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Abstract

In this work a new approach to address multivariable control structure (MCS) de-

sign for medium/large-scale processes is proposed. The classical MCS design method-

ologies rely on superstructure representations which define sequential and/or bilevel

mixed-integer nonlinear programming (MINLP) problems. The main drawbacks of

this kind of approach are the complexity of the required solution methods (stochas-

tic/deterministic global search), the computational time, and the optimality of the

solution when simplifications are made. Instead, this work shows that, by using the

sum of squared deviations (SSD) as well as the net load evaluation (NLE) concepts,
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the control structure design problem can be formulated as a mixed-integer quadratic

programming (MIQP) model with linear constraints, featuring both optimality and

improved computational performance due to state-of-the-art solvers. The formulation

is implemented in the GAMS environment using CPLEX as the selected solver and

two typical case studies are presented to show the benefits of the proposed approach.

1 Introduction

In general, all industrial processes need to be controlled in some extent if some specific

behavior is required for the plant as a whole. This specific behavior is usually related to se-

curity, economic, performance, and environmental objectives. Several decisions are required

before a feasible control structure is selected. The multivariable control structure (MCS),

or plantwide control (PWC), design is a critical research area which intends to address all

these decisions systematically. Downs and Skogestad 1 suggest that the solution of this kind

of problems requires the integration of several knowledge bases with different insights, which

shows the complexity of a unified (all in one) methodology. Moreover, Stephanopoulos and

Reklaitis 2 identify these complex and integrated problems as the new trends that must be

addressed by the process systems engineering (PSE) community.

Any MCS design methodology should answer the following basic questions: (1) How many

and which output variables should be controlled? (2) How many and which input variables

need to be manipulated? (3) What is the best input-output pairing between these sets? (4)

Which controller interaction (diagonal, sparse, full), policy (decentralized or centralized),

technology (classical or advanced), and tuning should be selected? Most of the approaches

for MCS design proposed in the literature address this problem only partially due to its inher-

ent complexity. On the one hand, the heuristic methods become intractable for medium-large

scale processes, requiring some kind of simplification (ad-hoc decisions) to reduce the overall

problem size. This drawback produces, in general, suboptimal designs from the operating

as well as investment cost perspectives. On the other hand, the methodologies supported
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by mathematical and/or systems theory are more suitable to deal with medium-large scale

processes systematically, as well as to be integrated with other problems such as process

synthesis/design. On this broad line, several contributions with the most varied themes and

results appear in the literature, which include: stability/controllability/robustness from the

steady-state as well as dynamic point of view3–5, input-output pairing problems for decentral-

ized square MCS designs6–9, self-optimizing control methods focused on using all the available

manipulated variables (MVs)1,10, deviation-based indexes for arbitrary MCS (decentralized,

sparse, full)11,12, combinations of the former into multi-objective criteria1,11,13, integration

between heuristics and steady-state/dynamic simulations14,15, and economic plantwide con-

trol where the MCS design is integrated to optimal/safe process operation16–19. Recently,

Gutierrez et al. 20 proposed a control structure selection framework for simultaneous pro-

cess and control design based on model predictive control (MPC), which extends a previous

work of the same authors21. They introduce a mixed-integer nonlinear programming for-

mulation, which is redefined as a nonlinear programming model by removing the discrete

decision variables from the inner problem. The proposed framework handles decentralized,

partially decentralized, and full control structures and, at each optimization step, requires

dynamic simulations to evaluate the closed-loop performance. Most of these mathemat-

ical approaches are based on process models (dynamic/steady-state, linear/nonlinear) and

mixed-integer nonlinear programming formulations, use decentralized control structures with

a fixed order, and are applied to small/medium scale processes.

A unified methodology (considering all the basic questions posed above) requires some

kind of superstructure representation defined by bilevel (embedded) and/or sequential mixed-

integer nonlinear programming (MINLP) models. At this point two additional drawbacks

appear: 1- a MINLP formulation requires complex global optimization algorithms (stochas-

tic/deterministic) which become intractable for medium/large-scale processes8 and 2- there

is a lack of rigorous global optimization algorithms for solving bilevel MINLP (BMINLP)

models22. It is clear that a unified superstructure for MCS design is essential to solve the
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overall control problem effectively and accurately. Moreover, it is important to carefully

analyze the final formulation of this kind of problems because sometimes a small change

in the modeling approach leads to formulations that are easier to implement and to solve.

Hence, in this context, the main contributions of the present work are summarized in the

next section.

1.1 Contribution of this work

In this work the BMINLP superstructure for MCS design presented in Zumoffen 12 is suc-

cessfully reformulated as a mixed-integer quadratic programming (MIQP) model. The new

representation allows to solve a very complex problem with a more suitable method, i.e.,

by using state-of-the-art solvers such as CPLEX in GAMS. Indeed, while the new MIQP

representation still requires binary/integer decision variables, it does not introduce non-

convex constraints. In this way, the use of complex MINLP global optimization algorithms

(stochastic/deterministic), which present serious drawbacks related to computing time, com-

putational resources, and optimality of the solution when the process size increases (becom-

ing intractable for medium/large-scale plants) is avoided. Furthermore, there is a lack of

rigorous global optimization algorithms for solving BMINLP models22, which supports the

convenience of an alternative approach.

To the best of our knowledge, the proposed MCS design mathematical formulation is the

first equation-oriented superstructure addressing simultaneously: the selection of controlled

(CVs) and manipulated variables (MVs), the input-output pairing definition, the controller

design, the initial control requisites/heuristics, and the test of stability using steady-state

information, that is applicable to medium/large-scale processes.

The main contributions of this work are summarized in the following items:

• An alternative and effective MIQP formulation for MCS design applicable to medium/large-

scale processes is presented.
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• The BMINLP representation is avoided via a linear/convex equation-oriented super-

structure.

• The MIQP formulation guarantees the global optimum solution while improving the

computing time.

• Suitable implementation and solution tools are readily available (GAMS/CPLEX).

• The proposed superstructure addresses the CVs and MVs selection, the input-output

pairing definition, the controller design, the heuristic concepts, and a simplified stability

testing, simultaneously.

• The proposed formulation sets the foundations for future contributions integrating

process control and process synthesis and design.

This work is organized as follows: Since the proposed MIQP reformulation is obtained

from the general BMINLP structure, the inherent drawbacks associated to bilevel program-

ming are reviewed in Section 2. Section 3 presents, in the context of BMINLP, an overview

of the general formulation for MCS design proposed by Zumoffen 12. Besides, the main con-

cepts behind the sum of squared deviations (SSD) as well as the net load evaluation (NLE)

methodologies are discussed in Sections 3.1 and 3.2, respectively. The complete MIQP refor-

mulation is presented in Section 4, where each constitutive part, i.e., the SSD problem, the

NLE approach, the RGA-based input-output problem, the stability/robustness test, and the

heuristics consideration, is described in Sections 4.1, 4.2, 4.2.1, 4.2.2, and 4.3, respectively.

The application of the proposed methodology to well-known medium/large-scale benchmark

examples, such as the Tennessee Eastman process and the waste water treatment plant, is

presented in Section 5. Finally, conclusions and the future work are discussed in Section 6.
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2 The reformulation of bilevel programming

Bilevel programs are defined as optimization models where two layers can be clearly identi-

fied: 1- the upper or leader program with its own associated cost function, decision variables,

and constraints, and 2- the lower or follower problem which represents another complete op-

timization problem embedded in the constraints of the upper level. These levels can be coop-

erative or not depending on the nature of the problem being tackled22,23. Several challenging

problems in process systems engineering (PSE) can be formulated as bilevel programming

models, two typical examples being control structure selection and optimal process design

and operation.

Although the literature is extensive for bilevel linear/nonlinear/quadratic programming

(BLP/BNLP/BQP) approaches, which exclude the lower level from discrete decisions, there

is a lack of rigorous global optimization algorithms for solving bilevel mixed-integer nonlinear

programing (BMINLP) problems22. The BLP/BNLP/BQP problems can be reformulated

into single-level mathematical programs by replacing the lower-level convex program with

the corresponding Karush-Kuhn-Tucker (KKT) conditions. This philosophy is not applicable

to BMINLP due to the discrete variables in the lower level, and some reformulations need

to be used to solve this kind of problems.
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A general representation of the BMINLP problem is show in eq. (1),

min
xu,zu

F (xu, zu,xl, zl) (1a)

s.t. Gi(xu, zu,xl, zl) ≤ 0, i = 1, . . . ,m (1b)

Hj(xu, zu,xl, zl) = 0, j = 1, . . . , r (1c)
min
xl,zl

f(xu, zu,xl, zl)

s.t. gi′(xu, zu,xl, zl) ≤ 0, i′ = 1, . . . ,m′

hj′(xu, zu,xl, zl) = 0, j′ = 1, . . . , r′

(1d)

xu ∈ Rq,xl ∈ Rq′ , zu ∈ Zp, zl ∈ Zp′ (1e)

where F/f , Gi/gi′ , Hj/hj′ are the cost function, the inequality constraint functions, and

the equality constraint functions of upper/lower levels, respectively. Furthermore, xu and

zu are the continuous and discrete variables associated to the upper level and xl and zl the

corresponding ones tied to the lower level.

For some small-scale cases with special structure, the problem in eq. (1) can be addressed

with global optimization techniques as proposed by Yue and You 22. Indeed, they present a

reformulation and decomposition algorithm based on optimal value formulation and partial

enumeration. Although their methodology works fine for small cases, its application to large-

scale problems is limited by the increasing amount of computational resources needed. The

authors also analyze an alternative single-level parametric centralized formulation, which is

shown in eq. (2), and illustrate the difference between the latter and the problem in eq. (1).

