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Catheter-associated urinary tract infections (CAUTI) is an alarming hospital based disease

with the increase of multidrug resistance (MDR) strains of Proteus mirabilis. Cases of

long term hospitalized patients with multiple episodes of antibiotic treatments along with

urinary tract obstruction and/or undergoing catheterization have been reported to be

associated with CAUTI. The cases are complicated due to the opportunist approach

of the pathogen having robust swimming and swarming capability. The latter giving

rise to biofilms and probably inducible through autoinducers make the scenario quite

complex. High prevalence of long-term hospital based CAUTI for patients along with

moderate percentage of morbidity, cropping from ignorance about drug usage and

failure to cure due to MDR, necessitates an immediate intervention strategy effective

enough to combat the deadly disease. Several reports and reviews focus on revealing

the important genes and proteins, essential to tackle CAUTI caused by P. mirabilis.

Despite longitudinal countrywide studies and methodical strategies to circumvent the

issues, effective means of unearthing the most indispensable proteins to target for

therapeutic uses have been meager. Here, we report a strategic approach for identifying

the most indispensable proteins from the genome of P. mirabilis strain HI4320, besides

comparing the interactomes comprising the autoinducer-2 (AI-2) biosynthetic pathway

along with other proteins involved in biofilm formation and responsible for virulence.

Essentially, we have adopted a theoretical network model based approach to construct

a set of small protein interaction networks (SPINs) along with the whole genome (GPIN)

to computationally identify the crucial proteins involved in the phenomenon of quorum

sensing (QS) and biofilm formation and thus, could be therapeutically targeted to fight

out the MDR threats to antibiotics of P. mirabilis. Our approach utilizes the functional

modularity coupled with k-core analysis and centrality scores of eigenvector as ameasure

to address the pressing issues.
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INTRODUCTION

Urinary tract infections (UTI) are the second most common
infection prevalent amongst long-term hospital patients, second
only to pneumonia. Failure to treat or a delay in treatment
can result in systemic inflammatory response syndrome (SIRS),
which carries a mortality rate of 20–50% (Jacobsen and Shirtliff,
2011; Schaffer and Pearson, 2015)1 While Escherichia coli
remains the most often implicated cause of UTI in previously
healthy outpatients, Proteus mirabilis take the lead for catheter-
associated UTI (CAUTI), causing 10–44% of long-term CAUTIs
(Jacobsen and Shirtliff, 2011; Schaffer and Pearson, 2015)1. In
comparison to normal cases, CAUTI is quite complicated and
encountered by patients with multiple prior episodes of UTI,
multiple antibiotic treatments, urinary tract obstruction and/or
undergoing catheterization as also for those with spinal cord
injury or anatomical abnormality (Jacobsen and Shirtliff, 2011;
Schaffer and Pearson, 2015)1. Such complications of CAUTI
caused by P. mirabilis arise from the usage of a diverse set of
virulence factors by the organism to access and colonize the
host urinary tract. These include, but are not limited to, urease
and stone formation, fimbriae and other adhesins, iron and
zinc acquisition, proteases and toxins and biofilm formation
(Schaffer and Pearson, 2015). Despite significant advances made
for studying P. mirabilis pathogenesis, a meager knowledge of its
regulatorymechanism poses an urgent and pressing need to come
up with unique health intervention processes for such patients.

In attempts to provide such health interventions, longitudinal,
and epidemiological studies on P. mirabilis have been reported
for extended-spectrum β-lactamase (ESBL) and AmpC β-
lactamase (CBL) producers (Luzzaro et al., 2009; Wang J. T.
et al., 2014) According to these studies, limited therapeutic
options are available for management of such CAUTI which
in turn reflects the imminent threats of multi-drug resistance
(MDR) P. mirabilis. Such MDR phenomenon, exhibited by the
gram-negative pathogens like P. mirabilis, can be attributed,
besides other factors, to the blockade provided by the efflux
pumps at the extra-cytoplasmic outer membrane for existing
antibiotics entries and remainder drugs expulsion (Eliopoulos
et al., 2008; Czerwonka et al., 2016). Besides providing MDR,
the cases of CAUTI have been complicated by biofilms formed
by the pathogenic P. mirabilis (Czerwonka et al., 2016). In
fact, different lipopolysaccharide structures of the membrane
have been implicated to the adherence of the pathogen on
to the surfaces causing CAUTI. Furthermore, along with
various other components of the membrane, several cytoplasmic
factors interplay among themselves to regulate the cell-density
dependent gene regulation. This enables the bacteria for cell-to-
cell communication, a phenomenon known as quorum sensing
(QS) (Rutherford and Bassler, 2012). Besides other phenotypic
traits, QS controls the expression of the virulence factors
responsible for pathogenesis of P. mirabilis (Stankowska et al.,
2012). Again, as per other reports, despite producing two
cyclic dipeptides and encoding LuxS-dependent quorum sensing
molecule, AI-2, during swarming, P. mirabilis has been reported

