
For Peer Review

 

 

 

 

 

 

Computational analysis of protein interaction networks for 

infectious diseases 
 

 

Journal: Briefings in Bioinformatics 

Manuscript ID: BIB-15-0058.R2 

Manuscript Type: Paper 

Date Submitted by the Author: 08-Jul-2015 

Complete List of Authors: Pan, Archana; Pondicherry University, Centre for Bioinformatics 
Lahiri, Chandrajit; Sunway University, Department of Biological Sciences 
Rajendiran, Anjana; Pondicherry University, Centre for Bioinformatics 
Shanmugham, Buvaneswari; Pondicherry University, Centre for 
Bioinformatics 

Keywords: 
Protein interaction network, Infectious disease, Pathogen, Computational 

analyses, Centrality, Modularity 

  

 

 

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunway Institutional Repository

https://core.ac.uk/display/161283313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Peer Review

Computational analysis of protein interaction networks for infectious diseases 

 

 

 

 

Authors: Archana Pan1#*
, Chandrajit Lahiri2,#, Anjana Rajendiran1 and 

Buvaneswari Shanmugham1 
 

 

1Center for Bioinformatics, School of Life Sciences, Pondicherry University, 

Puducherry – 605014, India 
2Department of Biological Sciences, Sunway University, 

47500 Bandar Sunway, Selangor, Malaysia 

 

#These authors contributed equally to this work  

 

*Corresponding Author: Archana Pan, E-mail : archana@bicpu.edu.in 

Phone: +91 413 2654584 

    Fax:  +91 413 2655211 

 

 

Authors: Archana Pan, E-mail : archana@bicpu.edu.in 

Chandrajit Lahiri, E-mail : chandrajithlahiri@gmail.com 

 Anjana Rajendiran, Email: anjana@mails.bicpu.edu.in 

 Buvaneswari Shanmugham, Email: buvanisuriya@bicpu.edu.in 

 

Page 1 of 39

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Abstract  

Infectious diseases caused by pathogens, including viruses, bacteria and parasites, pose a 

serious threat to human health worldwide. Frequent changes in the pattern of infection 

mechanisms and the emergence of multidrug resistant strains among pathogens have weakened 

the current treatment regimen. This necessitates the development of new therapeutic 

interventions to prevent and control such diseases. To cater to the need, analysis of protein 

interaction networks (PINs) has gained importance as one of the promising strategies. The 

present review aims to discuss various computational approaches to analyse the PINs in context 

to infectious diseases. Topology and modularity analysis of the network with their biological 

relevance, and the scenario till date about host-pathogen and intra-pathogenic protein 

interaction studies were delineated. This would provide useful insights to the research 

community thereby enabling them to design novel biomedicine against such infectious diseases.  

 

 

Keywords: Protein interaction network, Infectious disease, Pathogen, Computational analyses, 

Centrality, Modularity.  
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Key Points 

1. Infectious diseases have posed serious health concerns worldwide 

2. Conventional approaches have become almost ineffective in dealing with the issue  

3. Non-conventional computational approach entailing protein interaction network analysis has 

gained importance to give meaningful directions 

4. Topological and Modularity analyses of PINs can be employed by researchers to obtain 

essential proteins as key therapeutic targets  

5. Analyses involving these would pave the way to succeed in generating novel biomedicines 
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Introduction 

Infectious diseases have been threatening human population since time immemorial. These have 

become ever-increasing worldwide public health concern, with parasitic, bacterial and viral 

diseases, representing more than half of the leading causes of morbidity and mortality. While 

viral influenza vaccines are to be reformulated annually, several other viral infectious diseases, 

such as those from hepatitis C and HIV-1 are a cause of panic since decades. Parasitic diseases 

like malaria and multidrug resistant bacterial strains of Mycobacterium and Salmonella are on-

going pandemics. Different emerging infectious diseases viz., nosocomial infections caused by 

Acinetobacter, swine H1N1 influenza, avian H5N1 influenza, severe acute respiratory syndrome 

(SARS), and dengue fever have posed themselves to be new constant threats [1]. 

To deal with these severe pathogenic threats, several health intervention strategies have been 

undertaken. However, the prospects for finding new vaccines or antibiotics against such 

pathogens are especially poor. This is due to the ever-changing mechanism of infecting the host 

as in the cases of viruses [1]. It might also be due to the blockades provided by the outer 

membrane to the entry of some existing antibiotics in case of gram negative bacteria [2]. Thus, it 

is quite evident that the conventional strategies for dealing with such deadly pathogens would be 

less effective or ineffective completely, to emerge victorious against their strategies to evade 

therapeutic interventions. In such cases, the complexities posed can be solved by adopting some 

non-conventional computational approaches. 

Over the last few decades, biologists understood gradually that a set of complex interactions 

between the numerous constituents of a cell, gives rise to different biological phenotypes. 

Amongst these, proteins, being the functional unit of the cell of any living organism, always act 
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in unison with others to achieve specific functional goals viz., transcriptional 

activation/repression; immune, endocrine, and pharmacological signaling; cell-to-cell 

interactions; and metabolic and developmental control [3]. These protein-protein interactions 

(PPI) lead to a mosaic mesh or network of interactions, commonly known as protein interaction 

networks (PINs). Analyses of such PINs are increasingly serving as the non-conventional 

approach to understand the complexity of infectious diseases. However, the augmentation of the 

PINs, created from high-throughput experimental and/or computational data, has necessitated 

effective analytical techniques for those networks, to be used to unravel the molecular basis of 

the aforementioned infectious diseases. The current review entails different computational 

approaches for analysing protein interaction networks expected to be involved in the interaction 

mechanism of infection. These might lead to find avenues for the identification of novel targets 

and render them as systems biomedicines. 