In eq. (2), the parameter ε allows to balance the emphasis between the upper and lower level

cost functions.
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min
xu,zu,xl,zl

F (xu, zu,xl, zl) + εf(xu, zu,xl, zl) (2a)

s.t. Gi(xu, zu,xl, zl) ≤ 0, i = 1, . . . ,m (2b)

Hj(xu, zu,xl, zl) = 0, j = 1, . . . , r (2c)

gi′(xu, zu,xl, zl) ≤ 0, i′ = 1, . . . ,m′ (2d)

hj′(xu, zu,xl, zl) = 0, j′ = 1, . . . , r′ (2e)

xu ∈ Rq,xl ∈ Rq′ , zu ∈ Zp, zl ∈ Zp′ (2f)

While the formulations in eq. (1) and eq. (2) are not equivalent, the approach used

in eq. (2) is very useful for some large-scale cases, since it avoids the implementation of

nonlinear global optimization algorithms which are very expensive from the computational

point of view. In fact, we are particularly interested in this kind of formulation due to some

specific characteristics of the multivariable control structure design problem. In the following

sections a complete reformulation of the BMINLP approach for MCS design is proposed.

3 MCS design: a general formulation based on bilevel

MINLP

We consider as a starting point the bilevel mixed-integer nonlinear formulation based on

combined indexes proposed by Zumoffen 12. This methodology represents a complex opti-

mization problem where the classical decisions related to the controlled and/or manipulated

variables selection, the input-output pairing, robustness/stability, and the controller struc-

ture (decentralized, sparse, full) are parameterized into a superstructure via specific binary

selection variables.

This approach is applicable to stable (or stabilized) processes, considering a transfer
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functions matrix (TFM) representation (Laplace domain) of the plant given by y(s) =

G(s)u(s) + D(s)d∗(s), which can be partitioned as:

 ys(s)

yr(s)

 =

 Gs(s) G∗s (s)

Gr(s) G∗r (s)


 us(s)

ur(s)

+

 Ds(s)

Dr(s)

d∗(s) (3)

where y(s) are the potential output measurements, u(s) are the available MVs, and d∗(s)

are the disturbance variables (DVs) with size (m× 1), (n× 1), and (p× 1), respectively. For

some particular partitioning of G(s), as shown in eq. (3), ys(s) and yr(s) are the selected

controlled variables (CVs) and uncontrolled variables (UVs), respectively. Besides, us(s) are

the selected manipulated variables (MVs) to control the subprocess Gs(s) and ur(s) = 0

are not used. It is worth noting that a normalized version of the process model is used in

this work. Although there are several ways to perform the scaling of the process, generally

accepted procedures are to develop linear models based on two different approaches: 1-

working with deviations/incremental variables and scaling against the maximum expected

value and 2- when data from some identification experiment are available, to normalize all

the variables to zero mean and unit variance. The latter normalizing approach is adopted

in this work. Hence, the potential changes in set points and disturbances are considered to

be unitary because all the variables are assumed to be equally important. While the SSD

and NLE indexes presented in the following sections are scaling dependent, this dependency

is not a negative property. It only means that the selected scaling should be taken into

account when the results are analyzed. Previous works of the authors11,12,24 address the

potential modifications of the process scaling to consider unnormalized plants and/or to

define the relative degree of importance among the process variables. Considering the process

partitioning given in eq. (3), the methodology of Zumoffen 12 is summarized by eq. (4) and

its main concepts and drawbacks are highlighted in the following paragraphs.
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min
zI, zO, zS

[SSD + NLE] (4a)

s.t. SSD = ||GrG
−1
s ||2F + ||

(
Dr −GrG

−1
s Ds

)
||2F (4b)

NLE = ||I− G̃sG
−1
s ||2F + ||G̃sG

−1
s Ds||2F (4c)

q ≤ min{m,n} (4d)

||zI||1 = ||zO||1 = q (4e)

TO = nre[diag(zO)], TI = nce[diag(zI)] (4f)

Gs = TOGTI, Ds = TOD (4g)

Gr = TOGTI, Dr = TOD (4h)

G̃s = Gs ⊗ (zP + zS) (4i)

Re
[
λi

(
Gs(G̃s)

−1
)]

> 0, i = 1, . . . , q (4j)∑
i

∑
j

zS(i, j)zP(i, j) = 0 (4k)

zI ∈ Bm, zO ∈ Bn, zS ∈ Bq×q (4l)

min
zP

Λn

s.t. Λ = Gs ⊗ (G−1s )T

Λn = ||zP − Λ||sum∑
i

zP(i, j) =
∑
j

zP(i, j) = 1

zP ∈ Bq×q

(4m)

In Zumoffen 12 the BMINLP model shown in eq. (4) has been solved using a stochastic

global search method, i.e., genetic algorithms, in the Matlab context. Due to its intrinsic

combinatorial complexity, this methodology has only been tested on the design of decentral-

ized MCS. The approach is based on the combination of two steady-state indexes: the SSD,
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associated to the selection of controlled and manipulated variables, and the NLE, associated

to the definition of the controller structure. It is worth mentioning that these indexes are

scaling dependent, so if the normalization procedure is changed the optimal solution can also

differ. To contextualize the general approach, brief comments are given about these indexes

in the following sections.

3.1 Selection of CVs and MVs

Let us assume that the subprocess Gs(s) in Eq. (3) is controlled with some structure based

on integral action (1-DOF), then at steady-state (s = 0) we have ys = ysp
s and,

us = G−1s ysp
s −G−1s Dsd

∗ = usp
s + ud

s ,

yr = GrG
−1
s ysp

s +
(
Dr −GrG

−1
s Ds

)
d∗ = ysp

r + yd
r

(5)

where usp
s = G−1s ysp

s is the MVs component associated to changes of set-point and ud
s =

−G−1s Dsd
∗ the MVs component tied to the disturbance effects. Similarly, the uncontrolled

variables can be partitioned as ysp
r = Gru

sp
s and yd

r = Gru
d
s + Drd

∗. Thus, the SSD index

in eq. (4b) quantifies the deviations of the uncontrolled variables yr from their nominal

operating points when set points and disturbances occur in the plant individually. The SSD

minimization properties were extensively analyzed in previous works of the authors12,24 and

it was shown there that this minimization tends to maximize the minimum singular value of

the subprocess Gs, i.e., a well-conditioned subprocess that is easy to control is obtained3,4.

Eqs. (4d)-(4h) allow to select specific parts of the original plant model G and D in order

to perform the SSD index evaluation. The transformation matrices TO and TI depend on the

binary decision variables zO and zI, respectively. The entries in the vector zO with unitary

value indicate the output variables selected to be controlled (CVs). Similarly, the vector zI

indicates the selection of the MVs. The number of unitary entries in both sets need to be

the same (q). Functions nre(·) and nce(·) take a square matrix and eliminate the zero rows
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and columns, respectively.

3.2 Controller structure

Once the model partition in eq. (3) is defined, a multivarible controller for Gs(s) needs to

be designed. Let us assume, without lost of generality, that internal model control (IMC)

is used to this end. Thus, the controller is given by Gc(s) = G̃−1s (s)F(s), where G̃s(s) is

a particular selection of the entries of Gs(s) and F(s) a low-pass diagonal filter matrix. It

is assumed here that the selection of G̃s(s) is performed on the invertible part of Gs(s)

according to the procedure opportunely defined by Garcia and Morari 25. Moreover, in a

previous work of the authors24 this approach is discussed and some conservative tuning rules

are suggested for the diagonal filter matrix F(s). In this context, the closed-loop relationship

on the CVs is:

ys(s) = F(s)ysp
s (s) + (I− F(s))ynet

s (s) (6)

where

ynet
s (s) = An(s)ys(s) + Bn(s)d∗(s) (7)

An(s) =
[
I +

(
Gs(s)− G̃s(s)

)
Gc(s)

]−1 (
Gs(s)− G̃s(s)

)
Gc(s) (8)

Bn(s) =
[
I +

(
Gs(s)− G̃(s)

)
Gc(s)

]−1
Ds(s), (9)

being ynet
s (s) the so-called net load effect, which quantifies the multivariable interaction at

closed-loop. It is clear from eq. (6) that the term associated to the net load effect is an

undesired disturbance from the CVs point of view. An extensive analysis of this term can be

found in previous works12,24 where a new index called net load evaluation (NLE) is proposed

by minimizing ynet
s at steady-state

ynet
s =

(
I− G̃sG

−1
s

)
ysp
s +

(
G̃sG

−1
s Ds

)
d∗ = ysp

s − G̃su
sp
s − G̃su

d
s (10)
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using a sum of squared deviations as shown in eq. (4c). Basically, the NLE approach allows

to define a specific plant-model mismatch to develop the best IMC controller interaction

improving the closed-loop performance.

The mentioned plant-model mismatch selection is performed in eq. (4i) via zP and zS,

which represent binary decision matrices of q×q. Matrix zP represents the best decentralized

input-output pairing from the embedded minimization in eq. (4m) and zS is the sparse model

selection given around zP to minimize the NLE index. The zP selection in eq. (4m) is based on

the so-called RGA-number Λn = ||zP−Λ||sum which in turn depends on the classical relative

gain array (RGA), Λ = Gs ⊗ (G−1s )T . Equation (4k) represents a structural constraint and

eq. (4j) is the so-called stability/robustness criterion developed by Garcia and Morari 25 for

multivariable control structures based on IMC theory, where Re[·] is the real part function

and λi(·) is the i-th eigenvalue.

Note 1: It is worth mentioning that an alternative MCS design procedure to eq. (4)

was proposed in Zumoffen (2013)11 using a suboptimal algorithmic solution method based

on GA in Matlab. In Zumoffen (2016)12 the BMINLP shown in eq. (4) is solved only

for decentralized control structures, also using a global GA solver. Although the approach

proposed in Zumoffen (2016)12 improves the optimality degree of the solutions respect to

those given in Zumoffen (2013)11, the computing time of the former is very restrictive when

full or sparse control structures are needed. This behavior is a typical drawback of GA

solutions, making these stochastic global search algorithms unpractical or even unviable for

medium/large-scale processes.