1https://emedicine.medscape.com/article/226434-overview#a6.

to have no strong evidence of QS (Holden et al., 1999; Schneider
et al., 2002; Campbell et al., 2009; Schaffer and Pearson, 2015).
However, a highly ordered swarm cycle suggests an existing
mechanism for multicellular coordination (Rauprich et al., 1996).
Thus, the fact that P. mirabilis are engaged in biofilm formation
which is managed, albeit in parts, through quorum sensing brings
out the complexity of CAUTI. To deal with such complexity,
analyses of the proteins involved in such phenomenon, known
as the protein interaction networks (PINs), can reveal important
information about key role players of the phenomenon (Lahiri
et al., 2014; Pan et al., 2015).

The indispensable role players of phenomenon like QS can
be determined by analyzing the PIN involving the proteins in
the pathway to produce the QS inducer. The essentiality of such
small protein interactome (SPIN) can be brought about by an
analysis for the most biologically relevant protein to target for
inhibiting that phenomenon, also known as quorum quenching.
Ideally, a determination of the number of interacting partners
of a particular protein identifies its degree centrality (DC) which
correlates with its essential nature in the biological scenario
(Jeong et al., 2001). However, a much deeper understanding
of the essential nature of a particular protein comes upon
analyzing its interaction with other partners in the global
network of all proteins. In this study, we have discussed the
relevance of other centrality measures like Betweenness centrality
(BC), Closeness centrality (CC), and Eigenvector centrality (EC)
(Jeong et al., 2001) parameters for SPIN having the genes
and proteins involved in quorum sensing. Again, analyses of a
stipulated sets of QS proteins for a valuable knowledge about
the most indispensable virulence proteins to render as drug
targets for the QS phenomenon could be uninformative. This
led us to conduct a deep probing of the whole genome of
P. mirabilis (WGPM) for a global analysis of the encoding
proteins. This comprises the k-core analysis approach of whole
genome protein interactome (GPIN) decomposition to a core
of highly interacting proteins (Seidman, 1983). Furthermore, to
identify the functional modules in the global network (Guimerà
and Nunes Amaral, 2005a), we have performed cartographic
analyses and predicted the importance of few proteins sharing
similar functional modules. To sum up, the sole objective of
this study is to utilize several network based models to analyze
and identify crucial role players of QS in P. mirabilis and thus,
propose their importance as potential drug targets.

MATERIALS AND METHODS

Dataset Collection
The P. mirabilis QS pathways for autoinducer-2 (AI-2)
biosynthesis were collected from curated reference databases
of genomes and metabolic pathways like KEGG, MetaCyc and
BioCyc (Caspi et al., 2015; Kanehisa et al., 2015, 2016). The
proteins involved in these pathways were extracted with their
annotated names and identification as per UniProt database
and submitted as entries for the STRING 10.5 biological meta-
database (Szklarczyk et al., 2016) to retrieve protein interaction
datasets with at least 10 or 50 interactors having the default
medium (0.4) level confidence about the interaction, where the
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interactor numbers relate to the interacting proteins present in
the vicinity of the query [period of access: January to February,
2018]. The interactions of the whole genome proteins of the fully
annotated P. mirabilis strain HI4320 were retrieved from the
detailed protein links file under the accession number 529507
in STRING. The sequenced whole genome of the P. mirabilis
strain HI4320 contains the profile for the same through its full
annotation (Pearson et al., 2008). All proteins data, collected and
used for interactome construction hereafter, have been reported
in Supplementary Data 1.

