ≥ 1 has been lacking to date and is not sim-

ple. We provide such a proof, together with stochastic order relations between T a1 and T b1 ,

corresponding to the first inter-event time in the time-stationary and event-stationary cases,

respectively. Namely, we show that T a1 ≥st T
b
1 , that is P(T a1 > t) ≥ P(T b1 > t) for all t.

Moreover, we demonstrate that although from a path-wise perspective, MMPPs and MTCPs

are in a sense the exact opposites (in MTCPs only ordinary events are counted while in

MMPPs only self-transitions are counted), they can be used as alternative models for mod-

elling bursty phenomena. This is the result of applying MAM to show that their related

counting processes have the same first and second moments. When it comes to param-

eter estimation, in the literature, there are a number of methods for parameter estimation
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of MMPPs. However, most of these methods are applied to a special case of a two-state

MMPP, see for instance [177, 183]. As we will show in Chapter 3, for general MAPs, typ-

ical quantities that one needs to compute are C−k and eCx for some integer k > 0 and

real x > 0. Here, by using MAPs with diagonal matrix C, we get better computational per-

formance. Specifically, considering MTCP as an alternative model for MMPP, may reduce

computational time and makes certain algebraic quantities easier to compute. In addition,

we consider these alternative models as the arrival stream of a MAP/PH/1 queueing system.

We show that the MTCP4/PH/1 queue has almost the same basic steady state characteris-

tics (mean and variance of the queue length) as the MMPP2/PH/1 queue for different choices

of PH distributions. This provides more insights about these kinds of queuing systems and

gives modellers more freedom in model choice.

1.2 Control of Queuing Systems

Performance evaluation and control of queueing systems with servers operating in random

environments have been widely studied during the past few decades, see [54, 180] and

references therein. This is mainly with respect to applications in various areas such as

telecommunications, supply chain logistics, healthcare, manufacturing, and transportation.

In all of these applications, a controller needs to decide how to apply resources optimally

when system conditions, such as service rates, change randomly. A natural choice for

modelling these situations is considering Markovian random environments. This is motivated

by applicability and tractability of Markov models, see Section A.1 in [144] for a general

discussion on the ubiquity of Markov models.

In Chapter 4, we consider a two-server single-queue system where the servers’ environment

states vary in a Markovian fashion and are not explicitly observed. The controller sequen-

tially allocates servers (for example communication channels, transmitters, manufacturing

machines) to units requiring processing (for example file transfers, widgets). The goal is

to design an optimal policy to have a stable system; that is an efficient queueing system

that reduces the number of units requiring processing and keeps that finite under an online

controller.
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These kinds of systems have been partially addressed in the literature. For instance, see

[78,106,188] where the stability region of a fully observed system was characterised. Even

in this situation, performing explicit system analysis and finding an optimal policy is not a

trivial task, see for instance [23, 107, 188], or the more recent [78]. However, in practice,

the environment states are often not directly observed. The stability condition for a partially

observable system is considered in [123] for a single-queue multi-server system and more

recently, in [142, 146]. In [146], the authors considered the simplest possible model with a

single-queue, a (fixed-state) safe server, and a two-state bandit server. In [142], authors

analysed the structure of optimal policies at each time slot, using the Whittle index. Also

see [113], where much previous literature is surveyed.

In reality, controller decisions affect both the immediate reward (service success) and the

observation made, and this makes the system more complex. Here, we consider such a

situation. The main contribution in this area is [110], where from first principals, the structure

of optimal policies is found, and the more recent [126], generalizes the setting and utilizes

the celebrated Whittle index, [198] for this kind of partially observable system. Related recent

results dealing with more general systems (multi-armed bandits) are in [116,117]. Of further

interest is the latest rigorous account on the asymptotic optimality of the Whittle index, [194],

as well as in the context of partially observable two state Markov chains [163].

Our focus in this area of research is on the role of information in designing the optimal con-

troller policy. We consider a discrete time controlled queueing system, where server environ-

ment varies according to a two-state Markov chain. The controller has a partial observation

of the system and chooses servers only based on this partial information. Moreover, we as-

sume that a job in the queue is served by either Server 1 or Server 2 which are independent

of each other.

For exploring the role of information in controlling such a system, we consider different ob-

servation schemes. At one extreme, the controller has full information of the servers’ en-

vironment states (full observation). At the other extreme, the controller has no information

of the servers’ environment states (no observation). Obviously, the stability region of the

system in the latter situation is a subset of the former. Our contribution is in considering

additional more realistic observation schemes:
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1. State observation: the controller is only aware of the state of the currently chosen

server. This type of situation has been widely studied in some of the references men-

tioned above and surveyed in [113]. However, most of the literature dealing with this

situation does not consider a queue.

2. Output observation: the controller is only aware of the success or failure of service

at every time slot. Such a situation was recently introduced in [146] in the context of

stability and analysed in [142] with respect to the Whittle index. In [123], the stability of

a related multi-server system was analysed.

3. Queue observation: the controller is only aware of the queue length. Such an obser-

vation scheme in a (non-degenerate) continuous time system, is identical to the former

scheme. However, in the case of our discrete time model, since both an arrival and a

departure may coincide, going unnoticed by the controller, queue observation reveals

less information.

For analysing the effect of information, based on the above three partial observation schemes,

we formulate the system as a partially observable Markov decision processes (POMDP). For

POMDPs, since the controller is unaware of the actual current state, the policy depends on

the history of observations. So, we need to determine the controller’s actions in terms of the

probability distribution of states, called belief states. For each of the observation schemes,

we develop recursive equations for belief state updates. These are then embedded in Bell-

man equations describing optimal solutions of associated POMDP. Numerical solution of

the POMDPs then yields insight on structural properties and achievable stability regions for

different observation schemes. By construction, two-state Markov server environments are

more predictable when the mixing times of the Markov chains increase. We quantify this use

of channel-memory, through numerical and analytic results.

Furthermore, we formulate the above controlled queuing system as a QBD process, where

the only observation is the previous output of the system. We present a detailed QBD

model of the system. Applying QBDs, as a special class of infinite state Markov chains,

guarantees a large degree of expressiveness in modelling and at the same time benefits

from the efficient MAM. Here, using MAM, we find an upper bound for stability region and

quantify the effect of a finite state controller on the achievable stability region. Our numerical

approximations to the POMDP Bellman equations and the numerical solutions of the QBDs
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hint at a variety of structural results. Furthermore, using the QBD formulation illustrates how

the stability region grows as the number of controller belief states increases. For more details

on applying QBD for Markov decision processes (or POMDPs) associated with queueing

models, see for example [143].

1.3 Semi-Markov Processes

Major advances in techniques of analysis of semi-Markov processes (SMPs) have occurred

in the context of applied probability models with a large range of applications in queueing

theory, reliability, control theory, and health care, see for instance [99].

Multi-state Markov models (finite-state Markov models) are the most appropriate models for

developing maintenance strategies, predicting the reliability of systems, and modelling the

survival time in manufacturing and healthcare industries. This is mainly due to the state-

dependent behaviour of Markov chains and the well-developed algorithms for analysing

them. However, in reality, some aspects of systems’ behaviour can not be captured well

by Markov chains with a finite or countable number of states. For instance, the risk of

chronic disease such as AIDS essentially depends on the time since infection, see [105], or

mechanical or electronic components failure time are usually do not follow an exponential

distribution and often have a heavy-tailed distribution such as Weibull or lognormal distribu-

tion, see for instance Chapter 2 of [25]. Therefore, semi-Markov processes (SMPs), as an

extension of ordinary Markov processes, where the transition probability between two states

depends only on the sojourn times, and the clock is reset to zero after each transition into a

new state, seems a suitable choice. In fact, in semi-Markov processes states of the process

have Markov property but sojourn times are not necessarily memoryless.

For biomedical applications, especially those concerned with characterizing an individual’s

progression through various stages of a disease, the three-state semi-Markov models are

of more interest, see for instance [36, 105] . Here, we consider a special three-state semi-

Markov model known as illness-death model which is applied for modelling the trajectory

of patients in intensive care units (ICUs) of hospitals. Our main focus is on the statisti-

cal methodology of semi-Markov processes for this model. We compare and contrast two
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approaches to defining the likelihood function and estimating the parameters of the illness-

death model. The comparison of these approaches provides a contribution of building a

prediction model that predicts risks and chances of expected trajectories of patients through

ICUs.

Another problem with modelling and analysis of survival, is that observations are often very

coarse, see for instance [1, 95]. Therefore, it may often be natural to consider a PH dis-

tribution to explain that for instance, behind the stages of a disease there is a background

(Markov) process going through a set of stages which are only partially observed, see [135].

Moreover, PH distributions are a versatile class of distributions that are dense in the class

of all distributions defined on the non-negative real line. So, applying them for approximat-

ing an unknown survival (or failure) time distribution seems quite suitable. In addition to the

above reasons, applying MAM for analysing PH distributions, makes them an interesting tool

in medical statistics, see for instance [24,64,129]. We find the related formulas to extend the

illness-death model to the case of having a multi-absorption phase-type (MAPH) distribution

as the sojourn time distribution or intensity distribution of the semi-Markov model.

1.4 Thesis Structure

The structure of the remainder of this thesis is as follows:

• Chapter 2 provides a relevant background on mathematical objects and computational

methods in stochastic modelling. Moreover, in that chapter, we present the literature

review of the most closely related works.

• Chapter 3 overviews and summarizes MAP results and establishes the class of busty

MAPs including the MMPP, the MSPP, the MTCP, and the H-renewal process. Further,

the relations between these bursty MAPs is investigated and their moment results are

presented. Here, we show that for many instances of MMPPs, one can find an as-

sociated MTCP with the same first and the second moments of the counting process.

Numerical results for approximating a given MMPP2/PH/1 with an MTCP4/PH/1 are

presented. Further, we compare the above approximation with the result of a nonlinear

9



Chapter 1: Introduction

optimisation procedure for matching inter-arrival process of an MTCP4/M/1 queue with

the inter-arrival process of a given MMPP2/M/1 queue.

• Chapter 4 presents the problem of finding an optimal controller for a discrete-time

controlled queueing system. We introduce the system model and different observation

schemes, put forward corresponding recursions for belief state updates, and present

Bellman equations for different observation schemes. Furthermore, we construct a

QBD representation of the system to find the upper bound for the stability criterion.

The numerical results for both methods are presented and indicate that the throughputs

Bellman equations and those obtained by a QBD solution are matched for different set

of parameters.

• Chapter 5 focuses on statistical methodology of semi-Markov processes (SMPs), as

motivated by study the trajectory of patients in intensive care units (ICUs) in hospitals.

After a brief review of SMPs, we present two different approaches for a SMP depends

on known parameters. The first approach is based on sojourn times and second ap-

proach is based on transition rates. Relations between some quantities of interest and

parameters of these two approaches are obtained. Inference for finding parameters,

based on MLE method and by applying the related R packages, are presented. More-

over, the multi-absorption PH distribution and its related formulas are presented.

• Chapter 6 concludes the discussions made throughout the thesis with an outlook to-

wards future work.
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Chapter 2

Mathematical Objects and Methods in

Stochastic Modelling

2.1 Introduction

The purpose of this chapter is to introduce the mathematical objects and computational

methods in stochastic modelling which play a key role in this thesis.

In Section 2.2, we introduce stochastic processes which are used in this thesis. These pro-

cesses include the Markov processes, semi-Markov processes, general point processes,

and the queueing systems. The renewal process and the Poisson process as two impor-

tant examples of point processes and the M/M/1 queue as the basic example of queueing

systems are mentioned. Then, a birth-and-death process as a natural generalisation of the

M/M/1 queue is introduced. Further, we add a discussion about the stationarity and the

measures of variability for point processes.

Structured Markov models (SMMs) are introduced in Section 2.3. SMMs are continuous

or discrete time Markov chains on countable state spaces, where the transition rate matrix

features special structures such as being block diagonal or sparse. SMMs are suitable

for modelling queueing, storage, reliability, epidemics, and population processes. Three

classes of SMMs are defined in this chapter: phase-type (PH) distributions, Markovian arrival

processes (MAPs) and quasi-birth-and-death (QBD) processes.
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From a historical point of view, Phase-type (PH) distributions and a particular kind of MAPs,

were introduced in the 1970s [7]. A PH distribution is a generalisation of the exponential

distribution, and a MAP is a generalisation of the Poisson process.

Applying PH distributions and MAPs in modelling stochastic processes led to the develop-

ment of efficient numerical analysis methods commonly called matrix-analytic methods (MAM)1.

The idea of MAM is that for models with a structured transition rate matrix (for example block

diagonal), one can replace scalar quantities by matrices. We show this idea in the following

of this chapter by presenting an example of applying MAM for finding the stationary distribu-

tion of a QBD.

A brief literature review on inference methods for SMMs, with an emphasis on parameter

estimation methods, is presented in Section 2.4. Methods for parameter estimation of PH

distributions have been a research topic for more than 30 years. However, parameter es-

timation for MAPs is more challenging and most available methods have been developed

during the past decade. The related section starts with common methods of parameter es-

timation (fitting) of SMMs based on data. Then, the relevant challenges to applying these

methods for SMMs are considered.

The last section of this chapter, Section 2.5, is about Markov decision processes (MDPs). A

Markov decision process is an automated system for choosing the best service at each time

spot and consists of environment states, actions, rewards, and transition probabilities. At

each time spot, an action is chosen and depend on the action the state of the environment

changes and a reward is generated. The current state and the granted reward determine the

next action through a conditional transition probability function. Solving an MDP is equiva-

lent to find the optimal policy for choosing actions. MDPs are applied in many operations

research problems in ecology, manufacturing, economics, and communications engineer-

ing. Here, we briefly introduce MDPs and the way of finding their optimal policy. For the

special case of partially observable Markov decision process (POMDP), the average reward

optimality is considered.

1 Sometimes, MAM is called matrix geometric methods, see [15].
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2.2 General Stochastic Processes

In this section, we present a short introduction to stochastic processes with a focus on the

processes using in this thesis. For more details see [15,61,62,156] and [83].

2.2.1 Markov Processes

Stochastic processes are the collection of random variables applying for modelling of ran-

dom manner phenomena or systems. A stochastic process X(t) is a collection of random

variables that take values in a state space S and is indexed by a variable t ∈ T . The set

S is called the state space of the process, and the set T is called the index set. Both sets

S and T can be discrete or continuous. Whenever t is discrete, X(t) is referred to as a

discrete-time process, and whenever t is continuous, X(t) is referred to as a continuous-

time process. In this thesis, we concern a discrete and countable state space S and the

index set T represents the time where T ⊆ [0,∞) or T ⊆ N for the continuous or discrete

case, respectively.

A stochastic process is said to be memoryless or have the Markov property if the conditional

probability distribution of future states of the process depends only upon the current state.

More precisely, a stochastic process X(t) has Markov property if

P
(
X(tn+1) = xn+1

∣∣ X(t0) = x0, X(t1) = x1, · · · , X(tn) = xn

)
= P

(
X(tn+1) = xn+1

∣∣ X(tn) = xn

)
,

where ti ∈ T and xi ∈ S, for i = 0, 1, · · · , n and n ≥ 0. Here, for any n ≥ 0, we have

tn < tn+1. Such a process is said to be a Markov process.

Definition 2.2.1. A continuous-time stochastic process X(t) that satisfies the Markov prop-

erty is called a continuous-time Markov chain (CTMC) .

Now consider the case that for all i, j ≥ 0, the transition rate from Ji to Jj is independent of

i, j and only depends on their difference. This property is called the time-homogeneity and

gives Markov processes a high degree of analytical tractability.

Definition 2.2.2. A Markov processX(t) with state space S is said to be time-homogeneous

13



Chapter 2: Mathematical Objects and Methods in Stochastic Modelling

if for all time slots s, t > 0 and i, j ∈ S,

pij(t) := P
(
X(t+ s) = j

∣∣ X(s) = i
)

= P
(
X(t) = j

∣∣ X(0) = i
)
.

Here, pij(t) is called the transition probability from state i to state j at time t. The correspond-

ing matrix is called the transition probability matrix and denoted by P , that is P =
(
pij(t)

)
.

The matrix representing transition rates of a Markov chain is called the transition rate matrix

and denoted by Q = (qij), where for any i, j ∈ S, the element qij is the transition rate from

state i to state j. For the sake of simplicity, we may refer to the transition rate matrix of a

process as the Q-matrix of the process.

For a CTMC, the Q-matrix elements have the following properties:

• −∞ < qii ≤ 0 for i ∈ S,

• 0 ≤ qij < +∞ for i, j ∈ S and i 6= j,

•
∑

j∈S qij ≤ 0 for i ∈ S.

Here, we assume that all row sums are equal to 0 and qi < +∞, where qi =
∑

j 6=i qij.

The relationship between the transition probability matrix and the transition rate matrix of a

CTMC is given by Kolmogorov forward and backward equations:

P (t)

dt
= P (t)Q, P (0) = I, (forward equation)

and
P (t)

dt
= QP (t), P (0) = I, (backward equation)

where I is the identity matrix. If the state space S is a finite set, then both forward and

backward Kolmogorov equations have a unique solution, see [6]:

P (t) = exp
(
Qt
)

=
∞∑
n=0

tn

n!
Qn.

For a time-homogeneous CTMC, the realisation of the process is as follows. The process
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starts from a state i and remains there for a while and then jumps to state j. The process

goes from state i to state j with the probability pij =
qij
qi

,
(
qi =

∑
j 6=i qij

)
. The time that the

process spends in state i before jump to another state is called the sojourn time of state i. For

a time-homogeneous CTMC, sojourn times are exponential random variables. In general, a

non-negative random variableX is said to be an exponential random variable with parameter

λ if its (cumulative) distribution function (CDF) is given by F (t) = P
(
X ≤ t

)
= 1 − e−λt

for t ≥ 0, where λ is a positive real number. For an exponential random variable X with

parameter λ, the probability density function is given by f(t) = dF (t)
dt

= λe−λt. Further, its

mean, variance and squared coefficient of variation (SCV) are given as follows. E[X] = 1
λ
,

Var(X) = E[X2] −
(
E[X]

)2
= 1

λ2
, SCV (X) = Var(X)(

E[X]
)2 = 1. Using the conditional probability,

we have the memoryless property for exponential random variables:

P
(
X > t+ s

∣∣ X > s
)

= P
(
X > t

)
, t, s ≥ 0 .

It can be shown that the exponential random variables are the only non-negative, non-zero,

and finite continuous random variables that possess the memoryless property, see Chap-

ter 1 of [83].

Classification of States

Depending on the states’ connections, a CTMC exhibits different long term behaviours.

Therefore, it is beneficial to consider the classification of a CTMC states in terms of the

elements of its Q-matrix. A state j is said to be accessible from state i if qij > 0. If state

i is accessible from state j and state j is accessible from state i, then, state i and state j

communicate each other. A communicating class is the set of all states where pairs com-

municate each other. A communicating class A ⊆ S is said to be closed, if i ∈ A and i

communicates j implies that j ∈ A. Therefore, there is no escape from a closed set and

a closed set is called an absorbing set. If there is only one state in an absorbing set, that

state is called an absorbing state. The states of a communicating class are either transient

or recurrent. For a given state i, assume that the first return time to state i is denoted by the

random variable Ti = inf{t > 0 : X(t) = i
∣∣ X(0) = i}. If qi > 0 or P

(
Ti < ∞

)
= 1, then the

state i is said to be a transient state and if qi = 0 or P
(
Ti < ∞

)
< 1, then state i is said to

be a recurrent state. A recurrent state i is said to be a positive recurrent state if E
(
Ti
)
<∞.

Otherwise the state i is called a null recurrent state. If all the states of a CTMC belong to a

single class, then the CTMC is named after that class.
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A CTMC is said to be irreducible if its state space consists of a single communicating class.

The long term behaviour of an irreducible CTMC is determined by the stationary distribution

of the CTMC which is denoted by π and is the unique solution of the following equation:

π Q = 0′,

where 0′ is a p-dimensional row vector of zeros, Q is the Q-matrix of the CTMC and π is a

probability row vector, that is 0 ≤ πi ≤ 1 for i = 1, · · · , p such that
∑p

i=1 πi = 1. Here, πi is

the i-th element of the vector π and p denotes the number of CTMC states. Throughout this

thesis, we consider irreducible CTMCs. The exceptions are mentioned in the text.

Notation: Henceforth, for the sake of consistency in notation, all matrices are shown with

capital Latin letters and bold notation is used for column vectors. Moreover, vectors of prob-

abilities are row vectors and shown with Greek letters. Also, note that the vectors 0 and 1

have different dimensions in different contexts (sometimes may consider as infinite dimen-

sion vectors).

2.2.2 Point Processes

Point processes are stochastic processes for modelling the random distribution of points in a

space and are applied to solve a variety of modelling problems. For instance, modelling the

arrival or departure time pattern in a queueing system, the location of trees in a forest, and

the repair time of machines in a factory, see [60]. Here, we consider the point processes on

the line with non-decreasing non-negative integer values. In general, we can specify a point

process in three ways:

1. By the joint distribution of event epochs T0, T1, · · · .

2. By the joint distribution of inter-event times τ1, τ2, · · · .

3. By the joint distribution of the counting random variables N(t) for t > 0, where

N(t) = max{n : Tn ≤ t}, represents the number of events during the interval (0, t].

As the relation between (1) and (2), we have Tn = τ1 + τ2 + · · ·+ τn.
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Definition 2.2.3. A stochastic process N(t) for t ≥ 0 is said to be a counting process if

N(t) represents the total number of events that have occurred up to time t. Therefore,

• N(t) ≥ 0,

• N(t) is an integer,

• If s ≤ t, then N(s) ≤ N(t),

• For s < t, N(t) − N(s) is the number of events that have occurred during the inter-

val (s, t].

A counting process N(t) has independent increments if N(s, t) and N(u, v) are independent

for all disjoint intervals (s, t) and (u, v), where N(s, t) = N(t) − N(s) for s < t. Further,

the counting process N(t) has stationary increments if the distribution of N(s, s + t) is in-

dependent of s. The Poisson process and the renewal process are examples of counting

processes.

The Poisson Process

Definition 2.2.4. The counting process N(t) for t ≥ 0 is said to be a Poisson process

if the inter-event times, τn (n = 0, 1, 2, · · · ), are independent and identically distributed (iid)

exponential random variables with a common parameter λ.

The random variables τn in the above definition denote the time between two consecutive

events and are called the inter-event (inter-arrival) times of the counting process N(t). The

above definition implies the following properties of the Poisson process, see [83]:

• N(0) = 0,

• the process has independent increments,

• the process has stationary increments,
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• the number of events in any interval of length t is a Poisson distributed random variable

with mean λt, that is for any s, t ≥ 0:

P
(
N(s+ t)−N(s) = n

)
= e−λt

(λt)n

n!
, n = 0, 1, 2, · · · .

In general, a discrete random variable X is said to be a Poisson distributed random vari-

able with parameter λ if its probability mass function (PMF) is given by:

f(k) = P
(
X = k

)
= e−λ

(λ)k

k!
,

where λ > 0 and k = 0, 1, 2, · · · . For a Poisson distributed random variable X, we have

E[X] = Var(X) = λ.

Renewal Processes

Definition 2.2.5. The counting process N(t) is said to be a renewal process if the inter-

event intervals are positive iid random variables.

Note that for a renewal process N(t), given Tn = tn be the time that the n-th event oc-

curs, N(tn + s) − N(tn) for s ≥ 0, is again a counting process with iid inter-event intervals

of the same distribution as the original renewal process. This motivates the title “renewal

processes” for these kinds of processes.

Markov Renewal Processes

Markov chains, Poisson processes, and renewal processes are special cases of a Markov

renewal process. Consider a stochastic process (Jn, τn), where Jn = X(Tn) is the sequence

of states of a CTMC X(t) and τn = Tn − Tn−1 (here, T0 = 0 < T1 < T2 < T3 < · · · , where

Tn denotes the sequence of jump times for n = 0, 1, 2, · · · ). Then, the stochastic process

(Jn, τn) is said to be a Markov renewal process if the process for any t ≥ 0, n ≥ 1 and
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Figure 2.1: Demonstration of the jump process of a CTMC with 5 states during the time interval [0, 8].

i, j ∈ S satisfies:

P
(
τn+1 ≤ t, Jn+1 = j | (J0, T0), (J1, T1), · · · , (Jn = i, Tn)

)
= P(τn+1 ≤ t, Jn+1 = j | Jn = i),

Note that if the states ignored and just the sequence of iid inter-events τn considers, then we

have a renewal process N(t) =
∑

n 1{Tn≤t}. Moreover, the process Jn = X(Tn) is said to be

the embedded Markov chain or the jump process related to the CTMC X(t).

2.2.3 Semi-Markov Processes

Consider a Markov renewal process (Jn, τn). The process J(t) := JN(t), where for any t ≥ 0,

N(t) = max {n : Tn ≤ t} is a Markov renewal counting process that counts the number of

renewals in an interval [0, t] and is said to be a semi-Markov process (SMP). The process

J(t) is not necessarily Markovian (memoryless) and has the Markov property only when t is

confined to jump times, Tn. More precisely, we have:

Definition 2.2.6. (Chapter 4 of [174]) A stochastic process J(t) with state space S is said

to be a semi-Markov process (SMP) if whenever the process enters state i, the next state

is j with probability pij and given that the next state to be entered is j, the time until the
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transition from i to j occurs has distribution Fij(t), where P = (pij) and F (t) =
(
Fij(t)

)
are

transition probability matrix and (cumulative) distribution function of the Markov chain on the

state space S.

In fact, for semi-Markov processes we consider a relaxation of the Markov property for so-

journ times and only the chain of states has Markov property. It means that the next state of

the process depends only on the current state. But, the sojourn times may depend on other

characteristics of the trajectory, and therefore a semi-Markov process is not necessarily a

Markov process. SMPs are applied for modelling a variety of processes in different areas

such as economics, reliability, and health care, see [99].

2.2.4 Queueing Systems

Queueing phenomena occur whenever there are some servers which can not immediately

provide the requested service to their users. The examples can be visible in our daily lives,

such as in check-out counters, in airport check-in system, traffic intersections, and manufac-

turing systems, or be hidden in modern telecommunication systems and computer networks.

Queueing systems first introduced by A. K. Erlang in 1917 [68] for mathematical modelling of

telephone conversations. From then on, queueing systems have been received considerable

interest from both researchers and practitioners. This leads to a rich collection of papers and

books in this area. From application point of view, queue length (number of customers in

the system), waiting times (waiting time for a customer is the time between arriving into

the system and start of service for that customer), and busy periods (a measure of how

busy a system is defined as the ratio of mean service time to mean inter-arrival time) are

of primary interest. The most important performance measures are traffic intensity, mean

and distribution of queue length, mean and distribution of waiting times, mean sojourn time

(the time between beginning of service for a customer and departing the system after being

served), and mean busy period. See [11,28], and their references.

A queueing system can be demonstrated by Figure 2.2. Some arrivals/customers come into

the system, may wait for service and after being served to depart the system. Therefore, the

two main processes in a queueing system are the arrival process and the departure process.
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Arriving customers Departing customers

Waiting line

Figure 2.2: A basic queueing system.

Moreover, the number of servers, queue discipline, the manner of choosing customers for

service such as first come, first serve (FCFS), and system capacity are important factors.

The Kendall’s notation is a standard way of representing a queueing system. In Kendall’s

notation, a queue is represented by a notation A/B/k/c/C, where A indicates the inter-arrival

time distribution, B indicates the service time distribution, k is the number of servers, c is the

system capacity, and C is the queue discipline.

In this thesis, we consider just the first three factors in Kendall’s notation (A/B/k) unless

mentioned otherwise. Moreover, by default, we assume that we have a single queue with

a single class of customers and customers are served on an FCFS basis unless otherwise

stated. Notation: Some of the most commonly used symbols for distributions in Kendall’s

notation are: M for Poisson process or exponential distribution (here, M refers to the fact

that they follow Markov property or they are memoryless), D for deterministic distribution, G

for a general/unspecific distribution, and GI for a general independent distribution.

Traffic intensity In a G/G/1 queueing system, assume that the arrival rate is denoted

by λ and the mean service time is denoted by E[S]. Since the server can handle just 1

unit job per unit time, for avoiding system explosion (where the number of customers goes

eventually to infinity), the mean number of arrivals should be less than the mean service time

or 1 < λE[S]. Moreover, where λE[S] = 1, the mean queue length also explodes (the only

exception is the D/D/1 queue, where there is no randomness). Therefore, it would be quite

useful to consider the arrival rate multiplied by the mean service time as a measure of traffic

in queueing systems. This value is called the offered load or traffic intensity and is given by:

ρ = λE[S].
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Little’s law In a queueing system, there are two induced processes of the queue. Namely,

Q(t), the number of items in the system at time t, and the sequence W1,W2, · · · , where Wn

for n ≥ 1, indicates the sojourn time of the n−th customer. Often their expectations converge

to a stationary random variable:

L = lim
t→∞

E[Q(t)], W = lim
n→∞

E[Wn]

Little’s law implies a very important relationship between the long-term average number of

customers in the queueing system, L, the mean sojourn time, W , and the average arrival

rate, λ:

L = λW.

Here, as an example of queueing systems, we consider the M/M/1 queue.

The M/M/1 queue

Consider a queueing system consists of a single server where customers arrive according

to a Poisson process and service times follow an exponential distribution. This queueing

system is said to be an M/M/1 queue.

0 1 2 3 ...

λ λ λ λ

µ µ µ µ

Figure 2.3: Transition diagram of an M/M/1 queue. Circles show queue lengths. The red arrows
show transitions to one level up, and the green arrows show transitions to one level down. λ is the
Poisson rate of inter-arrival times and µ is the exponential rate of service times.

For an M/M/1 queue with arrival rate λ and service rate µ, the traffic intensity is

ρ =
λ

µ
. (2.2.1)

As we mentioned before, the distribution of inter-arrival times in a Poisson process is expo-

nential. Therefore, since the service time also has exponential distribution, we can consider
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an M/M/1 queueing system as a Markov process with the following Q-matrix:

Q =



−λ λ 0 0 . . .

µ −(µ+ λ) λ 0 . . .

0 µ −(µ+ λ) λ . . .

0 0 µ −(µ+ λ) . . .
...

...
...

...
. . .


.

This approach let us apply matrix analytic methods to find the performance measures of this

queueing system. For obtaining the long term behaviour of the M/M/1 queue, we need to

solve the equation π Q = 0. Consequently, we have the following system of equations:

π0 λ = π1 µ ,

πn
(
λ+ µ

)
= πn−1 λ+ πn+1 µ , for n ≥ 1,

∞∑
n=0

πn = 1.

Using (2.2.1), the first equation can be rewritten as π1 = ρπ0. Then, from the second equa-

tion, the mathematical induction results in:

πn = πn−1 ρ n ≥ 1, or πn = π0 ρ
n n ≥ 1. (2.2.2)

If we consider that ρ < 1, the geometric series
∑∞

n=0 ρ
n is convergent. On the other hand,∑∞

n=0 πn = 1. Therefore, the above equation results in π0 = 1− ρ and so,

πn = π0 ρ
n = (1− ρ) ρn.

Consequently, the mean and variance of the number of customers in the system, is given

by
ρ

1− ρ and
ρ

(1− ρ)2
, respectively. So, by applying the Little’s law, the mean sojourn time

is W =
L

λ
=

µ−1

1− ρ. Note that when ρ → 1, both quantities of L and W grow to infinity. The

dramatic behaviour is the result of the variation in the arrival and service process. This type

of behaviour with respect to ρ is characteristic of almost every queueing system.

Now consider an M/M/1 queue where the inter-arrival and departure rates vary for different

levels. The resulted queueing system is called a birth-and-death process.
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Birth-and-Death processes

A continuous-time birth-and-death (BD) process is an irreducible CTMC on the countably

infinite state space Z+ for which the transition rate matrix has the following tridiagonal struc-

ture (2.2.3). Figure 2.4 illustrates the transition diagram of a BD process, where for all values

of n = 0, 1, · · · , both λn and µn are positive real numbers called the birth rate and the death

rate, respectively. In BD processes, the only possible transitions from a given state n are to

the state n−1 with rate µn, or to the state n+ 1 with rate λn. When the process is in the state

0, it remains there for a period of time which is distributed exponentially with rate λ0, then

the process moves to state 1 with probability one. The process stays in the state n (n ≥ 1)

for an exponentially distributed period of time with parameter (µn + λn). At the end of this

period, the process moves either to the state n−1 with probability µn
µn+λn

(this corresponds to

a death event), or to the state n+ 1 with probability λn
µn+λn

(this corresponds to a birth event).

Therefore, the Q-matrix for this process is given by:

Q =


−λ0 λ0

µ1 −(µ1 + λ1) λ1

µ2 −(µ2 + λ2) λ2

. . . . . . . . .

 , (2.2.3)

where the missing elements are all zeros. From now on, if an element or a block of elements

of a matrix is missing, then it is zero or a block of zeros. The exceptions are distinguished in

the text.

0 1 2 3 ...