3.3 Reformulation based on single level MINLP

Following the approach outlined in section 2, the first step to reformulate the BMINLP in

eq. (4) into a single MINLP is by eliminating the embedded minimization in eq. (4m). The

main idea here is to relax the optimality condition of the solution given by eq. (4m), which is

replaced by a feasibility condition transforming the problem into a single-level programming
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model. Besides, the parametric centralized approach is not used. Therefore, the bilevel

MINLP in eq. (4) is modified into the single-level structure shown in eq. (11).

min
zI, zO, zS, zP

[SSD + NLE] (11a)

s.t. eq. (4b) to eq. (4l) (11b)

Λ = Gs ⊗ (G−1s )T (11c)

Λp = Λ⊗ zP (11d)

δ1 ≤
∑
j

Λp(i, j) ≤ δ2, i = 1, . . . , q (11e)

∑
i

zP(i, j) =
∑
j

zP(i, j) = 1 (11f)

zP ∈ Bq×q (11g)

The constraints in eqs. (11d) and (11e) guarantee that the selected input-output pairing

given by zP is a feasible solution, where Λp contains the entries selected by zP from the

RGA and zero elsewhere. In eq. (11e), δ1 and δ2 are design parameters which allow to define

the desired amount of interaction (minimum and maximum, respectively) between inputs

and outputs to be paired in a decentralized control structure. Besides, the binary decision

matrix zP is now an argument of the main/single minimization problem together with zI,

zO, and zS.

This reformulation is based on the following reasoning: the optimization in eq. (4m) gen-

erates the most decentralized input-output pairing for a given subprocess Gs, i.e. the RGA

has entries very close to unity for the paired elements and features very low values for the

remaining entries. From the control point of view this means good control characteristics,

low control energy, and low interaction at closed loop. Analyzing the inherent properties of

the SSD and NLE approaches it can be observed that, on the one hand, from eq. (5) the SSD

minimization tends to maximize the minimum singular value of the process Gs by minimizing
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the deviations of usp
s and ud

s (i.e., a well conditioned process, good control characteristics,

low control energy and reliable RGA) and, on the other hand, the NLE minimization tends

to minimize the multivariable interaction at closed loop (eq. (10)) by minimizing the multi-

variable gain of the process model G̃s and the deviations of usp
s and ud

s .12,24 In other words,

the SSD+NLE combined index (by itself) drives the optimization towards a well-conditioned

subprocess with reliable RGA and minimum control energy. This will become evident in the

next section when the link between the RGA and the usp
s deviations are explicitly defined.

Hence, the optimization in eq. (4m) is replaced by a feasibility condition where two new

parameters are added to handle the RGA interaction level desired by the user.

It is important to note that the formulation in eq. (11) is an intermediate step between

the model presented in eq. (4) and the reformulation proposed in the following section. The

optimization problem in eq. (11) is not solved in this work.

4 Complete problem reformulation based on MIQP

The single-level MINLP model proposed in eq. (11) is substantially modified here. It is clear

that the superstructure formulation proposed in Zumoffen 12, which is based on selecting

specific parts of G and D via transformation matrices, generates bilinear/nonlinear terms in

both the cost function and the constraints due to products between the decision variables and

the matrix inverse. To overcome this situation, a different modeling approach is proposed.

The main idea is to translate the selection criteria based on the process matrices (G and

D) to the input-output process variables (u and y). The new representation maintains the

linearity and convexity of the model and, if deterministic solvers such as CPLEX in the

GAMS environment are used, guarantees that the best solution found is also the global

optimum.

According to the analysis presented in Sections 3.1 and 3.2, both the SSD and the NLE

indexes quantify the deviations of some specific variables from the nominal operating point
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when set points and disturbances occur individually (based on the superposition principle).

Obviously, parameterized with some CVs, MVs, and controller structure selection. Thus,

for each set point and disturbance change the systems of equations for yr in eq. (5) and

ynet
s in eq. (10) can be solved separately and the squared deviations added up into the cost

function. The proposed new mixed-integer quadratic programming (MIQP) formulation is

show in eq. (12) and described step by step in the following sections. The decision variable

vectors and matrices used in the model have the following characterization:

• binary vector variables: zI ∈ Bn×1, and zO ∈ Bm×1,

• binary matrix variables: zn, znd ∈ Bm×n,

• real (continuous) vector variables: yc
i , y

nc
i , yd

j , y
nd
j ∈ Rm×1, and uc

i , u
d
j ∈ Rn×1, and

• real (continuous) matrix variables: unc
i , und

j , yr ∈ Rm×n,

where yc
i , y

nc
i , uc

i , and unc
i are defined for each i, and yd

j , y
nd
j , ud

j , and und
j are defined for

each j, with i = 1, . . . ,m, l = 1, . . . , n, and j = 1, . . . , p. The notation A(:, i) means the

selection of the i-th column of the matrix A. Besides, vi and vj refer to the unit vectors

of directions i and j, respectively, for the spaces Rm and Rp. While eq. (12) is presented in

matrix form, a detailed description using scalar components is presented in the Appendix.
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min
u,y,z

m∑
i=1

‖yc
i‖

2
2 +

p∑
j=1

∥∥yd
j

∥∥2
2

+

m∑
i=1

‖ync
i ‖

2
2 +

p∑
j=1

∥∥ynd
j

∥∥2
2

(12a)

subject to −M(1m − zO) ≤ Guc
i − vi ≤M(1m − zO) (12b)

−M(1m − zO) ≤ Gud
j + D(:, j) ≤M(1m − zO) (12c)

−MzO(i)1n ≤ uc
i ≤MzO(i)1n (12d)

−MzI ≤ uc
i ≤MzI (12e)

−MzI ≤ ud
j ≤MzI (12f)

yc
i −Guc

i + vi ⊗ zO = 0m (12g)

yd
j −Gud

j −D(:, j) = 0m (12h)∥∥zO∥∥
1

=
∥∥zI∥∥

1
(12i)∥∥zO∥∥

1
≤ qmax (12j)

−M(1m×n − zn) ≤ unc
i − 1m(uc

i )
T ≤M(1m×n − zn) (12k)

−M(1m×n − zn) ≤ und
j − 1m(ud

j )T ≤M(1m×n − zn) (12l)

−Mzn ≤ unc
i ≤Mzn (12m)

−Mzn ≤ und
j ≤Mzn (12n)

ync
i + (G⊗ unc

i )1n − vi ⊗ zO = 0m (12o)

ynd
j + (G⊗ und

j )1n = 0m (12p)

zn(i, l) ≤ zI(l), zn(i, l) ≤ zO(i) (12q)

zI(l) ≤ ‖zn(:, l)‖1 , z
O(i) ≤

∥∥zn(i, :)T
∥∥
1

(12r)

zI(l) =
∥∥znd(:, l)

∥∥
1
, zI(l) =

∥∥znd(i, :)T
∥∥
1

(12s)

znd ≤ zn (12t)

−M(1m×n − znd) ≤ yr −G⊗ [uc
1, . . . ,u

c
m]

T ≤M(1m×n − znd) (12u)

δ1z
nd ≤ yr ≤ δ2znd (12v)

m∑
i=1

(
zO(i)− ync

i (i)
)
≥ δ (12w)
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4.1 The SSD subproblem

The reformulation in eq. (12) avoids the matrix partitioning defined in eqs. (4f) to (4h) as

well as the complex nonlinear matrix operations in eq. (4b) by parameterizing the control

superstructure directly on the complete process model y = Gu + Dd∗. If set points and

disturbances are considered separately, the following systems of equations for each set point

change i and for each disturbance change j are considered:

Set point changes:


yc
i = Guc

i − vi ∀ i ∈ CVs

selected CVs in yc
i fixed to zero

non selected MVs in uc
i fixed to zero

Disturbance changes:


yd
j = Gud

j + Dvj ∀ j = 1, . . . , p

selected CVs in yd
j fixed to zero

non selected MVs in ud
j fixed to zero

(13)

In eq. (13), uc
i and ud

j are real (continuous) vector variables of size n×1 associated to the

input response for the i-th set point change and the j-th disturbance change, respectively.

Similarly, yc
i and yd

j are real (continuous) vector variables of size m × 1 associated to the

deviations of the uncontrolled variables (UVs). In turn, the unitary vectors vi (of size m×1)

and vj (p× 1) generate the (normalized) changes of set point i and disturbance j. In order

to use the systems in eq. (13), specific entries of the input (uc
i and ud

j ) and output (yc
i and

yd
j ) vectors should be fixed depending on the selection of MVs and CVs. In particular, the

entries associated to input variables not manipulated and output variables being controlled

should be zero.

In the proposed model, the SSD subproblem is addressed by eqs. (12b) to (12j). The

variables (yc
i , u

c
i ) and (yd

j , u
d
j ) contain the required solutions of the systems of equations for

the i-th set point and the j-th disturbance change, respectively. These solutions are obtained
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according to the CVs and MVs selected by the binary decision variables zO and zI.