Interactome Construction
We have taken a stepwise approach to integrate and build the
interactomes of the proteins, represented by different sections
of Figure 1. These are the small protein interactomes (SPIN)
comprised of (a) those involved in AI-2 biosynthetic pathway
in the organism with small (Holden et al., 1999) and large
(Kang et al., 2017) number of interactors retrieved from STRING
database (AIPS, AIPL, respectively) (Figures 1A,B), (b) only QS
genes found (QSPO) (Figure 1C), (c) all QS genes reported
as homologs (QSPH) present in P. mirabilis (Figure 1D), (d)
all virulence genes reported (QSPV) (Figure 1E) and (e) the
WGPM (Figure 1F). Whereas QSPO contains genes reported to
be involved in QS in P. mirabilis, QSPH contains additional genes
reported to be involved in QS in other organisms and present as
homologs in P. mirabilis. The virulence genes have been taken
from the set reported by Schaffer and Pearson (Schaffer and
Pearson, 2015). The number of P. mirabilis proteins from the
SPIN class of interactomes were 31 for AIPS, 42 for AIPL, 24
for QSPO, 42 for QSPH, 58 for QSPV, and 3548 for GPIN
(Supplementary Data 1). The medium confidence default values
of 0.4 for the individual protein interaction data were obtained
from String 10.5. Interactions were 1151 for AIPS, 1571 for AIPL,
30 for QSPO, 129 for QSPH, 2376 for QSPV, and 33462 for GPIN,
respectively. These interactions are presented in separate sheets
of Supplementary Data 2.

All individual interaction data obtained above were imported
into Cytoscape version 3.6.0 (Cline et al., 2007) and Gephi 0.9.2
(Bastian et al., 2009) to integrate, build and analyze five SPIN
namely AIPS, AIPL, QSPO, QSPH and QSPV and the GPIN
(Figure 1). Interactomes were considered as undirected graphs
represented by G = (V, E) comprising a finite set of V vertices
and E edges where an edge e = (u,v) connects two vertices u and
v (nodes). In the biological PIN context, a vertex/node represents
a protein. The number of physical and functional interactions a
protein has with other proteins comprises its degree d (v) (Diestel,
2000).

Network Analyses
SPIN

The constructed five SPIN were subsequently analyzed
individually through the common four measures of centrality
applied to biological networks, namely, eigenvector centrality
(EC), betweenness centrality (BC), degree centrality (DC) and
closeness centrality (CC) (Koschützki and Schreiber, 2004; Özgür
et al., 2008; Pavlopoulos et al., 2011; Supplementary Data 3).
This was done either via Gephi or the Cytoscape integrated

java plugin CytoNCA (Tang et al., 2015). For computing
CytoNCA scores, the combined scores obtained from different
parameters in STRING were taken as edge weights. The
combined scores ranging from 0 to 1, considered in STRING
for reporting interactions, generally indicate the confidence of
the interaction among the proteins with the level of evidence
from the parameters like gene neighborhood, gene fusion, gene
co-occurrence, gene co-expression, experiments, annotated
pathways and text mining. To find common proteins from each
centrality measures, the top 5 proteins were taken for drawing
Venn diagrams through online tool Venny 2.1 (Oliveros,
2007–2015) to (Figure 2).

GPIN

MATLAB version 7.11, a programming language developed by
MathWorks (MATLAB Statistics Toolbox Release, 2010), was
used for further analyses of the GPIN. To gain an overview of
the technical aspects of the GPIN, the distributions of network
degree (k) was plotted against the Complementary Cumulative
Distribution Function (CCDF) (Figure 3A). Further concepts
about the core group, comprising very specific proteins, was
obtained from a k-core analysis of the proteins in the whole
genome context. This essentially prunes the network to a k-
core with proteins having degree at least equal to k and
classifying in K-shell based on their classes of interacting partners
(Figures 3B,C). A network decomposition (pruning) technique
was adopted to produce gradually increasing cohesive sequence
of subgraphs (Seidman, 1983). Further, a significant knowledge
of the functional connectivity and participation of each protein
was obtained from the network topological representation of the
within-module degree z-score of the protein vs. its participation
coefficient, P, cartographically represented first by Guimerà and
Nunes Amaral (2005b) (Figure 4). The intra-connectivity of a
node “i” to other nodes in the same module is measured by
the z-score while the positioning of the node “i” in its own
module with respect to other modules measures the participation
coefficient, P. Participation of each protein reflected its intra-
and inter-modular positioning, where functional modules were
calculated based on Rosvall method (Rosvall and Bergstrom,
2011). Amodular network has high intra-connectivity and sparse
inter-connectivity due to which each module has relatively high
density and high separability. Each group of nodes in these type
of networks share a common biological function as mentioned
by Vella et al. (2018). This analysis divided the proteins into
mainly two major categories namely the non-hub nodes and
hub nodes, where the latter is the connecting point of many
nodes. The category of the former has been assigned the roles
of ultra-peripheral nodes (R1), peripheral nodes (R2), non-hub
connector nodes (R3), and the non-hub kinless nodes (R4).
Likewise, the hub nodes have been designated as provincial hubs
(R5), connector hubs (R6), and kinless hubs (R7) (Guimerà and
Nunes Amaral, 2005b) (Figure 4, Supplementary Data 4).