λ0 λ1 λ2 λ3

µ1 µ2 µ3 µ4

Figure 2.4: Transition diagram of a BD process. Circles show states, the red arrows show transi-
tions accompanied with a birth/arrival, and the green arrows show transitions accompanied with a
death/departure. λis are birth rates and µis death rates.

When the process is positive-recurrent, the stationary distribution vector π = (π0, π1, π2, · · · ),
where πn = limt→∞ P(X(t) = n) for n ≥ 0, satisfies the system of equations: π Q = 0′ and

π1 = 1. Therefore, for any n ≥ 1, πn can be expressed in terms of π0 by (see Chapter 4
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of [119] for more details):

πn = π0
λ0 λ1 · · · λn−1

µ1 µ2 · · · µn
. (2.2.4)

Note that where µn = µ and λn = λ, the above equation reduces to πn = π0ρ
n and the BD

process is the M/M/1 queue.

2.3 Structured Markov Models

Structured Markov models (SMMs) are Markov chains on countable state spaces, with a

special structure for the Q-matrix. For instance, their Q-matrix is block-diagonal or sparse.

SMMs are suitable for modelling queueing, storage, reliability, epidemics, and population

processes.

The advantage of modelling processes with a SMM is that for evaluation of performance

measures of SMMs, there are efficient numerical analysis methods, commonly called matrix

analytic methods (MAM). Further, SMMs preserve the Markovian structure and by using

MAM the results are algorithmically tractable. This makes them an important tool for studying

complex systems.

From a historical point of view, Phase-type (PH) distributions and Markovian Arrival Pro-

cesses MAP was introduced in the 1970s [7]. A PH distribution is a generalisation of the

exponential distribution and a MAP is the generalisation of the Poisson process. In this sec-

tion, we construct the above SMMs from the probabilistic point of view. First, we show that

how starting from a CTMC, we can construct a PH distribution. Then, we build up a Marko-

vian arrival process (MAP) by starting from a Poisson process. Furthermore, we introduce

another type of SMMs, the quasi-birth-and-death process as a generalisation of both a BD

process and a MAP.
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2.3.1 Phase-Type (PH) Distributions

The method of phases (stages) was introduced by A. K. Erlang at the beginning of the 20th

century [67], developed by Jensen into the modern language [101], and was extensively

generalised by M.F. Neuts [150, 152, 153] and others more than half a century later. The

class of PH distributions is very versatile and dense in the class of distributions defined on

the non-negative real numbers. So, any probability distribution on the non-negative half-line

can be approximated by a PH distribution, see for instance [15]. This fact provides one of

the main reasons for widely applying PH distributions in stochastic modelling.

Moreover, PH distributions preserve the Markov structure of stochastic models and therefore,

are algorithmically tractable. Another useful advantage of PH distributions is their closure

properties. The class of PH distributions is closed under finite convolution, finite mixture,

and finite maxima and minima of the random variables [14]. These are motivations behind

a wide range of applications of PH distributions in telecommunications [35,71,92,155,191],

teletraffic modelling [57, 100], queueing theory [12, 19, 79, 118], reliability theory [21, 154],

and biostatistics [1, 69, 128]. Here, we present a probabilistic definition of a PH distribution

presented by Neuts in 1975, see [148].

Definition 2.3.1. Let X(t) be a CTMC with finite state space S = {0, 1, 2, · · · , p}, where

states 1, · · · , p are transient, and the state 0 is an absorbing state. The time until absorp-

tion into state 0 is said to have a phase-type (PH) distribution of order p represented by

τ ∼ PHp(η, T ), where:

τ = inf{t ≥ 0 | X(t) = 0},

and η = (η1, · · · , ηp) is the initial distribution of CTMC X(t) (that is ηi = P
(
X(0) = i

)
, for

i = 1, · · · , p ). Here, matrix T = (tij) for i, j = 1, · · · , p represents the transition rates between

transient states.

In the above definition, we assume that η0 = 0 which means that there is no possibility that

the process starts at its absorbing state. The Q-matrix for Markov chain of a PH distribution

of order p with parameters (η, T ) has the following form:

Q =

 0 0′

t T

 , (2.3.1)
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where 0′ is a p-dimensional row vector of zeros, and the exit vector t = (t1, · · · , tp)′ satisfies

t = −T1 and denotes the intensities (rates) of going to the absorption state from each of the

transient states. Here, 1 is a p-dimensional column vector of 1’s.

For a PH random variable X (see for example [19] or [30]),

• the probability density function is given by f(x) = dF (x)
dx

= η exp(Tx) t,

• the Laplace transform has the form E[e−Xs] = η (sI − T )−1t, and

• the n-th moment has the form E[Xn] = (−1)n n! η T−n1.

Extending many results on exponential distributions, to more complex models without losing

computational tractability is another rationale behind using PH distributions. The next exam-

ple shows that many distributions derived from the exponential distribution can be formulated

as a PH distribution. For more on PH distributions, see Chapter 1 of [83].

Example 2.3.2. Here we present three basic examples of PH distributions:

1. the exponential distribution is a PH distribution of order 1.

2. the Erlang-p distribution (Ep) that is the distribution of a sum of p (p > 1) iid exponential

random variables is a PH distribution of order p. Since the SCV of an Erlang random

variable is less than 1, an alternative name for Erlang distribution is hypoexponential

distribution.

3. the hyperexponential distribution (Hp) that is the distribution of mixture of p independent

exponential random variables is a PH distribution of order p. The SCV of a hyperexpo-

nential random variable is always greater than (or equal to ) 1.

Considering the SCV of the above three basic examples of PH distributions implies that the

SCV of a PH random variable could be any positive real number. Table 2.1 demonstrates

the main characteristics of the basic examples of PH distributions given in Example 2.3.2.

Note that in the above example the Erlang distribution is a special version of a gamma

distribution where the shape parameter is a positive integer. In general, a positive random
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Table 2.1: Three basic examples of PH distributions.

Distribution
Initial

distribution
Transition rate

matrix Q
SCV

Transition diagram of
CTMC

Exponential η = (1)

(
0 0
λ −λ

)
1 1 0

λ

Erlang-2 (E2) η = (1, 0)

 0 0 0
0 −λ λ
λ 0 −λ

 <1 1 2 0
λ λ

Hyperexponential
(H2)

η = (η1, η2)

 0 0 0
λ1 −λ1 0
λ2 0 −λ2

 >1

1

2

0

λ1

λ2

η1

η2

variable X is said to have a gamma distribution with parameters α > 0 (shape parameter)

and λ > 0 (rate), if its density function (PDF) is given by:

f(x) =
(λx)α−1

Γ(α)
λe−λx.

(For the Erlang-p distribution, f(x) = (λx)p−1

(p−1)!
λe−λx, where λ > 0 and p ∈ Z+). For a gamma

distributed random variable X, we have: E[X] = α
λ
, Var(X) = α

λ2
, SCV (X) = Var(X)(

E[X]
)2 = 1

α
.

The pdf of mixture of n probability density functions f1(x), · · · , fn(x) with corresponding

weights ω1, · · · , ωn (ωi ≥ 0 and
n∑
i=1

ωi = 1) is given by f(x) =
n∑
i=1

ωifi(x). The mean and vari-

ance of a mixture of n distributions each with mean µi and variance σ2
i , with corresponding

weights ωi, are:

µ =
n∑
i=1

ωiµi , σ2 =
n∑
i=1

ωi

(
(µi − µ)2 + σ2

i

)
. (2.3.2)
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2.3.2 Markovian Arrival Processes (MAPs)

The MAP2 is a generalisation of the Poisson process in the sense that the inter-arrival times

of a MAP are not necessarily independent of each other, nor exponentially distributed. Intro-

ducing correlation into the input process often makes queueing models more complex and

usually computationally intractable. The attempts to analyse queueing networks with cor-

related input traffic dates back to the last two decades of the 20th century [166]. In 1979,

MAPs were introduced by Neuts [149] and later on in 1991 by Lucantoni [130] in a modern

form.

Definition 2.3.3. A Markovian arrival process (MAP) of order p (MAPp) with parameters

(η, C,D), is a two-dimensional Markov process
(
N(t), X(t)

)
. The counting process N(t)

counts the number of “arrivals” in [0, t] and P
(
N(0) = 0

)
= 1. The phase process X(t)

is an irreducible CTMC with the state space S = {1, · · · , p}, the initial distribution η, and

the Q-matrix Q. The matrices C and D are transition rate matrices such that C + D = Q.

The matrix C has negative diagonal elements and non-negative off-diagonal elements and

records the phase transitions with no arrival (event). The event intensity matrix D has non-

negative elements and describes changes of the phase process accompanied with an arrival

(event).

0, 1 1, 1 n, 1 n+ 1, 1

0, 2 1, 2 n, 2 n+ 1, 2

· · · · · ·

level/count

phase

Figure 2.5: Demonstration of the MAP2. Circles show states of the MAP2 and numbers in each state
is a pair showing the level and the phase of that state, respectively. Red arrows show transitions
accompanied with an arrival and blue arrows show transitions between phases with no arrival.

Since it is often the case that the counting/level process is observed, but the phase process is

not, we sometimes refer to the phase process as the background Markov chain. As illustrated

2 Note that in other texts, the acronym “MAP” used to refer to “Markov Additive Process” [15] and in Bayesian
statistics MAP stands for “Maximum A Posteriori Probability”.
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in Figure 2.5, from a given state (n, i), where n shows the level (number of arrivals) and i

shows the phase, the only possible one-step transitions are to the states

•
{

(n, j) : 1 ≤ j ≤ p, j 6= i
}

•
{

(n+ 1, j) : 1 ≤ j ≤ p
}

So, listing the elements of the state space of
(
N(t), X(t)

)
in lexicographic order (similarly

to the example shown later in (2.3.6)), the transition rate matrix of a MAPp has a block

bidiagonal form:

A =


C D

C D
. . . . . .

 , (2.3.3)

where C and D are p× p matrices. In each phase transition i→ j, the probability of having

an arrival is Dij
Dij+Cij

and the probability of no arrival is Cij
Dij+Cij

. The arrivals during the sojourn

time (“self-transitions”) when the process is in state i (equivalently X(t) = i) come from a

Poisson process with rate Dii.

Therefore, if we consider the probability transition matrix P = (pij) of the embedded Markov

chain Jn = X(Tn) (see Subsection 2.2.2), then the probability of a jump from i to j accom-

panied with no arrival during the time interval (t, t + dt] (we call these transitions “ordinary”

transitions) is qijdt
Cij

Dij+Cij
= qijdt

Cij
qij

= Cijdt. This implies that given J0 = i, the distribution

of the embedded Markov chain at time t is e′i exp(Ct), where ei is the i-th unit vector of the

standard basis for Rp. So, for each state j ∈ S, the probability that the phase process is in

state j at time t is e′i exp(Ct)ej. Similarly, the probability that the process goes from state j

to state k during the time dt and at the same time, an arrival occurs is Djkdt. Hence

P
(
Tn+1 − Tn ∈ dt, Jn+1 = j

∣∣ Jn = i
)

= e′i exp(Ct)Dejdt.

The above probability implies that Fij(t) =
∫ t

0
e′i exp(Ct)Dejdt, and so:

F (t) =

∫ t

0

exp(Ct)Ddt and P = lim
t→+∞

F (t) = (−C)−1D. (2.3.4)

Note that D 6= 0 and the sub-intensity matrix C is invertible. It is useful to recall the definition

and properties of an M-matrix to establish non-singularity of the matrix −C as well as for
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results appearing in Chapter 3. Recall that a real-valued square matrix A = (aij) is an

M-matrix if the diagonal elements of A are all positive and its off-diagonal elements are all

non-positive (aii > 0 and aij ≤ 0, i 6= j) and there exists a vector ν > 0 such that Aν > 0.

Note that for a vector x, x > 0 implies that xi ≥ 0 for all i and xj > 0 for at least one j. For

MAPs, the matrix −C is an M-matrix since −C1 = D1 > 0. The following is well known (see

for example [168]):

Proposition 2.3.4. Suppose A is an M-matrix. Then the following statements are equivalent:

(i) A = sI − B for some non-negative matrix B and some s > ρ(B) , where ρ(B) is the

spectral radius of B.

(ii) A−1 exists and is a non-negative matrix.

Since Q is assumed irreducible and finite, it has a unique stationary distribution π satisfying

πQ = 0′, π1 = 1. Of further interest is the stationary distribution α of the embedded discrete-

time Markov chain Jn = X(Tn) satisfying αP = α and α1 = 1. More details on MAPs are

in [15] (Chapter XI), [83] (Chapter 2) and [32] (Chapter 10).

MAPs are widely used in application areas such as queueing, reliability, manufacturing, com-

munication systems, and insurance problems, see [7]. This popularity is not only because

they provide a natural generalisation of the Poisson process and capture correlations be-

tween arrivals (which arises naturally in many applications where the arrival flow is bursty).

The more important fact is that using them for modelling often leads to a matrix structured

formalism, to which powerful MAM can be applied. Moreover, the class of MAPs is very

versatile and even dense in the set of point processes on the real line, see [18]. The class

of MAPs contains many of the commonly used arrival processes such as:

• Poisson process: the matrix C is the element −λ and the matrix D is reduced to λ,

where λ is the rate of the Poisson process.

• PH renewal process: the renewal process where the sojourn times (inter-arrival times)

are PH distributed random variables. Consider that parameters of the PH distribution

are η and T , and t is the exit vector. Then, the PH renewal process is a MAP with

matrices C = T and D = t η.
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• Markov modulated Poisson process (MMPP): an arrival process which consists of a

finite number of different Poisson processes, modulated by a Markov process. In other

words, the MMPP is a particular case of doubly stochastic Poisson processes whose

arrival rate is directed by transitions of a finite-state CTMC. For an MMPPp, in terms

of Eq. (3.4.3), D = diag(λ), where diag(·) is an operation taking a vector and resulting

in a diagonal matrix with the vector in the diagonal, and λ = (λ1, · · · , λp)′. Here, when

the phase process, X(t), is in state i, the Poisson rate of arrivals is λi. The matrix C is

specified by the equation C = Q−D.

One of our contributions is in analysing other types of MAPs (MTCP), see Chapter 3.

2.3.3 Quasi-Birth-and-Death (QBD) Processes

A QBD process can be considered as a generalisation of a MAP with a BD structure. For

the sake of simplicity, sometimes QBD refers to “QBD process”. For a BD process, the

distribution of time between level transitions is exponential. But, for a QBD, the time between

level transitions has a more complicated distribution. From another point of view, we can

consider a QBD as a MAP where transitions to one level down are also possible.

Definition 2.3.5. A two-dimensional Markov process

(
N(t), X(t)

)
= {(n, i) : n ≥ 0, i = 1, · · · , p},

including a so-called level process N(t) and a finite-state phase process X(t), is said to be

a continuous-time, homogeneous QBDp if it satisfies the following properties.

(I) Transitions from a state are restricted to states in the same level or in the two adjacent

levels. In other words, a transition from (n, i) to (n′, j) is possible only when |n′ − n| < 2.

(II) (homogeneity) For n ≥ 1, the transition rate from (n, i) to (n′, j) may depend on i, j and

|n′ − n|, not on the specific values of n and n′.
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0, 1 1, 1 n− 1, 1 n, 1 n+ 1, 1

0, 2 1, 2 n− 1, 2 n, 2 n+ 1, 2

level

phase

· · · · · ·

Figure 2.6: Demonstration of the QBD2. Circles show the state of the QBD2 and numbers in each
state is a pair showing the level and the phase of that state, respectively. Red arrows indicate transi-
tions accompanied with an arrival, blue arrows show transitions between phases with no arrival, and
green arrows show transitions with a departure.

The transition rate matrix of a QBDp has the tridiagonal form

A =



B0 B1 0

B−1 A0 A1

A−1 A0 A1

A−1 A0 A1

0
. . . . . . . . .


. (2.3.5)

Here, A−1, A0, A1, B−1, B0, and B1 are square matrices of order p. The elements of matrix

A−1 record the transition rates accompanied with a departure, the elements of matrix A1

record the transition rates accompanied with an arrival, and the matrix A0 consists of tran-

sition rate between phases with no arrival or departure. The matrices B−1, B1, and B0 are

corresponding matrices for level zero 3. Figure 2.6 illustrates the diagram of a QBD2.

Example 2.3.6. (the Ep/M/1 queue) Consider an Ep/M/1 queue where the service times

are exponentially distributed with rate µ and the inter-arrival times have the Erlang distribu-

tion with p phases and rate pλ. Here, we set up the inter-arrival rate parameter such that

its mean is not affected by p. We can illustrate this example by Figure 2.7, where there are

some transitions between arrival phases and the process remains in each phase for an ex-

ponentially distributed interval of time with rate pλ. Whenever the process goes to absorption

state, a new customer joins the system.

3Note also that in a slightly more general formulation the phase at level zero is allowed to have a different
number of states. In this case, the matrices B−1, B1, and B0 may have a different dimension.
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1 . . . p 0

pλ pλ µ

0

Figure 2.7: Diagrammatic representation of the Ep/M/1 queue. Circles show the arrival phases
and the hexagone illustrates the absorption state or the server. The time spent in each phase is
exponentially distributed with rate pλ. The service time is exponentially distributed with rate µ.

The transition rate matrix for the special case of p = 2 is given by:

A =



(0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2) · · ·

(0, 1) −2λ 2λ 0 0 0 0 · · ·
(0, 2) 0 −2λ 2λ 0 0 0 · · ·

(1, 1) µ 0 −(2λ+ µ) 2λ 0 0 · · ·
(1, 2) 0 µ 0 −(2λ+ µ) 2λ 0 · · ·

(2, 1) 0 0 µ 0 −(2λ+ µ) 2λ

(2, 2) 0 0 0 µ 0 −(2λ+ µ)
. . .

...
...

...
...

...
. . . . . .



.

(2.3.6)

Here we have:

B0 =

 −2λ 2λ

0 −2λ

 , B−1 = A−1 =

 µ 0

0 µ

 ,

A0 =

 −(2λ+ µ) 2λ

0 −(2λ+ µ)

 , B1 = A1 =

 0 0

2λ 0

 .

Note that the matrix B0 is the transition rate matrix of the PH distribution E2 with rate 2λ (see

Table 2.1).
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2.4 Computational and Estimation Methods

We now explore some inference and computational aspects of SMMs. We begin by consid-

ering second order measures of variability.

2.4.1 Measures of Variability

For carrying statistical inference, we need some assumptions of stochastic regularity or sta-

tionarity.

Consider that Yt is a time series, and YT is a finite subset of it. The series is said to be strictly

stationary if the distribution of YT and YT +s are the same for any s. In other words, strict

stationarity implies that the joint moment generating functions of YT +s are independent of s

if they exist. Although strict stationarity yields powerful theoretical results, checking it from

data is usually impossible. Therefore, in practice, second order stationary is considered. The

time series Yt is said to be second order stationary or weakly stationary, if its autocovariance

is time independent. Equivalently, Cov(Yt, Yt+s) does not depend on t.

The covariance is the first measure of variability of two random variables and is a measure

of the amount of linear dependence between them. The covariance of two random variables

X and Y is given by:

Cov(X, Y ) = E
[
(X − µX)(Y − µY )

]
,

where µX and µY are their expected values.

The normalized version of the covariance is given by the correlation coefficient that is a

number between -1 and 1 (a result of the Cauchy-Schwarz inequality) and shows the strength

of the linear relationship between two random variables X and Y :

ρX,Y = corr(X, Y ) =
Cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
,

where, µX and µY are their expected values and σX =
√

Var(X) and σY =
√

Var(Y ) are

their standard deviations.
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From definition of the correlation coefficient, it is obvious that for independent random vari-

ables, the correlation coefficient is 0, but the converse statement is not necessarily true.

Two random variables X and Y are said to be positively correlated if ρX,Y > 0, negatively

correlated if ρX,Y < 0 and uncorrelated if ρX,Y = 0.

The autocorrelation of a stochastic process Yt is defined as the correlation between values

of the process at different time spots.

corr(Yt, Ys) =
E[(Yt − µt)(Ys − µs)]

σtσs
,

where µt and σt are mean and standard deviation of the process at time t. For a stationary

process, we have:

corr(Y0, Ys) = corr(Yt, Yt+s).

Therefore, it would be more convenient to express the autocorrelation of a stationary process

as a function of time-lag:

ρs =
Cov(Y0, Ys)

Var(Y )
=

E[(Yt − µ)(Yt+s − µ)]

σ2
,

where µ and σ2 are the common mean and variance of the process. The above expression

is usually referred as the lag-s autocorrelation coefficient .

In general, treating point processes as stationary often yields a useful mathematical per-

spective which matches scenarios when there is no known dependence on time. Roughly,

a point process is time-stationary if the distribution of the number of events within a given

interval does not depend on the location of the interval; that is if N(t1 + s) − N(t1) is dis-

tributed as N(t2 +s)−N(t2) for any t1, t2 and s. A point process is event-stationary if the joint

distribution of Tk1 , · · · , Tkn is the same as that of Tk1+`, · · · , Tkn+` for any integer sequence of

indices k1 · · · , kn and any integer shift `. For stationary point processes, in addition to vari-

ance, standard deviation, and SCV, there are two other measures of variability/dispersion:

the index of dispersion for intervals and the index of dispersion for counts.

The index of dispersion for intervals (IDI) represents the variability of an event-stationary
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inter-arrival process and is given by:

Jn =
Var
(
Ti+1, · · · , Ti+n

)
nE2[T ]

=
nVar(T ) + 2

∑n−1
j=1

∑j
k=1 Cov(Tj, Tj+k)

nE2[T ]
, n = 1, 2, · · · ,

where E[T ] and Var(T ) are the common mean and variance of inter-arrival times, respec-

tively.

Since the process is stationary, the above formula can be written regarding autocorrelation

coefficients ρj and the SCV of intervals, c2
J , (see [77]) as:

Jn = c2
J [1 + 2

n−1∑
j=1

(1− j

n
)ρj],

which shows that stationary point processes with positive correlation coefficients have mono-

tonically increasing IDI curves. Moreover, when the number of inter-arrivals goes to infinity,

we have

lim
n→∞

Jn = c2
J [1 + 2

∞∑
j=1

ρj], (2.4.1)

which shows that the IDI is proportional to the sum of all correlation coefficients (plus 1),

see [77]. If we consider a time-stationary counting process N(t), then the variability of

number of arrivals in the interval [0, t] is given by the index of dispersion for counts (IDC):

It =
Var
(
N(t)

)
E[N(t)]

,

where E[N(t)] and Var
(
N(t)

)
are the mean and variance of the number of arrivals till time t.

It can be shown that in the limit, IDI and IDC are equal, see [77]:

lim
n→∞

Jn = lim
t→∞
It .

Further, in the case of renewal processes, since inter-arrival times are iid, we have (see

Chapter V of [15] or [77]):

lim
n→∞

Jn = lim
t→∞
It = c2

J .

In practice, usually, the limit of indices of dispersion is applied. For instance, for modelling

bursty traffic, the values of the limiting indices of dispersion can be estimated from empirical

observations and then a suitable model (for example an MMPP) which is consistent with the
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observed index of dispersion (see [77]) be fitted. Although there are other powerful bursti-

ness descriptors such as peakedness [98] and the index of variability [121], it seems that

in practice, the indices of dispersion are very effective to characterize workload burstiness,

see [48].

2.4.2 Matrix Analytic Methods

Matrix analytic methods (MAM) or matrix geometric methods (see [15]) first were applied

in the study of queueing systems by Neuts in the 1970s. Since then, matrix analytic meth-

ods have become a significant tool in the study of stochastic processes and have had a

variety of applications in construct and analysis of queueing systems [17,124,185], telecom-

munications networks [122, 138–140, 172, 173], supply chain systems, risk and insurance

models [16,20], reliability models and manufacturing systems [74,75].

This popularity and power of MAM comes from its ability to analyse a wide class of stochastic

models in a unified way, its capacity for analytic exploration, and its algorithmically tractable

manner. The idea of MAM is that for models with a structured transition rate matrix (for

example block-diagonal), one can replace the scalar quantities by matrices. However, this

matrix formalism for complex models may come at the expense of computational problems

resulting from high dimensionality. For more references about the theory and applications of

MAM, the reader is referred to [4,56,83,119,161] and references therein. An earlier review

about the development of MAM can be found in [151].

In the following, we present an example of applying MAM to find the stationary distribution

of a QBDp.

Assume that π is the stationary distribution of a QBDp. We can rewrite the equation πA = 0′

in terms of the block matrices of A as in Eq. (2.3.5) to obtain the following matrix equations
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(here for the sake of simplicity we assume that B1 = A1 and B−1 = A−1):

0′ = π0B0 + π1A−1,

0′ = π0A1 + π1A0 + π2A−1,

0′ = π1A1 + π2A0 + π3A−1,

0′ = π2A1 + π3A0 + π4A−1,
...

(2.4.2)

where πi for i = 0, 1, · · · is a row vector of dimension p. The general idea behind using

MAM for QBDs is to express πn in terms of πn−1 by using a matrix R instead of a scalar ρ

in Eq. (2.2.2) for the M/M/1 queue. Here, we assume that there is a matrix R, such that

πn = πn−1R, which yields:

πn = π0R
n, ∀n > 0, (2.4.3)

Substituting Eq. (2.4.3) into Eq. (2.4.2) results in:

0′ = π0B0 + π0RA−1 ⇒ 0′ = π0(B0 +RA−1),

0′ = π0A1 + π0RA0 + π0R
2A−1 ⇒ 0′ = π0(A1 +RA0 +R2A−1),

0′ = π1A1 + π1RA0 + π1R
2A−1 ⇒ 0′ = π1(A1 +RA0 +R2A−1),

0′ = π2A1 + π2RA0 + π2R
2A−1 ⇒ 0′ = π2(A1 +RA0 +R2A−1),

...

Therefore, the common term is:

A1 +RA0 +R2A−1 = 0. (2.4.4)

In general, there is no known closed-form solution for the above matrix quadratic equation.

However, where the QBDp is positive-recurrent (stable), it can be shown that Eq. (2.4.4)

has a unique non-negative solution R. In that case, by assuming that the matrix A0 is a

non-singular matrix, from Eq. (2.4.4) we have:

R = −(R2A−1 + A1)A−1
0 .

This equation can be solved for R to an arbitrary accuracy ε (for example 10−7) by the

following iteration algorithm (here Rn denotes the n-th iteration of R):
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Algorithm 1 Iteration algorithm for finding R.

1: Let R0 = 0 (or a better guess, if available),
2: While ‖Rn+1 −Rn‖ > ε, set Rn+1 = −(R2

nA−1 + A1)A−1
0 .

There are several possible definitions of the metric ‖Rn+1 −Rn‖, for instance, the maximum

absolute value of all elements in the matrix Rn+1 − Rn . For more details, see Chapter 21

of [79].

Once {Rn} converges to R, by finding π0 and putting it in (2.4.3), we can find the other

vectors πn for n > 0. For finding π0, note that there are two equations involving π0: the first

matrix equation in (2.4.2) and the normalizing equation π1 = 1, where π = (π0, π1, π2, · · · ).
Putting Eq. (2.4.3) in the normalizing equation, gives:

∞∑
n=0

π0R
n1 = 1, or π0

( ∞∑
n=0

Rn

)
1 = 1.

If R has a spectral radius4 less than one, then
∑∞

n=0R
n = (I − R)−1 (note that the positive

recurrence of the QBD is a necessary and sufficient condition for matrix R to have a spectral

radius less than one). Therefore, the above equation can be written as:

π0 (I −R)−1 1 = 1.

This equation and the first matrix equation in (2.4.2), provide a system of equations which

has a unique solution π0:

π0Ψ = 1,

π0Φ = 0′,
(2.4.5)

where for notational simplicity, we put Ψ = (I −R)−1 1 and Φ = B +RA−1.

Consider that we apply this method for the E2/M/1 queue. Then, expanding out the second

equation in (2.4.5) results in:

[π1
0 π2

0]

 Φ00 Φ01

Φ10 Φ11

 = [0 0].

4 The spectral radius of a square matrix R is max{|γ| : γ ∈ σ(R)}, where σ(R) is the set of all eigenvalues
of R.
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After replacing one column with the normalizing equation, we get:

[π1
0 π2

0]

 Ψ0 Φ01

Ψ1 Φ11

 = [1 0].

This system of equations has a unique solution. These quantities describe the stationary

distribution of the E2/M/1 according to Eq. (2.4.3).
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Figure 2.8: The stationary distribution of levels for Ep/M/1 queueing system. The stationary distribu-
tion is obtained for ρ = 0.9 and for a different number of phases where p = 1, 2, 3.

Using the obtained stationary distribution, we can find the probability distribution of the num-

ber of customers in a queuing system or in general, the probability distribution of levels in a

QBD system. For instance, if ρ = λ
µ

= 0.9 (see Example 2.3.6),

• for the E3/M/1 queueing system, we obtain:

R =


0 0 0

0 0 0

0.9482 0.8992 0.8526

 , π0 = (0.0173 0.0336 0.0491).

• for the E2/M/1 queueing system, we obtain:
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R =

 0 0

0.9318 0.8682

 , π0 = (0.0341 0.0659).

• for the M/M/1 (E1/M/1) queueing system, we obtain:

R = 0.9 (the same as ρ) π0 = 0.1.
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Figure 2.9: Mean level queue of the Ep/M/1 in terms of ρ for different number of phases. Here,
p = 1, 10, 20.

Figure 2.8 represents the probability of number of customers/levels for an Ep/M/1 queueing

system, where ρ = 0.9 and for different number of phases p = 1, 2, 3. Note that for the cases

of p = 2 and p = 3, as we have more than one phase, the resulted probability of each level is

the sum of probabilities of phases of that level. As we expected, by increasing the number

of customers/levels, the probability of levels decreases. Moreover, as Figure 2.8 shows,

although at first levels, distribution probability of Ep/M/1 (for p > 1) increases, but after a

while, this trend will be reversed.

Figure 2.9 presents the changes of the mean number of customers/levels in terms of ρ for the

Ep/M/1 queue. Here, the mean queue level is obtained for different values of p = 1, 10, 20,

where ρ varies from 0 to 0.9. As the figure shows, by increasing the number of phases in Ep,

the mean level of queue decreases. Further, as expected, by growing ρ towards 1, the mean
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level of queue also grows.

2.4.3 Estimation Methods for SMMs

In general, there are two common approaches for parameter estimation of SMMs: a moment-

based approach and a likelihood-based approach. Here, after a brief review of these meth-

ods, the pros and cons of both approaches are explained. Then, the likelihood-based EM

algorithm, as a very common algorithm for parameter estimation of SMMs, is briefly re-

viewed.

Moment-based approach Assume that X1, · · · , Xn form a sample from a joint distribution

f(x1, · · · , xn, θ) with identical marginal distributions f(xi, θ), for i = 1, · · · , n, where θ is the

vector of model parameters.

On the other hand, we know for a random variable X, where X ∼ f(x, θ), the r-th moment

of X (assuming it exists) is given by:

Mr(θ) = Eθ[Xr],

which can be estimated through the sample r-th moment for observations X1, · · · , Xn:

mr =
1

n

n∑
i=1

xri .

The method of moments estimator for θ is denoted by θ̂ and defined such that each of the

first k sample moments is matched with the true moments, that is θ̂ is the solution of the

system of k non-linear equations

Mr(θ) = mr, r = 1, 2, · · · , k.

In a more general setting, the marginal distributions may perhaps not be identical. In this

case, instead of using moments, we can use the expectations of any sensible real-valued

functions of the sample.
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The most important benefit of the method of moments is that it is usually fast and often

non-iterative. On the other hand, the method of moments estimators are not necessarily

unique and applying this method when the number of parameters is large (high-dimensional

context) is difficult. See [179] for more details.

Moment-based fitting for PH distributions with a low number of parameters is quite suit-

able. However, when the number of parameters increases, the shape of the density is not

adequately described by the first few moments. Therefore, for an accurate fitting, higher

order moments should be considered. Computing higher order moments causes two kinds

of problems. First, matching all moments is usually hard and needs applying approxima-

tion methods [43]. Moreover, the estimators of higher order moments are unreliable. For

instance, when network data traces with more than a million entries are considered, the

confidence intervals of moments of order greater than three are extremely wide [111]. Ap-

plying the moment-based approach for fitting MAPs has the same problems. Approximating

higher order joint moments is hard and often lower order joint moments do not capture the

correlation structure [112].

Likelihood-based approach The basis of this method is the likelihood function of the

observed data under a certain model and certain model parameters as realizations of the

stochastic process. The most common likelihood method is the maximum likelihood esti-

mation (MLE). The MLE provides estimates for model parameters which yield the largest

likelihood of the observed data.

The widespread use of maximum likelihood is due to the convenient asymptotic properties

of the MLE. For instance, model estimates coming from the MLE are optimal in terms of

asymptotic variance. Another advantage of using the MLE is that many model selection pro-

cedures are based on MLE, such as AIC (Akaike’s Information Criterion) and BIC (Bayesian

Information Criterion). The computational effort required for the MLE is its major drawback.

