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Abstract

In the present work a Cartan mechanics version for Routh reduction is considered, as
an intermediate step toward Routh reduction in field theory. Motivation for this gener-
alization comes from an scheme for integrable systems [11], used for understanding the
occurrence of Toda field theories in so called Hamiltonian reduction of WZNW field the-
ories [12]. As a way to accomplish with this intermediate aim, this article also contains a
formulation of the Lagrangian Adler-Kostant-Symes systems discussed in [11] in terms of
Routh reduction.
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1. Introduction

WZNW field theories [34, 28, 35| are field theories whose solutions consist of maps
from a surface into a Lie group; they are integrable models with a Kac-Moody algebra
of symmetries [36]. It was shown in [13| how to add some constraints to this field theory
in order to obtain a Toda field theory; a full account of these developments can be found
in [12]. In a later work [11], these authors tried to improve their understanding of this
phenomenon using a finite-dimensional Lagrangian toy model. The Lagrangian function
defining it, which we will call Fehér Lagrangian from now on, is a singular Lagrangian on
the direct product of a Lie group with some Lie algebras, and is provided by them with
no hints about its origin, except for the fact that it must capture some crucial features of
the field theory model regarding symmetries.

The constraints that allow to extract Toda field theory from WZNW are imposed
on the conserved currents of the theory. This operation is translated into the finite-
dimensional toy model by restricting the underlying Lagrangian system to an specific
level set for the momentum map associated to the Fehér Lagrangian; in the cited work,
this is achieved through Lagrange multipliers. Nevertheless, there exists a well-known
procedure for carrying out this task on a Lagrangian system, namely, the so called Routh
reduction [26, 9, 24, 14] (from these references, we will work essentially with the last two,
because the reduction scheme they describe deals with degenerate Lagrangian systems.)
Thus we can provide a geometric insight on the finite-dimensional model of the constraints
associated to Toda field theories by using Routh reduction in order to encode them.

The informed reader, on the other side, could articulate some complaints against this
approach, because no working Routh reduction scheme for field theories has been for-
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mulated yet. Thus it is necessary to provide a Routh reduction scheme adapted for its
generalization to field theory, in order to make plausible the translation of the considera-
tions made in terms of the Lagrangian toy model to the more realistic field theory. Cartan
mechanics [1, 20] is a formulation of Mechanics as a field theory on a 1-dimensional man-
ifold; therefore, it is a more suitable framework for its generalization. So, it would be
nice to have at our disposal a Routh reduction scheme for Cartan mechanics. We must
mention that a previous work dealing with Routh reduction of Cartan mechanics is [2].
Nevertheless, in order to avoid issues regarding the degeneracies present in the Lagrangian,
we will try to find a formulation more similar in nature to [24], where Routh reduction is
performed in the realm of Hamilton-Pontryagin variational problem. Again, there could
be some concerns on this approach, because Hamilton-Pontryagin variational problems re-
place tangent bundle as a basic bundle by the Pontryagin bundle [37, 38|, and this bundle
does not have a field-theoretic counterpart (although we must mention that some candi-
dates have been proposed in the literature, see for example [33].) A natural structure that
can be encountered both in Mechanics and field theory is the so called classical Lepage-
equivalent variational problem, defined in [16]; is in this setting that Routh reduction must
be formulated, when a generalization to field theory is pursued.

In short, in the present work we will be interested in finding some answers related with
the following questions:

e Generalize Routh reduction, as described in [24], to the Cartan setting.

e Find an invariant formulation for the equations of motion associated to Routh reduc-
tion of Hamilton-Pontryagin variational principles, complementary to the description
for these kind of systems found in [14].

e Give a geometrical interpretation of the reduction considered in [11], in terms of
Routh reduction.

At this respect, it can be seen as a continuation of [24, 14], which also deal with Routh
reduction of mechanical systems and its equations of motion.

Nevertheless, as we mentioned above, the approach taken in this article uses a proce-
dure called Lepage-equivalent problem, as a mean to characterise Poincaré-Cartan version
of Euler-Lagrange equations. An important difference of our approach with [2] resides in
the fact that we decided not to fix momentum variables in advance, therefore working
with a kind of Hamilton-Pontryagin, or unified, variational problem. In this regard, our
approach is similar with [14].

In order to describe more precisely the setting underlying this article, let @ be a
manifold and let L € C*(T'Q) a Lagrangian function. Instead of working with the
Pontryagin bundle TQ & T*@Q, we work in a bundle of 1-forms W on R x T'Q, locally
isomorphic to the Pontryagin bundle. These bundles were called classical Lepage-equivalent
of the variational problem associated to the data (@, L) in the pioneering work of Gotay
[16], and allow us to translate equations characterizing extremals of a variational problem,
to Cartan-like equations of motion (see Theorem 2 below). The use of these equations
with suitable lifts to W, of vector fields on R x T'Q, yields to an invariant description of
them, just as in [14]. Their basic idea is to take a (perhaps local) basis of vector fields on
Q, and to lift it to the Pontryagin bundle T'Q & T%(Q; in particular, this method proves to
be very useful when working with equations of motion in presence of symmetry and one
is trying to avoid regularity issues. We were able to translate these constructions to our
approach: Equations of motion for Cartan-like systems Wy, were thus written by means
of lifts of vector fields on its base space R x T'Q.

Now, the setting for Routh reduction used throughout the paper was borrowed from
[24]: Given (Q, L, F) a (general) Lagrangian system and a G-action on @ such that @ —
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Q@/G is a principal bundle, its solution curves in a momentum map level set are in a
one to one correspondence with solution curves of the Lagrangian system (Q, R, F' + G},)
for some function R, (the Routhian) and a gyroscopic force term G, determined by
a connection in Q — @Q/G. The reduced space of Routh reduction is an intrinsically
constrained system

(T(Q/G) X Q)G x §— Q/Gyu x 8, Ry, f + %) (1.1)

obtained reducing this last Lagrangian system; thus, given a solution curve for (Q, L, F'),
we take the associated solution curve for (Q, R, F' + G,) and its reduction to system (1.1)
is the reduction for the original curve.

Our approach to Routh reduction follows a similar path: We provide Cartan-like
bundles for (@, L, F') and for system (1.1); Corollary 6 to Theorem 4 links solution curves
for W} (corresponding to system (Q, L, F') in the traditional approach, but restricted to a

momentum map level set) with solution curves for W;?*E (corresponding to system (1.1)
1t

via Proposition 12).

Finally, let us briefly describe the structure of the article. Sections 2 and 3 are devoted
to introductory matters: In the former, we review basic definitions for Routh reduction as
found in the existing literature. The latter provides the reader with fundamental notions
from Lepage-equivalent theory, used throughout the paper.

Lifting of vector fields to W7y, as defined in Section 4, is an original contribution of the
present work, and becomes a fundamental tool in writing the equations of motion. The
same can be said for the contents of Section 5: Although intrinsically constrained systems
are not in the scope of classical Lepage-equivalent problems as it appeared in literature,
a proposal for generalization is given in this section, and a theorem relating equations of
motions is proved in this context.

Now, when Routh reduction is formulated in the language of intrinsically constrained
systems, just reduction of the Lagrangian system defined by Routh Lagrangian is con-
sidered; it is then necessary to relate the equations of motion of the Routh Lagrangian
system with the equations of motion associated to the original Lagrangian system. This is
achieved in Sections 6 and 7, using a scheme similar to the one used in [24]: First, a mo-
mentum map for classical Lepage-equivalent problems is defined, and then the equivalence
between the set of equations is proved. In this last task, a fundamental réle is played by
a decomposition of the contact bundle; this decomposition is found to be a consequence
of the chosen connection in the principal bundle Q — Q/G.

Equations of motion for system (ngﬁu’ Agiﬁu’ 6“), where B* is the gyroscopic force
term induced by the connection wg and p € g* are explicitly constructed in Section 8.

The main example is discussed in the last section of the present article: The Lagrangian
system associated to Fehér Lagrangian. It was considered in [11], as a mean to understand
reduction of WZNW theories [12] in a more controlled environment. The formulation
of this example in terms of Routh reduction turns relevant the search of an equivalent
procedure for field theories. On this regard, in this article we will adopt the following
unified viewpoint: Every solution for a variational problem either from Mechanics or from
field theory, can be regarded as a (perhaps local) section of a bundle 7 : E — M. For
example, every curve v : I C R — @ can be considered as a local section s : I C R —
R x @ :tw (t,v(t)) of the trivial bundle

pri R x Q@ — R.
From this perspective, the identification J'pr; = R x T'Q given by

j(lt’q)s = (tv qu (a/at)) )
3



allow us to consider the Lagrangian L as a function on J'pr;, and the variational problem
of Mechanics becomes a field theory variational problem

6/}1@ (prs)* (Ldt) = 0,

where prs : R — Jlpr; = R x TQ is the prolongation of the section s : R — R x Q, defined
as the unique section of (pr;); : R x TQ — R which is integral for the contact structure.
Therefore, formulation of Routh reduction given in the present article is well suited for its
generalization to field theory, which will be carried out elsewhere.

2. Lagrangian systems in Routh reduction

2.1. Notation

Some conventions regarding notation will be used throughout the article. Given a
bundle f : E — M, the symbol V() (E) c X (E) will represent the set of vector fields
on FE vertical respect to the map f.

Whenever a product manifold X; x Xs is considered, the canonical projections onto
its factors will be denoted by

pI‘i:X1 XX2—>X7;

for ¢ = 1,2. For X a manifold, we will indicate by
x :TX = X, Tx :T"X - X

the canonical projections of the tangent and cotangent bundles.

It (ql) are local coordinates on X, the induced coordinates on T'X will be generically
indicated by (qi,vi).

Moreover, when working with Lie groups G and G-spaces X such that X/G is a
manifold, we will indicate by pg : X — X/G the quotient projection. For every £ € g,
where g is the Lie algebra of G, {g € X (X) will be the infinitesimal generator for the
action of G on X. On tangent and cotangent spaces of G-spaces, we will consider the
lifted action.

Similar conventions will be adopted when working with canonical forms: For every
manifold X, Ay € Q! (T*X) represents the canonical 1-form

Axla, (Vo) = ag (Ta,7% (Va,))

for every Vi, € To, (T*X). Sometimes we will commit an abuse of notation regarding this
convention, and we will use this symbol in order to represent pullback of these canonical
forms to subbundles of a cotangent bundle.

Given two bundles ¢; : F; — X,7 = 1,2 on a manifold X, symbol ¢ F> will indicate
the pullback bundle on E7, defined as

qTEQ = {(61,62) € F1 x Ey: q1 (61) = Q2 (62)} C Eq x Es.

Canonical maps pry : ¢j E2 — Eq and pry : ¢] E2 — E» will be induced by the projections
onto the factors of the product bundle. Sometimes a more symmetric symbol Fq Xy E3
will be used for these spaces, or even E; X Eo when no confusion is possible.