 

The necessity of the generated PIN 

With the advances of the post genomic era, there has been an enormous increase in the 

investigations upon the structure, function and control of the participating proteins as key 

regulators in diseases. This is because, the identification of a handful of proteins to be targeted is 

considered as the objective of the whole intervention process. The numbers of proteins, as 

targets, should always be limited, to improve the efficacy and specificity of a well-defined drug. 

However, ensuring a limited number of proteins from an array becomes an ever challenging task 

to the conventional experimentalists. Thus, new approaches, for generating viable candidates as 

interventional targets for infectious diseases, are need of the hour. 
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The complexities of any infectious diseases are mainly due to the intricate interactions between 

sets of proteins involved in the process. Interactions between proteins are visualized by networks 

created by mapping those complex interactions. These protein interaction networks (PINs) have 

gradually gained importance in an attempt to address the complexities of the diseases. Such 

mapping can be done based on a number of experimental data sources including, but not limited 

to, two-hybrid systems [4], mass spectrometry [5], protein chip technologies [6]. They can also 

be generated through various computational approaches encompassing genome-based [7, 8], 

sequence-based [9, 10], structure-based [11, 12] and machine-learning-based techniques [13, 14]. 

However, analysing these networks, to achieve the ultimate goal of limiting target sets for health 

intervention, now becomes the most challenging task. 

 

The resources of PPIs   

While the high throughput techniques generated interaction data for proteins, initiatives were 

taken to integrate them and prepare comprehensive open databases for further analyses. There 

are a number of standardized open sources each having a different style of representing the 

protein interaction datasets. They are mostly based on the organisms worked upon in detail and 

of basic interest amongst researchers. Of these, Human Protein Reference Database (HPRD) 

stores information on human protein interactions, along with protein functions, post-translational 

modifications (PTMs), enzyme-substrate relationships, and subcellular localization [15]. Sub-

categorised HomoMINT [16] arises from the Molecular Interaction Database (MINT) [17] which 

comprises interactions, inferred from orthologs in model organisms. For the yeast PPI data, 

special importance has been given in the Biological General Repository for Interaction Database 

(BioGRID) [18].The current BioGRID release [May 2015, version 3.3.124] lists 287,619 non-
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redundant yeast protein interactions thereby making it the largest database for this organism 

besides more than 30 others, having a total of 574,378 non-redundant interactions. Another such 

database focusing on yeast data is the Database of Interacting Proteins (DIP) integrating data 

from the correlation of protein sequence and RNA expression profiles through a carefully 

curated computational process [19]. 

Besides the above mentioned focused databases, there are others, having listed the protein 

interactions from a set of organisms. These are the Munich Information Center for Protein 

Sequences (MIPS) [20], the Biomolecular Interaction Network Database (BIND) [21], a 

component of the Biomolecular Object Network Databank (BOND), the Search Tool for 

Recurring Instances of Neighbouring Genes/Proteins (STRING) [22] and IntAct [23], each 

having its own uniqueness. MIPS lists a description and the binding regions of interacting 

partners. BIND highlights the interactions between two or more molecules which form 

functional molecular complex units and pathways arising from those interacting in a sequence. 

The STRING database entails both physical and functional associations derived from genomic 

context, high-throughput experiment, coexpression and previous knowledge. Apart from 

interaction data, IntAct enlists interactions between DNA, RNA, and small-molecules. 

Furthermore, some databases including STRING [22], GeneMANIA [24], FunCoup [25] and 

ConsensusPathDB [26] provide a highly comprehensive data by integrating PPIs from other 

online resources.  STRING imports PPI data from different primary databases, including MINT, 

HPRD, BioGRID, DIP, BIND, IntAct and PDB. GeneMania provides functionally similar genes 

for the query gene list along with interactive functional association network utilizing information 

from GEO, BioGRID, Pathway Commons and I2D. FunCoup includes information on functional 

couplings between genes and gene products based on gold standards (KEGG, Corum, iRefindex 
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etc.). ConsensusPathDB enlists a seamless interaction network from different public resources, 

including BIND, BIOGRID, DIP, IntAct, MINT and MIPS-MPPI. There are different resources 

providing intra-pathogenic and host-pathogen PPI data, such as PATRIC, PRIMOS, HPIDB, 

PHI, VirusMentha, VirusHostNet [27-33]. The number of intra-pathogenic and host-pathogen 

PPIs is tabulated in Supplementary Table 1. 

 

The technicalities of PIN analysis 

The databases stated above list the interactions of the proteins from existing empirical and 

theoretical results. As such, an attempt to construct a network or an interactome, by integrating 

those interactions, might yield one, which can be random like the one proposed by Erdös and 

Renyi [34] or a small-world type proposed by Watts and Strogatz [35]. Both these types build up 

a fairly homogeneous network in which, each node has approximately the same number of links. 

However, only those interactomes, which strictly follow the power law, are free of a 

characteristic scale. In these cases, the connectivity distribution, P(k), of a node in a network 

getting connected to k other nodes, decays exponentially for large values of k. These scale-free 

networks are essentially the real world networks [36] with a heavy tailed degree distribution. 