The EM algorithm is a likelihood-based parameter estimation method that is quite effective

for estimating parameters of models with some hidden or incomplete data. This effective-

ness is due to its excellent properties in terms of numerical computation. An example of

incomplete data is a random variable assumed from a PH distribution where the only obser-
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vation is the absorption time and the underlying CTMC is unobserved. In such a situation,

the EM algorithm replaces the sufficient statistics in the likelihood function by their condi-

tional expectations given the observed data. So, the EM algorithm essentially maximises

the incomplete likelihood function. The name “EM algorithm” stems from the alternating

application of an expectation step (E-step) that replaces the sufficient statistics with their

expectations (applying the given sample) in the likelihood function, and a maximization step

(M-step) that yields a successively higher likelihood of the estimated parameters. More pre-

cisely, consider that there is a complete set of data x but we observe the incomplete data

y. The EM algorithm approaches the problem of finding an MLE by starting with an initial

guess θ0 for the parameter set θ = (θ1, · · · , θn) and then finds the expectation of sufficient

statistics and maximizes the (incomplete) likelihood function based on the steps summarises

as below, for more details see Chapter 12 of [32].

Algorithm 2 EM algorithm.

1: (Initial Guess) Set an initial guess θ0 for the MLE. Iterate the following steps for k =
0, 1, · · · .

2: (Expectation step) Calculate lk(θ) = E [logL(θ;x)|y; θk].
3: (Maximization step) Find the values of θ that maximise lk(θ) and set them as θk+1.
4: Set k=k+1 and go back to step 2.

It is well known that starting from any initial value for the parameters and updating them by

repeating the steps of the EM algorithm increases the likelihood in each step or equivalently

L(θk+1;y) ≥ L(θk;y) for all k and as k → ∞ the algorithm converges (to a local or global

maximum or a saddle point for L), see Chapter 12 of [32] or [19]. More notes on the EM

algorithm and its stopping criteria from the numerical point of view, can be found in [115].

The EM algorithm often converges at a very slow rate in a neighbourhood of the maximum

point. This rate directly reflects the amount of missing data in a problem. The EM algorithm

is a broadly applicable approach to the iterative computation of the MLE and has a variety of

applications in incomplete-data problems. For instance, Hidden Markov Models (HMMs),

MAPs, and PH distributions. For the last two models, the hidden data is comprised of

transitions of the background CTMC. As one of the first papers about the EM algorithm,

the reader is referred to [65] and for the advanced and complete theory to [137]. Although

compared to the method of moments, the EM algorithm has the significant advantage of

regarding all the available information (which is especially important when the sample size is

small), the EM algorithm experience computational restrictions when either the sample size
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is big, or there are a large number of parameters.

Estimation for PH Distributions

The research on PH fitting methods has a very long history. The method of phases proposed

by A. K. Erlang at the beginning of the 20th century [67] can be considered as the starting

point. Jensen [101] made an important contribution to translate Erlang’s idea into the modern

language. But it was not until the late 1970s that Neuts and his coworkers [150, 152, 153]

established much of the theory of PH distributions in the modern form.

The first work on statistical methods for PH distributions was done by Bux and Herzog in

1977 [46]. They tried to minimize the maximum absolute value of the difference between the

empirical distribution and Coxian distributions over a finite set of points. Coxian distributions

are a versatile sub-class of PH distributions. More details are in [19, 46]. Applying the

basic approach of the EM algorithm to arbitrary PH distributions turns out to be extremely

costly regarding computation time, see [13]. Also, the fitted distribution depends heavily

on initial values. For instance, see [114], where different methods (including EM algorithm)

for fitting PH distributions were applied. Moreover, fitting general PH distributions becomes

difficult when the number of phases increases. To overcome these problems, most of the

research in this area carried out on subclasses of PH distributions or considered numerical

MLE methods for Coxian distributions, see for instance [33,34]. From an applied probability

point of view, these restrictions are often not suitable. An alternative is, for example, using

a mixture of Erlang distributions, see [102, 103, 181]. The mixture of Erlang distributions

is versatile and can effectively approximate any distribution. However, applying a mixture

of Erlang distributions leads to a large number of phases and therefore more complexity in

algorithms.

In 1996, one of the most significant contributions in this area was published by Asmussen

et. al. [19], where for the first time the EM algorithm was used for fitting PH distributions

with an arbitrary structure. They considered the observed data y (time until absorption) from

a PHp(η, T ) distribution. This is a case of incomplete data and the complete observation

of the jump process on the interval (0, y] is given by x = (J0, · · · , JM−1, τ0, · · · , τM−1) which

contains the states of the jump process Ji and the sojourn times satisfying y = τ0+· · ·+τM−1.
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Let θ denotes a vector containing the parameters (η, T ). The Likelihood function for an object

with a complete observation x is given by:

L(θ;x) = ηJ0ΛJ0e
−ΛJ0τ0pJ0 J1 · · ·ΛJM−1

e−ΛJM−1
τM−1pJM−1 0,

where we consider that M is the total number of jumps. Here,

pij = P(Jn+1 = j
∣∣ Jn = i) =


λij
Λi

i, j = 1, 2, · · · , p ,

ti
Λi

i = 1, 2, · · · , p and j = 0,

where Λi = −(ti +
∑

j λij) is the intensity of the sojourn time in state i of the background

CTMC. Therefore, the above likelihood can be written as:

L(θ;x) = ηJ0e
−ΛJ0τ0λJ0J1 · · · e−ΛJM−1

τM−1tJM−1
,

where τi is the realization of exponentially distributed random variables with parameter Λi.

We can rewrite the above function as:

L(θ;x) = ηJ0(

p∏
i=1

p∏
j=1,j 6=i

λ
Nij
ij e−λijZi)

p∏
i=1

tNii e
−tiZi ,

where

• Nij is the number of jumps from state i to state j,

• Zi is the total time spent in state i,

• Ni is the total number of jumps from state i to state 0.

Now suppose that we have n independent replication of the process. The complete data is

X = (x1, · · · ,xn) where each xi consists of states of jump process and sojourn times of i-th

observation. So, the likelihood function is:

L(θ;X) =

p∏
i=1

ηBii

p∏
i=1

p∏
j=1,j 6=i

λ
Nij
ij e−λijZi

p∏
i=1

bNii e
−tiZi , (2.4.6)

where the sufficient statistic consists of
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• Bi is the number of Markov jump processes starting in state i,

• Zi is the total time spent in state i,

• Nij is the total number of jumps from state i to state j, for j 6= i and j = 0, 1, · · · , p,

• Ni is the total number of processes jumping from state i to the absorbing state (state 0).

The resulted estimates (based on complete data) are, see [19]:

η̂i =
Bi

n
, T̂ij =

Nij

Zi
, t̂i =

Ni

Zi
, T̂ii = −(t̂i +

∑
j 6=i

T̂ij). (2.4.7)

Then in the EM algorithm, the E-step consists of calculating the conditional expectation of the

above measures given the (incomplete) observed data y and the current estimates of (η, T ),

say (η, T )(k). Applying the conditional expectations of the sufficient statistic and its observes

value, in the M-step, the likelihood (2.4.6) is maximised. Then the resulted new estimates

of (η, T ) obtained by replacing the statistics in (2.4.7) with their conditional expectations

evaluated in the E-step. See [19] for more details.

Moreover, Asmussen et. al. [19], showed the effectiveness of the EM algorithm through

several numerical examples. Asmussen’s work followed the censored case presented by

Olsson [160] and is a further step of numerical MLE algorithms given by Ruhe [176], Render

and Walker [171], and Harris and Sykes [80] for the class of mixed exponential distributions.

For a survey of research on the analysis of PH distributions before 2000, see [14].

All the above PH fitting methods are time-consuming and depend on the size of the data

trace. Therefore, following Asmussen’s paper [19], the research on PH fitting methods fo-

cused on finding simpler and faster methods. For instance, in 2007, Telek and Horváth [190]

introduced a moment matching algorithm for PH distributions (as well as MAPs). To use this

method the representation for the PH distribution (alt. MAP) with the minimal number of pa-

rameters has to be found. Although finding the minimal representation of such objects is very

important for developing effective fitting methods, this is in general still an open problem. In

2007, Panchenko and Thümmler [164] improved the EM algorithm for parameter estimation

of PH distributions. In contrast to previous approaches, elements in the data trace are first

aggregated and then the EM algorithm is applied. Their aggregation method is to divide the
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empirical distribution of the data trace into a predefined small number of intervals. Then, the

trace elements of each interval are represented by their mean values and a weight corre-

sponding to the portions of the elements in that interval. They showed that this approach is

much faster than the previous ones and is efficient for large data sets.

The Markov Chain Monte Carlo method is another option for estimating the PH related func-

tionals, see for instance [31].

Estimation for MAPs

In spite of the wide range of applications of MAPs, their usage in practical system modelling

is limited due to difficulties in potential MAP fitting methods. Nevertheless, some progress

has been made in this direction:

1. Heuristic fitting methods for special MAP structures. In [5], the authors use a su-

perposition of four two-state MMPPs for modelling a variable packet teletraffic with

long-range dependency and self-similarity. Another example is [92], where the authors

consider the behaviour of high-speed packet switched data networks and use MAM for

analysis of these kinds of systems. In both of the above examples, the authors apply

several heuristic fitting methods to obtain the Markovian approximation for the typical

non-Markovian behaviours of data traces in telecommunication networks.

2. Moment-based fitting for a MAP2. For instance, in [87], the method of moments is

used to find elements of matrices C and D, in (3.4.3), for a MAP2.

3. The EM algorithm for MMPPs and MAPs. For instance, in [94], a 2-step fitting process

for MAPs is applied: the PH fitting of the inter-arrival time distribution and the lag-

k correlation fitting. Another approach that is presented in [112] is applying the EM

algorithm for MAPs with an aggregated version of the data trace which eliminates the

dependency between the elements of the data trace.

To evaluate the properties of these approaches and to compile a general and robust fitting

procedure, further research is needed. The limitations of the first and second method are

obvious, since they handle special structures. The third method is general enough, but
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high computational requirements and numerical instability are the negative aspects of this

method. The EM algorithm usually works well for short data traces, but for long ones, it

converges very slowly and the computation time is often extremely long. For a survey on

parameter estimation of MAPs, see [179]. A good literature review about fitting methods of

MMPPs can be found in [70]. In the following, a brief review of the efforts that have been

made to improve these kinds of methods is presented.

In general, a MAP has a large number of parameters, and so, the direct approach to compute

the MLE for a MAP requires large scale matrix computations, and it is generally hard to find

the maxima of the likelihood. In 1987, Hellstern [141] made one of the first efforts in this area.

She discussed an MLE algorithm for an MMPP2, a Markov modulated Poisson process of

order 2.

In 1994, Rydén [177] carried out a survey on parameter estimation of MMPPs and later ap-

plied the EM algorithm for general MMPPs [178]. In this paper, an experimental comparison

between the given EM algorithm and the Nelder-Mead downhill simplex algorithm showed

that the number of iterations in the EM algorithm is less than the required likelihood eval-

uation of the downhill simplex algorithm. However, Rydén did not give a complete answer

to the MMPP fitting problem in [178]. Long data traces cannot be fit efficiently, and due

to identifiability issues, there does not seem to be an illustration of a consistent estimation

procedure.

It seems that with a focus on special cases of MAPs there is a good chance to be able to

make significant progress. For example, by fitting 2-state MAPs, a good approximation of

higher order MAPs is achievable, see [66]. Therefore the most recent papers on MAP fitting

methods concentrate on special kinds of MAPs.

In 2002, Breuer [37] used the EM algorithm for fitting Batch Markovian arrival process

(BMAP). BMAP is a generalisation of the MAP, by allowing more than one arrival at a time.

And then, in 2003, Buchholz [42] used the EM algorithm for MAP fitting of real teletraffic

data. His approach was a combination of the EM algorithm for BMAPs [109] and the EM al-

gorithm for hidden Markov models [195]. After this paper, parameter estimation of MAPs with

a forward-backward version of the EM algorithm was considered 5. The forward-backward

5This method is usually used for HMMs. For more details about this method or HMMs, the reader is directed
to [47] or [133]
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version of the EM algorithm is used in the case of transient MAPs (tMAPs). A tMAP is a

combination of a MAP with a PH distribution (the matrices C and D of MAP have the transi-

tion rate matrix structure of a PH distribution) which was introduced in 2003 by Latouche et.

al. [120]. In 2003, Breuer et. al. [40] applied the EM algorithm for fitting tMAPs and showed

that larger sample sizes do not necessarily lead to more precise parameter estimation. This

is due to the lack of consistency of estimators coming out of the EM algorithm.

Later, Casale et. al. [48, 51] proposed the Kronecker Product Composition (KPC) method

which finds the smallest MAP that can be fitted the data trace based on the superposition

of MAPs of lower orders, applying sensitive analysis, and using the BIC for model selection.

The KPC-Toolbox, a library of MATLAB scripts for fitting workload traces into MAPs (or PH

distributions) in an automatic way, were presented in 2010 [52] and developed in 2012 [50].

Further, in 2010, Breuer and Kume [39] presented an EM algorithm for the case the arrival

process is observed on a grid of discrete times only.

In 2014, Hautphenne and Fackrell [81] found an EM algorithm for Markovian Binary Trees

(MBTs), which are branching processes that utilize both tMAPs and PH distributions and

have applications in biology. Then a new version of the EM algorithm was presented by

Kriege and Buchholz [112] which is applied to the case of an aggregated data trace. Their

numerical experiments show that this new version of the EM algorithm is more computation-

ally efficient than the previous ones. For a recent reference about parameter estimation of

PH distributions and MAPs, the reader is directed to [44].

2.5 Markov Decision Processes

In general, the goal of a decision process is to present a mathematical model to automate

the problem of decision making in a way that maximises the average achieved rewards (or

minimises the total cost) by making a right trade-off between the immediate reward and

the long-term gains. If the states of a decision process have Markov property, we call it a

Markov decision process (MDP). Markov decision processes have a variety of applications

in different areas such as game theory, finance, machine learning, queuing systems, and

artificial intelligence. For a survey on the application of MDP for control of the network of
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queues, see [187]. More applications can be found in [196] or [169].

Definition 2.5.1. Consider a Markov process X(t) with a finite state space S and the prob-

ability transition matrix P . The tuple (S, P, R, β) is said to be a Markov reward process,

where R is a reward function given by R(s) = E[R(t + 1)
∣∣ X(t) = s] and β ∈ [0, 1) is the

discount rate.

The discount rate β guarantees that the rewards in the future get discounted and hence

modelling the fact that future rewards are generally less lucrative than present rewards. A

reward of r received after t steps in the future, counts as βtr. A consequence of this is that

if rewards per time are bounded then the infinite horizon total reward is always finite. Note

that when β = 0, only immediate rewards matter and when β tends to 0, only very near-

term rewards are considered and we have a myopic evaluation of the reward. On the other

extreme case, when β goes to 1, the importance of future rewards decays exponentially and

we have a far-sighted evaluation. The value β can also be thought of as the probability that

a trial will be allowed to continue after each step and has connections to interest rates in

economic theory.

A Markov decision process is a discrete-time finite horizon stochastic controlled process

which consists of a controller and a Markov reward process. At each time step, as Fig-

ure 2.10 illustrates, the controller chooses an action. Then, based on controller’s action,

the environment, which is a finite state Markov process, gets the controller a corresponding

reward and moves randomly into a new state. Here, we consider that the set of actions is

discrete and has a finite number of states.

controller environment

reward

action

state

Figure 2.10: Demonstration of the MDP.
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Definition 2.5.2. A Markov decision process (MDP) is a tuple (S, A, P,R, β), where S is

the finite state space of a Markov chain which is called the environment of the MDP, A is the

actions set, P is the probability transition matrix of the MDP given by

P (s′
∣∣ s, a) = P

(
X(t+ 1) = s′

∣∣ X(t) = s, A(t) = a
)
, (2.5.1)

R : K → R is the reward function, where K =
{

(s, a)
∣∣ s ∈ S, a ∈ As}, and As is the set of

possible actions when the system is in state s. The β ∈ [0, 1) is the discount rate.

Here, we are interested in finding the expected value of rewards:

R(s, a) = E[R(t+ 1)
∣∣ X(t) = s, A(t) = a]. (2.5.2)

Note that the next state depends on the current state and the selected action. further, the

next state is independent of the prior history (Markov property).

2.5.1 The Optimal Policy

Solving an MDP means finding a controller policy that collects the maximum reward results

by making a right trade-off between the immediate reward and the long-term gains. Such a

policy is called an optimal policy. A policy can be considered as a function π : S → A that

relates what has happened in the past and what has to be done at the current state. If we

assume that as = π
(
X(t) = s

)
, then we can define the state value function of the policy π

as the mean of total discounted rewards collected from state s under the control action as:

V π
s = Eπ

[
R(t+ 1) + β R(t+ 2) + β2R(t+ 3) + · · ·

∣∣ X(t) = s
]
, (2.5.3)

Now the goal is to find the optimal policy π? that maximises V π
s for all states s. Consider a

policy that at each time slot t is just a function of the current state (Markov property) does

not depend on time (Stationarity), and its choice of the control action is non-randomizing

(deterministic). Such a policy is said to be a deterministic stationary Markov policy. It can

be shown that there exists a deterministic stationary Markov policy π? that is optimal, that is

such a policy maximises V π
s for all states s, see Chapter 6 of [169].
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Finding the Optimal Policy

From Eq. (2.5.3), we have V π
s = Eπ

[
R(t+ 1) + β V π

s′

∣∣ X(t) = s
]
, where s′ = X(t+ 1). Using

(2.5.1) and (2.5.2) results in:

V π
s = R(s, a) + β

∑
s′

P (s′
∣∣ s, a)V π

s′ .

The above equation has a unique solution for the p unknowns, where p is the number of

states of the Markov chain. In fact, this equation implies that the current value function

is the expected value of the immediate reward plus the sum of the expected values of the

discounted reward at next step. Now assume that V ? := V π? and consider the optimal action

value function Q?(s, a) as the expected value of reward where the process starts at state s,

performs the action a and applies the optimal policy π? from there on. Then, we have the

Bellman equation for MDPs :

V ?
s = max

a

{
Q?(s, a)

}
= max

a

{
R(s, a) + β

∑
s′

P (s′
∣∣ s, a)V ?

s′

}
. (2.5.4)

Note that the Bellman equation is non-linear and in general, has no closed form solution.

However, there are many iterative algorithms for solving this equation, such as value iteration

and policy iteration. This equation says if the controller is already reached the goal, it does

not need to execute any further action. Otherwise, the controller needs to choose an action

that maximises the expected long-term rewards to reach the goal.

The Average-Reward Optimality Equation

The average reward criterion is applied for systems where decisions are made frequently

based on system observations such as the system throughput. Practically, all approaches

to solve the optimal control problem (find the policy that maximises the total reward) for

these systems are related to find solutions of the average reward optimality equation for a

stationary Markov policy π, see Chapter 8 of [169]:

ρ?s = sup
π

lim
t→∞

inf
1

t
Eπ
[ t−1∑
τ=0

R(τ)
∣∣ X(0) = s

]
. (2.5.5)
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Moreover, we consider that the MDP is unichain, that is the probability transition matrix P

consists of a single recurrent class plus a possibly empty set of transient states, see [169].

This implies that ρ?s does not depend on s and can be considered as a scalar ρ?. The

reasonable guess for the solution of the above equation is

V ?
s,k = k ρ? + h(s) + o(1),

where o(1) denotes a vector that pointwise goes to 0 when s → ∞. Therefore, we can put

V ?
s,k ∼ k ρ?+h(s). If we consider a finite horizon MDP and assume that V0 = 0, after applying

k iterations of the Bellman equation (2.5.4), we have:

V ?
s,k = max

a

{
R(s, a) + E[V ?

s′,k−1

∣∣ s, a]
}
,

or equivalently:

kρ? + h(s) ∼ max
a

{
R(s, a) + E[(k − 1)ρ? + h(s′)

∣∣ s, a]
}
.

Using the properties of expectation function, the above equation can be rewritten as:

ρ? + h(s) = max
a

{
R(s, a) + E[h(s′)

∣∣ s, a]
}
.

2.5.2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is an MDP where the controller

does not monitor the states of the environment completely. The idea of POMDP first intro-

duced in 1965 by Aström [22] where he studied an MDP with no complete estimation of the

states. Then, in 1973, Smallwood and Sondik [184]. For more details on solving a POMDP

and related technical algorithms, see [53], [125], or [169] and references therein.

Since for POMDP there is no direct information about the current state, we need a set of

observations that give hints about the environment state. Further, as this observation set

could be probabilistic, we need to specify the probability of each observation. So, we have

the following definition.
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Definition 2.5.3. A partially observable Markov decision process (POMDP) is a tuple

(S, A,O, P,R, Z, β), where S is the finite state space of the environment, A is the actions

set, O is the observations set, P is the states’ probability transition matrix, R is the reward

function, Z is the observation probability matrix given by:

Z(o
∣∣ s′, a) = P

(
O(t+ 1) = o

∣∣ X(t+ 1) = s′, A(t) = a
)
,

and β ∈ [0, 1) is the discount rate.

Since for a POMDP, the policy depends on the history of observations (as opposed to the

actual current state for MDP), we need to determine the actions in terms of the probability

distribution of the states or in terms of belief states:

Definition 2.5.4. For a POMDP, the states probability distribution conditioned on the history

till time t is said to be the belief state at time t:

b(t) :=
(
P
(
X(t) = s1

∣∣ H(t)
)
, · · · ,P

(
X(t) = sp

∣∣ H(t)
))

=
(
b(s1), · · · , b(sp)

)
,

where si denotes the environment state for i = 1, · · · , p, and H(t) is prior history to time t.

The probability of observing state s′′ after taking action a from belief state b(t) is given by:

P (s′′) =
∑
s

b(s)
∑
s′

P (s′
∣∣ s, a)Z(s′′

∣∣ s′, a),

where we consider that the current state is X(t) = s with probability b(s). Therefore, we can

update the belief state from state b(s) at time t to state b′s′ at time t+ 1 by:

b′s′ =

∑
s b(s)P (s′

∣∣ s, a)Z(s′′
∣∣ s′, a)

P (s′′)
.

This shows that the next belief state only depends on the current belief state and not on the

whole history of the process. Therefore, the belief state process is Markovian.

Moreover, having the belief states, we can find the expected value of rewards after taking

action a, R(a), by:

R(a) =
∑
s

∑
s′

b(s)R(s′
∣∣ s, a),
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where R(s′
∣∣ s, a) is the expected value of reward where the action a is taken in state s and

the result is that the process moves to state s′.
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Chapter 3

Bursty Stationary MAPs and Their

Application in Queueing Theory

3.1 Introduction

Point processes on the line, generated by transitions of CTMCs have been studied intensely

by the applied probability community over the past few decades under the umbrella of matrix

analytic methods (MAM), see for instance [119]. These have been applied to Teletraffic [3],

business networks [88], social operations research [199], and biological systems [159]. The

typical model referred to as the Markovian arrival process (MAP) is comprised of a finite

state irreducible CTMC which generates arrivals at selected instances of state change and

according to Poisson processes modulated by the CTMC. MAPs have been shown to be

dense in the class of point processes so that they can essentially approximate any point

process, [18]. At the same time, they are analytically tractable and may often be incorporated

effectively within more complex stochastic models [149]. Some notable descriptions of MAPs

are in [15] (Chapter XI), [83](Chapter 2), [119] (Chapter 3), [130], and [149].

For a given model of a point process, one may often consider either the event-stationary

or the time-stationary case. The probability laws of both cases agree in the case of the

Poisson process. However, this is not true in general. For MAPs, time-stationarity and

event-stationarity are easily characterized by the initial distribution of the background CTMC.

Starting it at its stationary distribution yields time-stationarity and starting at the stationary
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distribution of the embedded Markov chain (jump chain) yields event-stationarity. Details

follow.

In describing and measuring stationary point processes, first and second order quantities

are often very useful. The first order measure is the rate of the point process, λ∗, which

specifies the mean number of event occurrences during a unit time. For the time-stationary

version, E[N(t)] = λ∗t and for the event-stationary version, E[Tn]−1 = λ∗. Then, the second

order measures of interest, measured in the event-stationary case, is the squared coefficient

of variation given by:

c2 =
Var(Tn)

E2 [Tn]
. (3.1.1)

A low c2 indicates nearly deterministic processes and a high c2 indicates that the process is

bursty: Namely, there are many intervals with small Tn and occasional intervals with large Tn.

An additional second order measure, taking dependence into account is the sequence of

lag-j autocorrelations computed for the event-stationary case, {%j}∞j=1, also summarized by

R :=
∑∞

j=1 %j. Here,

%j =
Cov(T0, Tj)

Var(T0)
.

In seeking a summary descriptors of a point process, the pair c2 and R are prime choices

that come to mind after the rate λ∗. This is because c2 is a basic measure of the “burstiness”

of the point process and R is a measure of the correlation structure. In addition to these

quantities, a further second order measure of variability is the long-term asymptotic variance

of the number of items normalized by the mean:

d2 := lim
t→∞

Var(N(t))

E[N(t)]
. (3.1.2)

In certain applications, d2 is referred to as the Fano-Factor, see [182]. It is well known

(see [77]) that when this limit exists and is finite, we have: d2 = c2(1 + 2R). The Poisson

process, as the canonical point process, features c2 = d2 = 1 with R = 0. More generally,

renewal processes have c2 = d2 (not necessarily 1) with R = 0. But in general, R may be

positive or negative in which case d2 6= c2.

In this chapter, we focus on MAPs satisfying,

c2 ≥ 1, and d2 ≥ 1, (3.1.3)
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referring to such processes as bursty MAPs, where if both inequalities are strict, we call

the processes a strictly bursty MAP. This treats the Poisson process as a reference. We

note that there have been other ways of describing burstiness (see [98] and [121]), yet there

is not a single precise definition. Still, in applications estimating c2 is often one of the first

measurements taken by practitioners and if for example c2 ≈ 0.2 (as may be the case in

manufacturing applications), the process is called non-bursty and if c2 is greater than unity

as may be the case in computing and telecommunications applications, the process is called

bursty. Note that in the statistical analysis of counts, d2 > 1 is often referred to as over-

dispersion, see for instance [136]. Considering the autocorrelation structure and R is often

the next measurement step, as in [77].

Our main contribution is in identifying the following classes of MAPs (characterized here

based on their C andD matrices) as being bursty and further in finding relationships between

them:

1. The (well-known) Markov Modulated Poisson Process (MMPP) – This is a MAP

with a diagonal D, that is only “self-transitions” generate events. MMPPs correspond

to doubly-stochastic Poisson processes where the modulating process is driven by a

CTMC. MMPPs have been used extensively in modelling and analysis, see for instance

[70].

2. The Markov Transition Counting Process (MTCP) – This is a MAP with diagonal

C where the diagonal elements of D are all 0. It is a process that exactly counts all

ordinary transitions of a CTMC. From a path-wise perspective, MMPPs and MTCPs

are in a sense the exact opposites. In MTCPs only ordinary events are counted while

in MMPPs only self-transitions are counted. MTCPs have been analysed in classic

works (for example in [175]) as well as [147] under different names.

3. Hyperexponential Renewal Process (H-Renewal Process) – When seeking a phase

type distribution with c2 > 1, using a hyperexponential is typically a prime candi-

date, [45]. In this respect, the H-renewal process is a basic bursty MAP. See [119]

(Chapter 3) for details about PH-renewal processes. As a MAP, H-renewal processes

are described by the diagonal matrix C and rank-one matrix D. In fact, D = −C1η,

where 1 is a column vector of 1’s and η is the initial distribution of the hyperexponential

distribution.

60



Chapter 3: Bursty Stationary MAPs and Their Application in Queueing Theory

4. The Markov Switched Point Process (MSPP) – This is a MAP with a diagonal C:

that is all transitions are counted (both ordinary and self). Therefore, both MTCP and

H-renewal process are sub-classes of MSPP. Every Markov Renewal process (MRP)

with exponential sojourn times is an MSPP, see [83]. MSPPs have received much

less attention in the literature (in comparison to MMPPs). This class of MAPs was

introduced and analysed in [63].

As we show in the sequel, establishing (3.1.3) for these processes (showing they are bursty)

is straightforward in certain cases, but is more challenging in other cases. For example,

from a modelling perspective, it is well accepted that MMPPs exhibit some sort of bursty

behaviour. Showing this based on d2, as in (3.1.2), is straightforward (for instance see

Problem 1.1 Chapter XI in [15]); but surprisingly (to the best of our knowledge), it has not

been shown previously that c2 > 1, even though this is well accepted in influential stochastic

modelling papers, such as [85]. We do so in this chapter.

Comparison of different stochastic processes to find a versatile model for describing ob-

served data in an accurate manner is a fundamental objective in stochastic modelling. This

motivates us to find relationships between these classes and primarily focus on MMPPs and

MTCPs. The former is a natural generalization of the Poisson process and has been used

in thousands of applied probability and stochastic modelling papers. As opposed to that,

to date, MTCPs have not been employed widely in applications. But, is MMPP superior to

MTCP in any manner?

When observing their related point processes, N(t), in the MMPP setting there is no indica-

tion of jump times in the background CTMC. But, as opposed to that, in the MTCP setting it

is known that the background CTMC jumps exactly every time t when N(t) is incremented.

This potentially makes MTCPs more attractive. Further, for MTCPs all inter-arrival times are

exponentially distributed.

If we consider parameter estimation of them, in the literature, there are a number of methods

for parameter estimation of MMPPs based on the method of moments and likelihood-based

methods. However, most of these methods are applied to the special case of a two-state

MMPP, the interrupted Poisson process, see for instance [177,183]. The parameter estima-

tion for the alternative model, MTCP, contains just the parameters of the underlying CTMC
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and having a diagonal matrix C in this case, making certain algebraic quantities easier to

compute and reducing the computational time in both likelihood base and moment-matching

methods. Indeed, as we review in the sequel, typical quantities that one needs to compute

for MAPs are C−k or eCx for some integer k > 0 and real x > 0. We thus believe that

considering MTCP as an alternative model for bursty traffic may be sensible.

As a stochastic modeller chooses a suitable queueing model for a given situation, there is

typically more than one choice. Knowing that MTCP/PH/1 is similar to MMPP/PH/1 allows

the modeller to have more freedom in model choice. So, we investigate the behaviour of the

MTCP/PH/1 queue as an alternative to the MMPP/PH/1 queue through extensive numerical

experiments. We show that the basic steady state characteristics (mean and variance of

the queue) of a given MMPP/PH/1 queue can be emulated by an MTCP/PH/1 queue almost

without relative error in most cases, and through numerical experiments relative errors are

bounded in the worst case by 9%. These preliminary results are significant for the emerging

body of research dealing with finding alternative (but similar) queueing models.

The remainder of the chapter is structured as follows: in Section 3.2, we overview and

summarize MAP results used in this chapter. In Section 3.3, we consider MMPP, MSPP,

MTCP, and H-renewal process and present their moment results to establish that all of these

classes are bursty. In Section 3.4, we focus on the relationships between MTCP and MMPP.

Specifically, we show that for many instances of MMPP, one can find an associated MTCP

with the same first and second moments of the distribution of the number of counts up to

time t. In Section 3.5 numerical results for approximating a given MMPP2/PH2/1 with an

MTCP4/PH2/1 are presented. Further, we consider a nonlinear optimisation procedure for

matching inter-arrival process of an MTCP4/M/1 queue with the inter-arrival process of a

given MMPP2/M/1 queue.

3.2 Markov Point Processes and Their Moments

Markovian Arrival Processes (MAPs) (see 2.3.2) are attractive due to many matrix-analytical

formulas describing distribution functions, generating functions, and moments of both N(·)
and the sequence {Tn} of enter-arrival times. For example, for a MAP with parameters
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(η, C,D) the joint density of inter-arrival times T1, · · · , Tn at t1, · · · , tn is given by

f(t1, · · · , tn) = ηeCt1DeCt2D · · · eCtnD1, (3.2.1)

where 1 is a column vector of 1’s. Therefore, the density of the time until the first event is

f(t) = ηeCtD1. This is in the form of a Phase-type (PH) distribution PH(η, C). Here, η is

the so-called initial distribution and the sub-generator C describes state’s transitions of the

background CTMC until absorption (see 2.3.1. Note that here since Q1 = 0, the exit vector

−C1 can be represented by D1 as well.

Note that we have the following relations between π and α, the stationary distribution of the

background CTMC X(t) (πQ = 0, π1 = 1) and the stationary distribution of the embedded

Markov chain Jn = X(Tn) (αP = α, α1 = 1), respectively:

α =
πD

πD1
and π =

α(−C)−1

α(−C)−11
= λ∗α(−C)−1, (3.2.2)

where λ∗ = πD1 = π(−C)1. Here, the following lines of calculations are applied. First we

have:

πQ = 0 ⇒ π(C +D) = 0 ⇒ πD = π(−C).

Further, from the first equation, we can substitute πD by α(πD1). Hence, for finding the

second equation, we set

π = π(−C)(−C)−1 = πD(−C)−1 = α(−C)−1(πD1).

On the other hand, from definition of α (see 2.3.2), we have αP = α(−C)−1D = α. So,

α(−C)−1 = αD−1 ⇒ α(−C)−11 = αD−11 =
πD

πD1
D−11 =

1

πD1
.