Vectors Z € T, ¢,y (E1 XN E2) will be indicated by the symbol Z = X + X3, where
X; € T, Ei,i = 1,2 such that Te,q1 (X1) = Te,q2 (X2); a particular case will be the
vertical vectors of the bundle Fy Xy Fo — X, for which the symbols V7 4+ 0,0 + V5, with
Vi e Vg;,i=1,2 will be used.



2.2. Lagrangian systems

This introduction is mainly based in [24]. Our aim is to provide some basic definitions
regarding Lagrangian systems and symmetry.

Definition 1 (Lagrangian systems). A Lagrangian system is a triple (Q, L, F') where @
is a manifold, L : TQ) — R is an smooth function and F : TQ — T*Q is a T*Q-valued
1-form on Q. A curve g : I := [a,b] — @ is critical for the Lagrangian system (Q, L, F') if
and only if

5/}L<4<t>>dt= —/<F<q<t>>,6q<t>>dt

I
for arbitrary variations dq : I — ¢* (T'Q) with fixed endpoints.

There exists another kind of Lagrangian-like systems which are important in Routh
reduction.

Definition 2 (Intrinsically constrained Lagrangian system). An intrinsically constrained
Lagrangian system is a triple (7 : M — N, L, F'), with L a function on TpyN := TN xy M
and F' a T*M-valued 1-form on M. A curve v : I — M is critical for the intrinsically
constrained system (7 : M — N, L, F) if and only if it is critical for the Lagrangian system
(M,piL, F), where py : TM — Ty N is given by

p1 (U) == (T (V) ,m) .

An intrinsically constrained system can be regarded as a Lagrangian system whose
Lagrangian function does not depend on the fiber coordinates of the vertical bundle V.

Definition 3 (Invariant Lagrangian system). Let G be a Lie group acting on Q. The
Lagrangian system (Q, L, F') is G-invariant if and only if L is a G-invariant function and
F fulfills the following conditions:

1. F'is G-equivariant, and
2. Im F is in the annihilator of {{g : € € g}.

As in the Hamiltonian side, there exists a momentum map associated to the G-action

on Q.

Definition 4 (Momentum map). The momentum map Jr : TQ — g* associated to the
G-action on the Lagrangian system (Q, L, F') is the map

d

ABIGESIN

[L (v + & ()]

for all £ € g.

As usual, it provides us with conserved quantities when working with G-invariant
Lagrangian systems; nevertheless, a more general situation is possible.

Proposition 1. Let (Q, L, F) be a Lagrangian system such that

(dL,érq) = — (F,&q)

for all £ € g on the critical curves. Then Jr, is a conserved quantity.



3. Geometry of Lepage-equivalent problems

3.1. Definitions

The scheme we will develop in the present article requires the notion of classical Lepage-
equivalent variational problems |16, 7, 21, 22, 23|, as a setting that, in particular, is suitable
for translation into classical field theory [15]. In this realm, we work with sections of the
bundle pr; : R x TQ — R : (t,vy) — t instead of working with curves in T'Q); it is clear
that there exists a one to one correspondence between these descriptions, and it is quite
straightforward how to change between viewpoints.

Let us consider how a Lagrangian system (Q, L,0) determines the dynamics in this
setting. The main idea is to consider the differential ideal Zcon in 2° (R x T'Q) generated
by the forms 6% := dq’ — v'dt; sections v : I C R — R x T'Q that correspond to curves
in T'Q) coming from derivatives of curves in () are represented by integral sections of Zeon,
namely, such that

7' =0
for all 7 [17]. A crucial fact about this ideal is that it can be generated by sections of a
bundle Ion C A® (R x T'Q); essentially, this bundle is the vector subbundle generated by
the set of forms {9’} So instead of working on T'Q) and perform variations on curves in
T which come from curves in @), we perform arbitrary variations of curves in a bundle
Wi — R x T'Q, which incorporate (via Lagrange multipliers acting on sections of I¢on)
restrictions forcing curves in T'Q) to be time derivatives of curves in Q.

In detail, bundle I.on — R x T'Q will be called contact bundle, and is defined fiberwise
as follows.

Definition 5. The contact subbundle I,y on R x T'Q is the subbundle of T (R x T'Q)
with fiber

ICon’(t,vq) = {a 0Ty, —a(vg)dt: a € Tq*Q} C Té’vq) (RxTQ). (3.1)
Forms whose images lie in Io, will be called contact forms.

The subbundle Wy, — R x T'Q fits in the diagram

Wy, e T* (R x TQ)
k ATQ
RxTQ

and consists essentially of the affine subbundle obtained from I.,, by translation along
the Lagrangian 1-form Ldt.
The underlying set of this bundle is determined fiberwise by the formula

Wil = (L (t,v)dt + Iconl(tvv)) N(T* (R x TQ))", (3.2)

where

(T* (R x TQ))Y :=T* (R x TQ) N (V (id x 10))°

is the portion of the cotangent bundle of R x T'Q) annihilating those vectors which are
vertical respect to the projection

idx71g :RxTQ — RxQ.



Remark 1. In local coordinates (t, q, vi) this subbundle can be described as
WL|(t7qz‘7vi) = {L (t, ¢, vi) dt + p; (dqi — vidt) 1p; € R} .
Thus, we have the identification
W ~Rx (TQaT*Q). (3.3)

This identification can be seen directly from the local expression for W, or more intrin-
sically via Equation (3.1), namely, taking into account that p € WL‘(t,vq) corresponds to

(t,wy, ) if and only if ¢ = ¢, wg = vy and
p=L(t,vg)dt + aoT, g — a(v,)dt.

The immersion W, C T* (R x T'Q) provides it with a canonical 1-form Az, namely the
pullback of the canonical 1-form Agxrg € Q' (T* (R x TQ)) to Wi,

AL = ’L*L ()\RXTQ> S Ol (WL> .

This form will be what we will call Cartan form in this context; a reason for this termi-
nology can be found below (Proposition 2).

3.2. Lepage-equivalent problems and Cartan form mechanics

The purpose of the present section is to formulate equations of motion in the realm of
Lepage-equivalent problems. In order to proceed, we will provide a definition for solution
curves associated to the data (W, Ar), proving that these curves coincide with extremals
of Lagrangian system (@, L,0); more details on this correspondence can be found in [17,
6, 18]. Thus, equations of motion in Cartan form mechanics [20] can be recovered from
this setting by identifying a subbundle F;, C W, containing every solution curve, which
is essentially the graph of Legendre tranformation for L; it can be interpreted saying that
Lepage-equivalent formalism have Legendre transformation built into it.

3.2.1. Solution curves in Lepage-equivalent problems
First, we will see how the extremals of Lagrangian systems are captured in the realm
of Lepage-equivalent problems.

Definition 6. A curve v : I C R — Q is a solution curve for the data (Wp, ) if and
only if there exists a curve I' : I — W, such that

1. tgopryomp ol =7,
2. pryomg o' =1idg, and
3. T (XudAr) =0 for all X € X (Wp).

Remark 2. Equation (3) tells us that lifted curves I' : I — W, are extremals of the varia-
tional problem (under unrestricted variations with fixed ends) associated to the functional

r— / " (A\r).
I
Maps in Definition 6 are shown in the following diagram.

T pry TQ

R x TQ - TQ - Q
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Then, as promised, we have the following correspondence with extremal curves for a
Lagrangian system.

Theorem 1. v : I — Q is a solution curve for the data (W, ) if and only if it is an
extremal for the Lagrangian system (Q, L,0).

Proof. Let us introduce the local coordinates (t, q, v, pi) on Wy, induced by the identifi-
cation (3.3). Then o
Ar = Ldt + p; (dqZ — Uldt)

and we will have that

Then if v (t) = (¢* (¢)) and T (¢) = (¢, ¢" (¢),v" (t),pi (t)), the result follows. O

3.2.2. Classical Lepage-equivalent problem and Cartan mechanics
Thus, equations of motion in Cartan form mechanics [20] can be recovered as follows:
There exists a subbundle F, C W7, defined through
0 .
Fr =ae Wy : EJZJ d)‘L’a =0 forallZ € V(ld X TQ) .

It projects onto R x T'Q) via the restriction np := 7TL|FL : Fr, — R x TQ. This
subbundle fits in the following diagram

et W, T TR X TQ)

L
TF TRXTQ

R xTQ

Locally we have that o € Fp, if and only if

o= Ldt + gfi (dg' —v'dt) . (3.4)

Lemma 1. 7y s injective. Moreover, there exists a section sg: R x T'Q — W, such that
FL =Im S50-

Proof. Let E : T@Q — R be the energy function associated to L [1] and
01 := (pry o FL)* Ao € Q' (R x TQ)
the pullback of the canonical 1-form on T%Q to R x T'Q). Then
so (t,v) == —E (t,v)dt + 0r[(;,) € Wr; (3.5)
by the local expression (3.4), it results that Fr, = Im sq. O

Moreover, this submanifold allows us to establish a correspondence between canonical
forms defined above and the classical forms.
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Proposition 2. The form j; (A1) coincides with the classical Cartan form under identi-
fication (3.3).

It explains our choice of name for the form Ap.
Finally, the section sy can be used for construct the solutions of (W, Ar) whenever
extremals of (@, L,0) are known.

Proposition 3. T" is a solution for (Wr, ) if and only if
L'(t):=s0(t, ¥ (1)), telICR
for~: I — Q an extremal for (Q,L,0).

3.3. General Lagrangian systems

Let us consider “Cartan-like” equations of motion for general Lagrangian systems
(Q, L, F), as defined in [24]. The pair (Wg,Ar) is determined as before; additionally,
we define the 1-form F € Q! (W) such that

B (V)= (F((praomr) (@), Ta (rq o praomr) (V)) (3.6)

«

for all V € T,Wy. In terms of the coordinates (t, q, vi,pi) for Wy, we have

Wi, ™ LR x TQ L TQ
(t, qi,vi,pi) — (t, qi, vi) B (qi,vi)
and writing ‘
F = «o;dq¢’
for the force term, with «; functions locally defined on T'Q), we will obtain
F= a;dg’.

So let us define the notion of solution curve for data (Wr,Ar, F'); as expected, we
will see below (Theorem 2) that these kind of curves produce solutions for the original
Lagrangian system (@, L, F') and viceversa.

Definition 7. A curve v: I C R — @ is a solution curve for the data (Wrp, A, F) if and
only if there exists a curve I' : I — W, such that

1. fgopryompol’ =7,

2. pryomg o' =1idg, and

3. I (XJ (d)\L +FA dt)) = 0 for all X € xV®nem) (7).
Remark 3. A couple of remarks on this definition:

e In local terms, the first two requeriments of the previous definition mean that ~ :
t— (¢"(t)) and T : ¢t — (s(¢),q" (t), 0" (t),pi (t)) are related by the equations

¢t)=q@, st)=t

for all ¢.



e It is enough to verify the last item on a set of (perhaps local) generators for
xVeriem) (py, ) .
This fact will be exploited more deeply in Section 4 below.
The last item can be rewritten as soon as F' is a 2-form on Q).