In order to explain how the constraints associated to set point changes are modeled, i.e.,

eqs. (12b), (12d), (12e), and (12g), let us assume that the binary vectors zI and zO have fixed

binary values with
∥∥zO∥∥

1
=
∥∥zI∥∥

1
= q and, therefore, determine a selection of manipulated

and controlled variables, respectively. If TO and TI are defined according to eq. (4f) and we

define

P =

 TO

TO

, Q =

[
TI TI

]
(14)

then, by construction, the following relations hold:

P1m = 1m, PzO =

 1q

0m′

 , QQT = In, and QT zI =

 1q

0n′

 (15)

where m′ = m − q and n′ = n − q. Using eq. (15), if eq. (12b) is pre-multiplied by P and

the identity Guc
i = G

(
QQT

)
uc
i is considered the following equation is obtained:

−M

 0q

1m′

 ≤
 (TOGTI)

(
TOGTI

)
(
TOGTI

) (
TOGTI

)

 TI

T

TI
T

uc
i −Pvi ≤M

 0q

1m′

 (16)

Because set point changes are considered for controlled variables only, the big-M eq. (12d)

is used to force the trivial solution uc
i = 0n for each uncontrolled variable i (i.e., whenever

zO(i) = 0). Otherwise, we can assume that i ∈ CVs and if eq. (12e) is pre-multiplied by QT

we have:

−M

 1q

0n′

 ≤
 TI

T

TI
T

uc
i ≤M

 1q

0n′

 (17)

Recall that eqs. (16) and (17) are equivalent to eqs. (12b) and (12e), respectively, when

specific CVs and MVs are selected by fixing the values of zO and zI. In eq. (17), assuming

that the output i is being controlled, the variables of uc
i that are not selected as MVs are
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driven to zero by the big-M conditions. In turn, because of these zero entries of uc
i , only

the subsystems given by Gs = TOGTI and Gr = TOGTI (refer also to eqs. (4g) and (4h))

are taken into account in eq. (16). In this big-M constraint, after the transformation P is

applied, both the lower and upper bounds of the first q rows are driven to zero. Thus, eq. (16)

guarantees that the set point change conditions given in eq. (13) hold for each controlled

variable i.

Finally, if the same procedure applied to eq. (16) is also used in eq. (12g), then eq. (18)

is obtained.

Pyc
i =

 (TOGTI)
(
TOGTI

)
(
TOGTI

) (
TO GTI

)

 TI

T

TI
T

uc
i −P

(
vi ⊗ zO

)
(18)

In eq. (18), the term P
(
vi ⊗ zO

)
is either equal to Pvi if i is a selected controlled variable

(i.e., zO(i) = 1) or equal to 0m otherwise. In the former case, since the right hand sides of

the first q rows of eq. (18) are the same than the corresponding constrained values of the

first rows of eq. (16), the first q entries of the vector Pyc
i are zero. In eq. (16), the big-M

conditions of the remaining rows are relaxed and, therefore, yc
i will only have nonzero values

associated to the uncontrolled variables (UVs). In the latter case, because eq. (12d) forced

the condition uc
i = 0n, then the trivial solution yc

i = 0m is obtained if i /∈ CVs.

A similar argument can be applied to eqs. (12c), (12f), and (12h) to demonstrate that yd
j

and ud
j represent the solution of eq. (13) for the j-th disturbance change. In this case, the

formulation is simpler because every disturbance is considered. The remaining constraints,

eqs. (12i) and (12j), guarantee that the number of CVs and MVs are the same (square

control structure) and the selected number of control loops is lower or equal than qmax. It is

important to note that qmax can be selected by the user from the range 1 ≤ qmax ≤ min(m,n).

When qmax = min(m,n), eq. (12j) is redundant.

Let us consider a generic system yi = Ari where yi is the vector of deviations associated

to a pre-defined i-th unitary change in r (i.e., the vector ri has a unitary entry in the position
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i and zero elsewhere). Then, the sum of squared deviations for all the variables considered

individually results
∑m

i=1 ||yi||22 = tr(ATA) = ||A||2F . In order to calculate the SSD index,

recall that from eq. (5) it follows that:

ysp
r =

(
GrG

−1
s

)
ysp
s , yd

r =
(
Dr −GrG

−1
s Ds

)
d∗ (19)

Therefore, for a given selection of CVs and MVs the solution of eqs. (12b) to (12h)

includes multiple valid solutions of eq. (19). On the one hand, ysp
r = TO yc

i and ysp
s = TO vi

solve eq. (19) for each i. On the other hand, yd
r = TO yd

j and d∗ = vj are applied for each

j. Therefore, the SSD index in eq. (4b) is equivalent to
∑m

i=1 ||yc
i ||22 +

∑p
j=1 ||yd

j ||22, which in

turn is the same that the first two components of the objective function given in eq. (12a).

4.2 The NLE subproblem

The controller structure design based on the NLE index, which has been described in Section

3.2, is modeled here by means of the linear constraints in eqs. (12k) to (12r). Following the

same strategy of previous section, the matrix partitioning defined in eqs. (4f) to (4h), the

nonlinear Hadamard product in eq. (4i), and the nonlinear matrix operations in eq. (4c) are

all avoided. If set-points and disturbances are considered separately, the following systems

of equations derived from eq. (10) are used:

Set point changes:

 ync
i = vi − G̃uc

i

∀ i ∈ CVs
, Disturbance changes:

 ynd
j = −G̃ud

j

∀j = 1, . . . , p
(20)

In eq. (20), the matrix G̃ will only include the entries of G selected for the controller

structure. To choose particular entries of G, the matrix of binary variables zn of size (m×n)

is used. Since adding the definition G̃ = (G ⊗ zn) will introduce equations with bilinear

terms between continuous decision variables to the model, a different approach is considered

here. For instance, in eq. (20) the product between G̃ and uc
i can be calculated as G̃uc

i =
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(G⊗ zn)uc
i =

(
G⊗

[
zn ⊗ 1m(uc

i )
T
])

1n, where the term in square brackets can be obtained

using (linear) big-M constraints. Also, an identical argument can be applied to the product

G̃ud
j .

Based on the above discussion, new continuous variable matrices unc
i and und

j are defined.

The big-M inequalities given in eqs. (12k) to (12n) define the input response associated to

the controller structure selected in zn for each type of change (i.e., set point or disturbance).

If zn(k, l) = 1, because of eqs. (12k) and (12l), then unc
i (k, l) = uc

i (l), ∀i, and und
j (k, l) =

uc
j(l), ∀j. Otherwise, zn(k, l) = 0 and both unc

i (k, l) and und
j (k, l) are driven to zero by

eqs. (12m) and (12n). As a result, unc
i =

[
zn ⊗ 1m(uc

i )
T
]

and und
j =

[
zn ⊗ 1m(ud

j )
T
]
.

The corresponding output deviations vectors ync
i and ynd

j (associated to the i-th set-

point and j-th disturbance change, respectively) are calculated by eqs. (12o) and (12p).

The constraints in eqs. (12q) and (12r) are structural constraints. They guarantee that the

controller structure zn has only entries in allowed positions defined by the selection of CVs

and MVs given by zO and zI, respectively, and ensure that at least a decentralized policy is

used. Finally, similar to previous section, the NLE index (last two components of eq. (12a))

can be computed as
∑m

i=1 ‖ync
i ‖

2
2 +

∑p
j=1

∥∥ynd
j

∥∥2
2

4.2.1 RGA-based input-output pairing

The input-output pairing problem is modeled here using eqs. (12s) to (12v). The main

idea is to represent the selection of the decentralized control structure with a new matrix of

binary decision variables znd, which will be linked to the sparse control structure selection

zn. This approach has two main objectives: 1- to serve as a base design platform, around

which the sparse structure is defined and 2- to define the input-output pairing by using the

so-called relative gain array (RGA), Λ = Gs ⊗ (G−1s )T , where Gs is the selected process to

be controlled. In other words, the unitary entries in znd correspond to proper and feasible

gains in Λ.

The binary variables znd are constrained by eqs. (12s) to (12t). Equation (12s) defines
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two structural feasibility constraints, which guarantee a one-to-one pairing between MVs

and CVs. Besides, eq. (12t) guarantees that the decentralized control structure will be the

base case scenario to perform the sparse control design.

In order to compute the RGA while avoiding the introduction of strong non-linearities in

the model, it is clear that some kind of reformulation is needed. According to the precursory

work of Bristol 6, each element of the matrix Λ is defined as λil = gilĝli, where

gil =
∆yi
∆ul

∣∣∣∣
uk=0 ∀k 6=l, ul: free

and ĝli =
∆ul
∆yi

∣∣∣∣
yk=0 ∀k 6=i, yi: free

(21)

represent the open-loop gains and 1/ĝli the closed-loop gains of the process Gs at steady-

state. Let us consider a generic process G of (m × n) with the following open-loop gain

matrix:

G =



g11 g12 · · · g1n

g21 g22 · · · g2n
...

...
. . .

...

gm1 gm2 · · · gmn


=



∆y1/∆u1 ∆y1/∆u2 · · · ∆y1/∆un

∆y2/∆u1 ∆y2/∆u2 · · · ∆y2/∆un
...

...
. . .

...

∆ym/∆u1 ∆ym/∆u2 · · · ∆ym/∆un


(22)

where the l-th column is computed based on the condition ∆uk = 0,∀k 6= l. Similarly, the

closed-loop gain can be computed as,

Ĝ =



ĝ11 ĝ12 · · · ĝ1m

ĝ21 ĝ22 · · · ĝ2m
...

...
. . .

...

ĝn1 ĝn2 · · · ĝnm


=



∆u1/∆y1 ∆u1/∆y2 · · · ∆u1/∆ym

∆u2/∆y1 ∆u2/∆y2 · · · ∆u2/∆ym
...

...
. . .

...

∆un/∆y1 ∆un/∆y2 · · · ∆un/∆ym


(23)

where the i-th column is computed based on the condition ∆yk = 0,∀k 6= i. Thus, it is clear

that Λ = G⊗ ĜT .

Considering the closed-loop gain definition in eq. (21), we have ∆ul = ĝli ∆yi|yk=0 ∀k 6=i, yi: free.
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Furthermore, if we consider unitary step changes for ∆yi (like in Section 4.1) the columns

in eq. (23) become



∆uc1(1) ∆uc2(1) · · · ∆ucm(1)

∆uc1(2) ∆uc2(2) · · · ∆ucm(2)

...
...