Setting the initial distribution of the phase, η to be either α or π, makes the MAP event-

stationary or time-stationary respectively, see [15] (Chapter XI- propositions 1.2 and 1.4).

We now describe second order properties associated with each case.
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Event-Stationary Case: The MAP is event-stationary1 if there is an arrival at time t = 0

and η = α. In this case, the (generic) inter-arrival time is a PH(α,C) distributed random

variable and thus its k-th moment is:

Mk = E[T kn ] = k!α(−C)−k1 = k!
1

λ∗
(−πC)(−C)−k1 = (−1)k+1 k!

1

λ∗
π
(
C−1

)k−1
1, (3.2.3)

with the first and second moments (here represented in terms of π and C):

M1 =
1

λ∗
πD(−C)−11 =

1

λ∗
, M2 = 2

1

λ∗
π(−C)−11. (3.2.4)

The squared coefficient of variation (SCV) of intervals has a simple formula.

c2 + 1 =
M2

M2
1

=
2 (1/λ∗) π (−C)−11

(1/λ∗)2
= 2π(−C)1π(−C)−11. (3.2.5)

For correlations we have (see [91] or [93]):

E[T ki T
l
j ] = α k! (−C)−kP j−i l! (−C)−l1, j > i,

and when the covariance is normalised, we have the lag-j autocorrelation function:

%j =
Cov(T0, Tj)

Var(T0)
=

E[T0 Tj]−M2
1

M2 −M2
1

. (3.2.6)

Using the previous equations, we can write the lag-j autocorrelation in terms of parameters

of the MAP (α,C,D) as (see [94]):

%j =
α(−C)−1

(
(−C)−1D

)j
(−C)−11− ( 1

λ∗
)2

2α(−C)−21− ( 1
λ∗

)2
=
λ∗πP j(−C)−11− 1

2λ∗π(−C)−11− 1
.

Further, for an event stationary MAP, from (2.4.1) and (3.1.2), we have:

d2 = c2
(

1 + 2
∞∑
j=1

%j

)
= c2(1 + 2R). (3.2.7)

Time-stationary Case: A MAP with parameters (η, C,D) is time-stationary if η = π. It

turns out that in understanding the transient behaviour of MAPs, the transient deviation

1Sometimes an event-stationary MAP is referred to as an interval-stationary MAP, see for instance [70].
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matrix, D]
Q(t), plays a key role:

D]
Q(t) =

∫ t

0

(eQu − 1π) du. (3.2.8)

To find out the relation between D]
Q(t) and functionals of the counting process of a MAP,

first, consider the generating function of counting process of a MAP which is given by (see

Chapter XI of [15]):

Fij(s, t) =
∑
n≥0

snP
(
N(t) = n,X(t) = j|X(0) = i

)
.

Moreover, F (1, t) = eQt and F (s, t) = e(C+Ds)t. Therefore, we have:

∂

∂t
F (s, t) = (C +Ds)F (s, t). (3.2.9)

Further, if we putMij(t) = E
[
N(t)1X(t)=j|X(0) = i

]
= ∂

∂s
Fij(s, t)|s=1, thenM(t) = ∂

∂s
F (s, t)|s=1

and:

Eη [N(t)] = ηM(t)1.

From (3.2.9) and M(t) = ∂
∂s
F (s, t)|s=1, we have:

d

dt
M(t) = DeQt +QM(t), M(0) = 0.

The solution of this differential equation is:

M(t) =

∫ t

0

eQuDeQ(t−u)du, (3.2.10)

that results in:

Eη [N(t)] = ηM(t)1 = ηD]
Q(t)D1 + πD1t, (3.2.11)

where D]
Q(t) is the transient deviation matrix associated with Q and defined by (3.2.8). Note

that the integral (3.2.10) does actually have an explicit solution obtained by taking exponen-

tial at time t of double dimension matrix

 Q D

0 Q

, see [193]:

exp

 Q D

0 Q

 t

 =

 eQt M(t)

0 eQt

 .
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In the same way, by finding the second and third derivatives of (3.2.9) with respect to s,

we can find the second and third moments of the counting process of a MAP. In the time-

stationary case (η = π), we have (see [15]):

E[N(t)] = πD1 t, (3.2.12)

Var
(
N(t)

)
= {πD1 + 2 πDD]

QD1} t− 2πDD]
QD

]
Q(t)D1, (3.2.13)

E
[
N3(t)

]
= 6πD

(∫ t

0

∫ u

0

eQ(u−s)D
(
1πD1s+D]

Q(s)D1
)
ds du, (3.2.14)

where D]
Q is the deviation matrix associated with Q defined by the following formula.

D]
Q =

∫ ∞
0

(eQu − 1π) du, (3.2.15)

Note that in some sources, for instance [15] and [145], the variance formula (3.2.13) is

presented in terms of the matrix Q− := (1π−Q)−1. The relation between these two matrices

are given by Q− = D]
Q + 1π, see [59].

The deviation matrix has the following properties:

D]
Q1 = 0, πD]

Q = 0, and D]
QQ = QD]

Q = (1π − I), (3.2.16)

where the last one follows the fact that limt→∞ eQt = 1π. The relation between the deviation

matrix and the transient deviation matrix of a Q-matrix is given by:

D]
Q(t) = D]

Q(I − eQt). (3.2.17)

Note that from (3.2.16), we have πDD]
QD1 = πCD]

QC1 and therefore, (3.2.7) can be written

as:

1 +
2

λ∗
πCD]

QC1 =
(

2πC1πC−11− 1
)(

1 + 2
∞∑
j=1

λ∗πP jC−11 + 1

2λ∗πC−11 + 1

)
, (3.2.18)

This relationship can also be obtained in an algebraic manner using the properties of the

deviation matrix and the matrix exponential.
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3.3 Bursty MAPs

In this section, we analyse the four classes of MAPs: MMPP, MTCP, H-renewal process,

and MSPP. We show that they are bursty, as defined in (3.1.3), and establishing some

relationships between these classes 2.

Theorem 3.3.1. The classes of processes, MMPP, H-renewal process, MTCP, and MSPP

are all bursty MAPs.

Proof. (outline):

MMPP: d2 ≥ 1 is a well-known result for all doubly stochastic Poisson processes (Cox pro-

cesses). The proof can be found for instance in Chapter 6 of [108]. c2 ≥ 1 is more compli-

cated and is established in the Proposition 3.3.3 below.

MTCP: c2 ≥ 1 by using the Cauchy-Schwarz inequality as in Lemma 3.3.5 below. Then

d2 ≥ 1 through the Lemma 3.3.6.

H-renewal process: c2 = d2 ≥ 1 through the explicit formula (3.3.7) below.

MSPP: As for MTCP, c2 ≥ 1 through Lemma 3.3.5 and d2 ≥ 1 through Lemma 3.3.6.

First, note that from (3.2.5), showing c2 ≥ 1 is equivalent to show that:

πC1πC−11 ≥ 1 ⇔ πD1π(−C)−11 ≥ 1 ⇔ π(−C)−11 ≥ 1

πD1
.

Or

π(−C)−11 ≥ α(−C)−11. (3.3.1)

Note that (3.3.1) is not true for all MAPs. One example of it is a PH-renewal process with

SCV of the PH distribution less than 1 (for example Erlang-renewal). Here, is another (non-

renewal) example. Consider a MAP2 with

C =

 −λ− ε λ

ε −λ− ε

 and D =

 ε 0

λ 0

 .

Then, its stationary distribution is π = ( ε+λ
2λ+ε

λ
2λ+ε

) and πC1πC−11 = ε2+6ελ+2λ2

(2λ+ε)2
which gives

2We refer the reader to arXiv:1802.08400 for updates of this section
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values in the interval [0, 1.125] where we consider λ = 1 and change ε in [0, 2].

Furthermore, note that from (3.3.1), a process with α = π or (−C)−11 = 1 satisfies c2 = 1.

One example of such a process is a Poisson process. However, note that the Poisson

process is not the only example of having a MAP with c2 = d2 = 1. For example take a

PH-renewal with inter-arrival density that is, f(x) = 3
4
λe−λx + 1

4
λ3x2e−λx

2
. This PH distribution

is obtained by a mixture of an exponential distribution and an Erlang-3 (E3) distribution with

the same rate. Using Equation (2.3.2), it is easy to check that this PH-distribution has c2 = 1

(and so when used to construct a renewal processes has d2 = 1).

In general, we know that for point processes under the Palm distribution α (see [62]), for

all n > 1, Tn
d
= T1, but this is not true under the equilibrium distribution π, for instance,

T2

d

6= T1. However, if a point process satisfying (3.3.1), then the mean of inter-arrival times

under equilibrium distribution is greater than or equal to the mean of inter-arrival times under

the Palm distribution, that is Eπ[T1] ≥ Eα[T1]. More generally, we have:

Proposition 3.3.2. For stationary point processes

c2 ≥ 1 ⇔ T π1 ≥
st
Tα1 ,

where ≥
st

shows the stochastic order, α is the Palm distribution and π is the equilibrium

distribution of the point process.

Proof. For a stationary point process {N(t), t ≥ 0} with points occurring one at a time and

P
(
N
(
[0,∞)

)
=∞

)
= 1, we have (see Eq. (3.4.17) of [62]):

Eπ[T1] =
1

2
λ∗Eα[T 2

1 ].

Since from (3.2.4) we have Eα[T1] = 1
λ∗ , the above equation implies that:

c2 =
Eα[T 2

1 ](
Eα[T1]

)2 − 1 ≥ 1 ⇔ Eπ[T1] ≥ Eα[T1].

Further, from (3.3.1) by using the fact that
∫∞

0
eCtdt = (−C)−1, we have:

c2 ≥ 1 ⇔ π
(∫ ∞

0

eCtdt
)
1 ≥ α

(∫ ∞
0

eCtdt
)
1 ⇔ πeCt1 ≥ αeCt1.

68



Chapter 3: Bursty Stationary MAPs and Their Application in Queueing Theory

Here, we applied the proof by contradiction for second⇒. Equivalently, we use the fact that:

πeCt1 < αeCt1 ⇒ π
(∫ ∞

0

eCtdt
)
1 < α

(∫ ∞
0

eCtdt
)
1.

On the other hand, if T π1 ≥
st
Tα1 , by definition of stochastic order we have P(T π1 > x) ≥

P(Tα1 > x) which is equal to πeCt1 ≥ αeCt1.

Therefore, c2 ≥ 1 ⇔ T π1 ≥
st
Tα1 .

MMPP: The parameters of an MMPPp are D = diag(λi), where λi ≥ 0 for i = 1, · · · , p,
and C = Q − D. Here Q is the transition rate matrix of a CTMC. For MMPPs, (3.2.12) and

(3.2.13) are simplified by using the following relations:

πD1 =

p∑
i=1

πiλi, D1 = λ = (λ1, · · · , λp)′, πD = (π1λ1, · · · , πpλp) .

We first have the following:

Proposition 3.3.3. For MMPPs, c2 ≥ 1.

Proof. We need to show that (3.3.1) is true for MMPPs or equivalently (π − α)(−C)−11 ≥ 0.

For the sake of simplicity, denote the row vector (π − α)(−C)−1 by ω, then, the claim of the

proposition is equivalent to show that ω1 ≥ 0.

First note that by applying the definition of the probability transition matrix P = (−C)−1D,

using the fact that P is a stochastic matrix, and applying α1 = π1 = 1, we have

0 = (π − α)1 = (π − α)P1 = (π − α)(−C)−1D1.

Equivalently, we have:

0 =

p∑
i=1

ωiλi, (3.3.2)

where {λi} are elements of the matrix D = diag(λ) of the MMPP.

Without loss of generality, we can assume that there is an order 0 < λ1 ≤ λ2 ≤ · · · ≤ λp. On
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the other hand, since {λi}i=1,··· ,p is increasing, {λ∗−λi}i=1,··· ,p is a decreasing sequence and

therefore in the sequence {πi−αi} = { πi
λ∗

(λ∗− λi)} when an element πk −αk is negative, all

the elements πi − αi for i ≥ k are remain negative. Moreover, both π and α are probability

distributions, so (π − α)1 =
∑

i(πi − αi) = 0. Therefore, at least the first element in the

sequence {πi − αi} = { πi
λ∗

(λ∗ − λi)} is positive. So, in general, we can assume that there

exists an index 1 < k ≤ p such that πi − αi for i = 1, · · · , k − 1 is non-negative and for

i = k, · · · , p is negative. Therefore, since elements of the matrix (−C)−1 are all non-negative,

we have:

(π − α)(−C)−11 = ω1 =
k−1∑
i=1

ωi︸ ︷︷ ︸
non-negative

+

p∑
i=k

ωi︸ ︷︷ ︸
negative

.

Now if we consider that ω1 < 0, then from the above equation we have:

k−1∑
i=1

ωi︸ ︷︷ ︸
non-negative

< −
p∑
i=k

ωi︸ ︷︷ ︸
non-negative

.

Then, since 0 < λ1 ≤ λ2 ≤ · · · ≤ λp , the above equation results in (note that we multiply the

left hand side with values of λi that are all less than the values of λi multiplied in the right

hand side):
k−1∑
i=1

ωiλi < −
p∑
i=k

ωiλi.

But, from (3.3.2), we have:
k−1∑
i=1

ωiλi = −
p∑
i=k

ωiλi. (3.3.3)

Consequently, the assumption ω1 < 0 is not true, and we have ω1 ≥ 0.

In the case p = 2 there are exact explicit formulas for d2 and c2:

Example 3.3.4. Consider an MMPP2 with matrices D =

 λ1 0

0 λ2

, C =

 −σ1 − λ1 σ1

σ2 −σ2 − λ2

.

As in [84], evaluation of the transient deviation matrix through (for example) Laplace trans-

form inversion yields a neat expression for the IDC function (see Section 2.4.1):

It = 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ1σ2 + λ2σ1)
− 2σ1σ2(λ1 − λ2)2

(σ1 + σ2)3(λ1σ2 + λ2σ1)t
(1− e−(σ1+σ2)t).
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Therefore:

d2 = 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ1σ2 + λ2σ1)
.

Further, explicit computation yields,

c2 = 1 +
2σ1σ2(λ1 − λ2)2

(σ1 + σ2)2(λ2σ1 + λ1(λ2 + σ2))
.

This is in agreement with Theorem 3.3.1 and indicates that the MMPP2 is strictly bursty as

long as λ1 6= λ2.

Furthermore, note that when we set λ1 = 0, we have:

d2 = c2 = 1 +
2σ2λ2

(σ1 + σ2)2
,

which implies that where λ2 → ∞ then, c2 → ∞ and d2 → ∞. The same happens when we

set λ2 = 0 and assume that λ1 →∞. So, there is no upper bound for c2 or d2 of an MMPP2.

MTCP: Another example of a MAP is the Markov Transition Counting Process (MTCP)

which is a point process counting every transition of an irreducible finite state CTMC. One

can consider MMPP and MTCP as two extreme examples of MAPs. For MMPP when there

is an event (arrival) with probability 1 we are sure that there is no transition in the phase

process (background Markov chain) but in the case of MTCP when there is an event (arrival)

with probability 1 we know that there is a transition in the phase process. Therefore, the

matrix C of an MTCP, which records the phase transitions with no arrival, is diagonal and

the diagonal elements of matrix D are all zero. For an early reference that analyses both the

MMPP and the MTCP (without using these terms, as such), see [175].

Lemma 3.3.5. Any MAPp with diagonal matrix C = −diag(ci) for i = 1, · · · , p 3, satisfies

1 ≤ c2 ≤ 2
κ2

γ2
− 1,

where κ = min ci+max ci
2

and γ =
√

(min ci)(max ci).

Proof. From Eq. (3.2.5), we have c2 + 1 = 2(πC1πC−11). For C = −diag(ci), we have

3This is the case for MTCP, H-renewal process, and MSPP.
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C−1 = −diag( 1
ci

) and so,

πC1πC−11 =
( p∑
i=1

πici
)( p∑

i=1

πi
1

ci

)
.

On the other hand, from the Cauchy-Schwarz inequality, we have:

[ p∑
i=1

πi (ci)
1
2 (

1

ci
)
1
2

]2

≤
( p∑
i=1

πici
)( p∑

i=1

πi
1

ci

)
.

Since for all i = 1, · · · , p, we have ci 1
ci

= 1 and
∑p

i=1 πi = 1, we can conclude:

1 ≤
( p∑
i=1

πici
)( p∑

i=1

πi
1

ci

)
. (3.3.4)

Now, consider thatm := min ci andM := max ci. Without loss of generality and by multiplying

m, M , and all ci, i = 1, · · · , p by a positive constant, we can consider that M = 1
m

(or γ = 1).

So, we have for i = 1, · · · , p: ci + 1
ci
≤ m + 1

m
= 2κ which results in (using the fact that∑p

i=1 πi = 1): ( p∑
i=1

πici

)
+
( p∑
i=1

πi
1

ci

)
=

p∑
i=1

πi
(
ci +

1

ci

)
≤ 2κ.

So, since the arithmetic mean of non-negative real valued numbers is always greater than

their geometric mean, we have:

[( p∑
i=1

πici

)( p∑
i=1

πi
1

ci

)] 1
2 ≤

(∑p
i=1 πici

)
+
(∑p

i=1 πi
1
ci

)
2

≤ κ.

Therefore, ( p∑
i=1

πici

)( p∑
i=1

πi
1

ci

)
≤ κ2.

The above inequality is known as the Kantorovich’s Inequality (see [186]) and is written for

γ 6= 1 as: ( p∑
i=1

πici
)( p∑

i=1

πi
1

ci

)
≤ κ2

γ2
. (3.3.5)

Now, from (3.3.4) and (3.3.5), we have:

1 ≤
( p∑
i=1

πici
)( p∑

i=1

πi
1

ci

)
≤ κ2

γ2
, or 1 ≤ c2 + 1

2
≤ κ2

γ2
,

which gives the result.
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Lemma 3.3.6. For a MAP with diagonal matrix C, d2 ≥ 1.

Proof. From (3.2.13), the asymptotic variance of the counting process of a MAP is given by

V = lim
t→∞

Var
(
N(t)

)
t

= πD1 + 2 πDD]
QD1.

The above formula and the fact that for a given MMPP, we have d2 ≥ 1, result in:

πDD]
QD1 ≥ 0, for any diagonal matrix D. (3.3.6)

On the other hand, since Q = C + D and D]
QQ1 = 0, we have D]

QD1 = −D]
QC1. Further,

πQD]
Q = 0 or equivalently, πDD]

Q = −πCD]
Q. So, all MAPs satisfy:

πDD]
QD1 = πCD]

QC1.

Therefore, since C is a diagonal matrix, from (3.3.6) we have:

d2 =
V

πD1
= 1 + 2

πDD]
QD1

πD1
≥ 1.

Example 3.3.7. For a given MTCP2 with parametersD =

 0 λ1

λ2 0

 and C =

 −λ1 0

0 −λ2

 ,

from (3.2.5), we have:

c2 = 1 + 2
(λ1 − λ2)2

(λ1 + λ2)2
.

Moreover, using (3.2.12) and (3.2.13) results in:

d2 = 1 +
(λ1 − λ2)2

(λ1 + λ2)2
.

H-Renewal Process: Remind that any PH-renewal process is characterised by the pa-

rameters (η, T ), where η and T are the initial distribution and transition rate matrix of the PH

distribution, respectively. Moreover, any PH-renewal process can be considered as a MAP

with parameters C = T and D = −T1η (see Subsection 2.3.2). For PH-renewal processes

there is no possibility to define correlated patterns and from (3.2.7), we have d2 = c2. This

comes from the fact that whenever there is an arrival, the new initial phase is selected ac-
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cording to the initial distribution of the PH distribution, η. Thus the new phase is independent

of the past, and we can not define correlated patterns.

The hyperexponential distribution, as a PH distribution, is the distribution of the mixture of

independent exponentially distributed random variables. One of the characterisations of

the hyperexponential distribution is that its transition rate matrix T is diagonal. Now if we

consider that the time between inter-arrival times of a point process has hyperexponential

distribution, that is, whenever the point process goes to the absorption state, the process

restarts from a state that is chosen according to the initial distribution of the hyperexponential

distribution, then we have a H-renewal process. Using the formulas of mean and variance

of Hp distribution, we have:

d2 = c2 =

(∑p
i=1

ηi
λi

)2
+
∑p

i=1

∑p
j=1 ηiηj

(
1
λi
− 1

λj

)2(∑p
i=1

ηi
λi

)2 = 1 +

∑p
i=1

∑p
j=1 ηiηj

(
1
λi
− 1

λj

)2(∑p
i=1

ηi
λi

)2 . (3.3.7)

While this formula is simple, to the best of our knowledge it has not appeared elsewhere.

Its virtue is that it immediately shows that d2 = c2 ≥ 1. Here, λi’s are rates of exponential

distributions constructing the H distribution. Formulas of moments of the general case of

Markov renewal process can be found in [97].

Example 3.3.8. Consider a H2-renewal process with λ1, λ2 and η1 as the parameters of a H2

and

fH2(t) = η1λ1e
−λ1t + (1− η1)λ2e

−λ2t,

as its density function, where we set η = (η1, 1 − η1). Then, the matrices of the H2-renewal

process are C =

 −λ1 0

0 −λ2

 and D =

 λ1η1 λ1(1− η1)
λ2η1 λ2(1− η1)

 and we have:

d2 = c2 = 1 +
2η1(1− η1)( 1

λ1
− 1

λ2
)2

( η1
λ1

+ 1−η1
λ2

)2
.

As we can see, c2 and d2 are always greater than 1 and by assuming that λ1 = λ2 or η1 = 0

or η1 = 1, we have c2 = d2 = 1. Further, if we consider that λ1 → ∞, then the above value

goes to a constant 1 + 2η1
1−η1 . Now, if η1 increases to 1, c2 → ∞. The same happens when

λ2 → ∞ and then η1 → 0. Therefore, the lower bound for c2 or d2 is 1 but there is no upper

bound for these values.
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It is known that, see [70], an MMPP2 is a renewal process if and only if

• the arrival rate takes on alternatively the values λ > 0 and 0,

• its inter-arrival times have exponential distribution (related to the times during which

λ > 0).

The simplest example of an MMPP that can be considered as a renewal process is the inter-

rupted Poisson process (IPP). The IPP switches between On and Off phases and whenever

the process is in phase On (Off) it remains there for an exponentially distributed time. When

the process is in phase On, the arrival occurs with Poisson rate λ and when the process

goes to the phase Off, there is no arrival. Therefore matrix D has either λ or 0 in its diagonal:

C =

 −σ1 − λ σ1

σ2 −σ2

 , D =

 λ 0

0 0

 ,

where σi for i = 1, 2 is the transition rate of background CTMC. and the relations between

parameters of IPP and H2 are as follows.

IPP −→ H2:

η1 =
λ− λ2

λ1 − λ2

, λi =
1

2

(
λ+ σ1 + σ2 ±

√
(λ+ σ1 + σ2)2 − 4λσ2

)
for i = 1, 2.

H2 −→ IPP:

λ = η1λ1 + (1− η1)λ2, σ1 =
η1(1− η1)(λ1 − λ2)2

λ
, σ2 =

λ1λ2

λ
.

In general, we have:

Proposition 3.3.9. Any MAPp with a rank one matrix D can be represented as a Hp-renewal

process.

Proof. Whenever the matrix D of a MAPp is of rank one (like IPP case), we can decompose

it as D = vu where v is a column vector of dimension p and u is a row vector of dimension p.

On the other hand, for a Hp-renewal process with parameters (η, C,D), we have D = −C1 η.

Now, if we set η = u
‖u‖ and C = diag

(
− v‖u‖

)
, then D = vu = −C1 η. So, we have a

Hp-renewal process representation of the given MAPp.
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It is easy to verify that the MTCPp is a natural generalisation of the Hp-renewal process.

Consider an MTCPp where the sojourn time in each phase i (of the background CTMC)

has an exponential distribution with parameter λi for i = 1, · · · , p. The representation of an

MTCPp as a MAPp includes π = (π1, · · · , πp), C = diag(−λi), and the matrix D has non-

negative elements such that D1 = (λ1, · · · , λp)′. Therefore, the distribution of inter-arrival

times is f(t) = πeCtD1 =
∑p

i=1 πiλie
−λit which is the density function of Hp. Here, note that

the matrix D of MTCPp is not necessarily of rank one. In fact, in the MTCPp, times between

arrivals are HP -distributed. But, they are not necessarily independent.

MSPP: Another special case of MAPs that we discuss here as a bursty MAP is the Markov

switched Poisson process (MSPP) which is a MAP with diagonal matrix C. For MSPPp,

arrivals switch between p Poisson processes with arrival rates λ1, · · · , λp. After each arrival,

the MAP may switch to another Poisson process (where the phase is changed) or stay in

the same Poisson process (where the phase remains the same). We also remark that the

modulation in the MSPP is of a discrete nature and it occurs at arrival epochs, whereas the

modulation of the MMPP is performed in continuous time. See [7] and [83].

As a result of Lemma 3.3.5 and Lemma 3.3.6, we have:

Corollary 3.3.10. An MSPP is a bursty MAP, that is for an MSPP c2 ≥ 1 and d2 ≥ 1.

Using the moments’ formulas for the MSPP results in the following.

Proposition 3.3.11. Moments and autocorrelation functions of the inter-arrival process of an

event-stationary MSPPp are given by:

M1 =

p∑
i=1

αi
λi
, M2 = 2

p∑
i=1

αi
λ2
i

,

Var(T ) = 2

p∑
i=1

αi
λ2
i

−
( p∑
i=1

αi
λi

)2
, %j =

∑p
i=1

αi
λj+2
i

dji −
(∑p

i=1
αi
λi

)2

2
∑p

i=1
αi
λ2i
−
(∑p

i=1
αi
λi

)2 .

Here, the initial distribution of the event-stationary MSPPp is α (where αP = α), C = diag(−λi)
for i = 1, · · · , p and in the last equation dji is the sum of i−th row elements of the matrix Dj.

Note that as MTCP and H-renewal process are special cases of MSPP, all of the above mo-
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ments formulas are true for them as well.

Furthermore, we can write the matrix D of an MSPP as the sum of two matrices correspond-

ing to an MMPP and an MTCP, that is D = D1 +D2, where D1 is diagonal and has diagonal

elements of D (like an MMPP) and D2 has off-diagonal elements of D and zero on its di-

agonal (like an MTCP). Then, define C1 = Q − D1 and C2 = Q − D2. Note that from the

construction of D2, C2 is a diagonal matrix, and we have:

d2 =
V 1 + V 2 + V
λ∗1 + λ∗2

,

where V 1 and V 2 are asymptotic variances of counting process for associated MMPP (with

matrices D1 and C1) and MTCP (with matrices D2 and C2), respectively. Here, we set

V = 2π
(
D1D

]
QD2 +D2D

]
QD1

)
1. Using the fact that for MSPP, MMPP and MTCP d2 = V

λ∗
≥ 1,

we have
d21
λ∗2

+
d22
λ∗1

+ V
λ∗1 λ

∗
2

1
λ∗1

+ 1
λ∗2

≥
1
λ∗2

+ 1
λ∗1

+ V
λ∗1 λ

∗
2

1
λ∗1

+ 1
λ∗2

= 1 +

V
λ∗1 λ

∗
2

1
λ∗1

+ 1
λ∗2

≥ 1.

The above relation implies that V ≥ 0 or π
(
D1D

]
QD2 +D2D

]
QD1

)
1 ≥ 0, where D1 and D2 are

event intensity matrices of the associated MMPP and MTCP, respectively. In the next section,

we will present more relations between the matrices and moments of these processes.

3.4 Moment Relationships Between MTCP and MMPP

Proposition 3.2 of [147], implies that every MTCP has an associated MMPP with the same

first two moments. We present this proposition in an alternative form here:

Proposition 3.4.1. [147] Let N(t) be the counting process of a time-stationary MTCPp.

Then there is an MMPPp, with the counting process Ñ(t), such that their first and second

moments are matched. That is, for all t ≥ 0,

E[Ñk(t)] = E[N
k
(t)] , for k = 1, 2 .

Proof. Assume that the matrix D of the MTCPp is given by D = Q− diag(Q), where Q is the

Q-matrix of the background CTMC. We can construct an MMPPp with the same background

CTMC by setting D̃ = −diag(Q). From (3.2.12) and (3.2.13), if we show that D1 = D̃1 and
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πD = πD̃, these processes have the same first two moments and proof is completed. Since

Q1 = 0 and πQ = 0′ the result follows.

The proof shows that in order to construct an MMPP matching the first two moments with

an MTCP with the same Q-matrix Q, we need to set D̃ = diag(λ) and C̃ = Q − D̃, where

λ := (λ1, · · · , λp)′ = −diag(Q).

Now the question is that can we construct an MTCP matching the first two moments with a

given MMPP? Based on the above proposition, the answer is given for the special case of

MMPPs where λ = −diag(Q̃), that is λi =
∑

j 6=i q̃ij. But this is a very restricted case since

it does not leave any freedom with λi. We now show that for each instance of a class of

MMPPs, where λi >
∑

j 6=i q̃ij which we call “slow MMPPs”, there is an associated MTCP

that exhibits the same first and second moments for the counting process N(t).

Definition 3.4.2. A slow Markov modulated Poisson process (slow MMPP) is an MMPP

where the arrival rate in any phase i is greater than the total rate of leaving that phase, that

is λi >
∑

j 6=i qij.

1 2

λ1 λ2

q12

q21

(a) Transition diagram of the phase process
of an MMPP2.

1b 2b

1a 2a

q12

q21

q12

q21

λ1 − q12
λ1 − q12

λ2 − q21
λ2 − q21

(b) Transition diagram of the phase process
of related MTCP4.

Figure 3.1: An MMPP2 and its associated MTCP4.

We can associate an MTCP2p to any slow MMPPp as illustrated in Figure 3.1 for the case of

p = 2. As the figure shows, if the transition rate matrix and the event intensity matrix of the

slow MMPP2 are given by:

Q̃ =

 −q12 q12

q21 −q21

 , D̃ =

 λ1 0

0 λ2

 .
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Then, the corresponding matrices for associated MTCP4 are:

Q =



1a 1b 2a 2b

1a −λ1 λ1 − q12 q12 0

1b λ1 − q12 −λ1 0 q12

2a q21 0 −λ2 λ2 − q21

2b 0 q21 λ2 − q21 −λ2


, D = Q− diag(Q). (3.4.1)

We can generalise this construction from p = 2 to an arbitrary p. Here, given an MMPPp, we

construct an MTCP2p with the transition rate and the event intensity matrices:

Q =


Λ1 H12 · · · H1p

H21 Λ2 · · · H2p

· · · · · · . . . · · ·
Hp1 Hp2 · · · Λp

 , D =


D1 H12 · · · H1p

H21 D2 · · · H2p

· · · · · · . . . · · ·
Hp1 Hp2 · · · Dp

 , (3.4.2)

where Λi , Di , and Hij for i 6= j and i, j = 1, · · · , p are 2× 2 matrices given by

Λi =

 −λi λi − Si
λi − Si −λi

 , Di =

 0 λi − Si
λi − Si 0

 , Hij =

 qij 0

0 qij

 .

Notice that D = Q−diag(Q). Moreover, we use the notation Si =
∑

j 6=i qij. We prove that for

an arbitrary order p (≥ 2), the counting processes of the initial time-stationary slow MMPPp

and its associated MTCP2p exhibit the same first and second moments. Specifically, for any

initial phase distribution, their IDCs are the same.

To compare properties of the MMPPp and the MTCP2p, we construct a MAP2p with the same

counting process as the MMPPp. This is for comparing processes with the same number

of phases and is done by coupling the events of the phase process of the MMPPp. When

the process is in phase k, coupling events results in a transition from phase ka to kb or vice

versa. Figure 3.2 shows this for the case of p = 2.

This is nothing but a common modelling way to describe “self-transitions” in a CTMC. Note

though that the MAP4 is not an MTCP. We denote the phase transition matrix of the resulting
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1 2

λ1 λ2

q12

q21

(a) Transition diagram of the phase process
of an MMPP2.

1b 2b

1a 2a

q12

q21

q12

q21

λ1 λ1 λ2 λ2

(b) Transition diagram of the phase process
of the coupled MAP4.

Figure 3.2: Construction of a MAP4 from a given MMPP2 by coupling.

MAP2p by Q̃ and its event intensity matrix by D̃. Then, for the case of p = 2, we have:

Q̃ =



1a 1b 2a 2b

1a −(λ1 + q12) λ1 q12 0

1b λ1 −(λ1 + q12) 0 q12

2a q21 0 −(λ2 + q21) λ2

2b 0 q21 λ2 −(λ2 + q21)


, (3.4.3)

and

D̃ =



1a 1b 2a 2b

1a 0 λ1 0 0

1b λ1 0 0 0

2a 0 0 0 λ2

2b 0 0 λ2 0


. (3.4.4)

Carrying out this process for an arbitrary value of p, the transition rate matrix and the event
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intensity matrix are given by:

Q̃ =


Λ̃1 H12 · · · H1p

H21 Λ̃2 · · · H2p

· · · · · · . . . · · ·
Hp1 Hp2 · · · Λ̃p

 , D̃ =


D̃1 0 · · · 0

0 D̃2 · · · 0

· · · · · · . . . · · ·
0 0 · · · D̃p

 , (3.4.5)

where Λ̃i and D̃i are 2× 2 matrices given by

Λ̃i =

 −(λi + Si) λi

λi −(λi + Si)

 , D̃i =

 0 λi

λi 0

 .