Lemma 2. Let F be a 2-form on Q and I' : I — Wy, a curve satisfying items 1 and 2 in
Definition 7. Then

I (X5 (g + P Adt) ) =0
for all X € XV (W), is equivalent to
I*(XL(dA\p + (g opryomn)  F)) =0
for all X € XV (Wy).

Proof. For the underlying map F” : TQ — T*Q we construct the 1-form P € Q (Wy).
For every X € XV (W;) we have that

X (ﬁ A dt) - (XJﬁ) dt.

On the other hand, if F = f;;dg' A dg’ in local coordinates, we will obtain that

a(?ﬂ JF = ;mJﬁ —0
and 5 ~ ‘
g JFP = fiiv?.
Then

r (WJFb A dt) =T (fjiv]dt)
=T* (fjidq’)

=TI (a(zi_l(TQOpI'ZOTFL)*F>

because in local coordinates, the condition

rs <(9(?)-_'(d)\L + (1 o pry OWL)*F)> =0

implies I'* (dq* — v'dt) = 0. O

Then we have the following correspondence between extremals of a general Lagrangian
system and solution curves of a triple (Wp, Ar, F).

Theorem 2. v is a solution curve for the data (Wp, A, F) if and only if it is an extremal
for the Lagrangian system (Q, L, F).
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4. Equations of motion in quasi-velocities and quasi-momenta

Let us deduce the implicit equations of motion obtained in [14], using the formalism
developed above. It makes necessary to find a way to lift vector fields on R x T'Q) to the
bundle of forms Wy,. The first part of this section is devoted to this task.

Later, a characterization for these equations as a set of forms on Wy, is found (see
Propositions 6 and 7 below). Thus a curve is a solution for the Lagrangian system if its
tangent vector field belongs to the annihilator of this set of forms. This characterization
is useful because of the pullback naturality of forms: When formulated in these terms,
equations of motion can be pulled back along maps. A similar viewpoint for working with
reduction of differential equations can be found in [27].

4.1. Infinitesimal symmelries and lifting

We want to find a way to lift vector fields from R x T'Q to the bundle Wy. In the
present section we will carry out this task by means of the notion of infinitesimal symmetry
of the contact structure \p,.

4.1.1. The lift to W7,
Let us consider now the lift of vector fields on R x T'Q) to Wp,. Recall that associated

to the adapted coordinates (t, qi,vi) on R x T'Q), there exist the coordinates (t, qi,vi,pz-)
on WL.

Definition 8. A [ift for a vector field Z € X (R x TQ) is a vector field Z'2 € X (W)
such that

e the map 77, : W, — R x T'Q projects Z'* onto Z, and

e Z'L is an infinitesimal symmetry for A, namely
Ly AL = pzAL
for some py € C° (Wp).

Theorem 3. Let L € C*° (R x T'Q) be a Lagrangian such that L (t,vy) # 0 for all (t,v,) €
R x TQ. Then for every Z € X (R x T'Q) which is projectable along the map id X 1q :
R x TQ — R x Q, there exists a lift Z'L.

Proof. Let us consider a general vector field

9 ;0 0.
Z=Ugp+ 2 g+ Wigk

its lift must read 5 5 5 9
Zli U=+ 72" — 4+ W'— + Rj—.
ot o T au T Mo

The canonical form in these coordinates is

AL = (L (t,q,v) — pv') dt + pidg’

and so

d\p = —dq' Ndt + <W—pi> dv' A dt — v'dp; A dt + dp; A dq'.
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Let us define E := L — p;v’. Second condition in Definition 8 translates into

0L ;[ OL oU ozk ,
MZEZZZW—WZ( —pi> + E— - +pr—, — Riv',

gt ovt ot ot
ou oz*
0= Eapi P op;i’
pzpi = Ri + Eg(q{ +Pka£f7
Zk
0= Egg +pkaavi.

The second equation is automatically fulfilled, because neither U nor Z*¥ depend on the
fiber coordinates p;. The same happens with the fourth equation, because of the pro-
jectability assumption. From the third we have that

ou oZk

R; = pzpi — Ea? — Pk ag

and replacing it in the first equation

- OL . (OL
pzl = 20— + W' - —pi | + EDU + p D, Z".
0q* ovt
This equation determines uyz because L # 0. O

Remark 4. Condition L # 0 can be overcome by using a new Lagrangian function L; :=
L+ 1. These pair of equivalent Lagrangians L, L give us a pair of lifts, defined on a pair
of open sets covering Wy ; as far as equations of motion depend ultimately on derivatives
of L, any lift yields to the same equations in their common domain, so no ambiguity
regarding the equations of motion remains.

Remark 5. Given a vector field Z € X (M), we can devise another lift to T*M using any
of the following equivalent definitions:

e Use Z to define the linear function Z € C* (T*M); the lift Z1* € X (T*M) is then
the Hamiltonian vector field associated to this function.

e Take the flow ®7 : M — M,t € (—¢,¢) and pull it back to T*M; it gives rise to a
flow
(®7)" :T*M — T*M
and the lift Z1* is the corresponding vector field.

For a general Z € X (R x T'Q), there is no guarantee that these constructions yield to
vector fields tangent to Wp; this is the main reason for the definition of lift adopted in the
presente work. Nevertheless, when Z comes from an infinitesimal symmetry for L, these
definitions agree, as will be shown later (see Proposition 5.)

4.1.2. A local basis of vector fields on W,
Given X € £V®") (R x Q), we can consider the canonical vertical lift XV € V™) (R x TQ)
and complete lift X e xV(Pr1) (R x TQ). In local coordinates (t, ¢, vi), if

X = X'~
aq*

12



we have that [10]

9
XV =xiZ

oVt

, j
XC:Xla N LO0XT 0

ag " ogF ol
These vector fields have the following brackets
XV, YV] =0, [(xV,v9] = [x,v]", (X9 Y] = [x,Y]°.

Additionally, for every o € T’ (Iclon), we can use the affine structure of Wi, in order to

define another vector field Z, € XV("2) (W) such that

[Pl + 50 (:09)] (4.1)
s=0

Zg <p|(t,vq)) = %

These vector fields have the following property regarding the canonical form Ar.

Proposition 4. Let o € T'(Wy) be a section of the affine bundle 7p : W — R x TQ.
Then ZsoA A, =0 and
Lz A =—T]0.

Proof. The first property is a consequence of the identity
Trr (Zs) = 0.
The flow for Z, is given by
DT P(t,g) T Pltwy) T 50 (E0g)
for every s € R. Then

T<I>§ . Vp — Vp +s- (TU o ﬁRXTQ) (VP) )

and so
()" (it ArxTQ) = [[d + s+ (T'o 0o TTrx1Q)])" (i1 A\RxTQ)
=i Arx7Q + 5 (TrRx1Q)" (0" 1} ARXTQ)
=1 A\RxTQ + S TLO
because iy, o 0 = o and the property o*Arx7@ = o of the canonical form. O

For every v € Q! (Q), let us indicate by 7 € C* (T'Q) the linear function

¥ (vg) 1= g (vg) -

Select a local basis {Z;} C X (Q) and let {8'} C Q' (Q) be its dual basis. Thus we can
construct the local basis of vertical vector fields

{@Z) (2" 20 ) < xV (W),

where .
ol == (pryo1g)* B — B'dt
is a basis for I' (I¢on ).
As discussed above, the lifting of vector fields to Wi, does not coincide with the re-
striction of more geometrical notions of lifts to the submanifold Wy, C T% (R x T'Q). This
situation changes whenever Z € X (@) is an infinitesimal symmetry for L.

13



Proposition 5. Let Z € X (Q) be an infinitesimal symmetry for the Lagrangian L, i.e.
z¢.L=0.

Then (Zc)lL = (Zc)l* W where (20)1* € X(T* (R xTQ)) is the lift of ZC defined in
L

Remark 5.
Proof. According to the formulas of Theorem 3, for
z-719
aq*
we have 5 -
. YA
7€ =7'— + o :
aqt v gk vt
and so
,chL =0.

Then the formula for the lift becomes
.0 VARG YA 1%

7OV Z gt ke 2, 02 O (g0

( ) oq’ Tt gk vt Pk Oq' Op; ( )

as required. ]

Under assumption L # 0, FE # 0, functions p associated to the elements (ZC) ' and

(Z V) '~ can be calculated using the formulas given in the proof of Theorem 3: We obtain
that

1
HzC = ZZCL

Hzv = % (ZV)IL - B

for every Z € X(Q).
Finally, the contraction of these vector fields with the canonical form Ay has the
following properties

1
Ao, <(Z"V) L) =0 (4.2)
1
Ml ((Z)') = praan (26) (4.3)
ALl Peme) (Zgi) =0 (4.4)

for every p(;.,) € WL‘(tﬂ)q)' Using (3.1), we can write
Pltwg) = L (t,0) dt + oo Ty 7 — v (vg) di (4.5)
for some o € T;,(). Then
oyl _ 4
/\L|p(mq) ((ZZ ) ) =a(Z;).
We can write this last equation in an interesting form: Using the map
T W =>T'Q:p— « (4.6)

if and only if p is given by formula (4.5), we can pull the linear functions

Zi (Oéq) = <Zz‘q>
back to Wrp; then
(ZZ-C)IL_I/\L = ?*Zi.
From now on, we will drop the map 7 in the expression of these functions.
14



4.2. Equations of motion for Lagrangian systems without force term

We will find equations of motion for a Lagrangian system without force term. It is
interesting to note that equations of similar nature con be found in the literature, see [8,
Now, if I' : I C R — W7y, is a solution curve for the data (W, Ar), and L has no zeros,
then the conditions found in Section 3.2 can be translated into
(29" 2an,) =0
r ((2Y)" i) =0
'™ (ZyadAr) =0,

for Z € X(Q) and 0 € I" (Icon). Moreover, using Sections 4.1.1 and 4.1.2, we can describe
the equations of motion as follows.

Proposition 6. If a curve I' : I C R — W, gives rise to a solution curve for the data
(Wr,AL) associated to a non zero Lagrangian L with non zero energy, then
I* (2% Ldt—dZ) =0
r*(zV-L-2Z)=0
I* (njo) =0,
forany Z € X(Q) and 0 € T (Leon).

Proof. Let 0 € T' (I.on) be a section of the contact bundle; Proposition 4 tells us that
ZgadA[, = —7} 0.
Then

0= I* (Zy2dAr)
=T (n}0). (4.7)

Now, defining property of lifts translated into
pwAL = Ly Ap = WHodhp +d (WEAL)
using Equations (4.2) and W = ZV we see that

1

T (2")" - Ex = (2Y) " dn

and so

1

r* ( (z")'" -E/\L> —0.
L

But we know that

ALl = Ldt + aoT,, 7 — a(vy) dt

P(tvq)
for « € T/Q, and the term « o Ty, 7q — a (vy) dt belongs to ICOH|(t,Uq)7 so Equation (4.7)

implies that
' (A\r) = Loldt.