Thus, it is imperative to construct biologically viable real networks, comprising the proteins 

responsible for the infectious diseases. Their subsequent analyses, in essence, would then lead us 

to our ultimate goal of identifying important targets for health intervention. 

 

The analyses of the interactomes 

An overview of various computational approaches for protein interaction network analysis is 

illustrated in Figure 1. 
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Topological analyses to identify an important protein 

In order to identify the key proteins in a PIN, the importance of the protein is correlated with the 

number of its interacting protein partners. This gives rise to the concept of such proteins 

becoming central to a particular network. This is the most basic concept in terms of biological 

importance and is defined as the degree centrailty (DC) of the protein in a network of interacting 

proteins. Indeed, high degree proteins (or hubs) are known to correspond to the essential proteins 

in a network [37]. However, DC is a local and static metric, as it considers only the directly 

connected neighbours of a protein in a static state. Thus, DC, being the local property of a 

protein in the network, does not bring out the importance of the protein on a global scale. To 

indicate such importance based on a protein’s global relevance in the network, researchers resort 

to other centrality measures. These are Closeness centrality (CC), Betweenness centrality (BC) 

and Eigenvector centrality (EC) [38]. These four important concepts of centrality measures 

reportedly have been utilized for biological network analyses [39-41]. 

It is understood that, being the most basic of the centrality measures, DC generally refers to the 

protein involved in a large number of interactions in a network. However, these interactions 

might not be in a sequential order so as to carry out particular functions during the primary 

stages of infection by a pathogen. Conceptually, CC might take care of this fact as it reflects the 

protein, which is typically “close” to, and can communicate sequentially with the other proteins 

in the network. Thus, CC is a measure based on the interacting distance of a protein to all other 

proteins in a network. It is defined as the reciprocal of the total interacting distance from a 

protein to all other proteins in the network. Again, in a complex phenotype like virulence in 

infectious diseases, there might be simultaneous interaction of a protein with others to render 

different functions at the same time. Thus, an important protein should be typically the one, 
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which lies on a high proportion of interactions between other proteins in the network. An 

analysis with BC might bring out this fact. Thus, a better measure compared to the DC and CC 

would be BC, since it would reflect the importance of the protein with respect to its 

indispensability as it would form the bridge between important hubs of network thereby 

becoming important. BC of a protein is defined as the number of shortest interacting paths 

passing through it. However, the ultimate idea of a protein in a network to be important lies in 

the fact that it should be connected to other important proteins in the network. EC might come 

into play in such cases [42]. EC brings out the relative importance of the proteins in the network 

by weighting the connections to other important proteins compared to those of low importance 

[43]. 

It has been observed that topological features like DC and BC have gained much importance in 

serving as attractive drug targets [36, 44, 45]. However, despite their potential to locate such 

targets, these measures lack in the specificity and/or selectivity along with the high risk of side 

effects. These, in turn, result in a high likelihood of causing lethality as determined 

experimentally in the yeast PIN [46, 47]. As lethality is an undesirable attribute in most of the 

drug discovery applications [3], an alternative measure for betweenness can be thought of. This 

is known as bridging centrality and proteins with high bridging centrality mainly serve as 

bottlenecks between two modules. This has been shown to be less lethal, with a value of 34% 

compared to 42 for BC and 48 for DC in case of yeast PIN [48]. 

There are other topological properties which have been utilized to measure the compactness and 

reachability amongst the interacting proteins in the network. One of these is the average path 

length (APL) which determines the mean of the lengths of the shortest paths between all protein 
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components of the network [49-51]. The other is network diameter which measures the longest 

distance between two constituent components [49].  

 

Network decomposition to identify set of important proteins 

In general, the PIN for an infectious disease would be on a large scale. Thus, as discussed in the 

above section, a focus to target just one protein, for therapeutic health intervention, may be of 

less importance. This might necessitate a decomposition of those large networks to a core of 

highly interacting proteins through the k-core analysis approach [52].This essentially peels off 

the proteins connected at the edges, gradually, until the innermost core is reached. After this 

core, a step further decomposes the network, thereby making this the innermost core with highly 

connected proteins, interacting with each other. Thus, they can be considered to be the most 

important ones [42].  

Technically speaking, the k-core of the graph G is obtained by recursively removing all the 

vertices of degree less than k, until all vertices in the remaining graph have at least degree k, by 

which the complex network can be decomposed [53, 54].  

 

Modularity analyses and functional annotation of clustered proteins 

The concept of k-core, as discussed above, is one of the metrics to determine the modularity of a 

network. A modular network groups the components on the basis of their common properties to 

bring out significant underlying principles. Analyses of these networks become increasingly 

useful for PINs. This is due to the biological phenomenon of proteins aggregating into 

complexes, rendering them as functional modules which unify the cohesive components of a 

molecular function. The identification of such highly correlated functional modules of proteins 
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can be done by clustering analyses. These protein modules from one species can then be utilised 

to rationally map and thereby annotate the unannotated proteins in other related genomes. 

Besides k-core, the clustering techniques can identify cliques. A clique is an induced complete 

subnetwork where each component vertex is connected to each other. This gives rise to a 

clustering coefficient of 1 for each of the component vertices. Parametric indices like maximum 

clique centrality (MCC), maximum neighbourhood centrality (MNC) and density of maximum 

neighbourhood centrality (DMNC) are offshoots of these concepts and has been utilised lately 

[42]. Such densely connected subnetworks are expected to form functional units to carry out 

unique biological processes. 