Now, we can compare these two processes with the same dimension. Define the transition

rate matrix G with

Gij = qij for i 6= j, and Gii = −
∑
j 6=i

qij,

and let 1 = (1 , 1)′. Then, we have the following lemma.

Lemma 3.4.3. For all p ≥ 2 the following relations hold:

(i) For any k ≥ 0: (Ip ⊗ 1′) Q̃k = (Ip ⊗ 1′)Q
k

= Gk (Ip ⊗ 1′),

and Q̃k (Ip ⊗ 1) = Q
k

(Ip ⊗ 1) = (Ip ⊗ 1)Gk,

where ⊗ denotes the Kronecker product4.

(i)′ For any t ≥ 0: (Ip ⊗ 1′) eQ̃t = (Ip ⊗ 1′) eQt = eGt (Ip ⊗ 1′),

and eQ̃t (Ip ⊗ 1) = eQt (Ip ⊗ 1) = (Ip ⊗ 1) eGt,

(ii) Both Q̃ and Q have the same stationary distribution π which can be written as:

π =
1

2
ϑ (Ip ⊗ 1′) ,

where ϑ is the stationary distribution of G.

4 The Kronecker product of an m× n matrix A with a p× q matrix B is the mp× nq block matrix defined by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... · · · . . . · · ·
am1B am2B · · · amnB

 .
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(iii) πD̃ = πD = 1
2
ϑdiag(λ) (Ip ⊗ 1′), where λ = (λ1, · · · , λp)′.

(iv) D̃1 = D1 = (Ip ⊗ 1)λ.

(v) (Ip ⊗ 1′)D]

Q̃
(Ip ⊗ 1) = (Ip ⊗ 1′)D]

Q
(Ip ⊗ 1) = 2D]

G.

(v)′ D]

Q
(Ip ⊗ 1) = D]

Q̃
(Ip ⊗ 1) and (Ip ⊗ 1′)D]

Q
= (Ip ⊗ 1′)D]

Q̃
.

(vi) D]

Q
D1 = D]

Q̃
D̃1, and D]

Q
(t)D1 = D]

Q̃
(t)D̃1.

(vii) πDD]

Q
= πD̃D]

Q̃
.

(viii) (Ip ⊗ 1′)D]

Q̃
D]

Q̃
(t) (Ip ⊗ 1) = (Ip ⊗ 1′)D]

Q
D]

Q
(t) (Ip ⊗ 1) = 2D]

GD
]
G(t).

Proof. The proof of (i) follows from the mathematical induction and the structure of matrices

in (3.4.2) and (3.4.5). For k = 0, the relations are obvious. For k = 1, it is easy to check

that multiplying both Q̃ and Q from the left gives the same result. Further, for instance, if we

consider that (Ip ⊗ 1′)Q̃k = Gk(Ip ⊗ 1′), then, for k + 1 we have:

(Ip ⊗ 1′)Q̃k+1 =
(

(Ip ⊗ 1′) Q̃k
)
Q̃

(by induction assumption) =
(
Gk(Ip ⊗ 1′)

)
Q̃ = Gk

(
(Ip ⊗ 1′)Q̃

)
(by induction assumption) = Gk

(
G(Ip ⊗ 1′)

)
= Gk+1(Ip ⊗ 1′).

The other relations can be proved similarly.

The proof of (i)′ is a consequence of (i) and the fact that for any matrix Q: eQt =
∑∞

k=0
(Qt)k

k!
.

For part (ii), we need to show that πQ̃ = πQ = 0 and π1p = 1, where 1p is a p-dimensional

column vector of ones. First, from part (i), we have

πQ̃ =
1

2
ϑ (Ip ⊗ 1′) Q̃ =

1

2
ϑG (Ip ⊗ 1′) = 0.

The last equality comes from the fact that ϑ is the stationary distribution of G. Moreover, we

have

π1p = 1
2
ϑ (Ip ⊗ 1′)1p = 1

2
ϑ


2
...

2

 = ϑ


1
...

1

 = 1.

Again, the last equality comes from the fact that ϑ is a distribution. The proof for the case of

Q follows the same line.
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By considering part (ii) and the structure of matrices D and D̃ in (3.4.2) and (3.4.5), proofs

of (iii) and (iv) are obvious.

For part (v), we use the definition of the deviation matrix in (3.2.15):

(Ip ⊗ 1′)D]

Q̃
(Ip ⊗ 1)

=

∫ ∞
0

(Ip ⊗ 1′) (eQ̃u − 1pπ) (Ip ⊗ 1) du

=

∫ ∞
0

(
(Ip ⊗ 1′) eQ̃u (Ip ⊗ 1)− (Ip ⊗ 1′)1pπ (Ip ⊗ 1)

)
du

(
by part (i)′and part (ii)

)
=

∫ ∞
0

(
eGu (Ip ⊗ 1′) (Ip ⊗ 1)− (Ip ⊗ 1′)1p

1

2
ϑ (Ip ⊗ 1′) (Ip ⊗ 1)

)
du

= 2

∫ ∞
0

(eGu − 1pϑ) du

= 2D]
G .

In the proof, we used the formula (A ⊗ B)(C ⊗D) = (AC ⊗ BD) (when matrix dimensions

agree for the multiplication) to show that:

(Ip ⊗ 1′)(Ip ⊗ 1) = (Ip ⊗ 2) = 2Ip.

Then, since (Ip ⊗ 1′)1p = 21p, we have the result. The proof for the case of Q follows the

same lines and the proof of (v)′ is a corollary of the proof of part (v). The proofs of parts (vi)

and (vii) are the result of parts (iii), (iv) and (v)′.

For part (viii), from (3.2.15) and (3.2.8), we have:

(Ip ⊗ 1′)D]

Q̃
D]

Q̃
(t) (Ip ⊗ 1) =

∫∞
0

∫ t
0

(Ip ⊗ 1′) (eQ̃(u+v) − 1pπ) (Ip ⊗ 1) dv du

= 2
∫∞

0

∫ t
0
(eG(u+v) − 1pϑ) dv du

= 2D]
GD

]
G(t),

where in addition to the previous relations, in the first step we use the fact that for any

transition rate matrix Q with stationary distribution π, we have:

eQt1p = 1p (since eQt is stochastic), πeQt = π.

Therefore, we have: 1pϑ1pϑ = 1pϑe
Gv = eGu1pϑ = 1pϑ, The proof for Q follows the same

lines.
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Having the above lemma, we can prove that there exists an MTCP corresponding to a given

slow MMPP with the same first two moments (but not necessarily the equivalent third mo-

ments). This generalises the result of Proposition 3.4.1 to a wider class of MMPPs. Further,

for modelling a bursty process, gives the practitioner freedom to apply MTCPs instead of

slow MMPPs.

Theorem 3.4.4. Let Ñ(t) and N(t) be the counting processes of a time-stationary slow

MMPPp and its associated MTCP2p, respectively. Then, these processes have the same first

and second moment. That is, ∀p ≥ 2 and ∀t ≥ 0,

E[Ñk(t)] = E[N
k
(t)] , for k = 1, 2 .

Further, Ñ(t) and N(t) have different third moments.

A proof for the case p = 2 appears in [9] and here we present the general proof.

Proof. First, note that from (3.2.12) and part (iii) of Lemma 3.4.3 we have

E[Ñ(t)] = E[N(t)].

Then for the variance, the proof is straightforward by using Eq. (3.2.13) and parts (iii), (vi)

and (viii) of Lemma 3.4.3.

For the second part, consider the MAP’s third moment formula given by (3.2.14). From parts

(iii), (iv) and (i)′ of Lemma 3.4.3, we see that the first term in integral (3.2.14) is the same for

both processes. The second term in integral (3.2.14) for an MTCP, by applying parts (iii) and

(iv) of Lemma 3.4.3 and the definition of the transient deviation matrix, can be written as:

∫ s

0

ϑdiag(λ) (Ip ⊗ 1′) eQ(u−s)D
(
eQv − 1π

)
(Ip ⊗ 1)λ dv.

=

∫ s

0

ϑdiag(λ)
(

(Ip ⊗ 1′) eQ(u−s)DeQv (Ip ⊗ 1)− (Ip ⊗ 1′) eQ(u−s)D1π (Ip ⊗ 1)
)
λ dv.

By using parts (i)′ and (iv) of Lemma 3.4.3, we see that second term of this integral is the

same for MMPP and its associated MTCP. For the first term, if we write eQk in terms of series
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and put aside the common terms or scalars, we have the following term.

(Ip ⊗ 1′)Q
k
DQ

l
(Ip ⊗ 1) , ∀k, l ≥ 0. (3.4.6)

Using part (i) of Lemma 3.4.3, the above term can be written as:

Gk (Ip ⊗ 1′)D (Ip ⊗ 1)Gl.

If we rewrite D and D̃ from (3.4.2) and (3.4.5) in terms of Kronecker products, we have:

D = Q+ (diag(λ)⊗ I2) , D̃ = diag(λ)⊗

 0 1

1 0

 . (3.4.7)

It is easy to verify that (Ip ⊗ 1′)D̃ = (Ip ⊗ 1′)
(
diag(λ)⊗ I2

)
. Therefore:

(Ip ⊗ 1′)D̃(Ip ⊗ 1) = (Ip ⊗ 1′)
(
diag(λ)⊗ I2

)
(Ip ⊗ 1). (3.4.8)

Comparing the above equation with (3.4.7) implies that the moments of these processes are

not the same and the MTCP has the following extra term:

∫ s

0

ϑdiag(λ)Gk(Ip ⊗ 1′)Q (Ip ⊗ 1)Glλdv, (3.4.9)

which cannot be zero unless the process is a Poisson process (see Remark 3.4.7 below).

Corollary 3.4.5. The above proposition implies that the index of dispersion for counts (IDC),

It = Var(N(t))
E[N(t)]

, for a time-stationary slow MMPPp and its associated MTCP2p is the same.

Remark 3.4.6. Proposition 3.4.4 only holds for slow MMPPs. Otherwise the construction of

MAP2p from MMPPp does not hold due to some non-positive elements λi−Si in the matrices

Λi and Di.

Remark 3.4.7. Only for the case of Poisson process, the third moments of the slow MMPPp

and its associated MTCP2p are the same. This result comes from the fact that (3.4.9) is

equal to zero just for Poisson processes:

ϑdiag(λ)Gk(Ip ⊗ 1′)Q (Ip ⊗ 1)Glλ = 0

⇔ ϑdiag(λ)Gk+1+lλ = 0, ∀ k, l ≥ 0,

⇔ ϑdiag(λ)Gnλ = 0, ∀n ≥ 1,
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where the first step holds by using part (i) of Lemma 3.4.3 and the fact that (Ip ⊗ 1′) (Ip ⊗ 1) =

2Ip. Since ϑ is the stationary distribution of G, the last equality holds when λ = λ1p or

ϑdiag(λ) = λϑ (which implies again λ = λ1p) which is the case for the Poisson process. For

more details on when a general MAP is Poisson, see [27].

Further, for any initial distribution (not restricting to the time-stationary case), we have the

following proposition.

Proposition 3.4.8. Let Ñ(t) and N(t) be the counting processes of a slow MMPPp and its

associated MTCP2p, respectively. Then, these processes have the same first moment but

not necessarily the same second moment.

Proof. The first moment of a non-stationary MAP is given in terms of the transient devi-

ation matrix by (3.2.11), where η is the initial distribution. By using parts (iii) and (vi) of

Lemma 3.4.3, we see that the first moments of both processes in the non-stationary case

are the same.

To show that the second moments are different, we show that the y-intercepts of their asymp-

totic variance are different. For a non-stationary MAP, Var(N(t)) has a linear y-intercept

given by [82]:

bη = −2πDD]
QD

]
QD1− 2πD1η

(
D]
Q

)2

D1−
(
ηD]

QD1
)2

+ 2ηD]
QDD

]
QD1.

From parts (v′), (vi) and (vii) of Lemma 3.4.3, we see that the first three terms of the above

y-intercept are the same for an MMPP and its associated MTCP. For the last term, by consid-

ering an initial distribution in the form of η = (1, 0, · · · , 0) (Ip ⊗ 1′) and by using the definition

of deviation matrix and part (i′) of Lemma 3.4.3, we see that this term for both processes

equals to:

∫ ∞
0

(2, 0, · · · , 0)eGt (Ip ⊗ 1′)DD]
QD1 dt−

∫ ∞
0

(2, 0, · · · , 0) (Ip ⊗ 1′)1pϑD
]
QD1 dt.

Note that from part (vi) of Lemma 3.4.3 we have D]
QD1 is the same for both processes and

thus the second integral is the same for both processes. However, different event matrix D

for slow MMPPs and their corresponding MTCPs results in different left integral. The explicit
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calculation shows that the left term in D]
QD1 is (Ip ⊗ 1), so from (3.4.7) and (3.4.8), we can

conclude that this term is different for a slow MMPP and its associated MTCP.

Remark 3.4.9. Note that in the proof of the last part of the above proposition, for having the

same second moment, we need that the initial distribution either satisfies ηeQt = 0 (which is

the case for the time-stationary distribution) or (Ip ⊗ 1′)Q (Ip ⊗ 1) = 0 which by considering

the structure of Q, results in ∀i, j: qij = 0. Since the latter is impossible, we conclude that for

having the same second moment, we must have η = π.

3.5 The Steady-State Queue Approximation

The use of Markov models (like MAP) in queueing analysis benefits from established the-

oretical results and efficient solution algorithms. Because of this primacy, Markov models

provide a convenient way to evaluate the performance measures of network traffic and sys-

tem workloads. However, since the autocorrelation sequence of a MAP always converges,

MAPs can not directly generate long-range dependent behaviour. This made them inac-

curate for approximating systems with long-range dependency. But, this problem can be

sufficiently solved in several ways such as superposition of MAPs, see [5] and [50].

There are several papers regarding fitting the inter-arrival time process of a MAP with real

data traces instead of considering the counting process of a MAP, see for instance [86]

and [94]. Although evaluating the performance measures of inter-arrival time process is

harder than measuring the counts, this approach is popular due to the existence of closed-

form analytical expression for the moments and lag correlations of inter-arrival process, as

in formulas (3.2.3) and (3.2.6). Note that for the counting process there are expressions only

for the first moments, as we see in Section 3.2.

As we mentioned before, in a high dimensional context which often requires several states

for the underlying Markov chain, the model parametrisation is the main obstacle of both the

method of moments and the EM algorithm. Therefore, the significant majority of papers

consider only MAPs with 2 or 3 states, see for instance [19] and [158] for using the EM

algorithm and [66] and [86] for applying the method of moments. Another way for fitting

data traces with long-range dependency with higher order MAPs is the Kronecker product
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composition (KPC) operator method, see [50] and references therein.

Here, first, we consider the counting process and apply MAM and the results of Section 3.4

to approximate a given (slow) MMPP2/PH2/1 with an MTCP4/PH2/1. In general, our compu-

tations are for MAPp/PHq/1 queues where the service time distributions are parametrized by

their workloads, ρ and their SCVs, c2.

Then, considering the inter-arrival process and using a simple version of the optimization

algorithm described in [50], we approximate a slow MMPP2/M/1 with an MTCP4/M/1 and

show that this approximation works well.

3.5.1 QBD Representation of the MMPP/PH/1 Queues

The MMPP/PH/1 queue is a special case of the general single-server queue MAP/G/1,

where the stream of arrivals and service mechanism are modelled by MMPP and PH distri-

bution, respectively. Figure 3.3 illustrates an example of an MMPP2/PH2/1 queue. Methods

of analysing the MMPP/PH/1 queueing models can be found in [76] and [131]. Here, we use

the uniform framework of QBD processes which is an efficient way to analyse more general

models using matrix-analytic methods, see [119].

1

2

1 2

λ1

λ2

2µ 2µ

Arrivals

Service

q̃12 q̃21

Figure 3.3: A schematic illustration of the MMPP2/E2/1 queue (here, mean of E2 is µ−1). The circles
illustrate phases of the arrival and service mechanism.

In representing the MMPPp/PHq/1 queue as a QBDr, where r = p × q, the phase records

(in lexicographic order) both the background state of the MMPP (arrival) and the current

phase of the service (see Figure 3.3 for illustration of the phases in the special case of
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MMPP2/E2/1). The level represents the number of items in the system.

Modelled as a QBD, we have (see Eq. (2.3.5)):

B−1 = Ip ⊗ t, B0 = C, B1 = diag(λ)⊗ η,

where we assume that C and D = diag(λ) are matrices of MMPPp. Moreover, we assume

that the parameters of PHq are (η, T ). Here, t = −T1, where 1 is a column vector of 1’s with

appropriate dimension. Further,

A−1 = Ip ⊗ tη, A0 = Ip ⊗ T + C ⊗ Iq, A1 = diag(λ)⊗ Iq.

As is well known in the theory of QBDs, the stationary distribution of a positive-recurrent

QBDr, π, admits a matrix-geometric form πn = πn−1R, (see Eq. (2.4.3)) where R is the

solution of a quadratic fixed-point matrix equation R = A1 + RA0 + R2A−1 and πn are row

vectors of dimension r, see [119]. We use the-state-of-the-art SMC solver to find the matrix

R and the stationary distribution of a given QBDr, see [29]. It is easy to show that A is

irreducible due to the properties of the building blocks and irreducibility of Q. Moreover,

characterizing the positive-recurrence can be done as follows5.

Lemma 3.5.1. The QBD representing a MAPp/PHq/1 queue is positive-recurrent if and only

if,

ρ :=
βA11

βA−11
=

λ∗

1
−ηT−11

< 1,

where −ηT−11 is the first moment of PHq and λ∗ = πD1 is the first moment of a time-

stationary MAPp with parameters (π,C,D), and β is the stationary distribution of A−1 +

A0 + A1.

Proof. From Theorem 7.2.4 in [119], we know that a necessary and sufficient condition for a

QBD to be positive recurrence is that βA11 < βA−11. Therefore, it remains to show that both

representations of ρ agree. First, we show that β = π ⊗ γ, where γ is the unique solution of

5To the best of our knowledge, the algebra behind this intuitive lemma has not appeared elsewhere.
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γ(T + tη) = 0′ and γ1 = 16. It is immediate that (π ⊗ γ)1 = 1. Further, we have

(π ⊗ γ)(A−1 + A0 + A1) = (π ⊗ γ)
(
Ip ⊗ tη + (Ip ⊗ T + C ⊗ Iq) +D ⊗ Iq

)
= (π ⊗ γ)

(
Ip ⊗ (tη + T ) + (C +D)⊗ Iq

)
= (π ⊗ γ)

(
(C +D)⊗ (tη + T )

)
= 0′,

where the last two steps follow the formula (A⊗B)(C ⊗D) = (AC ⊗BD).

Now we need to show that βA11
βA−11

= λ∗
1

−ηT−11

or equivalently:

βA11 = (βA−11)λ∗ (−ηT−11),

which for the MAPp/PHq/1 queue is written as:

(π ⊗ γ)(D ⊗ Iq)1 = (π ⊗ γ)(Ip ⊗ tη)1(πD1)(−ηT−11). (3.5.1)

For the left-hand side, we have (π ⊗ γ)(D ⊗ Iq)1 = (πD ⊗ γ)1 = πD1. Therefore, we need

to show that the right-hand side of (3.5.1) is also equal to λ∗ = πD1, or equivalently:

(βA−11) (−ηT−11) = (π ⊗ γ)(Ip ⊗ tη)1(−ηT−11) = 1.

Since π1 = η1 = 1, we have (π⊗γ)(Ip⊗tη)1 = (π⊗γtη)1 = γt. Moreover, from γ(T+tη) = 0′

we have γtη = −γT which results in γt(−ηT−11) = 1.

3.5.2 Illustration on Matching the Counting Process

If the PH distribution is an Erlang-2 (E2), we have c2 = 1
2
, where we consider E2 as the

sum of two i.i.d. exponential random variables with rate 2λ∗

ρ
. Here, λ∗ is the arrival rate as

in (3.2.12) and ρ is the workload. In the case of c2 = 1, we use exponentially distributed

random variables with rate µ = λ∗

ρ
. For the case of c2 > 1, we use the hyperexponential-2

(H2) distribution which is a mixture of two independent exponential random variables. With

6Note that γ is the limiting distribution of the phase in a PHq-renewal process.
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probability p = 1
2c2−1

we take an exponential distribution with rate λ∗

ρ c2
and with probability

1− p we take an exponential distribution with rate 2λ∗

ρ
. It is easy to verify that this H2 random

variable has mean 1 and the desired c2. We compute the matrix R and the stationary distri-
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Figure 3.4: The relative mean error of approximating an MMPP2/PH2/1 steady state queue with an
MTCP4/PH2/1 steady state queue. The parameters of MMPP2 are q̃12 = q̃21 = 5, λ1 = 10, λ2 = 20.
The mean service time is varied to accommodate for the desired ρ.

bution of MMPP2/PH2/1 and MTCP4/PH2/1 as QBDs by using the SMC solver, see [29]. The

numerical computation for finding the relative errors,

relative error =
true value - approximate value

true value
,

shows the same properties for the curves of the relative error of mean and SCV of steady

state queue when we consider all of the above-mentioned PH distributions.

Figure 3.4 shows different relative errors of the steady state mean for various service time

SCVs. The bigger the SCV of service time, the less relative error of the mean. Figure 3.5

(right) shows different relative errors of the steady state SCV for various service time SCVs.

The minimum absolute value of the relative error is again for the case that the service dis-
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tribution is hyperexponential, that is the bigger the SCV of service time, the less absolute

value of the relative error of SCV of steady state queue.
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Figure 3.5: The relative SCV error of approximating an MMPP2/PH2/1 steady state queue with an
MTCP4/PH2/1 steady state queue. The parameters of MMPP2 are q̃12 = q̃21 = 5, λ1 = 10, λ2 = 20.
The mean service time is varied to accommodate for the desired ρ.

A key contradiction between the errors in mean and SCV is that in contrast to the relative

error of means which have positive values, the relative error of SCV of the steady state

queue has negative values. This shows that the true value for mean is always greater than

the approximate one and the opposite holds for SCV. From a further investigation of the

variance (not appearing in the figures), it also holds that the true variance is less than or

equal to the approximated variance.

Table 3.1: Maximum relative error of mean queue in approximation of MMPP2/PH2/1 queue by
MTCP4/PH2/1 queue where λ1 = 10. Note that the H2 case corresponds to c2 = 1.1.

Model λ2 q̃12 q̃21 Max Relative Error of Mean Queue
MMPP2/E2/1 500 8 70 0.0893
MMPP2/M/1 300 9 70 0.0725
MMPP2/H2/1 400 5 70 0.0715

As is evident from the figures, in any case, the relative error is negligible. Note though, that

for more bursty arrival processes we may have bigger relative errors than those in the figure,
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yet we carried out an extensive computational study to find an empirical boundary for relative

error. Assuming that λ1 is constant (=10) and varying the values of λ2, q̃12 and q̃21 gives the

results in Table 3.1 for the maximum relative error.

In summary, these empirical results indeed suggest that the MTCP/PH/1 is a very sensible

alternative model to MMPP/PH/1.

3.5.3 Illustration on Matching the Inter-Arrival Time Process

With the results above at hand, we now wish to compare our approximation method (based

on Theorem 3.4.4) to the method of matching arrival process characteristics explained in

[52]. The latter method considers the inter-arrival times and matches their moments and

auto-correlations. As we show in the comparative results below, while carrying out such

matching schemes somewhat outperforms our simple approximation, it still holds that the

error of our simple approximation is tiny.

Here, we consider an MMPP2 with parameters q̃12 = q̃21 = 5, λ1 = 10, λ2 = 40. Applying

the formulas in Section 3.2 results in M1 = 0.04, c2 = 1.6923, M3 = 0.0014, %1 = 0.2546,

%2 = 0.1972, and %3 = 0.1618 .

For matching an MTCP4 with similar moments and lag-k autocorrelations to this MMPP2,

we calculate the first 50 autocorrelations of the MMPP2, %k, from (3.2.6) and minimise the

function f(x) =
∑50

k=1

(
%k − %̂k(x)

)2
, where %̂k(x) is the lag-k autocorrelation of an MTCP4

specified by x = (x1, · · · , x12) and having matrices

D =


0 x1 x2 x3

x4 0 x5 x6

x7 x8 0 x9

x10 x11 x12 0

 , C = diag(−D1).

Then, applying a constrained nonlinear version of “fmincon” solver in MATLAB, we find the

vector x that minimizes f(x) with tolerance 10−6. This result is subject to M̂1(x) = M1

and ĉ2
J(x), M̂3(x), %̂1(x), %̂2(x), and %̂3(x) being constrained to their corresponding values for
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MMPP2, c2
J ,M3, %1, %2, and %3, with a tolerance of 10−6. Since this is generally a non-convex

optimization problem, we experiment with randomly selected initial values for the “fmincon”

solver and then seek the optimal one. The parameters of the resulting MTCP4 are

x =
(
12.3519, 1.0078, 0.9110, 9.4306, 1.2491, 3.4953, 3.3339, 2.9924, 39.2952, 3.4383, 3.5185, 39.4102

)
.

Comparison of the above values for an MMPP2 and the MTCP4 obtained through optimisa-

tion method based on inter-arrival process and the MTCP4 obtained from our approximation

method based on counting process is presented in Table 3.2.

Table 3.2: Comparison of moments and autocorrelations in moments matching of MMPP2 with an
MTCP4. The parameters of MMPP2 are q12 = q21 = 5, λ1 = 10, and λ2 = 40.

Model M1 d2 c2 M3 %1 %2 %3

MMPP2 (taken as ground truth) 0.0400 2.8000 1.6923 0.0008 0.1259 0.0775 0.0477
MTCP4 (optimisation method) 0.0400 2.7933 1.6923 0.0008 0.1256 0.0771 0.0473

MTCP4 (our approximation method) 0.0400 2.8000 2.1250 0.0013 0.0993 0.0372 0.0140

As the table shows, the corresponding MTCP4 obtained from our approximation method

in Section 3.4 has the same first moment as the MTCP4 resulting from the optimisation

procedure. This comes from the fact that the first moments for both time-stationary counting

process and event-stationary inter-arrival process are the same:

M1 =
1

πD1
= α(−C)−11.

As we expected, the value of d2 which is related to the counting processes are exactly the

same for the given MMPP2 and the corresponding MTCP4 that resulted from our approxi-

mation method. Based on Table 3.2, the MMPP2 and the MTCP4 resulting from optimisation

process are of comparable moments and autocorrelations (their difference is less than 10−3).

But, as it is expected, the MTCP4 obtained from our method (based on matching first two

moments of the counting process) has some values that differ. We now compare both ap-

proximated arrival models through a queueing simulation.

Figure 3.6 demonstrates the difference between the mean queue length curves of the

MMPP2 /M/1 queue (green curve) with the MTCP4/M/1 queue. The MTCP4 obtained either

from the optimisation method (red curve) or from our approximation method as described

in Section 3.4 (blue curve). The parameters of the MMPP2 are the same as before, that is

q12 = q21 = 5, λ1 = 10, and λ2 = 40. Note that the value of workload ρ varies from 0 to 0.9 by
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changing the rate of the service process.

Furthermore, the resulting mean queue lengths in Figure 3.6 are calculated in the same way

as Section 3.5.1, that is by considering the MAP/M/1 queue as a QBD and then applying the

SMC solver. The same method is used to obtain the corresponding measures for figures 3.7

and 3.8.
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Figure 3.6: Comparison of mean queue length for approximating an MMPP2/M/1 queue with an
MTCP4/M/1 queue. The red curve represents the mean queue length where MTCP4 is resulting
from an optimisation procedure and the blue curve is for the corresponding MTCP4 obtained by the
method of Section 3.4. The green curve is the mean queue length of the MMPP2/M/1 queue. Here,
the workload varies from 0 to 0.9.

In Figure 3.7, comparison of the proportional error of mean queue length of a steady-state

MMPP2/M/1 queue, where the MMPP2 approximates with an MTCP4 resulting from either

the above optimization method (red curve) or the corresponding MTCP4 as in Section 3.4

(blue curve) is presented. As the figure shows, the MTCP4 resulting from optimisation proce-

dure gives a better approximation in comparison to the MTCP4 resulting from the analytical

method in Section 3.4. However, numerical experiments show that the proportional error

of mean queue for an MMPP2/M/1 where approximating the MMPP2 with the corresponding

MTCP4 suggested in section 3.4 is negligible (less than 3.5×10−2 in the above example and

less than 7.3× 10−2 when checking the various examples, see Table 3.1).

Therefore, regarding the simplicity of finding the associated MTCP4 suggested in Section 3.4

and negligibility of the proportional error of mean queue, we can suggest that this method
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Figure 3.7: Comparison of proportional error of mean queue length for approximating an
MMPP2/M/1 queue with an MTCP4/M/1 queue. The blue curve represents the proportional error
of optimisation procedure and the red curve represents the case of associated MTCP4 obtaining from
approximation method of Section 3.4. Here, the workload varies from 0 to 0.9.
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Figure 3.8: Comparison of proportional error of variance of queue length for approximating an
MMPP2/M/1 queue with an MTCP4/M/1. The blue curve represents the proportional error of ap-
plying the optimisation procedure and the red curve is resulted by considering the associated MTCP4

suggested in Section 3.4. Here, the workload varies from 0 to 0.9.

is suitable for approximating an MMPP2 with an MTCP4 in queueing applications. To be

more sure about this suggestion, we consider the proportional error in measuring another

important performance measure, the variance of queue length where approximating an

MMPP2/M/1 queue with an MTCP4/M/1 queue. Figure 3.8 demonstrates the proportional er-

ror of variance of queue length when approximating an MMPP2/M/1 queue with an MTCP4/M/1

queue. The blue curve obtained by considering the approximation method in Section 3.4

and the red curve obtained by considering the optimisation procedure for finding the cor-

responding MTCP4. For both cases by changing the service rate, the value of workload ρ

varies from 0 to 0.9. As the Figure 3.8 shows the proportional error of variance is less than

3× 10−5 where the parameters of the MMPP2 are q12 = q21 = 5, λ1 = 10, and λ2 = 40.
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Chapter 4

Control of Queueing Systems

4.1 Introduction

Performance evaluation and control of queueing systems subject to randomly varying en-

vironments is an area of research that has received much attention during the past few

decades (see for example, [54], [104], [180] and references therein). This is because numer-

ous situations arise in practice where a controller needs to decide how to utilise resources

best, and these are often subject to changing conditions. Examples of such situations arise

in wireless communication, supply chain logistics, health care, manufacturing, and trans-

portation. In all these situations, it is very common for service rates to vary in a not fully

predictable manner. Using Markovian random environments has often been a natural mod-

elling choice due to the tractability and general applicability of Markov models. See for

example Section A.1 in [144] for a general discussion on the ubiquity of Markov models.

The bulk of the literature dealing with performance evaluation and control of these types of

problems, has considered the situation where the state of the underlying random environ-

ment is observable. In such a situation, it is already a non-trivial task to carry out explicit

system performance analysis (see [107] as an example). Further, finding optimal or even

merely stabilizing control is typically a formidable achievement (see for example [23], [188]

or the more recent [78]). But in practice, the actual environment state is often not a directly

observed quantity or is at best only partially observable. The situation is further complicated

when control decisions do affect not only immediate rewards but also the observation made.
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In standard linear-quadratic optimal control settings (for example Part III of [197]), the cer-

tainty equivalence principle allows decoupling state estimation based on observations and

control decisions. However, in more complicated settings such as what we consider here,

certainty equivalence almost certainly does not hold.

In this chapter, we augment the body of literature dealing with exploration vs. exploitation

trade-offs in systems where a controller needs to choose a server (channel/resource/bandit)

at any given time, and the choice influences both the immediate reward (service success)

and the information obtained. A general class of such problems, denoted reward observing

restless multi armed bandits (RORMAB), is outlined in [113], where much previous literature

is surveyed. Key contributions in this area are [110] and the more recent [126]. The former

finds the structure of optimal policies from first principles. The latter generalizes the setting

and utilizes the celebrated Whittle index, [198] for such a partially observable case. Related

recent results dealing with RORMAB problems are in [116] and [117]. Of further interest is

the latest rigorous account on the asymptotic optimality of the Whittle index, [194], as well

as in the context of partially observable two state Markov chains [163].

Our focus in this chapter is on a controlled queueing systems, where server environments

vary and the controller (choosing servers) only observes partial information. Our aim is to

explore the role of information in system stability. For this, we devise what is perhaps the

simplest non-trivial model possible: a single discrete time queue is served by either Server 1

or Server 2 where each server environment is an independent two-state Markov chain. A

controller is having (potentially) only partial state information, selects one of the two servers

at each time instance.