Then
r* ((ZV)lL E) — 0

15



the final form for this equation results from the identity
(Z)'" E=2Y-L-Z+4 pyvp

taking into account that T'* ((Zv)lL . E) =Fuyzv o' =0.

Finally, recalling that (ZC)ILJ)\L =7,
0=1"((2°)"2dA)
=T (£iep 0 = d ((29) L))
*(pgerL —dZ)
=T* (2% Ldt - dZ)

as required. ]

4.8. Equations of motion for general Lagrangian systems

It only remains to find the expression of the extremal conditions for general Lagrangian
systems, i.e. something similar to Proposition 6 when a force term is allowed.

Proposition 7. Let I' : I C R — Wy be a curve associated to a solution curve for the
general system (W, A, F). Let us suppose further that L # 0. Then

I*((Z°-L+(F,Z))dt—dZ) =0
r(zV-L-2)=0
" (rpo) =0,
forany Z € X(Q) and o € T (Icon).

Proof. The proof goes as in Proposition 6. The only difference has to do with the terms
associated to the force term N
F Adt.

Because Ty, o Wt = W for all W € X (R x TQ), we obtain
(F.(2)") = r.2)
and <ﬁ, (ZV)1L> = <ﬁ, ZC,> =0 for Z € X(Q) and o € I" (Icon); the result follows from

these considerations. O

These are the equations of motion in quasi-velocities and quasi-momenta for general
Lagrangian systems.

4.4. On the nature of the equations of motion

Propositions 6 and 7 tell us that a curve I' : I — W, gives rise to a solution curve for
a Lagrangian system if and only if its tangent vector field belongs to the annihilator of
the set of forms

B:={(2° L+(F.2))dt—dZ,Z2" L-Z,m50:Z€X(Q),0 €T (Leon)}.

We are assuming that functions are O-forms. The next result reduces this set to a more
manageable set of forms.

16



Lemma 3. Let {Z;} C X(Q) be a basis of vector fields on Q and {o;} C I (Ieon) a basis
of sections for the bundle I.o,. Let us define

B :={(2° L+ (F Z))dt—dZ;, Z} - L — Z;,w}0:} .
A curve I' : I — Wy, satisfies the equations
IMa=0

for every o € B if and only if
I8 =0
for every B € B'.

In some cases we will have the following situation: We have a set of forms F as above
on a manifold W and a submersion P: W — W.

Definition 9 (Quotient equations). The set of forms F on W defined as follows

F = {76@' (W) :P*VE}'}. (4.8)
will be called set of quotient equations.

The following consequence of this definition will be useful later.

Corollary 1. If P*3,8 € Q° (W) belongs to F, then B € F.

Then necessary conditions for curves in W to be projections via P of solution curves
for F in W can be obtained.

Lemma 4. Let I': I — W be a curve in W which is a solution curve for Fand define
[:=Porl.
Then f*ﬁ =0 for all B € F.

When these conditions are also sufficient, it is said that we have solved a reconstruction
problem. We will not pursue these issues here; readers interested in a formulation of the
reconstruction problem from this viewpoint are referred to [4].

4.5. Equations of motion, translations and diffeomorphisms

On the other hand, it could happen that we have a bundle isomorphism ® : TM — T M
(not necessarily a vector bundle morphism) covering a diffeomorphism ¢ : M — M,

™ —2 = T\

M T) M
It is interesting to see under what conditions such bundle morphism relate equations
of motion of a Lagrangian system on T'M to equations of motion of a Lagrangian system
on the same bundle. We will use Cartan-like formulation in order to establish sufficient
conditions ensuring equivalence of the set of equations of motion; this problem will become
important when discussing Fehér Lagrangian in Section 9.

17



Remark 6. Recall that given X, Y manifolds, W C T*X a subbundle and f: Y — X a
surjective submersion, the pullback bundle

% pry
W —=w
bro TX

YTX

can be seen as a subbundle of T*Y with inclusion given by
(y,a) = (T,f) a € Ty*Y.

We expect (see for example [29, 20]) that Lagrangians which differ in a total derivative
yield to the same equations of motions; the correct way to capture this fact in our setting
is to suppose that their Lagrangian forms could differ in a contact form. Additionally [25],
these equations of motion would remain unchanged if these Lagrangian forms differ in a
closed 1-form, which are associated to surface terms in their corresponding actions.

Given these considerations, it is important to see how translations along a form modify
equations of motion of a Cartan-like system. This can be achieved using the following
general result.

Proposition 8. Let P be a manifold and o € Q' (P) a 1-form on P. Sett, : T*P — T*P
for the translation induced by «, i.e

ta (B) =B+ alz, g -
Let i : W — T*P be an affine subbundle and define W, :=t, (W). Then
o W, is an affine subbundle of T*P.
o If A\w,, and A\w are the restrictions of the canonical 1-form Ap to Wy and W,
AW, =t Aw + iy, (Tpa)
where 1o : Wy — T*P is the canonical inclusion.

Proof. First item is consequence of the fact that ¢, : T*P — T*P is a diffeomorphism.
For the second item, let p :=7p (B) for § € W; then a]p + B € Wy, and so

>\Wa|a|p+,3 = (a\p + B) o Ta\p+5?P =fo Ta\p+fﬁP + Oé|p ° Ta|p+B?P~
On the other side
t*_a (Aw|5> =po TgTpo T,B+a|pt7a
= B o Ta|p+BFP
because of the identity Tp o t_o = Tp; moreover
io (Tpa)| al,+8 = @ ° Lo +5TP-
Comparing with previous equations, the result follows. O

Thus, translations yield to the occurrence of gyroscopic forces in equations of motion,
as the following corollary to the previous proposition shows.

18



Corollary 2. Let 'y : M — W, be a map such that
I (Xadhw,) =0
for X a wvector field on Wy. Then for I :==t_, o'y, the following identity
I (Tt—q o X))o (dAw + di* (Tpa))) =0
holds.

We are ready to prove a result concerning equations of motion of Lagrangians related
through bundle isomorphisms of tangent bundle; as expected, neither a contact nor a
closed form change these equations.

Proposition 9. Let ¢ : M — M, ® : TM — TM be as above, and suppose that for
L, L' € C™ (R x TM) the following identity

Ldt+© + p= (id x ®)" (L'dt) (4.9)
holds, where p,© € Q' (R x TM), p is an arbitrary 1-form and © is a contact form (see

Definition 5).
Moreover, suppose further that for F, F' : TM — T*M bundle maps on idys, we have

F (vm) = (Tn¢)" (F' (® (vm))) € T5, M (4.10)
for every vy, € T,, M, and that ® is a contact map,
(id X ®)* Ieon C Leon- (4.11)

Then equations of motion of Lagrangian system (M, L, F + dp) and (M, L', F") are in
one-to-one correspondence via ©. In particular, equations of motion remains unchanged
for closed forms p.

Proof. In the notation of Proposition 8, we have that
(id x ®)* (W) = (WL)p.

Thus, for v : I € R — R x TM a solution curve for (M, L, F'), there exists a curve
I': I — Wy, such that

T (XJ (dAL+ﬁAdt+dp)) —0

for every X e xV®riom) (1),
Then, the curve
Yo : I =R XTM :t+— (id x @) (v (t))

is covered by I', : I — (Wp) , such that the following diagram commutes




Then, if A, is the pullback of canonical 1-form on T™ (R x T'M) to (Wy/),, the curve
r,= (<I>_1)>k oI is such that

ry (X7 (ar, + P adt) ) =0

for every X’ € xV®riom) ((WL’)p>~ Now, from Corollary 2, it follows that I :=¢_,0T, :
I — Wy, is a curve covering g such that

(M) (2o (arw + F ndt) ) =0

for every Z € XV®Pr1°m) (W), Then ~g is a solution curve for (M, L, F").
Finally, using that ® and ¢ are invertible, every solution curve of (M, L', F") gives rise
to a solution curve for (M, L, F + dp). O

5. Cartan-like description for intrinsically constrained systems

Let us see how to reformulate the Cartan-like theory developed for Lagrangian systems
in order to include intrinsically constrained systems. From Definition 2 we know that an
intrinsically constrained system is a triple (7 : M — N, L, F'), and its critical curves are
projections of the critical curves of the associated Lagrangian system (M, piL, F'), where
p1:TM — Ty N :=TN xy M is determined by the formula

1 (V) == (T (V) , m) .

We can form the bundle Wy, C T* (R x TM) using formula (3.2), and equations of
motion arise from Proposition 7. In fact, description of Routh reduction in [24] makes
use of these kind of Lagrangian systems. Thus in the present section we will focus on
construct Lepage-equivalent problems for them.

5.1. Lepage-equivalent problem for intrinsically constrained systems

The dynamics of an intrinsically constrained Lagrangian system is tied to the dynamics
of the associated Lagrangian system (M,piL,F) [24]. For this system, the subbundle
Wyrp, C T* (R x TM), defined by formula (3.2), allows us to construct its equations of
motion; moreover, the nature of the Lagrangian of this kind of system implies that its
solutions live in a submanifold. It is proved in the following proposition. So we will
be able to concentrate in this subbundle, and prove that dynamics of an intrinsically
constrained system is totally determined by this restricted system.

Proposition 10. Solution curves of (WPIL’ ApiLs F) (see Definition 7) lie in the subbundle
(ker (idg x Tp1))°.

Proof. Let us introduce coordinates (qz) on N and (qi, uA) on M adapted to the projection
m: M — N; let (qz,v’; ul, wA) be the induced coordinates on T'M.
The map p; : TM — Ty N becomes

(a0 ut ) = (¢ o)
Then on the corresponding coordinate chart in 7% (R x T'M), with coordinates

. A A
(t7ql7vl7pi7‘P’i;S7u , W 7TAaRA)7
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we will have

WL )= {pTLdt + p; (dqi — vidt) +7ra (duA — wAdt) D PiyTA E R} . (5.1)

(t,q* whut,wA
Then the canonical form reads
Aprr = piLdt + p; (dg' —vidt) + 74 (du? —w?dt)
and using Definition 3.6 for the force term, the equation

0 ~ 0
(g (vis + F ) ) =1 (Gt ) =0

reduces to r4 = 0, which is the local expression for the subbundle (ker (idg x Tp;))°. O

The subbundle
W]%L = WP’IL N (ker (idR X Tpl))o

will allow us to construct a kind of Lepage-equivalent problem for the intrinsically con-
strained system on Ty M. In order to formulate it, let us define WY C T* (R x Ty, N)
playing a similar role than Wy — R X T'M, but changing the base space to R x Tj/N.
So let p : ThyyN — TN be the canonical projection, and define the subbundle Jeon C
T* (R x TpyN) such that

Jeon! (1,0,,m) =

= {B €T, (RxTyN):B=aoTy,, m(id x p) for some a € ICOH’(t,vn)} . (5.2)

t,’U»,“m)
In the coordinates introduced in Proposition 10, we have
p (', v ut) = (¢',0%),

and so 4 .
‘]COH‘(t,qi,’Ui;uA) = {pl (Cqu — ’[)Zdt) P € R} .