While such density based traditional clustering method is in good practice amongst researchers, 

new approaches through non-traditional methods have started gaining importance. This is 

because of their ability to analyse the modularity of the PPI networks with more accuracy. These 

include the graph-theoretic, topology-based, flow-based, statistical, and domain knowledge-

based approaches (data fusion, GO integration) besides the distance-based methods [3]. Of these, 

the topology- and distance-based modularity analyses focus on the biological distance or 

similarity between the interacting proteins. Such distance/similarity based matrix can then be 

utilised to build up the traditional clustering algorithms as in, for instance, Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA), generally used for calculating evolutionary 

distance. However, to emerge into more biologically relevant models, instead of only indicating 

the binary relationships as in the traditional coefficient based ones, sequence similarity, structural 

similarity and gene expression correlation have started to be used [55-57].  

Any attempt to cluster such biologically relevant modular networks would bring out the 

importance of the interrelationships of the constituent components. To formulate the modularity, 
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the graph theoretic and the topology-based methods consider the local or global structure of the 

PPI networks. While the former converts the process of clustering into graph theoretic problems, 

the latter quantitatively measures the metric features of the networks before formulating the 

clustering algorithms for modularity analyses. It is to be noted that the graph theoretic features 

have gained much importance in modularity analyses due to the fact that they can find out the 

densest subnetworks e.g. Molecular Complex Detection (MCODE), clique percolation. Amongst 

these, clique percolation method has its advantage of identifying overlapping functional clusters 

in a typical PPI network. This enables one to detect proteins simultaneously functioning 

differently in several different modules [3]. The other method of utilising the graph theoretic 

measures is through partitioning the modular subnetworks, either by simple partition detection 

through less important edges or by an improved Markov clustering algorithm which uses the 

mathematical bootstrapping procedure [3].  

One of the recent methods entails a flow-based technique which can deal both with the 

prediction of protein function and protein modularity analysis. There are several algorithms 

which have been developed with this concept. One of them is the ‘Majority’ method which 

considers the interactions of its neighbors and adopts the three most frequent annotations [58]. 

An extension of the above method, ‘Neighborhood’, employs a search for all the proteins within 

a particular radius to identify overrepresented functional annotations [59]. The usage of edge 

weights through gene expression data was done by Karaoz et al. [60]. Similar kind of weighted 

interaction network was used following a ‘guilt-by-association’ principle, wherein the functional 

flow was created from the annotated protein to the unannotated ones, through simulation [61]. 

Such kind of simulation of biological or functional flows within the network can be used as an 

essential tool of modeling to explore the dynamic signal transduction systems [3]. Moreover, 
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network flow simulations can predict complex network behavior under a realistic variety of 

external stimuli. A very important algorithm called CASCADE helps to detect the dynamic flow 

simulation of modularity analyses. CASCADE utilises the concept of occurrence probability and 

models a unique clustering methodology encompassing the biological and topological influence 

of each protein on the other. Occurrence probability brings out the distribution of the number of 

interactions necessary to link a pair of instant proteins in the network at a given time point [62]. 

The methods for the generation and analyses of the networks discussed as of now would be more 

accurate with a benchmarking of the data. Clustering techniques described here are based solely 

upon the graph theoretical properties without any real supervised data, thereby confirming their 

authenticity. However, a priori knowledge from amino acid and genomic sequences, protein 

structures and evolutionary profiles, gene expression and ontology annotation could be integrated 

with the PPI data to add to the analyses. Information about protein domains and localization has 

been used to successfully predict protein functions [63, 64]. A variety of high throughput data 

including microarray and protein complex data have been integrated to construct Bayesian 

models [65, 66], and Kernel based matrices have also been proposed [67, 68]. 

It is worth mentioning at this point that different clustering techniques and even the same 

technique with different parameters end up in giving disparate outcomes. Thus, validation of 

these clustering techniques is mandatory. Indeed, different clustering algorithms have been 

evaluated by several researchers in order to understand their potential to infer protein clusters 

from protein interaction networks [69, 70]. Jiang et al. [71], Zhang [3] have suggested different 

approaches to validate clustering methods, including validation based on agreement with 

annotated protein function databases, definition of clustering, the reliability of clusters, 

topological properties and the p-value from the hypergeometric distribution.  
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The visualization 

There are several software and plug-ins, added therein, for the visualization of the real networks 

constructed in the form of graphs of the interconnected proteins. Researchers across the world 

have used Cytoscape (latest version 2.8.2) [72] and Gephi (latest version beta 0.8.2) [73]. 

Cytoscape has the plug-in, NETWORK ANALYZER [74], to compute values for the classical 

network centrality parameters like DC, CC and BC besides clustering coefficient, average path 

length (APL) and network diameter. Another important centrality measure, the EC, can be 

calculated via Gephi. The Java plug-in, cytoHubba [75], can be used to categorise the top ranked 

proteins/hubs in the network. Combined scores, from different parameters considered in the 

databases like STRING, can be taken as edge weights for computing Cytohubba scores. Several 

topological algorithms, viz. Maximal Clique Centrality (MCC), Maximum Neighborhood 

Component (MNC), and Density of Maximum Neighborhood Component (DMNC), can be used 

to find the important hub proteins of the networks. To obtain the clusters of proteins after the 

network decomposition, the Molecular Complex Detection (MCODE) algorithm can be 

implemented to find the densely connected regions in the networks [52].  