The role of information is explored by considering different observation schemes. At one

extreme, the controller has full information of the servers’ environment states. At the other

extreme, the controller is completely unaware of the servers’ environment states. Obviously,

the stability region of the system in the latter situation is a subset of the former. Our contri-

bution is in considering additional more realistic observation schemes. One such scheme is

a situation where the controller only observes the state of the server currently chosen. This

type of situation has been widely studied in some of the references mentioned above and

surveyed in [113], but most of the literature dealing with this situation does not consider a

queue. A more constrained scenario is one where the controller only observes the success/-
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failure of service (from the server chosen) at every time slot. Such a partial observability

situation was recently introduced in [146] in the context of stability and analysed in [142]

with respect to the Whittle index. In [123], the stability of a related multi-server system was

analysed.

An additional observation scheme that we consider is one where the server is only aware of

the queue size process. In (non-degenerate) continuous time systems, such an observation

scheme is identical to the former scheme. But an artefact of our discrete time model is that

such a scheme reveals less information to the controller (this is due to the fact that both an

arrival and a departure may coincide, going unnoticed by the controller).

With the introduction of the five observation schemes mentioned above, this work takes first

steps to analyse the effect of information on the achievable stability region. A controller of

such a system makes use of a belief state implementation. We put forward (simple) explicit

belief state update recursions for each of the observation schemes. These are then em-

bedded in Bellman equations describing optimal solutions of associated partially observable

Markov decision processes (POMDP). Numerical solution of the POMDPs then yields insight

on structural properties and achievable stability regions. By construction, two-state Markov

server environments are more predictable when the mixing times of the Markov chains in-

crease. We quantify this use of channel-memory, through numerical and analytic results.

It is often the case that MDPs (or POMDPs) associated with queueing models, can be cast

as QBDs once a class of control policies is found. See for example [143]. We follow this

paradigm in the current work and present a detailed QBD model of the system. The virtue

of our QBD based model is that we are able to quantify the effect of a finite state controller

on the achievable stability region whose upper bound is given by an elegant matrix analytic

expression.

The remainder of this chapter is structured as follows. In Section 4.2, we introduce the

system model and different observation schemes. In Section 4.3, we develop recursions

for belief state updates for the non-trivial observation schemes. In Section 4.4, we present

the myopic policy and the Bellman equations for different observation schemes and present

findings from a numerical investigation. In Section 4.5, we construct a QBD representation

of the system, find the stability criterion and put forward the numerical results which are
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matched with the results of Bellman equations of Section 4.4.

4.2 System Model

E(t)

Q(t)

10

I
(2)
0 (t) I

(2)
1 (t)

X2(t)

I
(2)
X2(t)

(t)

10

I
(1)
0 (t) I

(1)
1 (t)

X1(t)

I
(1)
X1(t)

(t)

π → U(t)
Y (t)

Figure 4.1: A controller operating under a decision rule, π, decides at each time step, t, if to
use server U(t) = 1 or U(t) = 2 based on previously observed information, Y (t − 1), Y (t −
2), . . .. The server environments, Xi(t) are Markov modulated.

Consider a situation as depicted in Figure 4.1. Jobs arrive into the queue, Q(t), and are

potentially served by one of two servers j = 1 or j = 2, according to some control policy.

The system is operating in discrete time steps t = 0, 1, . . . , where in each time step, the

following sequence of events occur:

(1) An arrival occurs as indicated through E(t): E(t) = 1 indicates an arrival and otherwise

E(t) = 0.

(2) The environments of the servers update from
(
X1(t − 1), X2(t − 1)

)
to
(
X1(t), X2(t)

)
,

autonomously. That is, the updating of the environment is not influenced by arrivals,

queue length and controller choice.

(3) A control decision u = U(t) of which server to select is made based on observations in

previous time steps, denoted by Y (t− 1), Y (t− 2), . . .. This is through a decision rule,

π. We consider different observation schemes as described below.

(4) The control action is executed, and the queue length is updated as follows:

Q(t+ 1) = Q(t) + E(t)− I(t), with I(t) = I
(u)
Xu(t)(t).
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Here, I(t) indicates whether there was a service success or not. It is constructed from

the primitive sequences, {
I

(j)
i (t), t = 0, 1, 2, . . .

}
,

for servers j = 1, 2 and environment states i = 0, 1. Note that when Q(t) = 0, we

notionally assume that U(t) = u = 0, indicating “no action” and in this case denote

I
(0)
i ≡ 0 for i = 0, 1.

(5) The observation of Y (t) is made and is used in subsequent time steps.

The sequence of events (1)–(5) as above repeats in every time step and fully defines the

evolution law of the system. We consider the following distinct observation schemes:

(I) Full observation: The controller knows the state of both servers all the time. In this case

Y (t) =
(
X1(t), X2(t)

)
,

and further, the sequence of steps above is slightly modified with step (5) taking place be-

tween steps (2) and (3) and the policy at step 3 being

u = U(t) = π
(
Y (t)

)
.

(II) State observation: The controller observes the state of the selected server at time t,

but does not observe the other server at that time. Hence

Y (t) =


(
X1(t), ∅

)
if u = 1,(

∅, X2(t)
)

if u = 2.

(III) Output observation: The controller observes the success or failure of outputs of the

server selected (but gains no information about the other server at that time). Hence

Y (t) =


(
I

(1)
X1(t)(t), ∅

)
if u = 1,(

∅, I(2)
X2(t)(t)

)
if u = 2.
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(IV) Queue observation: The controller only observes the queue length, Q(t), and can thus

utilize the differences

∆Q(t) = Q(t+ 1)−Q(t) = E(t)− I(t).

Note that since the system is operating in discrete time, there is some loss of information

compared to case III : If ∆Q(t) = 1 or ∆Q(t) = −1, then it is clear that I(t) = 0 or I(t) = 1,

respectively. But if ∆Q(t) = 0, then since the controller does not observe E(t), there is not a

definitive indication of I(t).

(V) No observation: We assume the controller does not observe anything. Nonetheless,

as with the other cases, the controller knows the system parameters as described below.

We consider the simplest non-trivial probably model for the primitives. These are E(t),

I
(j)
i (t) and the environment processes, Xj(t), all assumed mutually independent. The ar-

rivals, E(t), are an i.i.d. sequence of Bernoulli random variables, each with the probability

of success λ. The service success indicators, for each server j = 1, 2 and state i = 0, 1,

denoted by {I(j)
i (t), t = 0, 1, 2, . . .}, are each an i.i.d. sequence with

I
(j)
i (t) ∼ Bernoulli

(
µ

(j)
i

)
.

Moreover, we assume

µ
(2)
0 ≤ µ

(1)
0 < µ

(1)
1 ≤ µ

(2)
1 . (4.2.1)

Hence states i = 1 for both servers are better than states i = 0. Further, the spread of the

chance of success for Server 2 is greater or equal to that for Server 1.

For the environment processes, we restrict attention to a two-state Markov chain, sometimes

referred to as a Gilbert–Elliot channel [180]. We denote the probability transition matrix for

server j as:

P (j) =

 pj pj

qj qj

 =

 1− γj ρj γj ρj

γj ρj 1− γj ρj

 , (4.2.2)

with x := 1 − x. In the sequel, we omit the server index j from the individual parameters

of P (j). A standard parametrisation of this Markov chain uses transition probabilities p, q ∈
[0, 1]. Alternatively, we may specify the stationary probability of being in state 1, denoted by
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γ ∈ [0, 1], together with the second eigenvalue of P , denoted by ρ ∈
[
1−min(γ−1, γ−1

)
, 1
]
.

Using this parametrization, ρ quantifies the time-dependence of the chain; when ρ = 0 the

chain is i.i.d., otherwise there is a memory. If ρ > 0 then environment states are positively

correlated, otherwise they are negatively correlated. Our numerical examples in this paper

deal with positive correlation as it is often the more reasonable model for channel memory.

The relationship between the (γ, ρ) parametrisation and the (p, q) parametrization is given

by p = γ ρ, q = γ ρ, γ = p/(p+ q), and ρ = 1 − p − q. See Figure 4.2. Moreover, for each

server, we can consider the spread of µ as µ(j)
0 = γj − εj and µ(j)

1 = γj + εj, where εj shows

the spread. So from above assumptions, the spread of Server 2 is greater than spread of

Service 1: ε2 > ε1.

λ
Bandit Server 2

10

µ
(2)
0 µ

(2)
1

q2

p2
µ(2)

Bandit Server 1

10

µ
(1)
0 µ

(1)
1

q1

p1
µ(1)

controller

Figure 4.2: Parameters of the system.

It is instructive to consider the long term behaviour of I(j)
Xj(t)

(t) for j = 1, 2 by assuming the

sequence {Xj(t), t = 0, 1, 2, . . .} is stationary and thus each Xj(t) is Bernoulli distributed

with parameter γj. In this case

E[I
(j)
Xj(t)

(t)] = γj µ
(j)
0 + γj µ

(j)
1 ,

Var[I
(j)
Xj(t)

(t)] = γj µ
(j)
0 µ

(j)
0 + γj µ

(j)
1 µ

(j)
1 + γj γj

(
µ

(j)
1 − µ(j)

0

)2
.

These quantities are useful for obtaining a rough handle on the performance of the system.

The stability region of the system is defined as the set of arrival rates for which there exist

a decision rule, π, under which the Markov chain that is describing the system (see Sec-

tion 2.5.2) is positive recurrent. Note that this Markov chain, encapsulates Q(t), but may
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also include additional state variables1. We postulate that stability regions are of the form

{λ : λ < µ∗},

where the stability bound µ∗ varies according to the observation schemes I–V above and is

identical to the maximal throughput rate that may be obtained in a system without a queue

(but rather with an infinite supply of jobs). Further, by the construction of the information

observation schemes, we have

µ∗no ≤ µ∗queue ≤ µ∗output ≤ µ∗state ≤ µ∗full , (4.2.3)

where µ∗no corresponds to case V, µ∗queue corresponds to case IV and so forth.

The lower and upper bounds, µ∗no and µ∗full, are easily obtained as we describe now. However,

the other cases are more complicated and are analysed in the sections that follow. For the

lower and upper bounds we have

µ∗no = max
{
E[I

(1)
X1(t)(t)], E[I

(2)
X2(t)(t)]

}
,

µ∗full = γ1γ2µ
(1)
0 + γ2µ

(2)
1 + γ1γ2µ

(1)
1 .

The lower bound, µ∗no is trivially achieved with a control policy that always uses the server

with the higher mean throughput. The upper bound is achieved with a control policy that

uses the best server at any given time. Under the ordering in (4.2.1), the throughput in

this case is calculated as follows: If both servers are in state 0, then since µ
(2)
0 ≤ µ

(1)
0 , the

controller selects Server 1. This situation occurs at a long term proportion, γ1γ2, hence we

obtain the first term of µ∗full. The other terms of µ∗full are obtained with a similar argument.

Note that when γ1 = γ2 = γ and µ(1)
i = µ

(2)
i = µi for i = 0, 1, the expression is reduced to

µ∗full = γ2µ0 + (1− γ2)µ1, (4.2.4)

and can be obtained by a Binomial argument.

1There may be different Markov chain representations of this system. One concrete description for a
POMDP where each state consists of the number of jobs in the queue, server states, and controller states
is presented in Section 4.5.
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As a benchmark numerical case, all the examples we present use

γ = 0.5 , µ0 = 0.2 , µ1 = 0.8 , (4.2.5)

for both servers. Under these parameters µ∗no = 0.5 and µ∗full = 0.65. Hence, in the examples

that follow, we explore how µ∗queue, µ∗output and µ∗state vary within the interval [0.5, 0.65] as ρj,

j = 1, 2 varies.

4.3 Belief States

In implementing a controller for each of the observation schemes, the use of belief states

reduces both the complexity of the controller and the related analysis. The idea is to sum-

marize the history of observations, Y (t − 1), Y (t − 2), . . . , into sufficient statistics that are

updated by the controller. For our model, a natural choice for the belief state of server j is

ωj(t) = P
(
Xj(t) = 1 |Prior knowledge to time t

)
.

As we describe now, it is a simple matter to recursively update this sequence in a Bayesian

manner. Denoting ωj(t) by ω, the believed chance of success is

r(ω) := ωµ0 + ωµ1.

The updating algorithms (different for each observation scheme) make use of the following:

τn(ω) := ωρ+ γρ , τf (ω) := q µ1 ω+p µ0 ω
r(ω)

,

τs(ω) := q µ1 ω+p µ0 ω
r(ω)

, τc(ω) := λτs(ω) + λτf (ω).

(4.3.1)

Note that in the above, superscripts j are omitted for clarity. The probabilistic meaning of

these functions is described in the sequel. These are used to define recursions for updating

the belief state. Each observation scheme entails a different type of recursion:
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(II) State observation:

(
ω1(t+ 1), ω2(t+ 1)

)
=


(
X1(t), τ

(2)
n

(
ω2(t)

)
, U(t) = 1,(

τ
(1)
n

(
ω1(t)

)
, X2(t)

)
, U(t) = 2.

(III) Output observation:

(
ω1(t+ 1), ω2(t+ 1)

)
=



(
τ

(1)
f (ω1(t)), τ (2)

n

(
ω2(t)

))
, I

(1)
X1(t)(t) = 0,

U(t) = 1,(
τ (1)
s (ω1(t)), τ (2)

n

(
ω2(t)

))
, I

(1)
X1(t)(t) = 1,

(
τ (1)
n

(
ω1(t)

)
, τ

(2)
f (ω2(t))

)
, I

(2)
X2(t)(t) = 0,

U(t) = 2.(
τ (1)
n

(
ω1(t)

)
, τ (2)
s (ω2(t))

)
, I

(2)
X2(t)(t) = 1,

(IV) Queue observation:

(
ω1(t+ 1), ω2(t+ 1)

)
=



(
τ

(1)
f (ω1(t)), τ (2)

n

(
ω2(t)

))
, ∆Q(t) = 1,(

τ (1)
c (ω1(t)), τ (2)

n

(
ω2(t)

))
, ∆Q(t) = 0, U(t) = 1,(

τ (1)
s (ω1(t)), τ (2)

n

(
ω2(t)

))
, ∆Q(t) = −1,

(
τ (1)
n

(
ω1(t)

)
, τ

(2)
f (ω2(t))

)
, ∆Q(t) = 1,(

τ (1)
n

(
ω1(t)

)
, τ (2)
c (ω2(t))

)
, ∆Q(t) = 0, U(t) = 2.(

τ (1)
n

(
ω1(t)

)
, τ (2)
s (ω2(t))

)
, ∆Q(t) = −1,

Upon applying the recursions above, we indeed track the belief state as needed.

Proposition 4.3.1. For each of the observation schemes, assume that at t = 0, ωj(0) =

P
(
Xj(0) = 1

)
. Then upon implementing the recursion above, based on the observations, it

holds that

ωj(t) = P
(
Xj(t) = 1 |Y (t), Y (t− 1), . . . , Y (0)

)
, t = 1, 2, . . . .

Proof. The proof and derivation of the operators in (4.3.1) follows from elementary condi-

tional probabilities and induction. We illustrate this for the output observation case here. It
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holds that

P
(
X(t) = 1

∣∣ I(t− 1) = 0
)

=
P (X(t) = 1, I(t− 1) = 0)

P (I(t− 1) = 0)

=
P
(
X(t) = 1, I = 0

∣∣ X = 1
)
P (X = 1) + P

(
X(t) = 1, I = 0

∣∣ X = 0
)
P (X = 0)

P
(
I = 0

∣∣ X = 1
)
P (X = 1) + P

(
I = 0

∣∣ X = 0
)
P (X = 0)

,

where we denote X = X(t − 1) and I = I(t − 1). Since X(t) and I(t − 1) are conditionally

independent given X(t− 1), the above numerator can be written as:

P
(
X(t) = 1

∣∣ X = 1
)
P
(
I = 0

∣∣ X = 1
)
P (X = 1)

+ P
(
X(t) = 1

∣∣ X = 0
)
P
(
I = 0

∣∣ X = 0
)
P (X = 0) = q µ1 ω + p µ0 ω.

Similarly, for the denominator we have:

P
(
I = 0

∣∣ X = 1
)
P (X = 1) + P

(
I = 0

∣∣ X = 0
)
P (X = 0) = µ1ω + µ0ω,

which is equal to r(ω). Hence as expected, we find that

P
(
X(t) = 1

∣∣ I(t− 1) = 0
)

= τf (ω).

The derivation of τn(ω) and τs(ω) follows similar lines. For the queue observation case,

notice that

P
(
X(t) = 1

∣∣ ∆Q(t) = 1
)

= τf (ω) , P
(
X(t) = 1

∣∣ ∆Q(t) = −1
)

= τs(ω) ,

P
(
X(t) = 1

∣∣ ∆Q(t) = 0
)

= λτs(ω) + λτf (ω) = τc(ω).

The state observation case follows similar lines.

Note that the fixed point of τn is the stationary probability γ. The fixed points of τf and

τs are also of interest. When ρ 6= 0 and µ0 6= µ1, τf and τs are (real) hyperbolic Möbius

transformations of the form (aω+b)/(cω+d) for ω ∈ [0, 1]. As such, they each have two distinct

fixed points, one stable and one unstable. Here, excluding trivialities where p, q ∈ {0, 1}, the

stable fixed point of each lies in (0, 1) and is of the form
(
a − d +

√
(a− d)2 + 4bc

)
/2c (see

also Lemma 2 and 3 of [134]). For τf , we have a = q µ1 − p µ0, b = p µ0, c = µ1 − µ0, and

d = µ0. Fixed point of τs comes from the same formula by replacing µi by µi.
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Denote by ω(j)
s and ω(j)

f , the stable fixed point of τ (j)
s and τ (j)

f , respectively for j = 1, 2. Then

Ω = Ω1 × Ω2 ⊂ [0, 1]× [0, 1],

where we put

Ωj = [min(ω
(j)
f , ω(j)

s ), max(ω
(j)
f , ω(j)

s )],

is the belief state space and the limit of any infinite subsequence of the mappings τn, τf , τs

and τc (for ω1, ω2 ∈ [0, 1]) lies within Ω, see [146] for more details.

4.4 Maximal Throughput

Having defined sufficient statistics for the belief state and their evolution, the problem of

finding a maximally stabilizing control can be posed as a POMDP, see for example [26] or

the historical reference [184]. The objective for the POMDP is

µ∗ = sup
π

lim inf
T→∞

1

T
Eπ
[ T−1∑
t=0

I(t)
]
,

where U(t) = π
(
ω1(t), ω2(t)

)
influences the I(t) as outlined in Section 2. We note that a

formal treatment of the POMDP in the average reward case, including the validity of the

Bellman equations below is a mathematically delicate matter, requiring investigation in its

own right. See [169] for an account of average reward criteria. It is not the focus of the

current research. Nevertheless, using the Bellman equations as we do below, makes sense

from a practical perspective.

The Myopic Policy

One specific policy is the myopic policy given by:

π(ω1, ω2) =


Server 2 if ω2 ≥ µ

(1)
1 −µ

(1)
0

µ
(2)
1 −µ

(2)
0

ω1 +
µ
(1)
0 −µ

(2)
0

µ
(2)
1 −µ

(2)
0

,

Server 1 if otherwise.
(4.4.1)

The affine threshold in this policy is obtained by comparing the immediate expected mean
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throughput for any given pair (ω1, ω2) and choosing the server that maximizes it. Such a

policy is attractive in that it is easy to implement. Further, when the servers are symmetric

(all parameters are identical), it holds from symmetry that it is optimal. In this case, it can be

represented as

π(ω1, ω2) = argmaxi=1,2 ωi,

and we refer to it as the symmetric myopic policy.

Simulation Result

Figure 4.3 demonstrates results obtained through a Monte Carlo simulation2 of the model for

observation schemes (I)–(V). We use the parameters in (4.2.5) and vary ρ with ρ1 = ρ2 = ρ

in the range [0, 1] with steps of 0.01. The policy used is the symmetric myopic policy and is

optimal since the servers are identical.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

µ∗
full

µ∗
state

µ∗
output

µ∗
queue

µ∗
no

ρ

µ
*

Figure 4.3: The stability bound is displayed as a function of ρ for the various observation
schemes. This plot is based on simulation results using the parameters in (4.2.5) and ρ1 =
ρ2 = ρ.

As we see from the figure, the ordering (4.2.3) appears to hold. Further, at the i.i.d. case

ρ = 0, historical observations are not useful and the throughput of all observation schemes,

except for full observation, is at 0.5. At the other extreme, when ρ → 1, we have that the

2Simulation details: We run the process for t = 5, 000, 000 time units, using common random numbers for
each run and recording average throughput.
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state observation scheme converges to a throughput identical to that of the full observation

scheme. This is because, at that regime, the server state environments rarely change.

Thus, from a throughput perspective, the controller behaves as though it has full information.

On the other hand, even at ρ = 1, the output observation scheme and queue observation

scheme still perform at a lower throughput. Finally, for ρ ∈ (0, 1) it is evident that there

is a gap in performance for each observation scheme. This gap quantifies the value of

information in controlling our model and motivates further analysis.

Bellman Equations

It is well-known that the optimal policy that maximizes the throughput follows from the av-

erage reward Bellman equations. See [169] for background on Markov decision processes

(MDP) or [89] for a discussion of average reward optimality with such state spaces. The

Bellman equation is then

µ∗ + h(ω1, ω2) = max
{
h(1)(ω1, ω2), h(2)(ω1, ω2)

}
,

where h is the relative value function and the individual components h(j)(·, ·), vary as follows:

(II) State observation:

h(1)(ω1, ω2) := r(1)(ω1) +
[
ω1 h

(
p1, τ

(2)
n (ω2)

)
+ ω1 h

(
q1, τ

(2)
n (ω2)

)]
,

h(2)(ω1, ω2) := r(2)(ω2) +
[
ω2 h

(
τ (1)
n (ω1), p2

)
+ ω2 h

(
τ (1)
n (ω1), q2

)]
.

(III) Output observation:

h(1)(ω1, ω2) := r(1)(ω1) +
[
r(1)(ω1)h

(
τ

(1)
f (ω1), τ (2)

n (ω2)
)

+ r(1)(ω1)h
(
τ (1)
s (ω1), τ (2)

n (ω2)
)]
,

h(2)(ω1, ω2) := r(2)(ω2) +
[
r(2)(ω2)h

(
τ (1)
n (ω1), τ

(2)
f (ω2)

)
+ r(2)(ω2)h

(
τ (1)
n (ω1), τ (2)

s (ω2)
)]
.

(IV) Queue observation:

h(1)(ω1, ω2) := r(1)(ω1) +
[
λr(1)(ω1)h

(
τ

(1)
f (ω1), τ (2)

n (ω2)
)

+ λr(1)(ω1)h
(
τ (1)
s (ω1), τ (2)

n (ω2)
)

+
(
λr(1)(ω1) + λr(1)(ω1)

)(
h(τ (1)

c (ω1), τ (2)
n (ω2))

)]
,
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h(2)(ω1, ω2) := r(2)(ω2) +
[
λr(2)(ω2)h

(
τ (1)
n (ω1), τ

(2)
f (ω2)

)
+ λr(2)(ω2)h

(
τ (1)
n (ω1), τ (2)

s (ω2)
)

+
(
λr(1)(ω2) + λr(1)(ω2)

)(
h(τ (1)

n (ω1), τ (2)
c (ω2))

)]
.

The optimal decision is then to choose Server 1 if and only if h(1)(ω1, ω2) ≥ h(2)(ω1, ω2),

breaking ties arbitrarily. Since τ (j)
n (0) = τ

(j)
s (0) = τ

(j)
f (0) = pj and τ (j)

n (1) = τ
(j)
s (1) = τ

(j)
f (1) =

qj, for all three aforementioned cases we have:

µ∗ + h(0, 0) = max
{
µ

(1)
0 + h(p1, p2), µ

(2)
0 + h(p1, p2)

}
,

µ∗ + h(1, 1) = max
{
µ

(1)
1 + h(q1, q2), µ

(2)
1 + h(q1, q2)

}
.

(4.4.2)

From the ordering in (4.2.1), the above equations imply that at point (ω1, ω2) = (0, 0), choos-

ing Server 1 is optimal and at point (ω1, ω2) = (1, 1) choosing Server 2 is optimal. This

observation gives some initial insight into the structure of optimal policies. We now purse

these further numerically.

Numerical Investigation of Optimal Policies

A solution to the above Bellman equations can be obtained numerically using relative value

iteration and discretization of the belief state space, Ω. Here, we applied the MDP toolbox in

Matlab (see [55]) by considering that each interval [0, 1] for ω1 and ω2 is partitioned to 1000

equal sub-intervals. We then run relative value iteration with an accepted error set to 10−4.

Our various numerical experiments indicate the following:

1. The ordering in (4.2.3) holds.

2. Increasing (positive) ρj always yields an increase in µ∗.

3. Though the myopic policy does not appear to be generally optimal, when both servers

are identical, the optimal policy is the symmetric myopic policy. See Figure 4.4.

4. In all cases, the optimal policy is given by a non-decreasing switching curve within Ω.
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That is, there exists a function ω∗2(ω1) where the optimal policy is

π(ω1, ω2) =

Server 2 if ω2 ≥ ω∗2
(
ω1

)
,

Server 1 if otherwise.

5. When the ordering in (4.2.1) has strict inequalities, ω∗2(0) > 0 and ω∗2(1) < 1.

6. For identical servers, it holds that the switching curve for the output observation case is

sandwiched between the switching curve of the state observation case and the myopic

switching line (4.4.1).

7. The switching curve for the queue observation case depends on λ. Further, when λ is

at either of the extreme points (λ = 0 or λ = 1), the queue observation case agrees

with the output observation case.

8. Increasing spread of servers εj, always yields an increase in µ∗. Figure 4.4 illustrates

the switching curve derived by considering ε1 = 0.3, γ = ρ = 0.5 for both servers, and

increasing values of ε2.

9. As expected, when one of the servers is considered with ρ = 0.5, γ = 0.5, and µ0 = µ1

that server acts like a safe server, and the results are the same as the results in [146].

10. For identical servers with γ = 0.5, when ρ→ 1 and ε→ 0.5, as expected from Binomial

distribution (see Eq. (4.2.4)), µ∗ → 0.75.

As one illustration of some of the above properties, consider Table 4.1 based on the pa-

rameters of (4.2.5) and various values of ρ1 and ρ2. The results in the table further affirm

comments 1 and 3 above and contains values that agree with Monte Carlo simulation results,

similar to those of Figure 4.3.

ρ1 ρ2 µ∗state µ∗output µ∗queue

0.2 0.5 0.5543 0.5314 0.5190
0.4 0.5 0.5673 0.5400 0.5231
0.6 0.5 0.5823 0.5489 0.5289
0.8 0.5 0.6009 0.5647 0.5360

Table 4.1: Stability region bounds for observation schemes (II)-(IV) for various ρ1 and ρ2

values. Note the queue observation case is with λ = 0.5.
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ε2 = 0.51

1

Figure 4.4: Switching curve for increasing spread.

As a further illustration, Figure 4.5 shows switching curves, w∗2(·) for the parameters of (4.2.5)

with ρ1 = 0.5 and ρ2 = 0.7. In the figure, the red dotted line is the myopic policy line

(suboptimal). The solid blue curve is the switching curve for the output observation case.

The green loosely dashed line is related to the queue observation case and the orange

densely dashed curve is the switching curve for the state observation case. These curves

were obtained by finding the optimal decision for every (discretized) element of Ω and then

observing the switching curve structure.

4.5 QBD Structured Models for Finite State Controllers

Here we illustrate how matrix-analytic methods (MAM) can be used to analyse a finite state

controller that approximates an optimal controller. Our analysis is for the output observation

scheme (Case III). A similar analysis can be applied to the other observation schemes as

well.

A finite state controller operates by using a finite discrete belief state Ω̃, representing a

discrete grid in Ω. With such a controller, we consider the whole system as a quasi-birth-and-

death (QBD) process (for more details about QBD process see for example [119]). Using

the QBD structure, we find a matrix analytic expression for µ∗output (denoted by µ∗ in this
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Figure 4.5: Myopic and optimal policies for the state observation Case II, output observation
Case III and queue observation Case IV (λ = 0.5). This is for a system with ρ1 = 0.5 and
ρ2 = 0.7.

section).

Take Ω̃ = {1, . . . ,M}2 and define the controller state at time t by (ψ1(t), ψ2(t)) ∈ Ω̃. In doing

so, we treat ψj(t) as dMωj(t)e. The controller action is (potentially) randomized based on a

matrix of probabilities C so that Server 2 is chosen with probability C(ψ1(t),ψ2(t)) and otherwise

the choice is Server 1. That is, the matrix C is a randomized control policy. Such a policy

encodes information as in Figure 4.5.

The controller state is updated in a (potentially) randomized manner based on the M ×
M stochastic matrices N (j), S(j), F (j) for j = 1, 2. The rows of matrices N (j), S(j) and F (j)

indicate how to (potentially randomly) choose the next controller state. Here, N stands for

No service, S for Success, and F for Failure as follows: if Server 1 was not selected (no

service either because there were no jobs in the queue, or because the other server was

selected), the distribution of the new state is
(
N

(1)
ψ1(t),1, . . . , N

(1)
ψ1(t),M

)
; that is taken from the

row indexed by ψ1(t). Similarly, if Server 1 was chosen and service was successful (I = 1),
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the distribution of the new state is
(
S

(1)
ψ1(t),1, . . . , S

(1)
ψ1(t),M

)
. Finally, if Server 1 was chosen and

the service failed (I = 0), the distribution of the new state is
(
F

(1)
ψ1(t),1, . . . , F

(1)
ψ1(t),M

)
. Similarly,

for Server 2, we have
(
N

(2)
1,ψ2(t), . . . , N

(2)
M,ψ2(t)

)
,
(
S

(2)
1,ψ2(t), . . . , S

(2)
M,ψ2(t)

)
and

(
F

(2)
1,ψ2(t), . . . , F

(2)
M,ψ2(t)

)
,

respectively.

We construct the matrices N (j), S(j), F (j) based on a discretization of τ (j)
n , τ

(j)
s and τ

(j)
f , re-

spectively. For example, construction of S from τs is as follows: construct the row elements

of S by putting j = Mτs
(
i−1
M

)
for each i = 1, · · · ,M and then put


Si,j = 1 j is an integer,

Si,bjc = 1 1 ≤ bjc ≤M,

Si,dje = 1 otherwise,

and Si,k = 0 for all other row elements with k 6= j and k = 1, . . . ,M . After this, we ensure

irreducibility of this matrix by fixing ε > 0 (for instance ε = 0.001 in our numerical examples)

and adding ε/M to each element of the matrix and then renormalizing it.

The matrices F and N are constructed similarly based on τf and τn, respectively. This

is simply a mechanism to encode the transition operators over the finite grid. Hence the

matrices N (j), S(j), F (j) describe the propagation of ψj through the belief operators, similarly

to the propagation of ω through their continuous counterparts.

Now, given such a controller with

Controller parameters =
(
N (1), S(1), F (1), N (2), S(2), F (2), C

)
,

we construct a Markov chain, Z(t) for the system. The state of this model at time t is given

by the queue length, server environment state, and controller state as follows:

Z(t) =
(
Q(t)︸︷︷︸
Level

,
( Servers︷ ︸︸ ︷(
X1(t), X2(t)

)
,

Controller︷ ︸︸ ︷(
ψ1(t), ψ2(t))

))︸ ︷︷ ︸
Phase

)
∈ {0, 1, . . .} × {1, 2}2 × {1, . . . ,M}2.
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4.5.1 Explicit QBD Construction

When the states of Z(t) are lexicographically ordered, with first component countably infinite

(levels) and the other components finite (phases), the resulting (infinite) probability transition

matrix is of the QBD form:

A =



B0 B1 0

B−1 A0 A1

A−1 A0 A1

A−1 A0 A1

0
. . . . . . . . .


, (4.5.1)

where B−1, B0, B1, A−1, A0, and A1 are block-matrices. The matrix A−1 represents the phase

transition where there is a one level decrease. Similarly, the matrix A1 represents phase

transition where there is a one level increase, and A0 represents the phase transition where

the level remains the same. The corresponding matrices for level 0 are Bi for i = −1, 0, 1, as

in Section 2.3.3.

QBD Construction for a Model with a Safe Server

For the sake of simplicity, let us start with the toy model where one of the servers has only

one state as depicted in Figure 4.6. Such a server is called a safe server .

λ
Bandit Server 2

10

µ0 µ1

q

p
µ(2)

Safe Server 1

0

µ µ(1)

controller

Figure 4.6: Parameters of the toy model.
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For such a simple system, the controller parameters are

Controller parameters =
(
S, S(2), F (2), c

)
,

where c is the vector of probabilities representing the controller action. The bandit server

is chosen for service with probability ci, otherwise (with probability 1 − ci) the safe server is

chosen for service. The matrix S shows the probability transitions of the controller’s states

when the safe server is chosen. The matrices S(2) and F (2) are the probability transition

matrices of the controller’s states where the second server is chosen, and there is a success

or failure, respectively. The constructed Markov chain Z(t) for this system is given by:

Z(t) =
(
Q(t)︸︷︷︸
Level

,
( Bandit︷︸︸︷
X(t),

Controller︷︸︸︷
ψ(t)

)︸ ︷︷ ︸
Phase

)
∈ {0, 1, . . .} × {1, 2} × {1, . . . ,M}.