. . .
...

∆uc1(n) ∆uc2(n) · · · ∆ucm(n)


= [uc

1, u
c
2, . . . , u

c
m] (24)

being uc
i with i = 1, . . . ,m the input deviation vectors previously defined for the SSD

approach. Hence, the RGA matrix can be computed as Λ = G ⊗ [uc
1, u

c
2, . . . , u

c
m]T where

G is a fixed real matrix and ⊗ the Hadamard product (element-by-element product).

Taking into account the above discussion, the RGA evaluation is performed in eq. (12u)

using big-M constraints based on the decentralized control structure selection defined by znd.

Matrix yr includes both the selected entries of the RGA, which are constrained by eq. (12v)

guaranteeing a feasible and useful input-output pairing according to the scalar parameters

δ1 and δ2 fixed by the user, and the entries not selected (i.e., those associated to zeros in

znd) which are also driven to zero by eq. (12v).

4.2.2 Stability/robustness criterion

The stability/robustness criterion shown in eq. (4j) is a well known steady-state test used

to design the structure of multivariable IMC controllers, specially in the sparse control case.

As is, this eigenvalue-based test introduces hard non-linearities in the model, and some kind

of reformulation is needed. In order to obtain this reformulation, the matrix properties to

be used are revisited first.

Any real matrix A of size (n× n) is called a positive stable (PS) matrix if Re [λi (A)] >

0, ∀i = 1, . . . , n, where λi(·) calculates the i-th eigenvalue and Re(·) is the real part function.

Moreover, if A is PS then A−1 is also a PS matrix26. Additionally, since any square real

matrix has only real or complex conjugate eigenvalues, for any real PS matrix A the following
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trace condition is true,

tr (A) =
n∑
i=1

λi (A) =
n∑
i=1

Re [λi (A)] =
n∑
i=1

aii > 0 (25)

where aij is the (i, j)-entry in the matrix A. It is important to note that the converse is

not true, i.e., a positive trace does not imply PS. However, a negative trace implies that the

matrix A is definitively not PS, and this fact is used as a preliminary stability/robustness

test in the proposed MIQP model.

Let us consider the product Gs(G̃s)
−1 and its inverse G̃s(Gs)

−1, for a (q× q) process Gs.

The trace of the latter matrix product can be written as:

tr
(
G̃s(Gs)

−1
)

= rT1

(
G̃s(Gs)

−1
)
r1 + rT2

(
G̃s(Gs)

−1
)
r2 + . . .

+ rTq

(
G̃s(Gs)

−1
)
rq

(26)

where the vector rk ∈ Rq is a column vector with a unitary entry in the position k and zero

elsewhere. In order to evaluate the trace in eq. (26), recall that the formulation in eq. (12)

is defined to work with non square processes G of (m×n), where the selection of the square

subprocess Gs (of size q× q) to be controlled is determined by the binary vectors zO and zI.

Moreover, G̃s is a particular selection of entries of Gs.

Taking into account the transformation matrix TO of size (q × m), for each k there is

a unique unit vector vi such that rk = TOvi. Since from eqs. (16) and (17) it follows

that TI
Tuc

i = (Gs)
−1TOvi, and given that Gs = TOGTI and G̃s = TOG̃TI, then eq. (26)

becomes:

tr
(
G̃s(Gs)

−1
)

=
m∑
i=1

(TOvi)
T G̃s(Gs)

−1(TOvi)

=
m∑
i=1

vTi

(
TO

T G̃sTI
T
)
uc
i

=
m∑
i=1

vTi G̃uc
i

(27)
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Moreover, if the set point changes in eq. (20) are considered, the constraint in eq. (12o)

implies that G̃uc
i = (vi ⊗ zO)− ync

i and eq. (28) results:

tr
(
G̃s(Gs)

−1
)

=
m∑
i=1

vTi
(
(vi ⊗ zO)− ync

i

)
=

m∑
i=1

(
zO(i)− ync

i (i)
)

(28)

where at the last step the definition of column vectors vi has been applied.

Note that eq. (28) evaluates the trace of the matrix Gs(G̃s)
−1 for any square subprocess

Gs selected by the model. Hence, an alternative stability/robustness test to eq. (4j) is

included in the formulation in eq. (12w), where a small positive lower bound δ is considered.

This conservative constraint avoids the selection of control structures which are definitely not

PS. It is important to recall, however, that a positive trace is a necessary but not sufficient

condition to guarantee the PS property of the matrix.

Note 2: An alternative approach to implement the stability/robustness criterion is to

combine the proposed model with an iterative procedure based on testing the stability, adding

cuts, and rerunning. For instance, after using GAMS/CPLEX to solve the formulation given

in eq. (12), the best solution obtained can be transferred to an environment such as Matlab

to perform the stability/robustness test stated in eq. (4j) and, in case of instability, add a

constraint (cut) to the formulation in eq. (12). The added constraint discards from the search

space of the MIQP problem the binary solution resulting in an unstable controller structure,

and the augmented formulation is rerun at the following iteration. The overall procedure is

continued until a stable/robust solution is found. This methodology has not been required in

this work because the solutions found in the test cases were all stable.

4.3 Heuristics and controller structure

Heuristic considerations selecting any particular multivariable control structure design can

be easily incorporated to the formulation in eq. (12). For example, if the i-th output variable

and the l-th input variable are selected to be ad hoc controlled and manipulated variables,
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respectively, then this situation can be considered by fixing the value of the corresponding

binary variables, i.e., zO(i) = 1 and zI(l) = 1. These ad-hoc decisions are usually de-

termined before the control structure design procedure is applied, e.g., decisions from the

process synthesis stage, good practices from practitioners or process engineers, and/or safety

issues. Furthermore, different controller topologies (i.e., control loop architectures), such

as decentralized, sparse, and full, can be designed by the user. The model in eq. (12) can

be regarded as a general formulation to design sparse controllers, i.e., controllers with arbi-

trary interaction among their loops. Depending on the size of the control structure selected,

q =
∥∥zO∥∥ =

∥∥zI∥∥, these type of controllers can be implemented either by using IMC and/or

MPC theory or via multiple decentralized interacting PIDs. However, also decentralized and

full controllers can be designed. On the one hand, a decentralized non-interacting (diagonal)

controller is characterized by several PID control loops which have no interaction among

them. This type of controller can be designed with the proposed method if the equality

zn = znd replaces the inequality in eq. (12t). On the other hand, a full controller means

that a complete interaction among the control loops is required, and this design context

is considered if the inequality zn(i, l) ≥ zI(l) + zO(i) − 1 is added to the model (i.e., no

plant-model mismatch is forced).

4.4 General comments of the MIQP-based MCS design approach

4.4.1 The Big-M representation

The big-M method is a well-know modeling technique used to formulate constraints that

apply only when certain conditions over the binary variables hold. When big-M constraints

are used to represent disjunctions, the convergence rate of the solver and amount of compu-

tational resources needed are, in many cases, sensitive to the selected M parameter. In the

proposed MIQP method, the same sufficiently large value of M is used in all constraints. An

alternative approach will consider the selection of an individual Mc for each constraint c, such

that Mc is as small as possible. Hence, the resulting formulation will be as tight as possible.
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However, in the context of the proposed MIQP framework the calculation of these Mc is not

straightforward. Indeed, a rigorous approach requires solving multiple mixed-integer opti-

mization problems. As an example, sharp big-M parameters for eq. (12b) can be obtained

by calculating the minimum and maximum values of each component of yc
i considering every

integer solution (i.e., every alternative controller structure) such that the corresponding en-

try of zO is set to zero. This analysis is out of the scope of the present contribution. In order

to give some insight on the sensitivity to the value of M of the proposed MIQP approach,

results for alternative values of M are reported for one of the case studies in the Supporting

Information file.

4.4.2 The RGA interaction

The classical RGA-based input-output pairing selects particular entries of the matrix Λ =

Gs ⊗ (G−1s )T which feature predefined/desired values, where Gs is the steady-state gain

matrix of the process to be controlled. The main and well-known drawback of this approach

is the loss of reliability when the process Gs is ill-conditioned or almost singular.

The proposed MIQP approach for MCS design avoids this drawback because of the inher-

ent properties of the SSD and NLE indexes discussed in Sections 3.1 and 3.2, respectively.

On the one hand, the SSD minimization tends to maximize the minimum singular value

of the process Gs, i.e. a well conditioned process and reliable RGA is obtained. On the

other hand, the NLE minimization drives the selection of the input-output pairing based on

minimizing the net load effect in eq. (10), i.e. the multivariable interaction at closed loop

is minimized12,24. In this context, the inequality constraints in eq. (12v) become a simple

feasibility test to guarantee an interaction in the range [δ1, δ2], which is fixed by the user. It

is worth noting that, while δ1 represents the most important limit, i.e. the minimum accept-

able interaction, the upper limit δ2 can be set large enough because the interaction tends

to be minimized by the SSD+NLE combined index. Since the attainable RGA interaction

depends on the characteristics of the process itself, some particular intervals for the range
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[δ1, δ2] can turn the MIQP problem infeasible. For instance, if the lower limit δ1 is set too

high, solutions may not be available for some predefined number qmax of required control

loops. A similar situation may happen if the range [δ1, δ2] is fixed to be extremely small.

The definition of alternative interaction ranges is analyzed for one of the case studies in the

Supporting Information file.