 

Analyses of pathogenic PINs: Intra- and Interspecies scenario 

In order to gain insight into the infection strategies of pathogens, several intra-pathogenic and 

host-pathogen protein interaction networks have been generated and analysed over the last 

decade. This section will delineate the scenario of protein interaction network analysis of some 

of these species including viruses, bacteria and protozoan parasites (Table 1). Amongst these, the 

topology of intra-viral networks of different members of herpesvirus family (viz., Kaposi’s 
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sarcoma-associated herpesvirus (KSHV), Varicella-zoster virus (VZV), Epstein-Barr virus 

(EBV)), SARS-coronavirus (SARS-CoV), Hepatitis C virus (HCV) and Influenza A virus (H1N1 

and H3N2) have been investigated by evaluating different network parameters like degree, APL, 

clustering coefficient and network diameter [76-82]. The analysis revealed that viral networks 

appear as single, highly coupled modules with relatively many hubs and few ‘peripheral' nodes, 

in contrast to scale-free cellular networks having well-separated functional modules. This 

distinguishing network topology, may be essential for the formation of compact virions and 

functional viral complexes. However, it is unclear whether the disparity between viral and 

cellular network topology is a consequence of biological differences or the artifacts of 

experimental biases and errors.  

Furthermore, the comparison of interactomes can lead to the identification of highly conserved 

interactions, critical for pathogenesis and thus, could serve as promising broad spectrum drug 

targets. For example, the comparison of intra-viral networks for herpesviruses enabled to identify 

a core set of highly conserved interactions, which mediate budding of capsids at the inner nuclear 

membrane of the host, and thus, could be promising targets for alternative herpesviral therapies.   

The first large-scale intra-bacterial PPI networks were constructed and analyzed for Helicobacter 

pylori and subsequently, for several other bacterial pathogens, such as Campylobacter jejuni, 

Treponema pallidum, Mycoplasma pneumonia, Mycobacterium tuberculosis, and Staphylococcus 

aureus [44, 83-87]. The topological parameters (degree and BC) of undirected intra-bacterial 

networks, studied so far, revealed that bacterial networks are scale-free in nature, following a 

power law distribution. The evaluation of average clustering coefficient of bacterial protein 

networks (eg., C.jejuni, M. tuberculosis etc.) indicated that networks comprised of many clusters 

ie., subnetworks of highly interconnected proteins and comparative network analysis (CNA) 
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revealed that many of the subnetworks were conserved across organisms, identified using the 

NetworkBlast algorithm [84, 87]. It is worth to be noted that the proteins enriched in conserved 

subnetworks carry out specific Gene Ontology (GO) functions representing crucial functional 

pathways or protein complexes. Indeed, in C. jejuni, clustering of the conserved subnetworks 

using k-means algorithm followed by UPGMA identified core proteins having distinct cellular 

function. These core proteins were found to present in many subnetworks [84]. Thus, the 

organism’s interaction network can be used to predict the function of the unannotated proteins or 

to map protein complexes and pathways involved in virulence, providing the directions for 

uncovering new drug targets [44, 84, 87]. Network topology was exploited to identify essential 

genes/proteins, which are crucial for replication, growth and viability of an organism, in different 

pathogenic species, including S. aureus, C.jejuni, M. tuberculosis, Mycobacterium abscessus, 

and various food and waterborne pathogens [44, 84, 88-90]. Proteins, encoded by essential 

genes, are hub proteins with many number of interactions in a network, and are also important 

for network integrity and stability, thus could be potential to be therapeutic targets. 

The protein interaction networks for the above mentioned viruses, including Human 

Immunodeficiency Virus (HIV)-1 [76, 77, 81, 91-93] and different bacterial pathogens, such as 

Bacillus anthracis, Francisella tularensis, and Yersiniapestis, and M.tuberculosis with their 

human host have been studied [94-96]. The network topology analyses of host-pathogen systems 

indicated that both viral and bacterial proteins target human proteins which own higher degree 

and higher BC in the human protein interaction network. Viruses and bacteria both follow a 

common infection strategy of preferentially attacking hub and bottleneck proteins to impede 

host’s essential biology [82]. Viruses tend to interact with host proteins which have higher 

degree and BC values compared to their bacterial counterparts. Identification of conserved 
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subnetworks in human-pathogen PPI [94] and GO functional analysis of pathogen-targeted 

human proteins, delineated a perfect picture of their infection strategy. Bacteria upholds infection 

in humans by foraying proteins involved in immune response thereby shattering human defense 

mechanism, whereas viruses exploit host's transcriptional machinery to propagate themselves 

within the host. It is worthy to mention at this point that most of the pathogen-targeted host 

proteins are those that play critical role in regulation of metabolic processes, such as cell-cycle 

regulation, nuclear transport and most importantly immune response. 