Thus W C T* (R x Ty N) is given by

wiY

(t,vn,m) =1L (tv Un) dt + Jcon‘(t,un,m) )
as in Equation (3.2).

Proposition 11. The bundle WI?TL coincides with the pullback bundle of WI{V along idXp1,
namely

0 .
WPTL S (Zd X pl)* (W[{V) —_— W[J/V
B TRx Ty N
TRXTM

RxTM —— Rx TMN
idXxXp1

Proof. The subbundle WI% can be described in local terms by using Eq. (5.1); it results

WO : = {p’{Ldt + p; (dqi — vidt) ipi € ]R} .

P10 (t,qt wisud ,wA
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Now, if a 1-form § = sdt+ridqi+Midvi+NAduA belongs to JCOH’(t,qi,vi;uA)7 there exists
a = p; (dqi — vidt) IS Iclon’(t g ) such that 8 = a0 Ty 4i a4y (id X p); so contraction of

both sides of this equation with a generic vector

0
A

9 | 4
-+ U 9

0 .
+V

0 .
=T [
VisTg + Q% V%,

gives ' ' ' 4
piQ" — (piv") T = sT + riQ" + M;V' + NaU*,
namely 8 = p; (dqi — vidt) = «. Therefore

Wiv‘( )= {L(t,q",v';u?) dt + p; (dg' —v'dt) : p; € R} ;

the isomorphism with W;?’; ;, is given by the map

U (id x pp)* Wiv — W;?{L : (t,wm; a(t,vn,m)) > Q(t0,,m) © Tt wm) (id x p1) . O

In an intrinsically constrained Lagrangian system the external force is encoded by a
bundle map F : TM — T*M covering the identity in M. Definition 3.6 allows us to
construct its associated 1-form on Wz?f r» and the isomorphism ¥ gives rise to a force

1-form on W}JV , which we will represent with the same symbol F.
Thus, translation of Definition 2 for solution curves of an intrinsically constrained
Lagrangian system to this new setting, gives rise to the following result.

Proposition 12. A curve m : I C R — M is a critical curve for the intrinsically
constrained system (m : M — N, L, F) if and only if there ezxists a curve I' : I — Wiv such
that

1. Ty opryo (id X p) o TRy, N o ' =m,
2. prioTrxTyN o1 = id, and

3. I (X_n <d)\g+ﬁ/\dt)) =0 for any X € XV (Wi\]), where F € O (Wiv) is the

1-form determined by F on Wév If F comes from a 2-form, this requeriment can
be written as

I'* (X2 (dAY + F)) =0
for any X € ¥V (Wiv)

Proof. Relevant bundles and maps involved in this proof are indicated in the following
diagram
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0 - 7N

P
/' ‘\
7 N
7/ A
/ A\
/ \
/ \

/ \
r/ v ' \\
" id X p1 “
i RxTM R x T]V[N |
I |
| |
| |
| |
‘\ id x T™M id x (TN Op) ,’

\
\ /I
\ v v
I’ , /T
\ idx 7 /

Definition (2) applies to the system on (Wpf Ly AprLy F ), because it describes a general

Lagrangian system. Moreover, from condition ImI" C Wz?’{ ;, we have that these equations

induce equations for the solution curve IV : I — Wz?f ;1 ; these equations are
(X5 (g + Fadt)) =0
1

for every X € xV(prioTexTm) (W]?*L)
1
On the other hand, the canonical forms )\2; ; and /\]LV on WI?T 7, and Wiv respectively

have the same form in local coordinates, so we need to see if the extra variables in WI% I
yield to additional equations. But
9 10
WJd}\pikL - 0
identically, so Equations (3) coincide the equations characterizing m as a solution curve
for the data (WPTL’ )‘PTL’ F) O]

It means that intrinsically constrained systems can be described in terms of a Lepage-
equivalent problem.

5.2. Equations of motion for intrinsically constrained systems

Let us make use of the lift to Wiv in order to find the equations of motion for an intrin-
sically constrained system. Recall that this bundle is not a classical Lepage-equivalent;
therefore, it is not defined on a tangent bundle, and the contact structure used in its
construction is borrowed from TN via a pullback. So it is necessary to generalize the lift
of vector fields found in Section 4.1 to this case. It will be achieved in the present section
by using the corresponding lifts on the bundle Wz% L

So, first let us fix an Ehresmann connection on m : M — N. The lift of vector
fields from N to M will be indicated by X ~— XHM, For every Z € X(N), we lift it

to M and using complete and vertical lifts, to (ZHM)C , (ZHM)V € X (R xTM); to any
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W € T (Vr), we can assign vector fields W, WV € X (R x TM). On the other side, we
can construct two lifts to Tpy N, namely

ZON 4 zHm ZVN L0 e X (TyN).

Here Cy, Vv indicate complete and vertical lift from N to T'N. Moreover, for V € X (M)
a vertical vector field on M, we have the vector field

0+Vex (TMN) .
Then the following result holds.
Lemma 5. Let Z € X (N) and W € T (V) be arbitrary vector fields. Then

(21)° | (2Hm)" . WC € % (R x TM)

are p1-related to
ZON 4 zHM ZVN 10,0+ W

respectively; WV is in ker Tp;.

Proof. Let (qi,uA) be local coordinates on M adapted to 7 and (q vl ud wA) the asso-
ciated coordinates on T'M; in terms of these coordinates

™ (d',u?) = (¢)
P1 (q’i’U’i’uAij) = (qi7vi7uA) :

There exist a collection {Ff} of functions on the coordinates domain such that

Hpyy
N0 o
aq* ¢ ouA

Moreover, there exists local functions {Zz} on N such that

.0
Z = 17.'
oq’
then
.0 0 0zt 0
ZH]\[ ¢ gt~ ’LFAi k ‘
(Z7) o 7 A T Bgk aui
07z ora or4N o
kA k ) C 71
T Z Z —
*‘( @ak’+ o T au0>awA
and 3
(ZHMfﬁzzi( .+I%>
0
So we have that
C ; 0 0 L 07"
T ZHm)™ — A = — 70~ 4 7Hum
pro(Z) =2t TG At g -
zbﬂ%Zmﬂvzztgﬁ:TW+0

ovt
On the other side, there exist {WA} functions on M such that
0
W=w"_—;

OuA
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therefore

o) owA4 owA\ o
WC WA k B
guA * ( gk TUuE ) duwA
0
wY =wa_—
OwA
and the rest of the lemma follows. O

Let us recall that we have the maps p : TyN — TN,q : Ty N — M making the
following diagram commutative

™ 2 TyN —2— M

N
Let us indicate with
qi: WI?TL — W,{V
the map constructed above (see Proposition 11). The following result allows us to extend
the notion of lift to the bundle W]{V .
Proposition 13. Let Y € X (R x TM) be a vector field (p o p1)- and (q o p1)-projectable,

and vertical for the projection R x TM — R. Then the lift v e x (Wp»fL) 1s tangent
to WZ?TL’ and is qi-related to a vector field

VIR = Tqi0 y'lric,

Proof. The requeriments on Y imply that

o 4,0 o ., 0
Y =vi -~ iZo4r
o R G TS gt T

where Y, S? are functions on N and R“ is a function on M. Then

vhi oy o aY’f_ 8RA 0 Lo oYt ORTN 9

orp
where

0L 4 OL ([ OL
= —(yiZ= R <[ s
Y L( aqt TR 8uA+S (81}2 p)—l—

oL
+ 74 <awA — rA> + piD YR + rADtRA> .

Now L does not depend on variables w4

, and on WI?TL we have r4 = 0, so uy becomes a
function on ThsN; now

y'rit

aYE\ o9
dq* ) Op;

, =Y+ (/sz‘ — Pk
piL

: 0
is tangent to Wp;‘Lv and

Tqy 0 Y'rit

0
Wp{L

B a Aa Za ayk\ o

is a vector field on Wiv , as required. O
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Then we can relate equations of motion on bundles WJ{V and W]% - First, let us recall
the following description for these bundles, namely

Wit (tVi) {pTLdt + a0 Lo Ty, ma — & (T (Vin)) dt - & € T;(m)N}

WE |y = L+ G0 Ty 7y © Ty yp = @ (v) dt : G € Ty N |

It means that for every o € Q! (), we can construct, as before, a pair of vector fields
Zl e X (WS,{L) ,Z!l € X (W) which are gi-related. In fact, for every o € Q! (N), we
define

o = (mory) o —dt
o’ = (rnyop)o—odt

where 7 is the linear function induced by ¢ on the corresponding base space; then we use
Equation (4.1) to define the vector fields.

Corollary 3. FEquations of motion on Wiv are quotient equations via q1 of equations of
motion on W;%L'

Proof. Using Y € X (R x TM) vector field (p o p1)- and (g o p1)-projectable, and vertical
for the projection pr; : RxTM — R, we can found a basis of vertical vector fields on both
WI?’IL and Wiv; to them we need to add vector fields of the form Z, € X (W;?{L> , Lo €
X (WP) for 0 € Q' (N). Now, let I : I — W;?{L and I' := ¢y oI"; then, from

0 _ *\N
)\p’{L =qAL

we have that N
(F/)* (YlPTLJd)\?JTL) = I* (YlL Jd)\?) ,

so IV will be solution if and only if T is. O

6. Lepage-equivalent problems and symmetry

Now let us concentrate in a Lagrangian system with symmetry. It means that there
exists a Lie group G with an action on ) such that its lift to T'Q) acts by symmetries of the
Lagrangian function L € C* (R x T'Q). As our viewpoint is to represent Lagrangian sys-
tem (@, L, F') with the subbundle W, and its Cartan form Ay, it is necessary to translate
symmetry considerations to the new description.

6.1. Momentum map for Lepage-equivalent problems

Previously (see Definition 3) we defined a Lie group G as being a symmetry group
for the Lagrangian system (Q, L, F') if and only if it acts on @ in such a way that the
canonical projection onto its orbit space pg : @ — Q/G defines a principal bundle, and
it keeps the Lagrangian L and the map F invariant. Under these hypothesis, we have a
natural lifting of this action to T (R x T'Q)), which preserves the canonical 1-form Agx7¢
and the subbundle I.,, (i.e. Proposition 5.)

Lemma 6. The subbundle Wi, and the canonical form Ap are invariant for the lifted
action.