RESULTS

To have an understanding of the important protein(s) of
QS in P. mirabilis, we have taken a stepwise approach of
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FIGURE 1 | The interactomes of P. mirabilis reflecting the degree of connectivity. These comprise the SPIN having proteins coded in light blue colored circles

connected to each other through light blue curved lines as in (A) AIPS, with 10 interactors from STRING, (B) AIPL, with 50 STRING interactors, (C) QSPO, having QS

genes from P. mirabilis, (D) QSPH, having P. mirabilis homologs reported to be involved in QS of other related species, and (E) QSPV, having genes reported to be

involved in virulence of P. mirabilis (Schaffer and Pearson, 2015). (F) GPIN reflecting the 6 different classes (R1–R6) (see Figure 4) of connected proteins in topological

space of the network. The six different color codes denote the classes.
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FIGURE 2 | Venn diagram representation for the top five top rankers of BC, CC, DC, and EC parametric analyses of five individual SPIN and GPIN of P. mirabilis. BC,

CC, DC, and EC stands for betweenness centrality, closeness centrality, degree centrality and eigenvector centrality, degree centrality and closeness centrality,

respectively.

FIGURE 3 | (A) The degree distribution of the proteins from the GPIN of P. mirabilis. CCDF stands for Complementary Cumulative Distribution Function. Distribution of

the (B) k-core and (C) K-shell sizes for the set of proteins from the GPIN of P. mirabilis.

building five SPIN, with an ultimate goal to identify the key
role playing proteins in the phenomenon of QS to serve as
potential candidates for therapeutic targets. Table 1 represents
the comparative picture of the most common topmost proteins,
as per centrality measures, in their descending order. In most of
the cases, at least three or two of the centrality measures brought
out the same protein. These proteins are the ones reflected to
be important through each SPIN analysis. For instance, AIPS
has MetG and MtnN as the top rankers while LuxS, MnmC,
and PMI3678 turns out to be important for AIPL (Table 1).
Others like QSPO, QSPH, andQSPV have YajC, PMI1345, OppA,
RpoS, flagellar proteins of the flh and fli operon and some
other two-component systems proteins like CheY and KdpE as

important rankers. The functions of these proteins arementioned
in Table 2. The top ranking proteins for each of these five
SPINs have been reflected in Figure 2 with Venn diagrams. The
common topmost rankers across all the five SPINs are reflected
in Supplementary Figure 1.

An overview of the important proteins, from individual
SPIN as well as across all SPIN, is obtained upon such
aforementioned analyses. However, to tackle the MDR
P. mirabilis, in a global perspective for a drug to be
effective, the proteins need to be essentially indispensable.
Thus, the whole genome proteins interactome (GPIN) of
P. mirabilis was then analyzed to understand the global
scenario.
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FIGURE 4 | Cartographic representation for classification of proteins from the

GPIN of P. mirabilis based on its role and region in network space. Quadrants

are designated as R1 till R7 with the nodes in each representing different

classes of proteins. Colors of quadrants, however, have no significance.

Selected topmost proteins, with relevance in QS, biofilm and virulence,

analyzed from SPIN are mapped onto different quadrants, as deemed fit as

per GPIN analysis.

TABLE 1 | The most common topmost proteins of P. mirabilis SPIN and GPIN.

Network EC BC DC CC

AIPS MetG, LuxS,

GcvP, Hpt,

PMI3524

MtnN, CysK,

LuxS, MetB,

MnmC

MtnN, MnmC,

CysK, LuxS,

MetB

MtnN, CysK,

LuxS, MetB,

MnmC

AIPL LuxS, ThrA,

MetH, MetL,

PMI0028

MnmC, MtnN,

LuxS,

PMI3678,

TrmA

MnmC, LuxS,

MtnN, ThrA,

MetH

PMI3678,

ThrA, MetH,

PMI0028,

PMI0626

QSPO PMI1345,

PMI1344,

TrpE, PabA,

PabB

YajC,

PMI1345,

GadC, RibD,

PMI2708

PMI1345,

PMI1344,

TrpE, PabA,

PabB

KdpE, Hfq,

FlhD, FlhC,

PMI1345

QSPH PMI1345,

GadC, TrpE,

FlhD, FlhC

KdpE, Ffh,

KdpD, LepB,

FtsY

OppA, MppA,

OppA2,

OppD, OppC

FlhD, FlhC,

PMI1423,

AroF, AroG

QSPV FliF, FliK,

FlgG, FlgC,

FlgI

RpoS, Eno,

Irp, Pgm,

PMI3678

CheY, PykA,

PykF, Tal,

FliN

RpoS, Eno,

PMI3678,

FliC, CsrA

GPIN PolA, GuaA,

DnaK, MetG,

RecA

RplP,

PMI1727,

PMI1033,

PMI2007,

RpoS

PolA,

PMI3678,

RcsC, DnaK,

GuaA

PMI2375,

PMI2723,

PMI0739,

PMI3495,

PMI2629

The bold cased proteins are present in the innermost 154th k- core. EC, BC, DC, and CC