It is important to note that the BMINLP formulation in eq. (4) depends on the RGA-

number, but the single-level MIQP reformulation presented in eq. (12) only depends on the

RGA. The RGA-number for input-output pairing is avoided based on the arguments ex-

plained in Section 3.3. At the BMINLP formulation level, the inner optimization in eq. (4m)

based on the RGA-number can be replaced by any alternative methodology for input-output

pairing that selects a single solution from a set of feasible solutions. In the same sense, the

eqs. (12u)-(12v) of the MIQP model can be modified replacing the RGA constraints by an

alternative input-output pairing criteria. For instance, the relative interaction array (RIA)

could be used instead of the RGA method. In this case, since the RIA is based on the RGA

elements, from the feasible pairing point of view it can be assumed that there is no strong

difference between both methodologies. However, since the RIA elements are inversely pro-

portional to the RGA ones, some kind of linearization/reformulation is needed to guarantee

the linear property of the MIQP constraints.

4.4.3 Strengths and weaknesses

It is important to recall that the proposed SSD+NLE-based MIQP approach for control

structure design is based on a linearized model of the process under study. Therefore, no

dynamic implications are considered and only a steady-state model is required. Obviously,

like any model-based control approach (RGA, IMC, MPC, etc.), the performance and con-

fidence of the extended minimum squared deviations (MSD) methodology are bounded by

the validity zone of the process model itself.

Although the proposed approach addresses all the major issues of plant-wide control
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design such as the selection of CVs and MVs, the pairing between these sets, the structure

of the controller (decentralized, sparse, full), and the corresponding tuning (via the process

model and the IMC criterion), some other important issues remain unattended. Examples of

these issues are to incorporate: 1- the selection of stabilizing control loops to design MCS on

unstable processes, 2- other control topologies (control loop architectures) such as cascade

control and/or feedforward control, 3- economic considerations of the overall MCS design,

and 4- dynamic information if available.

The main limitation of the NLE steady-state minimization relies on the strictly proper

systems hypothesis, which is true for industrial process in general. The theoretical conclu-

sions about the NLE approach are limited to the bandwidth in which the control is effective.

If the process has multivariable gains (singular values) modifications at high frequency, the

multivariable controller bandwidth needs to be modified to avoid these frequencies. In gen-

eral, if dynamic information of the process is available, a frequency analysis of the sensitivity

functions, the loop gain function and/or a robust performance/stability analysis might be

useful to define the bandwidth properly as it is suggested by a previous work of the authors24.

5 Case studies

In this section the proposed MIQP formulation for MCS design is tested on two classical

medium/large scale benchmark processes. The reader may also find a simple step-by-step

application of the proposed method in the Supporting Information file.

5.1 The Tennessee Eastman process

The first case study selected to test the proposed formulation is the well-known Tennessee

Eastman process (TEP). This plant was introduced by Downs and Vogel 27 as a multivariable

nonlinear benchmark for the process control community. The process consists of five major

units: the reactor, the product condenser, a recycle compressor, a vapor-liquid separator,
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and the product stripper. The plant produces two liquid products G and H from four

gaseous reactants called A, C, D, and E, where also present are an inert B and a byproduct

F. The reactions are approximately first-order with respect to the reactant concentrations,

irreversible, and exothermic.

The plant summarizes 12 available MVs, 41 potential measurements, 20 disturbance

scenarios, and six potential operating modes which define several product G/H mass ratios

and rates. The most popular operating condition is the base case or mode I, where a 50/50

mass ratio is required with flowrates of 7038 kg/h for both G and H.

The TEP is an open-loop unstable plant, so a proper stabilizing control structure is

needed before applying the approach introduced in previous sections. In this work, the

stabilizing control policy proposed by McAvoy and Ye 28 is adopted, which consists of flow

(inner) and level (cascade) controllers for the reactor, separator, and stripper. Figure 1

shows the TEP layout and the corresponding stabilizing control structure.

The main scenario considered here for multivariable control structure design is shown

in Table 1 and corresponds to the aforementioned base case operating point, with m = 12

outputs, n = 8 inputs, and p = 2 disturbances. The same framework has been used in

previous publications of one of the authors11,12. The original control requisites defined by

Downs and Vogel 27 require the output variables identified as y9, y10, y11, and y12 to be

controlled, being this fact indicated with an asterisk in Table 1.

The methodology proposed in eq. (12) is applied to the TEP considering decentralized,

sparse, and full controller designs, and the corresponding results are shown in Tables 2 to

5. According to Section 4.3, the original control requisites are fixed as zO(i) = 1, ∀i =

9, 10, 11, 12. As discussed in Section 4.2.1, the range of feasible input-output pairing values

selected is [δ1, δ2] = [0.3, 30]. Besides, in all cases the big-M value is fixed to M = 30.

In order to illustrate the complexity of the associated MIQP problems, Table 2 includes

the model sizes and relaxed solutions obtained for each controller type. In Table 3 a compar-

ison of solutions and computational times is presented for both the GA methodology based
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Figure 1: TEP with stabilizing control loops.

on the BMINLP formulation in eq. (4) and the proposed MIQP reformulation in eq. (12)

solved with CPLEX in the GAMS context. All the simulations and optimizations were per-

formed on an Intel R© i5 3.2GHz processor with 8GB of RAM, using Matlab R© 2013 and

GAMS v24.5.6/CPLEX 12.6.

While the GA procedure solves a more general bilevel problem, it is a stochastic global

search approach that does not guarantee the optimality of the best solution found. In con-

trast, the proposed MIQP optimization model is applied to a simpler single-level problem and

guarantees that the best solution obtained is also optimal whenever the solver’s branching

process is completed. Considering the results in Table 3, not only the MIQP solver has been

able to complete the search process reporting the optimal solution for each controller type,

but also the following two remarkable results can be observed: 1- the optimization times of

the MIQP/CPLEX approach represent only 37.81%, 47.84%, and 5.36% of the GA times

for the controller designs called decentralized, sparse and full, respectively, and 2- for the

sparse controller design, the GA-based BMINLP approach cannot find the optimal solution,

getting the algorithm entrapped in some local minimum (it finishes by the function tolerance

criterion, i.e., the fitness function improvement is less than certain tolerance.) These facts
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Table 1: TEP variables

Inputs Variable

u1 D flow [kg/h] XMV (1)

u2 A flow [kg/h] XMV (3)

u3 A/C flow [kscmh] XMV (4)

u4 Compressor rec. valve [%] XMV (5)

u5 Purge valve [%] XMV (6)

u6 Stripper steam valve [%] XMV (9)

u7 RCWO temp. setpoint [oC] XME(21)sp

u8 CCW Flow [m3/h] XMV (11)

Outputs

y1 Recycle flow [kscmh] XME(5)

y2 Reactor flow [kscmh] XME(6)

y3 Reactor temp. [oC] XME(9)

y4 Separator temp. [oC] XME(11)

y5 Separator pressure [kPa] XME(13)

y6 Stripper pressure [kPa] XME(16)

y7 Stripper temp. [oC] XME(18)

y8 Compressor work [kW] XME(20)

y9(*) Reactor pressure [kPa] XME(7)

y10(*) Production rate [m3/h] XME(17)

y11(*) B comp. purge [mol%] XME(30)

y12(*) G/H comp. ratio XMEG/H

Disturbances

d1 Composition stream 4 (A/C) IDV (1)

d2 Composition stream 4 (B) IDV (2)

Table 2: TEP results – MIQP model statistics for each type of controller design

Decentralized Sparse Full

Binary vars. 112 208 208

Continuous vars. 2097 2097 2097

Constraints 10001 10350 10446

Relaxed MIQP sol. 2.899 2.899 2.899

support the convenience of the proposed MIQP formulation.

Tables 4 and 5 show the optimal MCS designs obtained using the MIQP formulation

for each controller type (decentralized, sparse, and full). On the one hand, Table 4 shows

the CVs and MVs selected through the binary variable vectors zO and zI, respectively. On

the other hand, Table 5 displays the plant-model mismatch selection given by the unitary

entries in zn, the proposed input-output pairing defined by znd (which is highlighted with

gray background), and the stability/robustness test performed off-line (min [Re (λi)]). It is
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Table 3: TEP results – Comparison of GA-based BMINLP and MIQP/CPLEX solutions

Decentralized Sparse Full

GA CPLEX GA CPLEX GA CPLEX

Cost function (SSD+NLE) 19.77 19.77 12.39 9.98 14.90 14.90

Optimization time [s] 484.85 183.32 48324.04 23115.89 278.28 14.92

Table 4: TEP results – CVs and MVs selection

zO zI

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 u1 u2 u3 u4 u5 u6 u7 u8
Decentralized 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1

Sparse 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Full 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0

important to note that not only the number of CVs/MVs is different among decentralized,

sparse, and full control policies, but also the variables being selected change. Indeed, the

best decentralized control policy selected by the MIQP formulation in eq. (12) defines y2, y7,

y9, y10, y11, and y12 to be the CVs and u1, u2, u3, u5, u7, and u8 as their MVs. In this case,

a (6× 6) diagonal control structure paired as shown in Table 5, where zn = znd, is selected.

Alternatively, the best sparse control structure defines a (7 × 7) interacting-multivariable

control policy where y1, y7, y8, y9, y10, y11, y12 and u1, u2, u3, u4, u5, u6, u7 are selected

as CVs and MVs, respectively. The degree of interaction for the controller is given by the

unitary entries in Table 5, which represents the matrix zn. Moreover, the corresponding

input-output pairing is indicated by the highlighted entries with gray background, i.e. znd.

Finally, the best full control structure proposes manipulating the u1, u2, u3, u4, u5, and

u7 input variables and controlling the y1, y8, y9, y10, y11, and y12 output variables. This

structure represents a (6× 6) multivariable control with complete interaction given by a zn

matrix with full ones in the selected CVs and MVs. Table 5 also displays the corresponding

input-output pairing in this case.