The block matrices in (4.5.1) are of size 2M × 2M as we construct now. For ` ∈ {1, 2},
denote

S̃` = µ` diag(c)S(2) + µdiag(c)S ,

F̃` = µ` diag(c)F (2) + µs diag(c)S .

Here S̃`(i, j) is the probability of updating controller state from i to j when the server state is

` and the transmission was successful. Similarly, F̃`(i, j) is the probability of doing so when

transmission was unsuccessful.

Now define the 2M × 2M matrices,

S̃ =

 p S̃1 p S̃1

q S̃2 q S̃2

 , F̃ =

 p F̃1 p F̃1

q F̃2 q F̃2

 , S =

 pS pS

q S q S

 .
These are combined to form the basic elements of the QBD transition probability matrix

(4.5.1) of the (complicated) Markov chain Z(t) as:

B0 = λS, B1 = λS, B−1 = A−1 = λS̃, A0 = λF̃ + λS̃, A1 = λF̃ .
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QBD Construction for a Two-State Model

For our model with two bandit server, the block matrices of (4.5.1) are 4M2 × 4M2 matrices

that constructed as follows:

B0 = λÑ, B1 = λÑ,

A−1 = λS̃, A0 = λF̃ + λS̃, A1 = λF̃ ,

(4.5.2)

where the matrices, S̃, F̃ , Ñ (each of order 4M2) denote the change of phase together with a

service success, service failure or no service attempt, respectively. For instance, the (i, j)-th

entry of S̃ is the chance of a service success together with a change of phase from i to j

(note that i and j are each 4-tuples). The sum S̃ + F̃ is a stochastic matrix (as is evident

from the construction below). Similarly, Ñ is a stochastic matrix. Hence the overall transition

probability (infinite) matrix A is stochastic as well.

To construct S̃, F̃ and Ñ , we define M2 × M2 matrices S̃_k`, F̃_k` and Ñ_k` for k, ` = 0, 1.

Taking S̃_k` as an example, its (i, j)-th entry (each represented as a 2-tuple), describes the

chance of success together with a transition of belief state from i to j, when the environment

of the first server is in state k and that of the second server is in state `. Here i and j,

each represent the overall system belief state in lexicographic order. That is, we should

refer to i as (i1, i2) and similarly to j. A similar interpretation holds for F̃_k` and Ñ_k`. These

aforementioned matrices are constructed (for k, ` = 0, 1) as follows:

S̃_k` = µ
(2)
`

(
diag

(
vec(C ′)

))
(N (1) ⊗ S(2)) + µ

(1)
k

(
diag

(
vec(C

′
)
))

(S(1) ⊗N (2)),

F̃_k` = µ
(2)
`

(
diag

(
vec(C ′)

))
(N (1) ⊗ F (2)) + µ

(1)
k

(
diag

(
vec(C

′
)
))

(F (1) ⊗N (2)),

Ñ_k` = (N (1) ⊗N (2)),

where vec(·) is an operation taking a matrix and resulting in a vector with the columns of the

matrix stacked up one by one and ⊗ is the standard Kronecker product.

To see the above, let us consider (for example) an element of the matrix S̃_k` at coordinate
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i = (i1, i2) and j = (j1, j2). This describes the probability of the event

W = {Success of service together with a transition to belief state (j1, j2)},

where X1 = k, X2 = `, ψ1 = i1, and ψ2 = i2. The event W can be partitioned into W1 (service

attempt was on 1) and W2 (service attempt was on 2). The chance of W2 is Ci1,i2. With

choosing Server 2 the success probability is µ(2)
` . Then under the event W2, the belief state

of Server 1 will be updated according to N (1) and the belief state of Server 2 with S(2). The

M2×M2 matrix diag(vec(C ′)) is a diagonal matrix where its diagonal elements are the rows

of the matrix C, each represent the chance of U = 2.

With the matrices S̃_k`, F̃_k` and Ñ_k` (for k, ` = 0, 1) in hand, we construct the matrices S̃, F̃

and Ñ as:

S̃ = (P (1) ⊗ P (2)) ~


S̃_00 0 0 0

0 S̃_01 0 0

0 0 S̃_10 0

0 0 0 S̃_11

 ,

F̃ = (P (1) ⊗ P (2)) ~


F̃_00 0 0 0

0 F̃_01 0 0

0 0 F̃_10 0

0 0 0 F̃_11

 ,

Ñ = (P (1) ⊗ P (2)) ~


Ñ_00 0 0 0

0 Ñ_01 0 0

0 0 Ñ_10 0

0 0 0 Ñ_11

 ,

where P (j) for j = 1, 2 are the 2 × 2 probability transition matrices of the servers given

by (4.2.2). The operation ~, for a given n× n matrix U and n× n diagonal block matrix V is
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defined as follows.

U ~ V =


u11 u12 · · · u1n

u21 u22 · · · u2n

... · · · . . .
...

un1 un2 · · · unn

~


V1 0 · · ·
0 V2 · · · 0
... · · · . . .

...

0 0 · · · Vn

 =


u11V1 u12V1 · · · u1nV1

u21V2 u22V2 · · · u2nV2

... · · · . . .
...

un1Vn un2Vn · · · unnVn

 .

Applying ~ multiplies each element of the i-th row of matrix U (which is a scalar) by the i-th

diagonal-element of matrix V (which is a matrix) and set the resulting matrices as the i-th

row of a new block matrix

Putting all of the above components together yields the probability transition matrix of Z(t), A.

Stability Criterion

A well-known sufficient condition for positive recurrence (stability) of QBDs such as Z(t) is

π∞
(
A1 − A−1

)
1 < 0,

where π∞ is the stationary distribution of the (finite) stochastic matrix A−1 + A0 + A1 and 1

is a column vector of ones. From (4.5.2), we see that this is also the stationary distribution

of S̃ + F̃ which does not depend on λ. This property of our QBD allows us to represent the

stability criterion as

λ < µ∗ = π∞S̃1, (4.5.3)

with µ∗ depending on the controller and system parameters but not depending on λ.

In addition to the stability criteria, a further virtue of modelling the system as a QBD is that

we can use the vast body of MAM knowledge and algorithms for analysing the system and

ultimately optimizing controllers. Nevertheless, our focus in this paper is on stability.

Numerical Illustration

We now use our QBD model and the stability criterion (4.5.3) to explore the performance of

finite state controllers.
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Figure 4.7: Stability bound achieved by finite state controllers for observation scheme III
with increasing M , computed by (4.5.3). The limiting horizontal lines are at µ∗ computed by
means of relative value iteration of Bellman equations.

In doing so, we consider the parameters as in (4.2.5) with ρ1 = ρ2 = ρ. Since in this

situation, the servers are identical, the symmetric myopic policy is optimal, and we thus

restrict attention to a matrix C with

Ci,j =


1, i < j,

0.5, i = j,

0, i > j.

Using these parameters, we evaluated (4.5.3) for increasing M and various values of ρ.

The results are in Figure 4.7. As expected, the performance of the finite state controller

converges to that found by numerical solution of the Bellman equations as in the previous

section. The sudden increase in performance (for instance, at M = 20 for ρ = 0.8) can be

attributed to discretization phenomena. Discretization Phenomena is the error resulting from

approximating a continuous function by finite number (here M ) of evaluations and reduces

when M → ∞. For reference, the values of µ∗ obtained by Bellman equation (as well as

the QBD when M → ∞) are 0.5179, 0.5359, 0.5539 and 0.5815 for ρ = 0.2, 0.4, 0.6 and 0.8,

respectively.
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Semi-Markov Models

5.1 Introduction

In biostatistics, many of models for survival and reliability analysis are two-state stochastic

processes which lead to a particular event such as death or outcome of a particular treatment

or drug. However, applying a multi-state stochastic process allows the modeller to provide

a richer and more accurate model by adding more details. These details are, for instance,

some alternative paths to the event of interest, specify all the intermediate events, or partial

failure modes in a progressive disease.

A multi-state stochastic process is a process X(t) for t ≥ 0, where X(t) can take a finite

number of values 1, 2, · · · , p. This process can be considered as a family of random variables

X(t) indexed by t. The quantities of interest are often the probability of being in a state at a

given time and the distribution of first passage time (the time until the process reach a given

state for the first time from a particular starting state).

In some applications of multi-state stochastic processes, the dependence on the history

of the process is negligible. Therefore, for the sake of mathematical tractability, assuming

the Markov property (where future transitions between states depend only upon the cur-

rent state) is convenient. For instance, Markov chains are widely used in modelling the

movements of patients between units of a hospital or between stages of a disease, see for

instance [41,189], or in the prediction of the incidence rate of diseases, see [2].
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However, in certain cases the Markov assumption is unrealistic. For instance, mechanical or

electronic component failure time, usually do not follow an exponential distribution and often

have a heavy-tailed distribution such as Weibull or lognormal distribution, see for instance

Chapter 2 of [25]. Further, some aspects of systems’ behaviour can not be captured by

ordinary Markov chains. For instance, the risk of chronic disease such as AIDS essentially

depends on the time since infection, see [105]. For these cases, applying a semi-Markov

process (SMP), as an extension of an ordinary Markov process, where future probability

transitions depend on the sojourn time (the time spent in the current state), and the clock

is reset to zero after each transition into a new state, seems a suitable choice. In fact, in

semi-Markov processes states of the process follow the Markov property but the distribution

of sojourn times are not necessarily exponential. SMPs have a variety of applications in

healthcare. For instance, for predicting a disease progression [72], health care manpower

supply prediction [192], and recovery progress of patients with a specific type of disease

[167].

For biomedical applications, especially those concerned with characterizing an individual’s

progression through various stages of a disease, a three-state semi-Markov process known

as the illness-death model is very popular, see for instance [36,105]. The illness-death model

is applied for modelling the trajectory of patients in intensive care units (ICUs) of hospitals.

Here, our main focus is on the statistical methodology of semi-Markov processes for this

model.

We compare and contrast two approaches for defining SMPs. The first approach is based on

knowing sojourn times, and the other one is based on knowing the transition rates. When it

comes to parameter estimation for these two approaches, we see that the second approach

has some advantages over the first approach. The second approach can be expressed by

using fewer parameters. On the other hand, specifically for the popular illness-death model,

we can show that the likelihood function of the second approach SMP can be written as the

product of likelihoods of two-state models. This is very helpful for reducing the computational

efforts for likelihood-based parameter estimations.

Further, the comparison of these approaches helps to construct a prediction model that pre-

dicts risks and chances of expected trajectories of patients through ICUs. Here, we present

relations between some quantities of interest in these two approaches. These relations, for
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instance, are used to derive the distribution of transition rates of an illness-death model when

we just have information on the distribution of sojourn times.

Another problem with modelling and analysis of survival, is that observations are often very

coarse, see for instance [1, 95]. For solving this problem, applying PH distributions seems

quite useful. For instance, a PH distribution can explain the stages of a disease happening

behind a visible stage. This is through a background (Markov) process going through a set

of stages which are not observable, see [135]. Moreover, PH distributions are a versatile

class of distributions that are dense in the class of all distributions defined on the non-

negative real line. So, applying them for approximating an unknown survival (or failure)

time distribution seems quite suitable. In addition to the above reasons, applying MAM

for analysing PH distributions, makes them an interesting tool in medical statistics, see for

instance [24, 64, 129]. We find the related formulas to extend the illness-death model to

the case of having, what we call, a multi-absorption phase-type (MAPH) distribution as the

sojourn time distribution or intensity distribution of the semi-Markov model.

The remainder of this chapter is structured as follows. In Section 5.2, we introduce the

semi-Markov process (SMP) and represent two different approaches to find the survival

time of an SMP based on known parameters. The first approach is based on sojourn times

and the second approach is based on transition rates. Moreover, we show relations between

parameters of these two models. Section 5.3 is about inference for the above-mentioned two

approaches. We define the likelihood function of both methods. For the case of illness-death

model, we show that the first approach has a privilege to the second approach. Section 5.4

compares the hazard functions of the two above-mentioned approaches. Section 5.5 is

about applying PH distributions for survival analysis. In Section 5.6, we introduce the notion

of an MAPH distribution through an example of a multi-state process and find out all the

related formulas for a general MAPH distribution.

5.2 Semi-Markov Processes

Semi-Markov processes (SMPs) are a natural generalization of both renewal processes and

Markov jump processes in continuous time. In many real-world applications, we need a
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stochastic process where the states of the process come from a Markov jump process but

with some dependence between jump times. For instance, in biostatistics, where the tra-

jectory of patients in hospital is considered, a limitation of the exponential distribution as

a model of the waiting (sojourn) time is that exponential distribution is non-ageing (mem-

oryless). However, the future situation of patients depends only on their current situation

(Markov property). For these kinds of applications, modelling with an SMP removes the

restriction of memoryless sojourn times and at the same time, preserves the usefulness of

applying Markov jump processes in continuous time. SMPs are applied for modelling a vari-

ety of processes in different areas such as economics, reliability, and health care, see [99].

Consider a homogeneous continuous-time Markov chain (CTMC) X(t) on states S =

{1, 2, · · · , p}. Denote the increasing sequence of jump times by T0 = 0 < T1 < T2 < T3 < · · ·
and its associated embedded Markov chain with Jn = X(Tn). Consider the semi-Markov

process (SMP) J(t) := JN(t) for t ≥ 0, where N(t) = max {n : Tn ≤ t} with (see Defini-

tion 2.2.6):

pij = P(Jn+1 = j | Jn = i),

and

Fij(t) = P(τn ≤ t | Jn = i, Jn+1 = j) t ≥ 0.

Note that for a Markov process, the sequence of sojourn times possess the Markov property

and follows either a geometric (discrete case) or an exponential (continuous case) distribu-

tion. But, in real application, this distribution is found by comparing different distributions to

the data to find the best-fitted distribution. Therefore, often applying a semi-Markov process,

which allows arbitrarily distributed sojourn times in any state but retains the Markov property

for the chain of states, is more suitable.

In most applications of SMPs in healthcare, a very popular three state semi-Markov process

known as the illness-death model is applied, see for instance [167]. We describe this model

in the following.

Illness-death model. The illness-death model is the most common model in epidemiology

and describes in Figure 5.1. The illness-death model is often applied in studying chronic
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0:Health

1:Illness

2:Death

Figure 5.1: The Illness-Death Model.

diseases.

In this model, we have three states “Health”, “Illness” and “Death” which are denoted by 0,1

and 2, respectively. There are three kinds of transitions: 0 → 1, 1 → 2 and 0 → 2 and

state 2 is absorbing. Since this model is often used to describe server illnesses, there is

no possibility of recovery, and therefore the model is irreversible. If the remissions can be

obtained by treatments, it is more appropriate to construct a model with an additional state

“Remission” rather than to consider that there is a possibility of moving back to the “Health”

state. The time until the process enters the final state (state 2) is a positive valued random

variable T that is called the survival time and we are interested to find P(T ≥ t).

Here, we present two approaches for defining a semi-Markov process and find the relations

between them and then will apply them for determining the likelihood of an illness-death

model. The first approach is based on sojourn times within states and the second approach

is based on the transition intensities.

5.2.1 First Approach to the SMP (in terms of sojourn times)

Consider (Jn, Tn) as the sequence of states and jump times of a Markov jump process X(t)

on state space S = {1, · · · , p} where Jn = X(Tn). The stochastic process X(t) is an SMP if

by assuming that the process is in state i, the next state is j with probability

pij = P(Jn+1 = j | Jn = i),
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and consider that the current state, Jn, and the next state, Jn+1, are known, the cumulative

distribution function of the sojourn time is given by:

Fij(t) = P(τn ≤ t | Jn = i, Jn+1 = j) t ≥ 0.

Note that this approach is compatible with Definition 2.2.6. For this definition of an SMP, the

quantities of interest (parametrized by the transition i→ j) are:

• The probability density function of the sojourn time:

fij(t) = lim
4t→0

1

4tP(τn ∈ (t, t+4t] | Jn = i, Jn+1 = j).

• The survival function that shows the probability that the subject is still in the current

state after time t:

Sij(t) = P(τn > t | Jn = i, Jn+1 = j) = 1− Fij(t)

Note that Sij(t) is a decreasing function, that is Sij(0) = 1 and limt→+∞ Sij(t) = 0.

• The hazard function which is often thought of as the probability that a jump occurs in

a specified interval (t, t+4t] given no jump before time t:

αij(t) = lim
4t→0

1

4tP
(
τn ∈ (t, t+4t] | Jn = i, Jn+1 = j, τn > t).

Here, note that by definition of conditional probability we have:

αij(t) =
fij(t)

Sij(t)
. (5.2.1)

On the other hand, F ′ij(t) = −S ′ij(t) and fij(t)

Sij(t)
=

F ′ij(t)

1−Fij(t) = −(lnSij(t))
′. So, we have∫ t

0
αij(u)du = − lnSij(t) or,

Sij(t) = e−
∫ t
0 αij(u)du.
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0:Health

1:Illness

2:Death

p01

p02

p12

Figure 5.2: The first approach for the illness-death model. Here, pij denotes transition probability of
going from state i to state j.

Moreover, we can write fij(t) in terms of αij(t) as:

fij(t) = αij(t)e
−

∫ t
0 αij(u)du. (5.2.2)

For the case that just the current state is known, we have:

Si(t) = P(τn > t | Jn = i) =
∑
j 6=i

pijSij(t).

5.2.2 Second Approach to the SMP (in terms of transition rates)

The first approach required specification of the parameters regarding two types of objects:

(i) Transition probabilities of the embedded chain (pij). (ii) The distribution of sojourn times

given a transition i → j. The second approach which we present now is more succinct in

that it only requires one type of object: transition rates.

The stochastic process X(t) on state space S = {1, · · · , p} is an SMP if by assuming that

the process is in state i, it goes to the next state, j, during the time interval (t, t + ∆t] with

probability

Pij(t, t+ ∆t) = P
(
X(t+ ∆t) = j | X(t) = i,H(t−)

)
,

and with the following transition rate:

α̃ij
(
t,H(t−)

)
= lim

∆t→0+

Pij(t, t+ ∆t)

∆t
,
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where H(t−) denotes the history of the process just before time t (t−)1. Here, the transitions

intensities depend only on the time spent in the current state. This comes from the strong

Markov property, for more details see Chapter 2 of [38].

Taking the illness-death model as an example, it implies that t is the time since ICU entry.

So, we have:

α̃0j

(
t,H(t−)

)
= α̃0j(t), j = 1, 2,

and

α̃12

(
t,H(t−)

)
= α̃12(t− T1),

where T1 is the time at which the process enters state 1.

By defining SMPs using this approach, the quantities of interest are:

• f̃ij(t) = lim4t→0
1
4tP(τn ∈ (t, t+4t], Jn+1 = j

∣∣ Jn = i). Note that this is (in general) not

a density, that is

∫∞
0
f̃ij(t)dt = limt→∞

∫ t
0
f̃ij(u)du = limt→∞ P(τn ≤ t, Jn+1 = j

∣∣ Jn = i)

= limt→∞
P(τn≤t,Jn+1=j,Jn=i)

P(Jn=i)

= limt→∞
P(τn≤t

∣∣ Jn+1=j,Jn=i)P(Jn+1=j,Jn=i)

P(Jn=i)

= limt→∞ Fij(t)P(Jn+1 = j
∣∣ Jn = i) = pij ≤ 1 .

• The elements cij(t) = P(τn ≤ t, Jn+1 = j | Jn = i), where cij(0) = 0 and

lim
t→∞

cij(t) = P(Jn+1 = j | Jn = i) = pij.

• S̃ij(t) = P(τn > t, Jn+1 = j | Jn = i).

• α̃ij(t) = lim4t→0
1
4tP(τn ∈ (t, t+4t], Jn+1 = j | Jn = i, τn > t).

Then we have these relations:
1Note that in some text books, H(t−) refers to a σ-algebra, see for instance, [38]
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0:Health

1:Illness

2:Death

α̃01(t)

α̃02(t)

α̃12(t − T1)

Figure 5.3: The Illness-Death Model - Second Approach. Here, α̃ij(t) is the transition rates of going
from state i to state j and T1 is the time that process jumped in state 1.

• d
dt
S̃ij(t) = −f̃ij(t), that comes from the following lines.

d
dt
S̃ij(t) = lim4t→0

P(τn>t+4t,Jn+1=j | Jn=i)−P(τn>t,Jn+1=j | Jn=i)
4t

= lim4t→0
−P(τn∈(t,t+4t],Jn+1=j | Jn=i)

4t

= − lim4t→0
1
4tP(τn ∈ (t, t+4t], Jn+1 = j | Jn = i) = −f̃ij(t).

• α̃ij(t) · S̃ij(t) 6= f̃ij(t). In fact, we have:

α̃ij(t) · S̃ij(t)
= lim4t→0 P(τn ∈ (t, t+4t], Jn+1 = j | Jn = i, τn > t) · P(τn > t, Jn+1 = j | Jn = i)

6= lim4t→0 P(τn ∈ (t, t+4t], Jn+1 = j | Jn = i) = f̃ij(t).

5.2.3 Relations Between the Two Approaches

The above two approaches can be related with the following relations. First note that using

the conditional probability argument P(A,B|C) = P(B|C)P(A|B,C), we have:

cij(t) = pij Fij(t), (5.2.3)

where pij 6= 0 and cij(t) = P(τn ≤ t, Jn+1 = j | Jn = i). Moreover,

f̃ij(t) = pijfij(t), (5.2.4)

and

S̃ij(t) = pijSij(t). (5.2.5)
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Further,

α̃ij(t) = P(Jn+1 = j | τn > t , Jn = i)αij(t).

The term P(Jn+1 = j | τn > t, Jn = i) can be represented as

P(Jn+1 = j | τn > t, Jn = i) =
S̃ij(t)

Si(t)
=
pijSij(t)

Si(t)
.

Hence,

α̃ij(t) =
pijSij(t)

Si(t)
αij(t), (5.2.6)

which, by using (5.2.1), can be written as:

α̃ij(t) =
pijfij(t)

Si(t)
.

Using the relations in (5.2.4), we can write the above equation as:

α̃ij(t) =
f̃ij(t)∑
i 6=j S̃ij(t)

.

Note that in the CTMC case Eq. (5.2.6) is given by:

α̃ij(t) = pijαij(t).

More relations in the CTMC case, are presented in the next proposition.

Proposition 5.2.1. Consider a finite state CTMC, where the sojourn time in state i has

the exponential distribution with rate λi and the transition rate from state i to state j has

exponential distribution with rate λij. In this case, λi =
∑

j 6=i λij and the above-mentioned

quantities and their relations are given by:

• fij(t) = λie
−λit.

• α̃ij(t) = λij (α̃ij(t) is a constant that is denoted by λij).

• Fij(t) = 1− e−λit(does not depend on j).

• Sij(t) = 1− Fij = e−λit.

• αij(t) =
fij(t)

Sij(t)
= λi.
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• Si(t) =
∑

j 6=i pij Sij(t) =
∑

j 6=i pij e
−λit = e−λit (note that

∑
j 6=i pij = 1).

• pij =
λij
λi

(Using (5.2.6)).

• cij(t) = pij(1− e−λit) =
λij
λi

(1− e−λit).

• f̃ij(t) = pijfij(t) =
λij
λi
λie
−λit.

• S̃ij(t) = pijSij(t) =
λij
λi
e−λit.

5.3 Inference

Survival analysis usually applies for cohort or clinical studies. So, the data is usually gath-

ered from the same subjects repeatedly during a time interval [0, T ]. The quantity of interest

is the expected time until the specific event (the event of study) happens. The time until

the event of study happens is a random variable T and is called the survival time . As we

mentioned before, the main issue in survival analysis would be having incomplete or sparse

observations. For instance, in the case of chronic diseases, when the event of study is

death, time of occurrence of this event is not observed for the subjects still alive at the end

of observation time. This type of incomplete observation is called right-censoring . There

are other kinds of censoring, like left-censoring, which are not of our interest, see [58].

5.3.1 Likelihood Function

In this section, we derive the likelihood function of an SMP from two different approaches

explained in the previous section.

First Approach Likelihood Here, we consider the common case of incomplete data or the

right censored data. Further, we assume that our model has an absorbing state (for instance

the illness-death model).

In this context, two different paths could happen for each subject h:
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1. Subject h gradually enters the absorbing state. Here, there is no censored data and

the history of this subject till time t is given by:

Hh(t) =
(
Jh;0, Jh;1, · · · , Jh;Nh , τh;0, τh;1, · · · , τh;Nh

)
,

where Jh;0, Jh;1, · · · , Jh;Nh, assuming that Jh;j 6= Jh;j+1, are consecutive jumps (states)

at the consecutive times 0 = T0 < · · · < TNh. Further, τh;0, τh;1, · · · , τh;Nh are the

corresponding sojourn times and Nh ≥ 0 is the total number of jumps of the subject h.

2. Subject h does not enter in the absorbing state. In this case, the right censoring hap-

pens either because the subject h leaves the study before going to absorbing state

(the sojourn time of (τh;Nn) is censored) or since the observation time ends before this

subject enters the absorbing state. The history of this subject is given by:

Hh(t) =
(
Jh;0, Jh;1, · · · , Jh;Nh , τh;0, τh;1, · · · , τh;Nh , Uh

)
,

where Uh is the time between last jump time of this subject Th;Nh and the end of the

study.

For each subject h, the likelihood function can be obtained corresponding to the two above-

mentioned paths:

1. The subject h stays at state i for time t and then goes to state j. Therefore the likelihood

for this subject is:

Si(t)α̃ij(t) = pijfij(d) = cij(t),

where cij are as in Eq. (5.2.3).

2. The subject h is in state i for a time t and the sojourn time is censored (right-censoring).

For this case, the likelihood is given by:

Si.(t) =
∑
j

pijSij(t). (5.3.1)

Therefore, if we consider that for the subject h, δh is 1 where the subject is censored and
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otherwise is 0, then the likelihood of this subject is given by:

Lh =

Nh∏
k=1

pJh;k−1 Jh;kfJh;k−1 Jh;k(τh;k)
(
SJh;Nh (Uh)

)δh
,

where Uh represents the time between Th;Nh and the end of observation/study. The total

likelihood when there are n different subjects (h = 1, · · · , n) is the product of likelihoods of

all subjects:

L =
n∏
h=1

Lh.

Second Approach Likelihood Having the second approach for defining an SMP, we can

derive the likelihood function as below.

Consider that the number of jumps is E and the process starts at time T0 = 0 from state

J0 and the other states of the jump process are labelled as Jj where j = 1, · · ·E. De-

note the transition times by Tj and consider that the observation happens during the time

interval [0, T ]. At a given time t, the process either stays in state Jj−1 (with probability

Pj−1 ,j−1(Tj−1, t) ) or jumps from state Jj−1 = m to state Jj = l (with transition rate α̃ml(Tj) if it

happens at j-th jump). Therefore the likelihood of a given subject can be written as:

L =
( E∏
j=1

Pj−1, j−1(Tj−1, T
−
j ) α̃j−1, j(Tj)

)
PE,E(TE, T ). (5.3.2)

On the other hand, by using the solutions of the forward Kolmogorov equation, see Chapter

7 of [58], we have:

Pj−1, j−1(Tj−1, T
−
j ) = exp

( ∫ Tj

Tj−1

α̃j−1(u)du
)
,

where α̃j−1(u) = −∑i 6=j−1 α̃j−1, i(u). Therefore, the likelihood function in (5.3.2) can be

written as:

L =
E∏
j=1

exp
(∫ Tj

Tj−1

α̃j−1(u)du
)
α̃j−1, j(Tj) exp

(∫ T
TE

α̃E(u)du
)
, (5.3.3)

which can be simplified to:

L =
K∏
j=1

(
exp(

∫ Tj

Tj−1

α̃j−1(u)du)
)
α̃j−1, j(Tj)

1{j 6=K} , (5.3.4)

where K = E + 1 and we assume that TK = T .
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For writing the complete likelihood, let us assume that at time t the process is in state m,

then the following two factors are essential in writing the likelihood function:

Dmlj = 1{Jj−1=m,Jj=l} and Rm(t) =
K∑
j=1

1{Jj−1=m,Tj−1<t≤Tj}.

Note that the first indicator is 1 where the j-th jump is from state Jj−1 = m to state Jj = l

and otherwise, it is equal to zero. The second indicator is 1 where at time t the process is

in state Jj−1 = m. Therefore, by having the number of jumps and their orders, the likelihood

can be formulated as:

L =

p∏
m=1

p∏
l=1

[( K∏
j=1

α̃ml(Tj)
Dmlj

)
exp

(
−
∫ T

0

Rm(u)α̃ml(u)du
)]
, (5.3.5)

where p is the number of states of the SMP, see [96].

5.3.2 Likelihood Function of the Illness-Death Model

Here we formulate the likelihood function of the above mentioned two approaches for illness-

death model and discuss that the inference for the second approach is easier.

The likelihood of illness-death model – First approach The first approach to illness-

death model is described in Figure 5.2. Here, by assuming that the observation time is T ,

we derive the likelihood for the four different possible paths:

1. During time interval (0, T ), the subject h remains in state 0 (type 1 subject):

L0→0 = S0.(T ) = p01 S01(T ) + p02 S02(T ).

2. During time interval (0, T ), the subject h goes from state 0 to state 1 (type 2 subject):

L0→1 = p01 f01(T1)S1.(T − T1) = p01 f01(T1) p12 S12(T − T1),

where the second equality comes from (5.3.1).
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3. During time interval (0, T ), the subject h goes from state 0 to state 2 (type 3 subject):

L0→2 = p02f02(T2).

4. During time interval (0, T ), the subject h goes from state 0 to state 1 and then to state

2 (type 4 subject):

L0→1→2 = p01f01(T1) p12 f12 (T2 − T1).

Then, the likelihood function is given by:

L = L0→0 × L0→1 × L0→2 × L0→1→2 (5.3.6)

Note that from Eq. (5.2.2), fij(t) = αi,j(t) e
−

∫ t
0 αi,j(u)du. Further we have: p01 = 1 − p02 and

p12 = 1. So, for this approach, we have four unknowns to estimate. These unknowns are p01

(or equivalently p02) and three density functions f01(t), f02(t), and f12(t).

The likelihood of illness-death model – second approach The likelihood of the illness-

death model illustrated in Figure 5.3, can be expressed regarding the intensity rates α̃ij(t).

Here, again for a given subject h, we obtain the likelihood of four possible paths:

1. During time interval (0, T ), the subject h remains in state 0 (type 1 subject):

L0→0 = P00(0, T ).

2. During time interval (0, T ), the subject h goes from state 0 to state 1 (type 2 subject):

L0→1 = P00(0, T1) α̃01(T1)P11(T1, T ).

3. During time interval (0, T ), the subject h goes from state 0 to state 2 (type 3 subject):

L0→2 = P00(0, T2) α̃02(T2).

4. During time interval (0, T ), the subject h goes from state 0 to state 1 and then goes to
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state 2 (type 4 subject):

L0→1→2 = P00(0, T1) α̃01(T1)P11(T1, T2) α̃12(T2).

Here, note that from the forward Kolmogorov equation for the illness-death model, the P00(t)

and P11(t) can be written in terms of α̃ij(·) as

P00(t) = exp
(
−
∫ t

0

(
α̃01(u) + α̃02(u)

)
du
)
,

P11(t) = exp
(
−
∫ t

0
α̃12(u)du

)
.

Therefore, for this approach, we only have three unknowns: α̃01(t), α̃02(t), and α̃12(t).

Having fewer unknowns for the same model, make it sensible to write the full likelihood

of illness-death model based on second approach (since for the first approach, we had 4

unknowns and for the second approach we have 3 unknowns). Moreover, from Eq. (5.3.5) we

can see that each transition can be considered separately if it has its own set of parameters

which could facilitate the estimation. However, in the case that there are common parameters

for different transitions, they must be considered together.

For the special example of illness-death model since the process will not back to its previous

states, for the sake of simplicity we can denote state Jj by just j. Moreover, note that for

this example, a given subject only departs states m = 0, 1 and only enters states l = 1, 2.

Therefore Eq. (5.3.5), for this example can be written as:

L =
∏3

j=1

(
α̃01(Tj)

)D01j

× exp
(
−
∫ T

0
α̃01(u)du

)
×
(
α̃02(Tj)

)D02j

× exp
(
−
∫ T

0
α̃02(u)du

)
×
(
α̃12(Tj)

)D12j

× exp
(
−
∫ T

0
α̃12(u− T1)du

)
,

(5.3.7)

where

• D01j = 1 just when j = 1 and first jump is from 0 to 1.

• D02j = 1 just when j = 1 and first jump is from 0 to 2.