stands for eigenvector centrality, betweenness centrality, degree centrality, and closeness

centrality, respectively.

The Complete GPIN
In an attempt to analyze the type of network being built
from the functional and physical interactions empirically
found and theoretically predicted among the whole genome
proteins retrieved from STRING, we have observed the degree
distribution of GPIN to be exponential showing a non-linear

TABLE 2 | Functions of centrality based topmost proteins of individual P. mirabilis

networks.

Protein

name

Description of function

MetG Is required not only for elongation of protein synthesis but also for the

initiation of all mRNA translation through initiator tRNA(fMet)

aminoacylation

MtnN Catalyzes the irreversible cleavage of the glycosidic bond in both

5′-methylthioadenosine (MTA) and S-adenosylhomocysteine

(SAH/AdoHcy) to adenine and the corresponding thioribose,

5′-methylthioribose and S-ribosylhomocysteine, respectively

LuxS Involved in the synthesis of autoinducer 2 (AI-2) which is secreted by

bacteria and is used to communicate both the cell density and the

metabolic potential of the environment. The regulation of gene

expression in response to changes in cell density is called quorum

sensing. Catalyzes the transformation of S-ribosylhomocysteine (RHC)

to homocysteine (HC) and 4,5-dihydroxy-2,3-pentadione (DPD)

MnmC Catalyzes the last two steps in the biosynthesis of

5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position

(U34) in tRNA. Catalyzes the FAD-dependent demodification of

cmnm5s2U34 to nm5s2U34, followed by the transfer of a methyl

group from S-adenosyl-L-methionine to nm5s2U34, to form

mnm5s2U34

PMI3678 Catalyzes the Phosphorelay through sensor kinase activity of

two-component

Regulatory system

PMI1345 Catalyzes the transfer of the phosphoribosyl group of

5-phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield

N-(5′-phosphoribosyl)-anthranilate (PRA)

FlhD Functions in complex with FlhC as a master transcriptional regulator

that regulates transcription of several flagellar and non-flagellar

operons by binding to their promoter region. Activates expression of

class 2 flagellar genes, including fliA, which is a flagellum-specific

sigma factor that turns on the class 3 genes. Also regulates genes

whose products function in a variety of physiological pathways

FliF Flagellar protein whose M ring may be actively involved in energy

transduction

PolA In addition to polymerase activity, this DNA polymerase exhibits 5′-3′

exonuclease activity

RplP Binds 23S rRNA and is also seen to make contacts with the A and

possibly P site tRNAs

The functions of the selected proteins are derived from UniProt database.

preferential attachment nature (Figure 3A; Vázquez, 2003).
Hereafter, we have framed an idea of the important proteins from
an array of proteins involved in the five individual SPIN, upon
performing a k-core analysis for them (Figures 3B,C). Notably,
the innermost core was 154th shell and had genes like thrA,
cysK, metG, metL, trpE, rpoS, eno, etc. which have already been
reflected from the four network centrality analyses of the SPINs
(Table 1, Supplementary Data 3: Sheet 1–5). Additionally, it is
to be noted that top 5 EC and DC measures of the GPIN also
had their position in the innermost 154th core, thereby indicating
their importance in the global scenario. Other important genes
e.g., luxS, PMI1345 from the k-core analyses were found in
the 139th shell. The latter category was found to have direct
involvement in QS.