The optimal control structures obtained with the proposed MIQP model have been im-

plemented and tested on the nonlinear dynamic TEP case study using Matlab. On the one

hand, the best decentralized control structure has been implemented using multiple discrete

PID-based control loops. On the other hand, both the sparse and full control structures
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Table 5: TEP results – Pairing (znd) and process-model mismatch (zn)

Decentralized Sparse Full

u1 u2 u3 u4 u5 u6 u7 u8 u1 u2 u3 u4 u5 u6 u7 u8 u1 u2 u3 u4 u5 u6 u7 u8
y1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0

y2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y7 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

y8 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0

y9 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0

y10 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0

y11 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0

y12 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0

min [Re (λi)] 0.6598 0.4160 1.0000

were implemented using MPC technology. State-space models were developed according

to the plant-model mismatch indicated by zn in Table 5 for the internal prediction in the

MPC implementations. Additional details of the procedure being used are summarized in

the Supporting Information file. The PIDs were tuned based on the IMC criterion and the

parameters of the MPCs were selected following a trial and error procedure. It is worth

to recall that there is no general recipe to tune the MPC parameters and, moreover, when

the process size increases this becomes a very complex task. Figure 2 shows the main pro-

cess variables, i.e., the reactor pressure and the G/H product quality ratio, when the most

important disturbance (d1) occurs as a step change at t = 0 h. The dynamic responses of

the three control structures are shown superimposed. In Fig. 2(a), considering the reactor

pressure, it can be observed that the sparse MPC-based control structure presents the lowest

peak value, which is far from the shutdown upper limit of 3000 kPa. In turn, the decentral-

ized and full multivariable control structures have similar overshoots in this case, but still

do not present any problem with the upper limit. This behavior is in accordance with the

SSD+NLE combined index values reported in Table 3, where the lowest index is associated

to the sparse control policy. Figure. 2(b) shows the G/H production ratio for the same dis-

turbance d1, where the sparse and decentralized control structure have the best performance
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Figure 2: TEP - Dynamic responses for A/C composition disturbance (d1)

without overshoot. This is a good example which shows that choosing a full MPC controller

structure is not always the best choice (common practice). It is important to note that the

MPC implementations have a very slow response compared to the decentralized PID-based

control loops. This is basically due to the tuning parameters selected for the MPCs and their

own interaction. While it is beyond the scope of this article, it is likely that a generalized

and systematic tuning procedure, for example based on optimization, could find a better

parameter set for these MPC.

5.2 The waste water treatment plant

The second case study, also taken from the literature, is a multivariable nonlinear benchmark

developed within the framework of the European Co-Operation in the field of Scientific and

Technical research (COST) Actions 682/624 and in collaboration with the IWA Task Group

on Respirometry29. The overall layout of the waste water treatment plant (WWTP) is

shown in Fig. 3, where five reactors (R1/R2 mixed-unaerated and R3/R4/R5 aerated) are

presented in series with a 10-layer secondary settling tank (S). Two internal recycles exist

in the process: the nitrate internal recycle (Qir) from the fifth tank (R5) to the first tank
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Figure 3: Waste water treatment plant (WWTP)

(R1), and recycle Qr from the underflow of the secondary settler (S) to the front end of the

plant (no biological reaction occurs in the settler). The wastage Qw is pumped continuously

from the underflow of the secondary settler. The main objective of the WWTP is to process

the influent Qi, with varying composition and flow, to give an effluent flow Qe with some

specific quality index.

The main scenario used to apply the formulation proposed in Eq. 12 is summarized in

Table 6. In this case, n = 6 available manipulated variables, m = 18 potential controlled

variables, and p = 6 typical influent disturbances are considered. Besides, each reactor has

13 state variables. The original control requisites29 propose a basic (2 × 2) decentralized

control policy with the following input-output pairing: y5 − u4 and y13 − u3. Hence, in this

work the ad-hoc selection of y5 and y13 as CVs is maintained, being this fact indicated with

an asterisk in Table 6.

The MIQP algorithm proposed in eq. (12) has been applied to the WWTP considering the

alternative decentralized, sparse, and full controller designs. Besides, according to Section

4.3, the original control requisites are fixed as zO(i) = 1, ∀i = 5, 13, and the selected range of

feasible input-output pairing values is [δ1, δ2] = [0.3, 30]. In all cases the big-M value is fixed

to M = 30. The results are summarized in Tables 7 to 9. In Table 7 the model size, optimal

objective function (i.e., the SSD+NLE index value), and required computational time for

each controller structure are reported. This table shows that the most complex controller

design scenario, the sparse case, only takes 2067.9 s to be solved. Taking into account

that any entry of zn can potentially be selected, this is a very low optimization time for a

large combinatorial problem. Besides, similar to the TEP case, here the sparse MCS design
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Table 6: WWTP variables

Inputs Variable

u1 Aeration reactor 3 [–] KLa3

u2 Aeration reactor 4 [–] KLa4

u3 Aeration reactor 5 [–] KLa5

u4 Internal recycle flow rate [m3/day] Qir

u5 Recycle flow rate [m3/day] Qr

u6 Wastage flow rate [m3/day] Qw

Outputs

y1 Oxygen R1 [g COD m3] SO1

y2 Nitrate and nitrite nitrogen R1 [g N m3] SNO1

y3 NH+
4 and NH3 nitrogen R1 [g N m3] SNH1

y4 Oxygen R2 [g COD m3] SO2

y5(∗) Nitrate and nitrite nitrogen R2 [g N m3] SNO2

y6 NH+
4 and NH3 nitrogen R2 [g N m3] SNH2

y7 Oxygen R3 [g COD m3] SO3

y8 Nitrate and nitrite nitrogen R3 [g N m3] SNO3

y9 NH+
4 and NH3 nitrogen R3 [g N m3] SNH3

y10 Oxygen R4 [g COD m3] SO4

y11 Nitrate and nitrite nitrogen R4 [g N m3] SNO4

y12 NH+
4 and NH3 nitrogen R4 [g N m3] SNH4

y13(∗) Oxygen R5 [g COD m3] SO5

y14 Nitrate and nitrite nitrogen R5 [g N m3] SNO5

y15 NH+
4 and NH3 nitrogen R5 [g N m3] SNH5

y16 Oxygen Qe [g COD m3] SOe

y17 Nitrate and nitrite nitrogen Qe [g N m3] SNOe

y18 NH+
4 and NH3 nitrogen Qe [g N m3] SNHe

Disturbances

d1 Soluble inert organic matter [g COD m3] SIi

d2 Readily biodegradable substrate [g COD m3] SSi

d3 Particulate inert organic matter [g COD m3] XIi

d4 Slowly biodegradable substrate [g COD m3] XSi

d5 Active heterotrophic biomass [g COD m3] XBHi

d6 Influent flow rate [m3/day] Qi

represents the best controller structure with a cost function value of SSD+NLE = 13.46.

Table 8 includes the selection of CVs and MVs for each controller structure, where (3×3),

(5×5), and (5×5) multivariable control policies are selected by the optimization process for

the decentralized, sparse, and full controllers, respectively. The best decentralized control

policy defines y5, y10, and y13 to be the CVs and u3, u4, and u6 as the respective MVs,

with the corresponding pairing shown in Table 9 (where zn = znd). Alternatively, the best

sparse and full control structures involve the following selection of variables: y5, y7, y10,
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Table 7: WWTP results – MIQP model size, cost function, and optimization time for each
controller type

Decentralized Sparse Full

Binary vars. 130 238 238

Continuous vars. 3945 3945 3945

Constraints 18755 19157 19260

Relaxed MIQP sol. 4.971 4.971 4.971

Cost function (SSD+NLE) 18.41 13.46 15.13

Optimization time [s] 1891.81 2067.90 220.84

y13, and y17 for the CVs and u1, u2, u3, u4, and u6 for the MVs. In these cases, while the

selection made by zO and zI is the same, the main difference lies in the plant-model mismatch

indicated by zn. Again, the entries highlighted with gray background in Table 9 represent

the input-output pairing defined by znd. In this table, the results of the off-line stability test,

min [Re (λi)], are also reported.

Similar to the previous case study, the optimal control structures for each controller

type have been implemented and tested on the nonlinear dynamic WWTP benchmark us-

ing Matlab, and the same procedure outlined before has been applied for implementation

and tuning. Figure 4 shows the main process variables when a dry weather disturbance is

considered. This disturbance is a typical permanent diurnal variation in the influent flow

and chemical oxygen demand (COD) load. In Figure 4, the dynamic responses of the three

control structures are shown superimposed. Additionally, the basic control structure pro-

posed in Copp 29, which is labeled as “Decentralized (2 × 2)”, is included for comparison

purposes. Figures. 4(a) and 4(b) display the original control requisites common to all the

control structures, i.e., the nitrogen level in reactor 2 (y5) and the oxygen level in reactor 5

(y13). Although all the multivariable controllers maintain these CVs in their corresponding

set points, the sparse and full MPC-based implementations present more variance. Figures

4(c) and 4(d) show two typical effluent quality indexes: the total nitrogen and total ammonia

level, respectively. On the one hand, it can be observed in Fig. 4(c) that both the sparse

and the decentralized (3 × 3) control structures present the best performance, minimizing

the peak value and the violation time for the allowed limit of 18 gNm−3. On the other hand,
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Table 8: WWTP results – Selection of CVs and MVs

zO zI

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 u1 u2 u3 u4 u5 u6
Decentralized 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1

Sparse 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1

Full 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1

Table 9: WWTP results – Selected pairing (znd) and process-model mismatch (zn)

Decentralized Sparse Full

u1 u2 u3 u4 u5 u6 u1 u2 u3 u4 u5 u6 u1 u2 u3 u4 u5 u6
y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y5 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1

y6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y7 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1

y8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y10 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1

y11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y13 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1

y14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y17 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1

y18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

min [Re (λi)] 0.5597 0.7974 1.0000

Fig. 4(d) shows that the only control structure that does not violate the allowed ammonia

limit of 4 gNm−3 is the MPC-based sparse control. Furthermore, the decentralized (2 × 2)

suggested by Copp 29 presents the worst performance. The dynamic simulations allow to

corroborate the conclusions obtained from the SSD+NLE optimization, i.e., the MCS with

lower SSD+NLE index has the best dynamic performance.
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Figure 4: WWTP – Dynamic responses for dry weather disturbance

6 Conclusions

In this work a mixed-integer quadratic programming (MIQP) model for multivariable con-

trol structure (MCS) design is proposed as a simplified reformulation of a previous bilevel

mixed-integer nonlinear programming (BMINLP) superstructure12. The new representa-

tion allows to solve a very complex problem more suitably by using state-of-the-art solvers

such as CPLEX in GAMS. Indeed, the new MIQP reformulation avoids to use non-convex

constraints, which require complex global optimization algorithms (stochastic/deterministic)
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that present serious drawbacks related to optimality, computing time, and computational re-

sources when the process size increases, becoming intractable for medium/large-scale plants.