Thus we can define the momentum map J : Wy — g* via the classical formula
<J(O[),€> = )‘L‘a (é-WL)? 569

This momentum map coincides with the original.
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Proposition 14. Let Jp, : TQ — g* be the momentum map for the invariant Lagrangian
system (Q, L, F). Then
sod = Jp,

where sg : R x T'Q) — Wy, is the section constructed in Lemma 1.

Proof. We have that
ALly (€w,) = a (€rxrq) -

By Equation (3.5) for the section sp, we have that
(0 (t,0),€) = s0(t,v) (Erx1Q) = OLl(10) (Erq@) = JL (v),
as required. O
This map is a suitable generalization of the momentum map to this setting.
Corollary 4. J is conserved on solutions of (W, Ar, F).

Proof. Tt is just necessary to use the characterizations of the solutions for (Wr, Az, F)
given in Theorem 2, realizing that &y, oF = (F,{g) = 0 by Definition 3. O

Let us indicate by Jy : T*Q) — g* the momentum map associated to the lifted G-action
on the exact symplectic manifold T7Q.

Proposition 15. Momentum maps J and Jy are related through
J=7"Jy
where T : Wi, — T*Q is the map defined in Equation (4.6).

Proof. Let us recall from Remark 1 that p € WL|(t,vq) corresponds to (t, vq, @) if and only
if
p=L(tvg)dt+ oo Ty, 1g — a(vg)dt.

Therefore
J(p) (&) = ALl, (§w,)
= p (€rxTQ)
= (Oé o TvqTQ) (gTQ)
=a (&)
= Jo () (§)
for every £ € g, as required. O

6.2. Symmetry and projection of solution curves

We have a G-action on Wy, a G-invariant form on this manifold and a momentum
map, so it makes sense to ask about the G-invariance of solution curves.

Lemma 7. Let g € G be an element of the symmetry group, and v : I — @ a solution for
(Wr, AL, F). Then g-~: I — Q is also a solution for (Wp, A, F).
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Proof. First recall that equivariance of the force term F' implies G-invariance of the form
F. From Definition 7, in order to show g-+ is a solution for (W, A, F'), we need to find a
curve I'Y : I — W, such that the requeriments in this definition are met. If I' : I — W7 is
the corresponding curve for 7y, we can see that I'Y := ¢-T" fullfills the first two requeriments.

For the last item in Definition 7, we select a set of (perhaps local) G-invariant gener-
ators {Z} for XV (Wp), and so

(T9)* (ZJ (d)\L +FA dt)) =(g-T)* (ZJ (dAL +FA dt))
=1 (7o (dr, + F ndt))
because of the G-invariance of Ay, F and Z. O

It means in particular that it is possible to project solution curves on quotient spaces
by symmetry groups.

6.3. Routh function and level sets of the momentum mapping
We want to provide a definition for the Routh function associated to the problem
(Wr,AL). We fix an element u € g* which is regular for Jz, and define the submanifold

Wi = J ).
Lemma 8. Under identification (3.3), we have that
JH () =R x (TQ® Jyt (1)) -

Proof. 1t is a consequence of Proposition 15. O

Remark 7. Lemma 8 tells us that W} is equivalent to manifold M,, considered in [14].

Corollary 5. We have that
Wf}(mq) = {L (t,vg)dt + a0 Ty, — a(vg)dt : a € Jy' (1) N T;Q}

for every (t,vy) € R x T'Q.

7. Routh reduction for mechanical systems

Throughout this section H := G, indicates the isotropy group for u € g* regular
value for the momentum map p; h will be the Lie algebra associated to H. It is time to
relate the dynamics of the unreduced system (Q, L, F') with the reduced system defined
on T (Q/G) x Q/H x g with Routhian R,, and a gyroscopic force coming from reduction of
the 2-form (p1, dwg). We know [24] that this system can be interpreted as an intrinsically
constrained system via a map

p1:T(Q/H xg) = T(Q/G) x Q/H x g,
and it was proved in Section 5 of the present work that equations of motion on Wg /G are
T
the projections of equations of motion for W;?*ﬁ . Thus Routh reduction in our formulation
17
reduces to relate this latter system with Lagrangian system represented by the bundle Wp;

the purpose of the present section is to prove this relation.
For p € g*, we define on R x T'Q) the Routhian

Ry (t,0) = L (t,v) = (s wal, (v))

where wg € Q! (Q, g) is a connection 1-form on the G-principal bundle pg :Q — Q/G.
As H is the isotropy group for p € g*, R, induces a function R, € C* (R x TQ/H). We
can provide the reader with a quick summary of the steps we will do below:
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e Iirst we will use the connection form wg in order to find a decomposition of the
contact bundle.

e Then we will proceed to relate the Cartan bundle Wi, associated to the original La-
grangian system (Q, L, F') with the Cartan bundle Wﬁ*ﬁ associated to the pullback
. 14

Routhian piR,,.

e The force term pjf to be used in this system is determined by the reduced force
term f: TQ/G — T% (Q/G) induced by the G-invariant force F' [24].

In fact, we have the map

~ P1 - Pris ~ o~
T(Q/H x g) T(Q/G)x Q/H x g T(Q/G) xg TQ/G
r1
so force term can be written as
o Fo (") . _
T(Q/H x g) TQ/G ™ (Q/G) T (Q/H % g)
pif
1.e.
pif = (for)oTo",

where

o™ Q/H x 3 — Q/G: ([dy[4.€)6) = [de -

7.1. Connections and a decomposition of the contact bundle Iy,

Let us consider connection wg € 01 (Q, g) previously chosen. Tt gives rise to a connec-
tion wrg € Q! (T'Q, g) via pullback along ¢

WTQ 1= THWQ-

Now, using the description of the contact subbundle provided by Equation (3.1), we
can find a decomposition of this subbundle induced by a connection on (. In fact, we
have the pullback bundle

() T (Q/G) — T (Q/C)

TQ/G

QG
It gives rise to the decomposition

T°Q = () (T"(Q/G)) %@ (@ x &)
induced by the connection wg, through the correspondence

(g 0:0) — Gl 0 Typ@ + (0,0 () -
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It induces a factorization Icon = Icon @ Ig+, where

= (g 0 Typ o Tuy g — gy 0 Ty (vg) dt - Gy € Thy (Q/G) }
Ig*|(tvvq) = {<U’ wQ © TUqTQ> - <U7 wQ (Uq)> dt:o € g*}
= {<o’, wTQ’vq —wq (vq) dt> 10 € g*} .

ICOIl

Definition 10 (Routh decomposition). The decomposition
Ieon = Icon © Ig*

for the contact subbundle will be called Routh decomposition associated to the connection
wQ-

Remark 8. Using Routh decomposition, we have that p € Wf‘(t v) if and only if
"vaq

p= L (t, ’Uq) dt + &[q] o Tpg ] TvqTQ - a[q] o Tpg (’Uq) dt + <,u,, WTQ‘ULI —wQ (’Uq) dt>

for some a, € T[’;] (Q/G). This fact will be useful in the proof of Theorem 4; namely, it
can be written as

p =Lt vg) = (p, wq (vg))] dit+
+ 8lg) 0 Tpce © Toyq — Alg) © T (vg) di + <u, wTQqu>

= R, (t,vg) dt + Qg © Tpg o Ty, 7Q — Qg © Tpg (vg) dt + <u, WTQ‘yq>

so every element of W}' is the sum of three terms: A term Ry, (t,vq) dt involving the Routh
function, a form in the contact bundle of R x T'(Q/G), and the form <,u, oJTQ|Uq>, which

gives rise to gyroscopic forces. The first two terms can be related to elements in W;?*E ;
14t
the third element induces a translation in the space of 1-forms where W;?*R lives.
1t
- 0
7.2. Equations on Wpfﬁu
It remains to show the equivalence of mechanical systems associated to bundles
W~ = RxT(Q/H x7g) and  WF -5 RxTQ.
piRy
It will be done in the present section; the fact that T (Q/H x g) and T'Q are not directly
related by a map must be overcome by means of a pullback bundle construction. It is
worth to mention that the comparison between these affine bundles of forms requires an
additional translation along a form related to the connection form; an interesting role in
the proof is played by Routh decomposition.

7.2.1. Comparing systems with a pullback bundle construction

We need to compare equations on W;?*}T with the equations of motion on W/'; in order
11
to do it properly, let us define

fo: TQ = Q/H x§: vy~ (ldly . |0 wal, )] ) (7.1)
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This allows us to construct the pullback bundle

R x £ (T (Q/H x §)) 25 Rx T (Q/H x §)

pri"/ ‘/idXTQ/HXE

R x TQ ——r——— Rx Q/H x§

Let us define
FS/M = f5(T(Q/H x 3)).

We can pullback bundles W} — RxT'Q and W;?*T% — RxT (Q/H x g) along projections
1
pry,i = 1,2; for every p := (t,vq, Wi(la e ék;)) e R x F¥'" | we have
(p,\) € (pry)* (Wf) if and only if A € Wf‘(t 2

and
(p,o) € (prs)” (WZ?’IEN) if and only if o € WY

PiRu(tq)laéle)

It means in particular that A o T,,pr{ and o o T,pr§ are forms on R X FU?/ H; thus we
can consider these pullback bundles as subbundles of T <R X Ff}2 / H). Then we have the
diagram

T* (IR{ X F§/H>

R N

(pr?)” (WE) )" (W)
R x FQ/H %
RxTQ RxTQ/Hij)
idx fu A/’“@
RxQ/HXg

where, using the identification mentioned before,

(pr¥)* (Wfﬂp = {fy oT,pry € T; (]R X F:;?/H>

)
(tW(mH,[q,sJ)) } |

(or5)" (W)

PiRu

= {UoTppr‘feT; (Rng/H) oe W’
p

The maps
o (pry)” (Wf) — Wl iy oT,pr{ 7,
0 . W\ * 0 0 . w
CI)PTPAL H(pr3) (WPTRH) - WPTR;L rooTpry =0

are well-defined, because pry’,7 = 1,2 are surjective maps. Moreover, these maps have
nice properties regarding the canonical structures on these spaces.
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Proposition 16. Let )}, )\;*E be the pullback of the canonical 1-form on
1
T (R x FQ/H )

to (pr¥)” (Wf) and (pr4)* (WI?’IE;L) respectively. Then

*
<I>07>/\07:)\’7 5N, = N,
( piRu) “piR. ~ “piRy LD T AL

7.2.2. Routh reduction for Cartan-like systems

We will relate equations in WI?*E with equations in Wf . As we said above, it is
14

necessary to compare the bundles supporting these equations in R x Fg/ " This is done
in two stages:

e We will prove first that (pr{)* (W}) is a subbundle in T* (R X Fg/H> obtained

from (pr%)* (W;?*E ) via a translation (in the sense of Proposition 8 and Corollary
11t

2) along a suitable 1-form related to connection wq, already chosen in Section 7.1.
e After that, the relation between the equations can be set by direct inspection.