Furthermore, to classify the proteins based on their regional
positioning and functional role in the network topological
space of P. mirabilis, we have analyzed the GPIN represented
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cartographically (Figure 4, Supplementary Data 4). Essentially,
such representation would classify the complete set of proteins
in the genome with respect to their connectivity within
similar classes of proteins performing similar biological function
(functional module) along with their participation with other
related and/or non-related functional module (also see materials
and methods and discussion section). Noticeably, the R6
quadrant had the top 5 proteins belonging to either the innermost
154th core or almost close to the 139th core containing most of
the proteins related to QS (Supplementary Data 4). These are
GltB and PMI3678 for the former and PMI3348, PMI0587, and
PMI3517 for the latter. Moreover, upon looking deep into EC
classification of R6 quadrants, all top 5 proteins, namely PolA,
GuaA, DnaK, MetG, and RecA were from the innermost 154th
core. Furthermore, analysis after sorting of module followed by
R quadrant, k-core followed by either module or EC measures,
all revealed the proteins to be mostly belonging to the R6 or
R5 categories, besides their 154th or 139th core classification
(Supplementary Data 4). It is worthwhile to mention here that
a similar sorting analyses of BC with respect to Quadrant
and k-core had revealed proteins mostly from R2 or R3, none
of them occupying the innermost 154th core, except RplP,
and RpoS.

DISCUSSION

We have started with the proteins involved in P. mirabilis AI-2
biosynthesis pathway (Supplementary Figure 2) and derived the
AIPS besides AIPL (Figures 1A,B). While the former connects
the proteins of the pathway as reported by default in STRING
with only 10 interactors, supposedly directly involved in the
phenomenon of AI biosynthesis, the latter has been formed upon
extending those to 50 interactors per protein query. The idea
was to incorporate other related proteins having connectivity
to the AI-2 whose analysis might give more insight about QS
in P. mirabilis. Moreover, it was necessary to have an idea of
the robustness of the proteins involved in QS pathways and
thus, QSPO was constructed to have an idea of the proteins
directly involved in the phenomenon of QS in P. mirabilis only
(Figure 1C). Again, with the homologous proteins reported to
be involved in QS in other species from KEGG database, it
was necessary to look into their association with acknowledged
QS proteins of P. mirabilis (Supplementary Figure 3). Thus,
QSPH was constructed to take into consideration of this fact
and analyze further (Figure 1D). Furthermore, with multiple
genes and proteins reviewed for the virulence of P. mirabilis
(Schaffer and Pearson, 2015), including those involved for
QS phenomenon, it was necessary to have an interactome
QSPV constructed to analyse their interactions and involvement
(Figure 1E). All these SPIN were constructed to have an
understanding of the indispensable proteins responsible for QS in
P. mirabilis. Finally, a complete whole genome analyses for other
plausible indispensable proteins connecting biofilm formation,
AI-2 biosynthesis, quorum sensing and even MDR was necessary
to have a bird’s eye view of the global scenario. This was done with
the construction and analyses of the GPIN (Figure 1F).

The five SPIN were then analyzed individually by utilizing
the four important centrality measures of DC, CC, BC, and
EC. Of these, DC is the most basic, informing the connectivity
of any protein in the network. CC might reflect the proximity
of a protein in terms of its communication with others to
render a functionally virulent phenotype. Being a comparatively
better measure in terms of bridging different functionally
important groups of virulent proteins, BC might bring out
the importance of a protein to be targeted for therapeutic
purposes. However, EC might show the most important proteins
having their impact on other important proteins in a virulent
network and thus, turn out to be indispensable protein to
target. We have found a varying range of proteins ranging
from the locomotive flagellar proteins of the flh and flg operon
(Claret and Hughes, 2000), LuxS (Schneider et al., 2002) and
MtnN directly involved in AI-2 biosynthetic pathway, MetG
and MnmC involved in the protein translation machinery along
with the proteins PMI1345 (Wang M. C. et al., 2014) and
PMI3678 with catalytic activities/domains, chaperone protein,
Hfq (Wang M. C. et al., 2014), signal transduction protein,
KdpE (Rhoads et al., 1978), and a pre-protein translocase
subunit, YajC (Pearson et al., 2008). Among the proteins
PMI1345 and PMI3678, as per UniProt database, the former
is having an activity as anthranilate phosphoribosyltransferase
catalyzing the transfer of the phosphoribosyl group of 5-
phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to
yield N-(5′-phosphoribosyl)-anthranilate (PRA). Essentially,
PMI1345 is involved in the 2nd step of the subpathway
synthesizing L-tryptophan from chorismate. Again, PMI3678 has
the histidine kinase domain and displays activities of kinase
through ATP binding and in-turn regulates transcription via
a two-component regulatory system. Thus, as analyzed above,
with the different proteins, pertaining to the biofilm formation,
flagellar locomotion, translation and signal transduction, a level
of complexity of the P. mirabilis QS machinery could be
perceived.