The proposed formulation is also convenient since there is a lack of rigorous global optimiza-

tion algorithms for solving BMINLP models. To the best of our knowledge, the approach

for MCS design presented here is the first equation-oriented representation that addresses

simultaneously: the selection of CVs and MVs, the input-output pairing definition, the

controller design, the addition of original control requisites/heuristics, and a simplified sta-

bility/robustness test using steady-state information.

The proposed method has been successfully tested on two medium/large-scale bench-

mark case studies: the Tennessee Eastman Process (TEP) and the Waste Water Treatment

Plant (WWTP), which represent real complex combinatorial problems. The results obtained

by the MIQP reformulation using GAMS/CPLEX show that the optimization time can be

reduced up to 94% compared with the GA-based MINLP approach. Moreover, the MIQP

methodology guarantees that the global optimum is found, in contrast with the GA-based

MINLP formulation which can be trapped in a local optimum. Three type of multivariable

control structures based on three types of controller interaction were designed and success-

fully implemented. More precisely, optimal decentralized, sparse, and full controllers were

designed for both case studies, showing that the classical heuristic decisions in MCS design

(i.e., decentralized and full controllers) are not always the best choice. The test case results

show that the optimal sparse MCS controllers have the best performance, in general, in

accordance with the SSD+NLE index obtained by the MIQP formulation.

Furthermore, the proposed MIQP reformulation for MCS design sets the foundations for a

proper future integration between process control and process synthesis and design. Indeed,

because it includes only linear/convex constraints, the MIQP model is more effective and

features lower computing times than other representations and, therefore, can be integrated

with more complex formulations addressing process synthesis and/or design.
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Nomenclature

Acronyms

BMINLP: Bilevel mixed-integer nonlinear pro-

gramming

CVs: Controlled variables

DVs: Disturbances variables

GA: Genetic algorithms

IMC: Internal model control

MCS: Multivariable control structure

MINLP: Mixed-integer nonlinear programming

MIQP: Mixed-integer quadratic programming

MPC: Model predictive control

MSD: Minimum squared deviations

MVs: Manipulated variables

NLE: Net load evaluation

PS: Positive stable

PWC: Plantwide control

RGA: Relative gain array

SSD: Sum of squared deviations

TEP: Tennessee Eastman Process

TFM: Transfer function matrix

UVs: Uncontrolled variables

WWTP: Waste water treatment Plant

Indexes

i = 1, . . . ,m : Controlled variable

j = 1, . . . , p : Perturbations

l = 1, . . . , n : Manipulated variables

Continuous variables

Ds: Disturbance TFM for CVs

Dr: Disturbance TFM for UVs

d∗: Disturbance vector

Gc: Controller TFM

Gr: Process TFM for UVs

Gs: Process TFM for CVs

G̃s: Particular selection of entries of Gs

NLE: Net load evaluation index

u: Input vector

ur: Not selected MVs vector

us: MVs vector

usp
s : MVs vector for set point changes of parti-

tioning in eq. (3)

ud
s : MVs vector for disturbance changes of par-

titioning in eq. (3)

uc
i : Complete input vector (including selected
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and not selected MVs) for the i-th set-point

change

ud
j : Complete input vector for the j-th distur-

bance effects

unc
i : Complete input vector associated to zn for

the i-th set-point change

und
j : Complete input vector associated to zn for

the j-th disturbance change

SSD: Sum of squared deviations index

y: Output vector

yr: UVs vector

ys: CVs vector

yd
r : UVs vector for disturbance effects of parti-

tioning in eq. (5)

ysp
r : UVs vector for set point change of parti-

tioning in eq. (5)

ysp
s : CVs vector for set point change of parti-

tioning in eq. (5)

ynet
s : Net load effect vector of partitioning in

eq. (10)

yc
i : Complete output deviations (including CVs

and UVs) for the i-th set-point change

yd
j : Complete output deviations for the j-th dis-

turbance effects

ync
i : Complete net load effect vector associated

to zn for the i-th set-point change

ynd
j : Complete net load effect vector associated

to zn for the j-th disturbance effects

yr: Complete RGA matrix (MIQP formulation)

Λp: Selected entries of the RGA matrix (original

problem)

Λ: RGA

Λn: RGA-number

Binary Variables

TO, TI: Transformation matrices (original prob-

lem)

zO: Vector for output variable selection

zI: Vector for input variable selection

zP: Matrix for decentralized control structure se-

lection (original problem)

zS: Matrix for sparse control structure selection

(original problem)

zn: Matrix for sparse control structure selection

(MIQP formulation)

znd: Matrix for decentralized control structure

selection (MIQP formulation)

Parameters

D: Disturbance TFM

F: Diagonal low-pass filter matrix

G: Process TFM

M: Big-M

q: Number of unitary entries in zO and zI

vi, vj : Unit vectors of directions i and j, respec-

tively

δ1, δ2: Lower and upper bounds for RGA entries

selection (interaction range)

44



Appendix: Proposed MIQP model in scalar form

Given the matrix A of size (m × n), the notation A = [ai,l] is used to indicate that ai,l

represents the (i, l)-th entry of the matrix A. The MIQP formulation in eq. (12) is presented

in scalar form in Eq. (29), where the entries of the parameters and variables, either vectors

or matrices, have the following characterization:

• parameters: G = [gk,l] and D = [dk,j],

• binary variables: zI = [zIl ], z
O = [zOk ], zn = [znk,l], and znd = [zndk,l],

• real (continuous) variables: uc
i = [ucl,i], u

d
j = [udl,j], u

nc
i = [unci,k,l], u

nd
j = [undj,k,l], y

c
i =

[yci,k], y
d
j = [ydj,k], y

nc
i = [ynci,k], y

nd
j = [yndj,k], and yr = [yri,l],

with i = 1, . . . ,m, k = 1, . . . ,m, l = 1, . . . , n, and j = 1, . . . , p. Besides, φk,i represents the

(k, i)-th entry of the identity matrix Im.
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min
u,y,z

m∑
i=1

m∑
k=1

(yci,k)
2 +

p∑
j=1

m∑
k=1

(ydj,k)
2
+

m∑
i=1

m∑
k=1

(ynci,k)
2 +

p∑
j=1

m∑
k=1

(yndj,k)
2

(29a)

subject to −M(1− zOk ) ≤
n∑

l=1

gk,l u
c
l,i − φk,i ≤M(1− zOk ), ∀i, k (29b)

−M(1− zOk ) ≤
n∑

l=1

gk,l u
d
l,j + dk,j ≤M(1− zOk ), ∀j, k (29c)

−MzOi ≤ ucl,i ≤MzOi , ∀i, l (29d)

−MzIl ≤ u
c
l,i ≤MzIl , ∀i, l (29e)

−MzIl ≤ u
d
l,j ≤MzIl , ∀j, l (29f)

yci,k −
n∑

l=1

gk,l u
c
l,i + φk,i z

O
k = 0, ∀i, k (29g)

ydj,k −
n∑

l=1

gk,l u
d
l,j − dk,j = 0, ∀j, k (29h)

m∑
i=1

zOi =

n∑
l=1

zIl (29i)

m∑
j=1

zOj ≤ q, (29j)

−M(1− znk,l) ≤ u
nc
i,k,l − u

c
l,i ≤M(1− znk,l), ∀i, k, l (29k)

−M(1− znk,l) ≤ u
nd
j,k,l − u

d
l,j ≤M(1− znk,l), ∀j, k, l (29l)

−Mznk,l ≤ u
nc
i,k,l ≤Mznk,l, ∀i, k, l (29m)

−Mznk,l ≤ u
nd
j,k,l ≤Mznk,l, ∀j, k, l (29n)

ynci,k +

n∑
l=1

gk,l u
nc
i,k,l − φk,i z

O
k = 0, ∀i, k (29o)

yndj,k +

n∑
l=1

gk,l u
nd
j,k,l = 0, ∀j, k (29p)

znk,l ≤ z
I
l , znk,l ≤ z

O
k , ∀k, l (29q)

zIl ≤
m∑

k=1

znk,l, ∀l, zOk ≤
n∑

l=1

znk,l, ∀k (29r)

zIl =

m∑
k=1

zndk,l, ∀l, zOk =

n∑
l=1

zndk,l, ∀k (29s)

zndk,l ≤ z
n
k,l, ∀k, l (29t)

−M(1− zndi,l ) ≤ y
r
i,l − gi,l u

c
l,i ≤M(1− zndi,l ), ∀i, l (29u)

δ1z
nd
i,l ≤ y

r
i,l ≤ δ2z

nd
i,l , ∀i, l (29v)

m∑
i=1

(zOi − ynci,i) ≥ δ (29w)
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Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org/.

The small-size generic example and the parameter settings for all the case studies are

discussed in this supporting information file.
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