Plasmodium falciparum, the causative agent of malaria in human, is the only protozoan parasite 

whose protein interaction network has been studied extensively [97-100]. Each study mostly 

focused on the identification and isolation of critical protein clusters/subnetworks or pathways, 

and also assigning the function of uncharacterized proteins. The study identified a group of 

proteins, such as chaperones, transcription factors and new surface proteins which are crucial for 

parasite's invasion and survival. Most of the proteins in the highly interconnected subnetworks 

were found to be involved in pathogenesis, perhaps the result of gene duplication event for 

maintaining its parasitic way of life. The identification of subnetworks was mainly done by using 

clustering coefficient, Markov clustering algorithm [97], clique percolation algorithm [98] and k-

means clustering. It is worth mentioning at this point that plasmodium network stands distinct 

from other eukaryotic network because of its 'assortative' nature and bearing very less overlap 

with their interactomes.  A very recent study [100] aimed at identifying important interacting 

proteins (IIPs) in Plasmodium PPI network, using various node centrality indices (degree, 

closeness, radiality, betweenness, eccentricity, stress, weinner index, centroid, assortativity and 

clustering coefficient) and network centrality indices (average distance, connectivity distribution, 

diameter and average clustering coefficient), followed  by in silico knock-out analysis.  The 
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highly interacting hub and central proteins, which are vital for network integrity as well as 

crucial for organism's survival, were considered as important proteins. These IIPs also play a 

vital role in stage specificity and were found to interact with several human proteins associated 

with multiple metabolic pathways, signaling pathways and infection mechanism. It has to be 

noted that human proteins targeted by pathogen are hubs in the human interactome and 

malfunctioning of the crucial host pathways results in clinical manifestation of malaria, which 

pose the interacting pathogen proteins as potential drug targets. 

 

Applications in systems biomedicine 

With the main target of the present review being the application of the PPI networks in 

biomedicine, cases to unravel the molecular basis of disease, by studying disease related 

subnetworks, have been reported. For instance, a new dimension has been given by such PPI 

network analysis to bring out the relationship of the pathogenic bacterium Heliobacter pylori 

with gastric carcinoma [101]. This has achieved a level of acceptance from the World Health 

Organization (WHO) and the International Agency for Research on Cancer consensus groups 

who have classified H. pylori as a definite biological carcinogen. The authors analysed the 

networks built upon the selected translated proteins of the expressed genes from databases and 

literatures. Their analyses reflected connectors of oncogenic proteins as hub and bottleneck 

proteins, mostly related to immune response governing the cell cycle, cell maintenance and 

proliferation, and transcription regulators [101]. 

An indirect study on a smaller scale upon Salmoenlla Pathogenecity Island Type III secretion 

system was carried out to build a methodology of targeting the indispensable proteins from 

amongst a conglomerate [42]. The authors constructed the network from the available 
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interactions from STRING database and analysed it with the common and rarely used centrality 

measures to decide upon the most indispensable one. They benchmarked their theoretical finding 

through analyses of networks built from the expressed gene products of two different microarray 

data and arrived at the same point with respect to such indispensable protein issue [42]. The 

outcome of these two works clearly would be the positive side of the analyses of PPI networks 

for generating systems biomedicine where the goal would be to harm the pathogen without 

harming the host and avoiding rapid development of antimicrobial resistance. The discussion on 

such issues takes us to a point wherein workers in this field would like to keep in mind few 

points while carrying out the related research. As indicated earlier, Lahiri et al. [42] have 

delineated a key methodology which could be followed with modifications as and when needed. 

A network constructed from a source has to be checked in for scale-freeness. The network can 

then be pruned to a core of proteins and/or top rankers from different centrality measures can be 

compared to unanimity. The finding therefrom can be benchmarked by other experimental omics 

data to corroborate. A selection of centrality measures would depend upon the requirement of the 

work. Following just some network analyses and trying to get a positive outcome, however, 

would abrogate the essentiality of PIN analyses. 

 

Dependability of analyzed PINs 

While there can be claims about the necessity of PIN analyses, a very important point needs to be 

considered to facilitate such claims. It is to be understood that the correctness of the analyses of 

such PIN would depend upon the correct construction of the network. Many such networks are 

being built based upon laboratory experimentation like yeast two-hybrid and mass spectrometry 

data generation. Moreover, networks built from various sources have extremely low overlap of 
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different high-throughput data generating manually curated databases. The other possibilities 

causing such error, down the line of network analyses, could be low reliability of literature 

curation and difficulties arising due to improper gene annotation and webpage data extraction 

[102]. As the above methods can be highly error prone, the dependability of PIN analyses 

become low [103]. In fact, there can be falsely reported interactions as well as left out 

interactions not being reported. Alarming false discovery rates (FDRs) of 10-20% and false 

negative rates (FNRs) of upto 50% are reported for yeast, worm and fly screens [104, 105]. 

However, such falsification of interactions could also crop from the low coverage of different 

comparative methods having noises leading to misinterpretation and erroneous integration of 

data [106]. An interesting concept on such comparative methods of interactions is (to note) that a 

comparison of the individual proteins interaction reveals a common tendency between methods 

manifested as global properties of the PINs [107]. To reduce such uncertainties of PIN 

construction from experimental data, two models have been proposed. These are the spoke and 

the matrix model of studying the bait connecting the prey. The former, connecting the bait along 

with the hit proteins, yields less false positives and is three times more accurate than the matrix 

model which connects all proteins. However, the latter yields more true positives as well [108]. 

A list of such sources of PIN can be obtained from literatures [102, 109]. 

Irrespective of the network construction, the analyses, however, can be of potential in cases of 

assessing the efficacy of a drug target, where a specific pathway is targeted to inhibit it. In this 

case, a perturbation of a dynamic network by inhibiting a specific pathway is manifested as a 

diversion to alternate pathways, as discussed in CASCADE [3]. However, the shortest path 

distance between important proteins remains the same and thus, proteins connecting other 

important ones in the network and thereby bridging them, have high BC. Instances of reduction 

Page 21 of 39

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

of such alternate pathways, keeping the core pathway intact as the shortest path, in metabolic 

network of Mycobacterium leprae, have been reported [110]. 