• D12j = 1 just when j = 2 and second jump is from 1 to 2.
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Now consider that there are N different subjects and N = N1 + N2 + N3 + N4, where Ni

shows the number of subjects of type i for i = 1, · · · , 4. Using Eq. (5.3.7), the full likelihood

for N subjects is given by:

L =
∏N2

k2=1

∏N3

k3=1

∏N4

k4=1(
{exp

(
−
∫ T

0
α̃01(u) du

)
}N1 × exp

(
−
∫ Tk21

0
α̃01(u) du

)
× α̃01(T k21 )

× exp
(
−
∫ Tk32

0
α̃01(u) du

)
× exp

(
−
∫ Tk41

0
α̃01(u) du

)
× α̃01(T k41 )

×{exp(−
∫ T

0
α̃02(u) du)}N1 × exp

(
−
∫ Tk21

0
α̃02(u) du

)
× exp

(
−
∫ Tk32

0
α̃02(u) du

)
× α̃02(T k32 )× exp

(
−
∫ Tk41

0
α̃02(u) du

)
× exp

(
−
∫ T
T
k2
1
α̃12(u− T k21 ) du

)
× exp

(
−
∫ Tk42

T
k4
1

α̃12(u− T k41 ) du
)
× α̃12(T k42 − T k41 )

)
,

(5.3.8)

where T kil for i = 2, 3, 4 and l = 1, 2 denotes the transition time of k−th subject of type i,

to the state l. In the above likelihood, the end of the study, T , has an important role. For

instance, if T is less than both T j1 and T j2 , then as it can be seen from lines 2 and 3 of (5.3.8),

the likelihoods of subjects of types 2, 3 and 4 include α̃01(u) term. This point and the fact that

(5.3.8) is just written in terms of α̃01(u), α̃02(u) and α̃12(u) motivate us to split this likelihood

into individual likelihoods of sub-models of illness-death model which are: sub-model 0→ 1,

sub-model 0 → 2 and sub-model 1 → 2. The next proposition shows the likelihood of these

sub-models are just parts of (5.3.8) which are written in terms of α̃01(u), α̃02(u), and α̃12(u),

respectively.

Proposition 5.3.1. The full likelihood of the illness-death model can be written as the product

of likelihoods of three two-state sub-models 0→ 1, 0→ 2 and 1→ 2.

Proof. First consider the sub-model 0→ 1 including the subjects of full likelihood which stay

in state 0 or tend to go from state 0 to state 1; that is parts of full likelihood (5.3.8) in terms

of α̃01. Denote the censored time by TC . First, assume that TC = T (there is no censorship).

Then, if T < T j1 , we have subjects of type 1 which are included in this sub-model. Otherwise,

where T j1 < T , there are some subjects of type 2 which are included in this sub-model. If we

assume that TC = T j2 , subjects of type 3 can be included in this sub-model. Finally, where

there is no censorship and T j1 < T j2 and T j1 < T , subjects of type 4 can be included in this
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sub-model. Therefore, the first two lines of L can be written as:

L0→1 =
∏N01

j=1 exp
(
−
∫ T =TC

0
α̃01(u) du

)
× exp

(
−
∫ T j1

0
α̃01(u) du

)
× α̃01(T j1 )

× exp
(
−
∫ T j2 =TC

0
α̃01(u) du

)
× exp

(
−
∫ T j1

0
α̃01(u) du

)
× α̃01(T j1 ).

Now if we put T̃ j1 = min{T j1 , TC}, where TC is either T j2 or T and by using:

δj1 =

 1 if T j1 < T and T j1 < T j2 (for subjects of type 2 or 4),

0 otherwise (for subjects of type 1 or 3).

Then, we have:

L0→1 =

N01∏
j=1

(
exp

(
−
∫ T̃ j1

0

α̃01(u)du
)
α̃01(T̃ j1 )

)δj1 (
exp

(
−
∫ T̃ j1

0

α̃01(u)du
))1−δj1

,

where N01 denotes the number of subjects including in this sub-model.

Similarly, the parts of (5.3.8) which are written in terms of α̃02(·); that is the likelihood of

sub-model 0→ 2 can be formulated as below:

L0→2 =

N02∏
j=1

(
e−

∫ T̃ j2
0 α̃02(u)du α̃02(T̃ j2 )

)δj2 (
e−

∫ T̃ j2
0 α̃02(u)du

)1−δj2
,

where N02 denotes the number of subjects including in the sub-model 0 → 2. Here, T̃ j2 =

min{T j2 , TC}, and TC is either T01 (which denotes the time that a subject jumps from state 0

to state 1) or T (for the case that the subject censored). Further,

δj2 =

 1 if T j2 < T and T j2 < T j1 (for subjects of type 3 or 4),

0 otherwise (for subjects of type 1 or 2).

Finally, for parts of the full likelihood (5.3.8) written in terms of α̃12(·), by changing the vari-

ables v = u− T k21 and w = u− T k41 , we have:

∏N12

j=1 exp
(
−
∫ T
T j1
α̃12(u− T j1 ) du

)
× exp

(
−
∫ T j2
T j1
α̃12(u− T j1 ) du

)
× exp

(
α̃12(T j2 − T j1 )

)
= exp

(
−
∫ T −T j1

0
α̃12(v) dv

)
× exp

(
−
∫ T j2−T j1

0
α̃12(w) dw

)
× exp

(
α̃12(T j2 − T j1 )

)
.

139



Chapter 5: Semi-Markov Models

Therefore, by considering T̃ j12 = min{T j2 , T } and

δj12 =

 1 if T j2 < T (for subjects of type 4),

0 otherwise (for subjects of type 1 ),

the above part of the full likelihood, the likelihood of sub-model 1→ 2, can be written as:

L1→2 =

N12∏
j=1

(
e−

∫ T̃ j12−Tj1
0 α̃12(u)du α̃12(T̃ j12 − T j1 )

)δj12 (
e−

∫ T̃ j12−Tj1
0 α̃12(u)du

)1−δj12
,

where N12 denotes the number of subjects including in the sub-model 1→ 2. Therefore, the

full likelihood 5.3.8 can be written as:

L =
∏N01

j=1

∏N02

j=1

∏N12

j=1{(
exp

(
−
∫ T̃ j1

0
α̃01(u)du

)
α̃01(T̃ j1 )

)δj1 × ( exp
(
−
∫ T̃ j1

0
α̃01(u)du

))1−δj1 ×
(
e−

∫ T̃ j2
0 α̃02(u)du α̃02(T̃ j2 )

)δj2
×
(
e−

∫ T̃ j2
0 α̃02(u)du

)1−δj2 ×
(
e−

∫ T̃ j12−Tj1
0 α̃12(u)du α̃12(T̃ j12 − T j1 )

)δj12 × (e− ∫ T̃ j12−Tj1
0 α̃12(u)du

)1−δj12}
= L0→1 × L0→2 × L1→2

(5.3.9)

Note that in the above-mentioned formula, whenever there is an observation of data the

related indicator (δ) is equal to 1 and whenever there is censorship, the related indicator is 0.

When it comes to comparison of the two above-mentioned approaches for SMP, the above

proposition and the fact that the number of parameters that need to be estimated is less in

the second approach, implying that the second approaches is the superior approach.

5.3.3 Numerical Experiments

Here, we present the results of some preliminary numerical experiments computed using R

for estimating the parameters of the illness-death model via the two approaches of the SMP.

First, we set the observation time as T = 50 and generate a sample of n = 5000 data paths

from the first approach to SMPs. We assume that sojourn times are distributed exponentially
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with parameters α01 = 0.5, α02 = 0.33, α12 = 1. Further, we set p01 = 0.5. Note that since

α01 6= α02, this is not a CTMC.

Table 5.1: Comparison of the estimated parameter values with true parameters for the first
approach illness-death model.

Estimated

Value
True Value

p01 0.4931994 0.5000000
α01 0.5190281 0.5000000
α02 0.3285477 0.3333333
α12 1.0032200 1.0000000

Table 5.1 presents the estimated values of αij and the transition probability p01. The esti-

mated values are obtained by applying MLE method (see Section 2.4.3 for more details).

Here, we write the likelihood function of the illness-death model through the first approach

as in Eq. (5.3.6). For the parameter estimation, we apply the nonlinear minimization function

(nlm) in “stat” package to find the maximum likelihood estimators (MLEs).

Then, we consider the CTMC case, where the sojourn times are distributed exponentially

with parameters α01 = α02 = 0.33, α12 = 1, and p01 = 0.5. Here, again we set T = 50 and

generate a sample of n = 5000 data paths from the first approach to SMPs. By assuming

that the transition rates follow an exponential distribution, we write the full likelihood (5.3.8)

and split likelihood (5.3.9) for the illness-death model. Then we find the resulting estimated

values of transition rates by applying the “nlm” function for both likelihood functions. The

estimated values of α̃ij are presented in the first two columns of Table 5.2. As the table

shows, the results for applying the full likelihood (5.3.8) and the split likelihood (5.3.9) are

similar.

Table 5.2: Comparison of the estimated values of transition rates of a CTMC with true values
for the illness-death model.

Estimated Value

Full Likelihood

Estimated Value

Split Likelihood

Estimated Value from

Estimated αij , pij
True Values

α̃01 0.1740820 0.1740821 0.1751180 0.1666667
α̃02 0.1663211 0.1663209 0.1652979 0.1666667
α̃12 1.0210028 1.0210027 1.0210030 1.0000000
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In the case of CTMC (where the sojourn times are exponential and α01 = α02), by having

the estimated values of αij and pij, and applying α̃ij = pijαij, we can find the estimated

values of α̃ij. The third column of Table 5.2 presents the estimated values of α̃ij by knowing

the estimated values of αij and pij. Here, the estimated values for αij and pij are α01 =

0.3424290, α02 = 0.3383088, α12 = 1.0210030, and p01 = 0.5113995. The last column of table

presents the true values of α̃ij derived by knowing the true parameters (αij and pij) and

using α̃ij = pijαij.

The numerical experiments were also carried out on different parameter sets, for both the

exponential and the Weibull distribution. In both cases, they imply that the estimated values

under the second approach by using the full likelihood (5.3.8) and the split likelihood (5.3.9)

are the same and very close to the true values. Carrying out such a check is important in

the preliminary analysis because the formulas in Subsection 5.3.2 are very complex.

Furthermore, we can check the model from data by considering the shape of the survival

function. Here, we consider the data paths generated from the first approach by assuming

the exponential distribution for sojourn times with parameters α01 = 0.5, α02 = 0.33, α12 = 1,

and p01 = 0.5. The observation time set as T = 50 and we generate a sample of n = 5000

data path.

Figure 5.4: Comparison of survival function of data with true survival function. The black curves
are the fitted survival functions of sojourn times derived from data, and the coloured curves are true
exponential survival functions with parameters (left to right)α01 = 0.5, α02 = 0.33, and α12 = 1,
respectively.

Figure 5.4 plots the estimated survival functions of sojourn times derived from data and

compares them with the shape of corresponding true survival functions. The black curves
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are the fitted survival functions to the given data. These curves are drawn by applying the

“survfit” function in the R “survival” package. The coloured curves are the corresponding

exponential survival functions S(t) = −λt where instead of λ we consider the corresponding

values of αij. As the Figure 5.4 demonstrates, the difference between the fitted and real

survival function curves is negligible, and by knowing the shape of the fitted survival function,

we can find the distribution of the sojourn times. For having a better view of the possible

deviation between data sojourn times distribution and the true sojourn times distribution,

especially in the tail area consider Figure 5.5. This figure presents comparison of data log-

survival functions with the related (true) exponential log-survival functions.
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Figure 5.5: Comparison of log-survival function of data with true log-survival function. The black
curves are the fitted log-survival functions of sojourn times derived from data, and the coloured lines
are true exponential log-survival functions where parameters (from left to right) are α01 = 0.5, α02 =

0.33, and α12 = 1, respectively.

5.4 Comparison of Distributions of Two Approaches

In this section, we apply different distributions for the illness-death model from the viewpoint

of two different approaches of the SMP. The main goal is to find out the distribution of sojourn

times where we know the distribution of transition times and vice versa.

For this purpose, first note that from (5.2.6), for the illness-death model, since p12 = 1 and

S1(t) = S12(t), always α12(t) = α̃12(t). So, we just consider the other two cases in the

following. In addition, for the sake of simplicity, we put p01 = p and therefore we have
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p02 = 1− p. Consequently, the Eq. (5.2.6) for illness-death model is written as:

α̃01(t) =
p S01(t)

p S01(t) + (1− p)S02(t)
α01(t) , α̃02(t) =

(1− p)S02(t)

p S01(t) + (1− p)S02(t)
α02(t). (5.4.1)

Since Sij(t) = e−
∫ t
0 αij(u)du, if we have α01(t) = α02(t), then S01(t) = S02(t). Therefore, from

Eq. (5.4.1), we have α̃02(t) = 1−p
p
α02(t) or α̃01(t) = p

1−p α01(t). Now we consider relations

between distribution of the sojourn times and the transition rates for some popular distribu-

tions.

Exponential Distribution Under exponential distribution both sojourn times and transition

rates are constants. Moreover, fij(t) = λije
−λijt and Sij(t) = e−λijt. Therefore, αij(t) =

fij(t)

Sij(t)
= λij. For the illness-death model we have:

• Consider that α01(t) is the hazard function of an exponential distribution, then using the

first part of Eq. (5.4.1), we have:

α̃01(t) =
p e−λ01t

p e−λ01t + (1− p) e−λ02tλ01.

Now, whenever λ01 = λ02 = λ (for example the CTMC case) the transition rate α̃01(t) is

a constant given by:

α̃01(t) = p λ,

which means the transition time 0 → 1 has an exponential distribution with rate α̃01(t).

The same calculation, shows that the transition time 0 → 2 has an exponential distri-

bution with rate α̃02(t) = (1− p)λ.

• Consider that transition time 0 → 1 has an exponential distribution with rate α̃01(t), or

equivalently: α̃01(t) = α̃01. Then, from definition of the SMP, we have a CTMC and so,

α01(t) = α01 is a constant. Moreover, α01 = α02.

Weibull Distribution A random variable has a Weibull distribution with parameters k, λ,

Weibull(k, λ), if its density is given by:

f(t) =
k

λ

( t
λ

)k−1
e−
(
t
λ

)k
.
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Then, the hazard function and the survival function under Weibull(k, λ) have the following

forms:

α(t) =
k

λ

( t
λ

)k−1
, S(t) = e−

(
t
λ

)k
.

• Consider that the sojourn time distribution for model 0 → 1 has a Weibull distribution

with parameters (k01, λ01), then using Eq. (5.4.1), we have:

α̃01(t) =
p e
−
(

t
λ01

)k01
p e
−
(

t
λ01

)k01
+ (1− p) e−

(
t
λ01

)k01 k01

λ01

( t

λ01

)k01−1
.

Now, if α01(t) = α02(t) or equivalently if k01 = k02 = k and λ01 = λ02 = λ, the above

formula reduces to:

α̃01(t) = p
k

λ

( t
λ

)k−1
= k(

k
√
p

λ
)ktk−1,

which means that the transition time for 0 → 1 has a Weibull distribution with param-

eters (k,
k
√
p

λ
). Similarly, the transition time for 0 → 2 has a Weibull distribution with

parameters (k,
k√1−p
λ

).

5.5 Phase-type Distributions for illness-death Model

Denseness of phase-type (PH) distributions (in the sense of weak topology) in the class

of distributions defined on the non-negative real numbers (see Section 2.3.1 for more de-

tails) make them suitable distributions for fitting data. Moreover, for the case of hidden or

sparse data which usually happens in healthcare studies, PH distributions are quite useful

for explaining the hidden stages of diseases or lost stages of patients trajectories in a hospi-

tal. Here, we present a quick review of PH distributions and obtain the corresponding SMP

quantities of interest based on PH distributions.

Consider a phase-type (PH) distribution PHp(η,B) with density function f(t) = ηeBtb, where

b is the exit vector. For more details on PH distributions and their parameter estimation

methods, the reader is referred to Section 2.3.1 and Subsection 2.4.3, respectively.

The survival and hazard functions in terms of a PH distribution with parameters (η,B) are
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given by:

S(t) = ηeBt1, α(t) =
ηeBtb

ηeBt1
,

where 1 is the column vector of ones.

Note that for applying PH distributions for the illness-death model, without loss of generality,

we can consider that the PH distribution is a Coxian PH distribution. For a Coxian PH

distribution: (i) the initial state is unique (and here non-absorbing), and (ii) for each state, the

next non-absorbing state is unique (that is the next state is the unique non-absorbing state

or the absorbing state). The illness-death model satisfies both of these conditions.

Example 5.5.1. (illness-death model) In the illness-death model, if we consider that α01(t) =

α02(t) and come from an exponential distribution, then we can consider the model as a CTMC

and therefore, the time until absorption to state 2 has a PH2 distribution. For this model, we

have:

η = (1, 0), B =

 −(λ01 + λ02) λ01

0 −λ12

 , b = (λ02, λ12),

where for this model, α̃01(t) = λ01, α̃02(t) = λ02 and α̃12(t) = λ12. Therefore, since for this

model the only transient states are 0, 1, the absorption state is state 2, and the process starts

with probability 1 from state 0, the likelihood (2.4.6) reduces to:

L = λ N01
01 e−λ01Z0

(
λN0

02 e
−λ02Z0λN1

12 e
−λ12Z1

)
.

where

• Zi is the total time spent in state i (i = 0, 1),

• N01 is the total number of jumps from state 0 to state 1,

• Ni is the total number of processes jumping from state i for i = 0, 1 to the absorbing

state (state 2).

From the above likelihood we can find 3 unknown parameters: λ01, λ02, and λ12 by using the

formulas in Subsection 2.4.3 related to the EM algorithm.
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Comparison distributions of αij and α̃ij. The density function, the survival function and

the hazard function of PH distribution with parameters η and B are given respectively by:

f(t) = ηeBTb, S(t) = ηeBt1, α(t) =
ηeBtb

ηeBt1
,

where b = −B1.

• Consider that the sojourn time of model 0→ 1 follows a PH distribution with parameters

(η,B), and the sojourn time of model 0 → 2 follows a PH distribution with parameters

(η,B). Then, applying Eq. (5.4.1) results in:

α̃01(t) =
p η eBt1

p η eBt1 + (1− p) η eBt1
(ηeBtb
ηeBt1

)
.

Assuming that (η,B) = (η,B), the above formula reduces to α̃01(t) =
(

p
ηeBt1

)
ηeBtb.

This means that the transition times of model 0 → 1, follows a PH distribution with

parameters (
(

p
ηeBt1

)
η,
(

p
ηeBt1

)
B). The proof for α̃02(t) follows the same lines.

As above mentioned, for the illness-death model we can apply PH distributions by consider-

ing that there are either hidden stages in the middle of the illness-death model stages where

the transition rates have PH distribution, or by assuming that there are some hidden stages

in each stage of the illness-death model which means that the sojourn time have PH distri-

bution. In both cases, when we need to consider the effectiveness of different treatments or

distinguish between different causes of death, we need to consider multi absorption states.

The analytical formulas related to this notion is presented in the following section.

5.6 Multi Absorption Phase-Type (MAPH) Distributions

In this section, we define and derive the distribution and the corresponding formulas for a

multi absorption PH distribution.

Let X(t) be a CTMC with p transient states and q absorption states. A bivariate random vari-

able (U, J) where J is a discrete component shows the state in which the process absorbed
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and U is the time until absorption to that state, has an MAPHp,q(η,B,B
0) distribution. Here,

U = inf{t ≥ 0
∣∣ X(t) ∈ {absorbing states}}, J = X(U).

The row vector η is the initial distribution of the phase process, and the matrix B is the

transition rate matrix of the phase process. The matrix B0 shows the transition rates of

going from each phase to one of the absorption states.

Example 5.6.1. Consider a PH2,3 demonstrated in Figure 5.6, where there are two transient

states 1, 2 and three absorbing states 3, 4 and 5.

Then, the transition rate matrix Q is given by:

Q =

 Bp×p B0
p×q

0q×p 0q×q

 =



−λ1 λ12 λ13 λ14 λ15

λ21 −λ2 λ23 λ24 λ25

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

where,

B =

 −λ1 λ12

λ21 −λ2

 and B0 =

 λ13 λ14 λ15

λ23 λ24 λ25

 . (5.6.1)

The above matrices are the transition rate matrix of the phase process and the exit matrix,

respectively.

By using the Laplace-Stieltjes transform of U, we can find the moments of the random vector

(U, J). Define:

φi(s, j) := E[e−sU1{J = j} | X0 = i].

A “subject of the form” E[e−sU1{J = j}] where U and J are some jointly distributed continu-

ous and discrete random variables, can take on the following meaning:

E[e−sU1{J = j}] =

∫ ∞
0

e−stf(t, j)dt,

where,

f(t, j) =
d

dt
P(U ≤ t, J = j),
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Figure 5.6: State transition diagram of an MAPH with 2 transient states (circles) and 3 absorption
states (squares).

is the density at j. Hence having φi(s, j) implies that the inverse Laplace transform is the

density at j. So, for example, if φi(s, j) is a rational function of s we know (essentially) how

to represent f(t, j) as a bilinear form of a matrix exponential.

Consider τi ∼ exp(λi), where λi =
∑

j 6=i λij, as the sojourn time in state i. Further, consider

I as the chosen path after state i. Let U denote the time that it takes for the process to go to

one of the absorption states after leaving the state i. Since τi is independent of U , we have:

φi(s, j) = Eτi,IE[e−s(τi+U)1{J = j}|X(0) = i, τi, I]

= E[e−sτi ]EIE[e−sU1{J = j}|X(0) = i, I]

= λi
λi+s

(∑
k 6=i,j pikφk(s, j) + pij

)
.

(5.6.2)

The first term of the above formula comes from:

E[e−sτi ] =

∫ ∞
0

e−stλie
−λitdt =

λi
s+ λi

,

and in the case that the state after i is the absorption state J = j, we have Ũ = 0. Therefore,

EIE[e−sŨ1{J = j}|X(0) = i, I] = EIE[1|X(0) = i, I] = pij.

Note that here there is no self-transition (transition from a state to itself). Since pik = λik
λi

, we
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can rewrite the system of equations in (5.6.2), in the matrix form:

(sI −B)


φ1(s, j)

φ2(s, j)
...

φp(s, j)

 = B0
j . (5.6.3)

For the above example, if we put φi = φi(s, j), the following system of equations holds:

φ1 = λ1
λ1+s

(
λ12
λ1
φ2 +

λ1j
λ1

1
)
,

φ2 = λ2
λ2+s

(
λ21
λ2
φ1 +

λ2j
λ2

1
)
.

The above equations can be written in the matrix form as: λ1 + s −λ12

−λ21 λ2 + s

 φ1

φ2

 =

 λ1j

λ2j

 = (sI −B)

 φ1

φ2

 = B0
j .

If we put φ(s, j) as the vector of φi(s, j), then from Eq. (5.6.3), we have:

(sI −B)φ(s, j) = B0
j ,

which results in

φ(s, j) = (sI −B)−1B0
j ,

where s is greater than the spectral radius of B. Since B is an M-matrix (see Section 3.2),

−B−1 exists and is a positive matrix if and only if all of the eigenvalues of B are strictly

within the left half of the complex plane. Therefore, we consider s ∈ [0,∞) (or for complex

s: Re(s) ≥ 0) which means that s is greater than the spectral radius of B and so (sI − B)−1

exists. Hence, if we put φ(s, j) :=
∑

i ηiφi(s, j), the above formula can be represented as

φ(s, j) = η(sI −B)−1B0
j . (5.6.4)

Compare this with a phase type distribution (only one absorbing state). Then, B0
j is simply

the exit vector B0 = −B1 and (5.6.4) is the Laplace-Stieltjes transform of the PH random

variable U with the following density function f(u) = ηeBuB0. In the same way for an MAPH
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random variable, we can conclude from (5.6.4) that the density function for J = j is:

f(u, j) = ηeBuB0
j .

Note that f(u) =
∑

j f(u, j) is indeed the density function for a PH random variable (all states

J are joined into one absorbing state). So,

F (u, j) =

∫ u

0

f(x, j)dx = −ηB−1(I − eBu)B0
j

Note that in the above, if it was simply a PH distribution (that is B0
j = B0 = −B1) then, using

the facts that η1 = 1 and eBu and B commute, we have:

F (u, j) = ηB−1(I − eBu)B1 = 1− ηeBu1.

Using the same type of calculations, and assuming that we can find a Vj such that B0
j =

−BVj (since B is invertible, such a vector Vj exists: Vj = −B−1B0
j ), results in:

F (u, j) =

∫ u

0

f(x, j)dx = ηB−1(I − eBu)BVj = ηVj − ηeBuVj = η(I − eBu)Vj.

Now let P̃ denotes transition probability matrix of the phase process, then (since the phase

process has a finite number of states) we have P̃ (u) = eBu. Taking u→∞, clearly results in

P̃ (u)→ 0 (since the process eventually goes to one of the absorption states). Therefore,

lim
u→∞

Fi(u, j) = lim
u→∞

P
(
U ≤ u, J = j

∣∣ X(0) = i
)

= P
(
J = j

∣∣ X(0) = i
)

= P
(
X(0) = i

)
P
(
J = j,X(0) = i

)
= ηiVij.

Here, we can conclude that: Vij = P(J = j
∣∣ X(0) = i) (the probability that absorption

happens in j given that the process starts at i). There is an analogous result from the

canonical form of a CTMC X(t), see Chapter 7 of [132].

Now, by multiplying both sides of B0 = −BV from left by diag( 1
λi

), we obtain:

P̃ 0 = (I − P̃ )V, (5.6.5)
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where P̃ 0 denotes the transition probability matrix that includes all transition probabilities

from transient states to absorbing states. So, the transition probability matrix of the CTMC

X(t) can be written as:

P =

 P̃p×p P̃ 0
p×q

0q×p Iq×q

 .

Rewriting (5.6.5) in terms of its elements results in:

P̃ 0
ij = Vij −

∑
k

P̃ikVkj, or Vij = P̃ 0
ij +

∑
k

P̃ikVkj,

which means starting from a transient state i, the process either goes to the absorption state

j (w.p. P̃ 0
ij) or goes to another transient state and then eventually goes to the absorption

state j (w.p.
∑

k P̃ikvkj).

Therefore, we have:

Proposition 5.6.2. For an MAPHp,q with parameters (η,B,B0), we have:

• The density: f(u, j) = ηeBuB0
j

• The distribution function : F (u, j) = ηVj − ηeBuVj

• Survival function: S(u, j) = 1− F (u, j) = 1− ηVj + ηeBuVj

• Hazard/Failure function: H(u, j) = lim∆t→0
P(t<U<t+∆t|U>t)

∆t
= f(u,j)

S(u,j)
=

ηeBuB0
j

1−ηVj+ηeBuVj

• Laplace transform: φ(s, j) = η(sI −B)−1B0
j

• The n−th moment: Mn =
∫∞

0
unf(u, j)du = (−1)n+1η n!B−(n+1)B0

j

• The moment generating function: E(esu) = −η(sI +B)−1B0
j

where j = 1, · · · , q.
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Conclusion

In this thesis, we considered the role of structured Markov models in stochastic modelling.

We analysed a class of stationary MAPs that we call bursty. We applied matrix analytic

methods (MAM) to find relations between bursty MAPs. Further, we considered the problem

of finding an optimal policy for a controlled queueing system. Here, in addition to considering

POMDP, we presented a QBD structure for finding the maximum throughput. Then, we

considered the application of semi-Markov processes (SMPs) in healthcare and presented

two different approaches for SMPs. In addition to the comparison of these approaches, we

introduced the multi-absorption PH (MAPH) distribution as an applicable distribution in the

survival analysis of complex systems. We now summarize our results and highlight open

questions.

We call a MAP bursty if both the squared coefficient of variation and the asymptotic index of

dispersion of counts are greater than unity. As we know a MAP is characterised by (η, C,D)

where η is the initial distribution of the underlying finite-state CTMC, the matrix C shows the

transition between the states of CTMC with no arrival and the matrix D shows the transitions

accompanied with an arrival (event). We see that for the special cases where the matrix D

is diagonal (MMPP) or the matrix C is diagonal (MSPP, Hp-renewal, and MTCP) the given

MAP is bursty. This thesis presented key relationships between these classes of MAPs.

Specifically, we proved that the MTCP could be considered as an alternative model for a rich

class of MMPPs that we call slow MMPPs.

Having analysed MMPPs in depth and establishing that the squared coefficient of variation,
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c2, is greater than one, we encountered a few related open questions dealing with MMPPs

as well as the more general class of doubly stochastic Poisson processes (Cox processes).

First and foremost, for a general Cox process on the line, [73], we conjecture that whenever

E
[(
T1

)2]
is finite, it holds that c2 ≥ 1. Establishing such a result would clearly use different

methods than the matrix analytic methods used in Theorem 3.3.1. Nevertheless, based on

intuition, we believe that the result is true. This is because we believe that any Cox process

can be approximated by an MMPP with a high number of phases.

The second branch of questions deals with characterizing the Poisson process via c2 = 1

and considering when an MMPP is Poisson. For example, for the general class of MAPs,

the authors of [27] provide a condition for determining if a given MAP is Poisson. It is not

hard to construct a MAP with c2 = 1 that is not Poisson. But, we believe that all MMPPs with

c2 = 1 are Poisson. Yet, we do not have a proof. Further, we believe that for an MMPP, if

c2 = 1 then all λi are equal (the converse is trivially true). We do not have a proof of this

either. Related questions also hold for the more general Cox Processes.

Moreover, for the two extreme examples of MAPs, the MMPP (where there is no arrival at

epochs of transitions of the underlying CTMC) and the MTCP (where all transitions of the

underlying CTMC are accompanied with an arrival), we show that the first two moments of

counts for large class of MMPPs, slow MMPPs, and MTCPs are the same. Therefore, from

a modelling point of view, one can construct an MMPP from a given MTCP (see Proposi-

tion 3.4.1) and for a given slow MMPP we show that there is an MTCP with the same first

two counting moments. Now an open question arises: Is there any one-to-one relationship

between the class of MMPPs and the class of MTCPs? In other words, can we construct an

MTCP for a given non-slow MMPP?

The next problem that we addressed is in the area of parameter estimation for bursty MAPs.

We consider parameters of a slow MMPP2 and use the method of moments and a nonlinear

optimisation procedure to estimate parameters of an MTCP4 with the same first moments

and autocorrelations of the inter-arrival process. Comparing the results of this moment-

based estimation method with parameters resulting from matching the first two moments

of the counting process in Section 3.4 shows that the difference between these results is

negligible. There are some papers related to fitting data with a MAP, see for instance [157]

and references therein. As we know time-homogeneity of the data trace is a significant
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property in available fitting methods. So, the question arises here for future work is that what

is the best fitting method if the real data trace is non-homogeneous?

When it comes to controlling of stochastic systems, we described some results from a re-

search effort attempting to handle control of stochastic systems with partial observations

where the control decision influences the observation made. Explicit analysis of such sys-

tems is extremely challenging as is evident by both the complicated Bellman equations and

the QBD structure that we put forward in Chapter 4 (even for a simple system as we con-

sider). Nevertheless, insights obtained on the role of information, for example the effect of

the observation scheme (I–V) on system stability are of interest.

Our model and numerical results, pave the way for explicit proofs of some structural prop-

erties that are apparent from the numerical results. Some of the future work in this project

would be: comparing the performance of the optimal policies and the myopic policy, and

comparing and understanding the difference between optimal curves, under different infor-

mation settings for a range of parameters. In fact, the existence of optimal switching curves,

as in figures 4.4 and 4.5, requires proof. Moreover, the analysis remains to be extended to

more general server environment models, as well as systems with more queues and control

decisions.

Related work is in [146], our first paper in this area of research. An aspect in [146] that

remains to be further considered is the networked case where the authors investigated

(through simulation) cases in which the relationship of stability and throughput is not as

immediate as in our current paper. A further related (recent) paper, [142], deals with a situa-

tion similar to our output observation case (III). In that paper, the authors consider the Whittle

index applied to a similar system (without considering a queue and stability). Relating the

Whittle index and system stability is a further avenue that requires investigation, see [162] as

an example of using an index policy (based on Whittle index) to compute the stability region

of a queueing system.

Another objective of this dissertation was describing two different approaches for a semi-

Markov process (SMP). The first approach considers the sojourn times and the second one

considers transition rates. We compare the results of applying these approaches for formu-

lating the likelihood of the illness-death model. This is a three-state semi-Markov process

155



Chapter 6: Conclusion

that applies for modelling trajectories of patients in the ICUs of hospitals. Finding the re-

lations between parameters of these two approaches leads us to find the corresponding

distribution of transition rates by knowing the distribution of sojourn times. Furthermore, we

found the corresponding formulas for the case that the hazard function has a PH distribu-

tion. Also, we obtained the related formulas for a generalisation of PH distributions, the

multi-absorption PH (MAPH) distribution.

There are some theoretical aspects of this project which need to be considered for future

work. For instance, adapting an EM algorithm for parameter estimation of MAPH distribu-

tions, use a model selection criterion to choose between the proposed models, investigate

whether the class of MAPH distributions is dense in the class of non-negative distributions

on the real line or not, and compare the results with a non-homogeneous Markov model.

From numerical point of view, fitting an SMP with an MAPH distribution and illustration of the

proposed models on a real data-set can be considered.
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