Now, let us apply these considerations to our problem: We need to compare dynamics
associated with bundle W;(:)*E with the dynamics of the unreduced system W}'. This will
11
be achieved using translations along a form associated to p € g* and the connection form
wgq chosen in Section 7.1; namely, let us define

= (pwg) € 21 (Q). (7.2)

Thus, we are ready to establish the main result of this section. From Proposition 11
we know that

0

o . Q/G
v R, 1:ae W2

= T
<t’W([LI]H,[q7§]G)) {a ° (t’W([‘I]Hv[‘?f]G))p Ry

Recall from Equation (5.2) that

p1 <taW([q]H,[q7§]G)) } .

G —_
W%/ = Rydt + Jeon;
additionally we have the commutative diagram (5.3), that in this case yields to

T(Q/H x§) —— To/ux (Q/G)

, o~ I

T(Q/G)

/ 0
soa € WY
piRu

if and only if (for clarity, we drop some indices regarding

(W inei)
evaluation for tangent maps involved in the calculation)

o = p’{ﬁﬂdt +ayoTrggeT (popr) — Qg oT (pop1) (W([‘I}Hv[%f]c)) dt
— piRydt + a0 Ty 0 TTHM — apy o TT (W([q]HV[qé]G)) dt. (7.3)
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Theorem 4. With the notation introduced abouve,

o ((0r8)" (W03 ) = (ort)" (W),
Proof. Using Remark 8, we see that any element
(p, o Typr?) € (prf)” (W})
is such that
o = L (t,0) dt + gy 0 Typ@ 0 Ty, — gy 0 Typ (vg) dt + {1, wrel,,, — wa (vg) dt)

for some a, € T (Q/G) This can be rearranged as

a=[L(t,vg) — (p,wg (vq))] dt—i—&[q]qupgoTvqTQ—a[q}qupg (vg) dt+<,u, wTQ|vq> . (74)
Now, consider the following diagram
FQ/H

(Q/H x g)

l\ /L

Q/H xg T(Q/G)

H
k%%

Q/G

From Equation (7.3), we have that (p,a’ o T,pr%) € (pr§)” (Wz?*ﬁ ) if and only if
1K

o/ = piRyudt +djg 0 T c 0 To' — Qg © T (W([Q]Hv[%E]G)) di,
S
o o T,pr§ = piRydt + g © Tpg oT7qoTpry — Qg o ToH (W([q]H7[qVﬂG)> dt. (7.5)

Finally, using the commutative diagram

FO/H 22 T(Q/H x §)

Pr‘fl chbH

TQ ——— T(Q/C)
Tps

it results that o
~ H ~
a1 0 T6" (Wi, 1ael)) = 0 © TP (v4)

and using it together with Equation (7.2) in the comparison of Equation (7.5) with Equa-
tion (7.4), we obtain the desired result. O
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This theorem allows us to prove the following result, relating equations on W;*E and
1
Wi,
Corollary 6. Equations of motion on W]S*E and W} coincide.
11
Proof. In sake of simplicity, we will prove this corollary in absence of forces terms; they

can be restored in a straightforward manner. Let us take a curve I' : I — (pr{)" (W?)
and a vector field Z € X ((pry)” (W}')) such that

I (Zid\p) = 0.
Then, using Proposition 16, we will have that for 'y, := &y 0o,
' ((T®p o Z)udAp) = 0.

Now
o) (F) = ()" W3z, )., -

so from Corollary 2 it results that

Lyi=t_y, ol T — (pr§)" (W;}Eu)

obeys the equation
I ((Tt—w,, 0 Z) (d)\;i‘ﬁu + (77;1?“) dwu>) =0,

where 7/ — : (pr%)” (WOF > — R x FMQ/H is the canonical projection.
pI Ry pI Ry

Recall now that dw, is basic for the projection pg : @ — Q/H; then there exists
B* € Q?(Q/H) such that

(pg) B = dwy,.
Therefore using again Proposition 16, the map

M=% _ ol: T — W°_
piRu piRu

is a solution of the equation
n* 0 0 0\ ar)) _
() (1005, 0 Tty 0 2) s (N + (7, ) 8)) = 0. O

8. Reduced implicit Lagrange-Routh equations

In the present section we will use the previous considerations in order to write the

equations of motion for the system (Wz?*ﬁ ’Ag*ﬁ > in terms of quasicoordinates. It will
1 14

allows us to compare them with the corresponding equations (4.1) obtained in [14]. As

before, throughout this section H := G, indicates the isotropy group for p € g* regular

value for the momentum map p; h will be the Lie algebra associated to H.
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8.1. Gyroscopic force induced by connection wg

We will calculate the gyroscopic force term determined on T (Q/H x g) by the con-
nection defined on Q@ — @Q/G by wq.

This connection induces in turn a connection on the bundle 7, : Q/H — Q/G, when
it is considered as an associated bundle for @ through the bundle isomorphism

Qxq (G/H)~Q/H.

Thus horizontal spaces on Q/H are the projection along pg : Q — Q/H of the
horizontal spaces on () associated to the connection wg. It means in particular that if
Z € X(Q/G) and ZHe € %(Q), z"e/n ¢ X (Q/H) indicate the horizontal lifts for these
connections of Z to @ and Q/H respectively, we will have that

zHern — Tp% o ZHa.
Moreover, a similar identity can be set for infinitesimal generators

Cop=Tr5 ok, Ecg

associated to the action of G on @ and Q/H; using the fact that G acts transitively on
G/H, there exists Z € X (Q/G), & € g such that

V =z ([q] ) + Egum ([ ) -

for every V € Tjy (Q/H).
Following [24], let us consider the pullback bundle ;g = Q/H x g and its subbundle

b= Q x h/H; then the quotient bundle 7%3/h is well-defined.
Now, let V' € Tjg (Q/H) be any vector on Q/H and vy € TyQ such that

qug (vg) = V;

then )
(Tir) (V) = {vy +Co () : C € b},

and so we can define the ﬂZﬁ/H—vaIued 1-form @ via

Bl V) 1= [ [, 0] |
It induces a correspondence

T(Q/H) ~mT(Q/G) x m3/b

via the map

T[‘J]H (Q/H)BV'—)T[q]Hﬂ'u(V)—I-ZJH (V)

dg

Its inverse is given by

(@ 90ae) + (lalr [0 18] ) = ()" + €y el

[Q]H

Therefore, we are ready to find an expression for the 2-form [*, namely, for

Vi= @)™ + € oyu (ldln)
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with v; € Tiy,, (Q/H) & € g and i = 1,2, we obtain
B,y (Vi V2) =
= B, (@ + € gy (dla) @)™ + (€)gum (ldlm))
= iy, © T ((E)11 + (€1)g (a) (B2)f10 + (€2)g ()
= dwy, (@)fQ + (€1)q (@), (B2)) + (&) (1))
= (1 Qal, (@072, @))2) - [61.&]).

where (g is the curvature form for wg on Q.
According to [24], we can define a map i : G/H — g* such that

(E(lalg) s la,Ele) = (1, 6) 5

the bracket on g gives rise to a section of the bundle A?m *g*/b — G/H via

(ad T (al) s ([a[e1ly] o fe2ly] ) = G lers el
Thus writing
V=Vt V' enT(Q/G) x mig/h (8.1)
we obtain

1% = (v, Qg = VVoad'E 8.2
Bulig, = (V") 2 Qal, ~ V0”7 (). (8:2)

8.2. Considerations on the derivatives of the Routh function

It is our aim here to find the derivatives of the Routh function pjR,, along vertical
directions associated to Q/H-variables in T (Q/H x g).

The 1-form w,,, defined in Equation (7.2), induces a fiberwise linear function @, on
TQ closely related to the Routh function; in fact, we have that

R, — L =wj.

Using relation
fro = (6Q)%,  Eeg
for the infinitesimal generator of the G-action on T'QQ and the complete lift of the corre-
sponding action on (), we have that
érq - W = (£0)°
= (Ceqwn) )
= (1, §@dwq)
= (u, [€, wal)- (8.3)

For £ € b, it means that @, is a H-invariant function on 7T'Q), thus the pullback of a
function w, € C* (T (Q/G) x Q/H x g).
Moreover, if v, € T5Q is horizontal respect to the connection wg, we have that

Wu (UQ) =0,
and so there exists o, € C* (Q/H x g) such that

5;0 fw :@7 (84)
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for f, : TQ — Q/H x g defined in Equation (7.1).
Now, the bundle 7, : Q/H x g — Q/G can be endowed with a connection associated
to wgq, using the fact that Q/H x g is an associated bundle to the principal bundle

pg : Q — Q/G and the G-space G/H X g.

Lemma 9. For every Z € X(Q/QG), its horizontal lift ZHe/mx3 to Q/H x § is given by
ZHa/nxa = zHao/m 4 7Hz,

where Z1e/n ¢ X (Q/H),ZMs € X () are the horizontal lifts to every factor.

In the following, r, : § — Q/G indicates the adjoint bundle.

A basis of (local) vector fields on the bundle ¢ : Q/H x § — @Q/G can be con-
structed using vertical vector fields on every factor and the canonically defined connection
associated to wg.

Proposition 17. Let {Z;} be a (local) basis of vector fields on Q/G, {Vi} a basis of
sections for Vi, and {Ws} a basis of sections of Vr,. Then

{Zf’Q/G + 2V 40,0+ Wa}

is a basis of vector fields on Q/H x g.

Now, let us consider the action on &, of vector fields tangent to the factor Q/H in the
product Q/H x g. To this end, we need the following result, which relates the projection
of vector fields along f,, with vector fields on Q/H x g.

In the next proof, for every G-space X, the map <I>§< : X — X will indicate the
diffeomorphism associated to the element g € G. Moreover, for every ¢ € g, the symbol
G € X(g),¢ € g will be the vector field

—

G (08e) = =

t=0

associated to the linear structure of the bundle g.

Lemma 10. Let { € g and Z € X (Q/G). Then
Tfuobrq = (So/m +0) o fu

Tf, o (210) = (ZHQ/H + 7z 4 (QQ (Z, '))§> 0 fus

where (-)CQ indicates the complete lift of a vector field from Q to TQ.

Proof. We have that

fo (T® (vy)

([92 @] ;- [, (a) Adgeoq (v4)],)

Q
([(DQQ (@] +la,we (%”G) ’

fu 0 ®TQ = ((I)QQ/H x id) o fo.

namely

The infinitesimal counterpart of this equation becomes

Tfwoérq = (§g/m +0) o fu
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for all € € g.
In order to prove the second identity, let us consider the following commutative diagram

TQ — 2 40

Q
pPa
fuJ( J{p?]