 

Concluding remarks 

The present review has delineated a broad overview of analysing protein interaction networks of 

infectious diseases caused by viruses, bacteria and protozoan parasites. It entails the different 

methodologies which can be adopted by researchers while trying to analyse such networks. A 

thorough look of the review shows that most of the researchers resorted to only a handful of the 

techniques to conclude about important protein identification, pathway detection and functional 

prediction. It is imperative, however, that a benchmarking of these computationally predicted 

and analysed results would be mandatory for a better future towards non-conventional health 

intervention processes. For instance, Lahiri et al. [42] adopted several of these techniques and 

then validated with some biologically relevant high throughput microarray data. Days are not far 

when it would be a practice for the researchers to spread themselves and come up with new 

health intervention strategies to generate more accurate systems-based biomedicines. 
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Table legend 

Table1:Mode of protein interaction network analysis in intra-pathogenic and host-pathogen 

systems 

Supplementary Table1: The number of intra-pathogenic and host-pathogen PPIs from different 

resources along with pathogens’ genome size 

 

Figure legend 

Figure 1: Schematic representation summarizing different computational approaches to analyze 

protein interaction networks. 
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Table 1: Mode of protein interaction network analysis in intra-pathogenic and host-pathogen  

systems 

 

 

 

 

 

 

 

 

Pathogen  Disease  Mode of Network analysis References 

    

Kaposi's sarcoma-

associated herpesvirus  

(KSHV)
 φ,ψ

 

Kaposi sarcoma, B-

cell lymphomas 

 

φ
DC,BC,DD,APL,CCf,ND 

ψ 
DC 

 

[76,80] 

Varicella zoster virus 

(VZV) 
 φ, ψ

 

Chickenpox, 

shingles 

φ
DC,BC,DD,APL,CCf,ND 

ψ 
DC

 
[76,80] 

Epstein-Barr virus (EBV)
 

φ,ψ 
Mononucleosis 

φ
DC,BC,DD,APL,CCf,ND 

ψ
 DC,APL,CCf 

[77,80] 

Severe acute respiratory 

syndrome-coronavirus   

(SARS-CoV)
φ
 

Severe acute 

respiratory 

syndrome 

φ
DC,BC,DD,APL,CCf,ND

 
[79,80] 

Hepatitis C virus (HCV)
φ,ψ

 Hepatitis 
φ
DC,BC,DD,APL,CCf,ND 

 

ψ 
DD,BC,CC,APL, 

CCf,NC,Str,Ecc,Ra,  

PA(KEGG),GO,DA 

[80,91,92] 

Influenza A virus (H1N1, 

H3N2)
 φ,ψ

 

Influenza 
φ
DC,BC,DD,APL,CCf,ND  

ψ
 SNI,PA,GO  

[80,81] 

Human Immunodeficiency 

Virus (HIV)-1
ψ 

 

Acquired 

Immunodeficiency 

Syndrome (AIDS) 

ψ
 DC,BC,DD,SNI,GO,  

PA(KEGG)
 

[93] 

Helicobacter pylori
 φ 

 

Gastritis, peptic 

ulcer and gastric 

cancer 

φ 
CNA,DA

 
[83] 

Campylobacter jejuni
 φ  

Gastroenteritis 
φ
DC,CCf,SNI,CNA,  

GO,EPI
 

[84] 

Treponema pallidum
 φ 

 

Syphilis 
φ
SNI,CNA

 
[85] 

Mycoplasma pneumoniae
 φ 

Atypical pneumonia 
φ
SNI

 
[86] 

Mycobacterium 

tuberculosis
 φ,ψ 

Tuberculosis 
φ
DC,CC,DD,APL,CCf, 

ND,Str,SNI,CNA 
ψ 

DC,GO,PA(IntAct)
 

[87,96] 
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Table 1 continued 

 

Pathogen  Disease  Mode of Network 

analysis 

References 

 

    

Staphylococcus aureus
φ
 Abscesses, Furuncles, 

Atopic dermatitis 

φ
DC,BC,EPI

 
[44] 

Bacillus anthracis
 ψ

 Anthrax 
ψ
DC,BC,CNA,GO 

 
[94] 

Francisella tularensis
ψ 

Pneumonia  
ψ
DC,BC,CNA,GO  

 
[94] 

Yersinia pestis
ψ 

 

Pneumonic, 

septicemic, and 

bubonic plagues 

ψ
DC,BC,APL,CNA,GO,

PA  
 

[94,95] 

Plasmodium falciparum
φ,ψ 

Malaria 
φ
DC,BC,CC,APL,CCf, 

Str,Ecc,Ra,Ass,WI , 

Cn,ND,GO,PA 
ψ 

SNI,
 
GO 

[99,100] 

φ
 - analyses of intra-pathogenic system, 

ψ
 - analyses of host-pathogen systems  

DC-degree centrality, BC-betweenness centrality, DD-degree distribution, APL-average path 

length, CCf-clustering coefficient, CC-closeness centrality, ND-network diameter, NC-neighbor 

connectivity, Str-stress, Ecc-eccentricity, Ra-radiality, Ass-assortativity, WI-Weiner Index, Cn-

centroid, DA-domain analysis; CNA-comparative network analysis, PA-pathway analysis, SNI-

subnetwork identification, EPI-essential protein identification, GO-gene ontology analysis. 
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Figure 1: Schematic representation summarizing different computational approaches to analyze protein 
interaction networks  