To gain more insight into the global scenario of the whole
genome, we have constructed the GPIN (Figure 1F) and analyzed
it through several network topological and centrality parametric
measures (Supplementary Datas 3, 4). For this GPIN, we have
observed that the connectivity distribution, P(k), of a particular
node gets connected to k other nodes, for large values of k. This
confirms that the GPIN is indeed a large network and neither
a random, Erdos and Renyi type (Erdos and Rényi, 1960) nor
a small-world, Watts and Strogatz type (Watts and Strogatz,
1998). Our GPIN is free of a characteristic scale and roughly
followed the power-law (Albert et al., 2000) with an exponential
decay of the degree distribution (Figure 3A). Initially, we have
analyzed the constructed GPIN with k-core/K-shell topological
parameters (Figures 3B,C). Technically speaking, a k-core is a
subnetwork with a minimum number of k-links. A K-shell is a set
of nodes having exactly k-links. In another words, K-shell is the
part of k-core but not of (k+1)-core. Thus, proteins belonging
to the outer shell have lower k value thereby reflecting the limited
number of interacting partner proteins. On the contrary, proteins
from the inner k-core/K-shell are very specific ones having high
interaction with each other and are considered to be the most
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important ones. It has been observed that the inner core member
proteins are highly interactive due their robust and central
character (Alvarez-Hamelin et al., 2006). In this light, a complete
decomposition of the network, achieved by decomposing the
core, would reveal the innermost important part of the network.
We have found the 154th core as the innermost one for our
GPIN having many proteins involved in the biosynthesis of
amino acids, including cysteine and methionine, the amino acid
precursor of the components of AI-2 biosynthetic pathway. These
proteins rank top for most of the EC measures across the other
five SPIN as well. Furthermore, the 139th core was on focus due
to its nearby proximity to the innermost core and comprising
most of the proteins directly involved in QS. Our analyses till this
far revealed LuxS and PMI1345 to be the prominent EC proteins
in the 139th core of the genome. Interestingly, only PolA and
RplP, top rankers of BCmeasures, made it to the innermost 154th
core compared to the other topmost EC proteins in that core.
This probably reflects the importance of ECmeasure to reveal the
prominent stakeholders of the machinery responsible for the very
survival and probably virulence of the organism. Any effective
drug target should, thus, be selected from this core group with
high EC rank.

A further delving deep into the functional connectivity of
the modules formed in network topological space reinforced our
findings this far. The topological orientation of the nodes in space
are being represented cartographically where P-values have been
put in the x-axis and z-score values in the y-axis. In this context,
R1 has low P-values and low z-scores while R7 has the highest
for both of them. Following this representation, the non-hubs
and the hubs are classified into the protein groups of R1-4 and
R5-7, respectively. Among them, the kinless hubs proteins (R7),
having high connection within module (z) as well as between
modules (P) scores, becomes important in terms of functionality.
Similarly, the ultra-peripheral proteins (R1), with least P and z
measures, are the least connected across the network followed by
the peripheral proteins (R2). Such proteins can be detached easily
and thus, are perceived, not much to affect the whole network
when attempted to reach the core upon decomposition. This is
nothing but the outermost shells of the k-core measures (refer
previous section) which has proteins not grossly affecting the
survival of the organism. Likewise, proteins belonging to the non-
hub connectors (R3) group might be involved in only a small
but fundamental sets of interactions. On the contrary, proteins
of the provincial hubs class (R5) have many connections which
are within-module. Again, the non-hub kinless proteins (R4)
link other proteins which are evenly distributed across all the
modules. However, the connector hub proteins (R6) link most
of the other modules and are expected to be the most conserved
in terms of decomposition as well as evolution. This could be the
very set of proteins which the organism would maintain as the
essential ones for their very survival. We have observed mostly
R5 and R6 classes of proteins occupying the innermost 154th
and the QS-involved 139th cores. Furthermore, the EC measures
brings out the importance when compared to other measures of
centralities.

In order to bring out the biological implication of the
cartographic analyses, we now discuss the relevance of the

proteins identified as essential in the context of virulence, biofilm
formation and QS phenomenon. In this context, it is important
to note that, we have observed many of the already known
genes and proteins, viz LuxS, FlhDC to be reflected from our in
silico cartographic analyses as well. For example, with the highest
number (17) of fimbrial operons reported in any sequenced
bacterial species, four P. mirabilis fimbriae, namely, MR/P,
UCA, ATF, and PMF have shown prominent roles in biofilm
formation (Scavone et al., 2016). The thickness, structure, and
the amount of exopolysaccharides produced by some biofilms
formed by P. mirabilis are influenced by important acylated
homoserine lactones (Stankowska et al., 2012). Moreover, some
virulence factors are regulated by QS molecules like acylated
homoserine lactones (acyl-HSLs) (Henke and Bassler, 2004).
Of the two QS types, LuxS is an essential enzyme for AI-2
type which is coded by luxS gene having S-ribosylhomocysteine
lyase activity (Schneider et al., 2002). Acetylated homoserine
lactone derivatives modifies the expression of virulence factors
of P. mirabilis strains (Stankowska et al., 2008). The flhDC
master operon is a key regulator in swarmer cell differentiation
in P. mirabilis, it is known to cause an increased viscosity and
intracellular signals (Fraser and Hughes, 1999). Furthermore, the
extracellular signals can be sensed by two-component regulators
such as RcsC–RcsB (Fraser and Hughes, 1999).

Having said the above, we observe that, many such genes and
proteins, not reported to have connections withQS and virulence,
have also been unearthed from our study. Thus, it is imperative
to have an in-depth analysis to bring out the importance of
the proteins unearthed through the process. In order to achieve
the same, we rely on the fact that the innermost 154th core
could harbor the genes/proteins essential for the very survival
of the organism. Moreover, our cartographic analysis shows that
R6 classes of proteins having high intra- and inter-connectivity,
within and between the functional modules might play a crucial
role in the maintenance of the organismal structure. This
adds up to another level of indispensable nature. Furthermore,
the very concept of Eigenvector centrality, which reflects the
important proteins’ connectivity with other such important
proteins in terms of their function, finalize the indispensable
factor. This method of utilizing the k-core, functional module
and centrality measure, like that of Eigenvector, has been used
to analyze large networks to reveal the important proteins,
albeit, in a complete different scenario (Ashraf et al., 2018).
Utilizing this method, referred to as KFC, we found the
three topmost indispensable factors for P. mirabilis are gltB,
PMI3678, and rcsC (Supplementary Data 5). It is important to
note that the glutamate synthase encoding gene gltB, has been
shown to be involved in a quorum sensing-dependent glutamate
metabolism which affects the homeostatic osmolality and outer
membrane vesiculation in Burkholderia glumae (Kang et al.,
2017). Expression level of gltB has been shown to affected in
E. coli by the stationary phase QS signals (Ren et al., 2004).
Again, rcsC encodes an sensor histidine kinase protein which
is known to be involved in swarming migration and capsular
polysaccharide synthesis along with yojN (Belas et al., 1998;
Fraser andHughes, 1999). The sensor kinase activity for PMI3678
encoding an aerobic respiration control protein, however, has not
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been reported earlier for P. mirabilis, and thereby could serve
as one of the important therapeutic targets. All these proteins
are quite different to those reported to be quite important in a
recent study to unearth the fitness factors in a single-species and
polymicrobial CAUTI setting, performed with a genome wide
transposon mutagenesis of P. mirabilis (Armbruster et al., 2017).
In this study, Armbuster et al. has observed the polyamine uptake
and biosynthesis to the fitness factor for single species CAUTI
while branched chain amino acid (BCAA) synthesis turned out to
be important for polymicrobial infection along with Providencia
stuartii (Armbruster et al., 2017). None of these fitness factors,
found to be helpful in colonizing either the catheterized bladder
(referred to as Factors for Bladder Colonization, FBC) or the
kidney (Factors for Kidney Colonization, FKC), were observed
in our analysis to be belonging to the R6 quadrant despite some
falling within the innermost 154th core (Supplementary Data 5).
While the reports by Armbuster et al. is in a live and dynamic
setting, ours is, a static and theoretical network analysis.
However, given the fact that this theoretical analysis reflects only
a few indispensable ones, they might have some relevance in
therapeutic intervention strategies to tackle CAUTI caused by
MDR P. mirabilis.

CONCLUSION

This study takes a stepwise approach to identify the crucial role
players from different sets of interacting proteins of P. mirabilis
involved primarily in QS phenomenon. Essentially, this
delineates the building of theoretical interactomes comprising
the five individual SPIN which are analyzed through network
parametric measures to reveal the most important proteins for
such phenotype of QS and biofilm formation. All these lead to
the identification of LuxS and PMI1345 to be important proteins

of this organism. Furthermore, the results are supplemented
through a decomposition of the P. mirabilis genome interactome,
GPIN, followed by analysis of centrality measurements to reach
the innermost core of the proteins essential for virulence and
survival. Such in-depth analysis of the GPIN revealed other
classes of important conserved proteins like GltB, PMI3678, and
RcsC having the potential for being the most important ones and
thus, indispensable among the set of whole genome proteins of
P. mirabilis.
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