169x158mm (300 x 300 DPI)  
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Supplementary Table1: The number of intra-pathogenic and host-pathogen PPIs from different 

resources along with pathogens’ genome size 

 

Pathogen Genome Size Interactions Resources 

Bacillus anthracis 5.2 Mb 3036
φ
    

 
3020

ψ 
PATRIC 

Campylobacter jejuni NCTC 11168 1.6 Mb 24023
φ 

PATRIC 

Clostridum botulinum 3.9 Mb 10
φ 

8
ψ
 PATRIC 

Escherichia coli O157:H7 5.6 Mb 3027
 φ 

12
ψ
 PATRIC 

Francisella tularensis   1.9 Mb 1312
 φ 

1312
ψ
 PATRIC 

Helicobacter pylori 1.7 Mb 2784
φ 

4
ψ
 PATRIC 

Listeria monocytogenes 2.9 Mb 5
φ 

5
ψ
 PATRIC 

Mycobacterium tuberculosis  4.4 Mb 8042
φ
 [82] 

Mycoplasma pneumonia 0.81 Mb 178
φ
 [82] 

Pasteurella multocida 2.4 Mb 12
ψ
 HPIDB 

Salmonella enterica Typhi 4.8Mb 10
φ 

5
ψ
 PATRIC 

Shigella flexneri 4.6 Mb 191
φ 

41
ψ
 PATRIC 

Staphylococcus aureus  2.9 Mb 16
φ 

21
ψ
 PATRIC 

Streptococcus pneumoniae TIGR4 2.1 Mb 429
φ
 12

ψ
 PATRIC 

Treponema pallidum 1.1 Mb 3649
φ
 [82] 

Vibrio cholera  O1 biovar El Tor N16961 4 Mb 9
φ 

1
ψ
 PATRIC 

Yersinia pestis 4.7 Mb 3948
φ
  4018

ψ
 PATRIC, HPIDB 

Epstein–Barr virus  171.8 Kb 220
φ 

BioGRID 

Hepatitis C virus  9.6 Kb 111
φ
  BioGRID 

Human immunodeficiency virus  9.1 Kb 1195
φ
 BioGRID 

Influenza A virus (H1N1)
   

13.6 Kb  4067
ψ
 HPIDB 

Kaposi's sarcoma-associated herpesvirus  138 Kb 142
φ
  BioGRID 

 

Severe acute respiratory syndrome-

coronavirus   

29.8 Kb 65
φ
 [82] 

Varicella zoster virus  125Kb 173
φ 

[82] 

Plasmodium falciparum  22.9 Mb 4750
φ 

 367
ψ
 [100]  

φ and ψ represent  the number of interactions for intra-pathogenic and host-pathogen systems, 

respectively 
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Supplementary Table1: The number of intra-pathogenic and host-pathogen PPIs from different 

resources along with pathogens’ genome size 

 

Pathogen Genome Size Interactions Resources 

Bacillus anthracis 5.2 Mb 3,036
φ
    

 
3020

ψ 
PATRIC 

Campylobacter jejuni NCTC 11168 1.6 Mb 24,023
φ 

PATRIC 

Clostridum botulinum 3.9 Mb 10
φ 

8
ψ
 PATRIC 

Escherichia coli O157:H7 5.6 Mb 3,027
 φ 

12
ψ
 PATRIC 

Francisella tularensis   1.9 Mb 1,312
 φ 

1312
ψ
 PATRIC 

Helicobacter pylori 1.7 Mb 2,784
φ 

4
ψ
 PATRIC 

Listeria monocytogenes 2.9 Mb 5
φ 

5
ψ
 PATRIC 

Mycobacterium tuberculosis  4.4 Mb 8,042
φ
 [82] 

Mycoplasma pneumonia 0.81 Mb 178
φ
 [82] 

Pasteurella multocida 2.4 Mb 12
ψ
 HPIDB 

Salmonella enterica Typhi 4.8Mb 10
φ 

5
ψ
 PATRIC 

Shigella flexneri 4.6 Mb 191
φ 

41
ψ
 PATRIC 

Staphylococcus aureus  2.9 Mb 16
φ 

21
ψ
 PATRIC 

Streptococcus pneumoniae TIGR4 2.1 Mb 429
φ
 12

ψ
 PATRIC 

Treponema pallidum 1.1 Mb 3,649
φ
 [82] 

Vibrio cholera  O1 biovar El Tor N16961 4 Mb 9
φ 

1
ψ
 PATRIC 

Yersinia pestis 4.7 Mb 3,948
φ
  4018

ψ
 PATRIC, HPIDB 

Epstein–Barr virus  171.8 Kb 220
φ 

BioGRID 

Hepatitis C virus  9.6 Kb 111
φ
  BioGRID 

Human immunodeficiency virus  9.1 Kb 1,195
φ
 BioGRID 

Influenza A virus (H1N1)
   

13.6 Kb  4067
ψ
 HPIDB 

Kaposi's sarcoma-associated herpesvirus  138 Kb 142
φ
  BioGRID 

 

Severe acute respiratory syndrome-

coronavirus   

29.8 Kb 65
φ
 [82] 

Varicella zoster virus  125Kb 173
φ 

[82] 

Plasmodium falciparum  22.9 Mb 4,750
φ 

 367
ψ
 [100]  

φ and ψ represent  the number of interactions for intra-pathogenic and host-pathogen systems, 

respectively 
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