Q/Hxg —— Q/H —— Q/G
Then for Z € X (Q/G), we have that
ZHam = 1p% o ZHa
= Tp% 0 Trq o (ZH2) 70
= Tpr, o Tf, 0 (2H2)°. (8.5)

On the other side, we have the identification Vpg ~ () x g and wg induces a vertical
projection Il : TQ — Vpg; namely, we have that

IL, (vg) = (g, wq (vg)) -
These maps can be integrated to the following diagram

TQ —5 Q x g

fw pgxg

Q/HX§W§

If &, : Q — Q is the flow of the vector field ZHe, then T®, : TQ — TQ is the
corresponding flow for its complete lift (Z HQ)CQ; therefore

I, (T (vg)) = (P (q) , w@ (T'P+ (vg)))

and so
TTL, o (212)°° = (72, T guq)
= (ZHQ, ZHQ_IQQ>
= (7"%,0) + (0,272 0 .
Moreover, the connection in the associated space g is defined by projection of the
horizontal spaces of @) along the map pgxg; therefore
ZHE o fw — Tngg o (ZHQ,O)
= Tp@"% 0 |TTL, 0 (2770)° — (0, 272,04 |
=TpryoTf, 0 (ZHQ)CQ - <ZHQ_|QQ>~ O fu- (8.6)
i
Using Equations (8.5) and (8.6) the second identity follows. O
Thus, from Equation (8.4) and using Equation (8.3),
doy, (§q/m +0) © fu = doy (Tfu 0 érqQ)
= dwy (§1q)
= (1, [§, wq))
=— <adZ—Qu, §> .
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8.3. Reduced implicit Lagrange-Routh equations

We are ready to use Proposition 7 in order to find the equations of motion of (WI?*E , )\2*? , 5“) .
1 1

Theorem 5. The equations of motion of the triple (Wo*f A0 ,ﬁ“) are given by
piR. PIRL

(O+<§)‘Ru:0, VU_[@]hzov Z_ZVQ/G'EM:()’
_ _ H
47 — <(ZCQ/G + zHam 4 7%5) . R, + <M,QQ <<Vh> N ,ZHQ)>> dt = 0,

for Z € X(Q/G),( €g.

Remark 9. We can relate this result with the reduced implicit Lagrange-Routh equations
(4.1) from [14]. Equation
VY —[wgl, =0

is a global version of the reduced implicit equation
0" =71} — &'A].

The equation B
(O—I_CE) "R, =0.

corresponds to

OR,
— = 0.
ove
The remaining equations are
Z 76 . R, =0 (8.7)

__ _ H
7 — ((ZCQ/G + 7ZHem 4+ 795) R, + <u, o ((Vh) ¢ ,ZHQ> >> dt=0. (38)

The first of them is equivalent to

o ORF

p’L - a’l}i

and the last SRH ORH
. I a -
Pi= o~ higpr B

in the previously cited work.
Proof. We have to use Proposition 7 with the vector fields ZHe/n + zHs 7 € X (Q/G)
and {g/ + 0,0+ G5 for &, ¢ € g. It yields to a variety of liftings

(2l 4 21%)°, (2%erm + 273)" (6 +0), (04 G)°

where, according to Lemma 5,

(S +0)" . (0+G)"

are vector fields spanning ker T'p;. Moreover
Tmoz%w+z%fzz%m+z%m+z%’
Tpy o (ZHern 4 ZHE)V = zZVa/e +0+0,
Sq/m +0)°

0+ Cﬁ)c

Tpy o =0+¢&g/u +0,

:0—|—0—|—C§.

o~ o~ o~ o~

Tpyo
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For vertical vector fields {g/i + 0 and 0 + (3 we have that

(¢orm +0)" PR, = (0+G)" PR, =0,

meaning that the associated momenta annihilate

§o/p+0=0+¢G=0.
Moreover, gyroscopic force term S* is the pullback of a 2-form on Q/H, so
(04 ¢, Vap*) = 0;
thus vector field 0 + (3 gives rise to equation
(0+¢) - R, =0. (8.9)
For vector field {g/y + 0, Equation (8.2) tells us that
(€g/m + 0,V By = (V' ad* i, &g /m)

and therefore B
(o +0) - Ry + (VVaad* i, &g mr) = 0.

Using that R, o ng = R, and
oy’ oérg = (ég/m +0) opp?,
we can write
(§q/a +0) - Ry =érq - Ry
= &rq - (1, wq)
= - <adZZ—Qu, 3 > ,

taking into account the G-invariance of L and Equation (8.3). Then the associated equa-
tion results
VY = [wgl, = 0. (8.10)

The remaining equations, associated to horizontal lift Ze/# + ZHs of Z € X (Q/G),
become

Z—7%/6 R, =0 (8.11)
__ _ H

dZ — ((ZCQ/G + 7Ham 4 7M5) R, + <,u,, Qg ((Vh) ¢ ,ZHQ> >> dt=0. (8.12)

This concludes the proof. O

9. Lagrangian AKS and Routh reduction

Adler-Kostant-Symes (AKS) systems [3, 19, 32] can be seen as reduced spaces via
Marsden-Weinstein reduction [30, 31]. In [11] an ad hoc Lagrangian version for this con-
struction is given, motivated in the work of the same authors [12] in the context of Hamilto-
nian reduction in WZNW field theories. Specifically, let K be a Lie group which factorises
as K = K K_. The authors choose as Lagrangian the function on TK x £_ x £,

1 1 1

LF (gag7a7ﬁ) = 5 <gg_1>gg_1> + 5 <Oé,0£> + 5 <ﬁ75> +
+{o, g9 =) +(B,97 g —v) + (o, AdyB)

(g7 + a+AdyB, 997" +a+ AdyB) — (a,pu) — (B,v), (9.1)
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where p € t_,v € £, and (-, -) is a nondegenerate K-invariant bilinear form on €.

In the present section we will interpret these constructions by means of intrinsically
constrained systems and Routh reduction; it is motivated in part by the fact that Routh
reduction can be seen as Marsden-Weinstein reduction in the Lagrangian realm. In partic-
ular, this Lagrangian appears to be a Routh function [26, 24] associated to the K x K_-
action on K, defined by

(94+,9-) -9 =g+99_".

9.1. Unreduced system

In fact, let us take M := K x K4 x K_, N := K; consider TK = K x¢, T (K x K) =
TKxTK = KxtxKxtand TK_ = K_ xt_ by right trivialization, and TK; = K x ¥,
via left trivialization. It means that

TyN =TNxyM=Kxtx Ky x K_.

The map m : M — N will be projection onto the first component of the Cartesian
product M = K x K x K_; then

b1 :TM — T]\/[N : (97C7g+7a7g—76) = (97C,g+,g—) .

On Ty N we take as Lagrangian the function

L/ (gv C}g-i-vg—) = % <Ca C> .

The unreduced Lagrangian system for AKS system will be the intrinsically constrained
system (7 : M — N, L, 0).

9.2. Equations of motion for unreduced system

According to Definition 2, the equations of motion for intrinsically constrained system
(m: M — N,L' 0) are determined by Lagrangian system (T'M,pjL’,0). In this section
we will use Proposition 6 in order to find them. It requires to construct a basis of vector
fields on M this is achieved by using invariant vector fields on the different Lie groups in
it.

Let us consider the Lie group K, with identification TK ~ K x £ via right trivialization.
For every & € £, we have right invariant vector fields on K given by

Xeigr (9,6).
The flow for these vector fields are
CI)f 1 g — exptéy;

then .
d
TOf: (9.C) > | [0 (expsCg)| = (exptég, Adepic)

s=0

is the flow for the complete lift. The flow for the vertical lift of these vector fields becomes

OS2 (g,C) s (g, +1E).

Then we have that

XY (9,0) = (9.¢;0,8)
X¢ (9.0 = (9.GE[6.€D
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using again the right trivialization. Now, we can fix a basis on £ and express any vector
field in this basis; so from identity

(f6)° = re€ +dre”

for every f € C* (K), we obtain that a general vector field X : g — (g,£(¢g)) on K has
the complete lift

X% (9,0 = (9.¢ € dE+[E,()).

These equations are valid for Lie group K_ too. For K we need to take into account
that TK, = K x £y via left trivialization, so for left invariant vector fields

Ye:g=(9,6)
for € € £, we have the lifts
VY (9,0) = (9.¢;0,€)
}/50 : (g,C) — (g7C7 67 - [Evd)

and in general, for Y : g — (g9,£(g)), where £ : Ky — £,

Y€ :(9,0) = (9.¢€dE—[€,C]).

Let w = (t,9,(,9+,@,9-, ) € R x TM be an arbitrary element; then p € W1/ L it
and only if

p= L (gv Ca 9+, g*) dt + (ga Ca g, 0) -0 (C) dt+
+ (94, p4,0) — py (a) dt + (g, 5 p—,0) — p— (B) dt (9.2)
for some o € ¢, p1 € £1. Here we are using the identification
T*TK ~ K x £ x £ x ¢, T"TKy ~ Ky x by x € x ¢}

using right trivialization for K and K_, and left trivialization for K. Then we have the
isomorphism

Wy —=— RxTM x £ x € x £

9.3
P (t797C7g+>04;9—7570,P+,p_). ( )

Let (; € &,y € £, 81 € £_ be arbitrary elements in these Lie algebras; let us indicate
by Z¢,, Za,, Zp, € X (M) the vector fields

ZC1 :(gag—i-vg—) = (g7<17g+7079—70)
Za1 :(g7g+7g—) = (97079-{-704179—70)
Zﬁl :(g7g+7g—> = (97079-‘1—7079—751) .

Theorem 6. Equations of motion for unreduced system (M,piL’,0) are given by
o={C"), Z¢{=o0, dZ¢ =0,
g9t —¢=0, gog-'—B=0, g;'gp—a=0.

where Z¢, € C™ (WPTL’) is the function associated to vector field Z, .
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Proof. We have that

ZLpil = (¢, Q)
78 piL = (¢, 1¢,¢) =0

with the remaining vector fields acting trivially on pjL’. Then Proposition 6 gives

o= <C7 >
ZCl =0
Z¢, =0

together with
g9t —¢=0, gg-'-B=0, gi'gy —a=0.

The theorem follows from here.

9.3. Symmetries of (M,p;L’,0)

We are ready to discuss the symmetries of the Lagrangian system (M, L;,0). It results
that pfL’ : TM — R is invariant for the lifting of an action of the Cartesian product Lie
group K, x K_; this invariance is directly related with the Ad—invariance of the bilinear

form (-, -).
The direct product Lie group G := K4 x K_ acts on M according to the formula

Ui ny(9,9+.9-) = (hy,h=) - (9,9+.9-) = (heghZ',gshi' hog_).

The lift of this equation to T'M reads

T\II(h+,h_) : (g7C7g+7avg—7/8) =

= (hegh=! Ad G g hy ! Ay hog o Ady i B) . (94)

Additionally, let us recall that in the chosen trivializations

Ty, B, (9+.a) = <g+h+, Adh;104>
Tg_th (gfaﬁ) = (hf.g*?Adhf/B) .

Lemma 11. The Lagrangian system (M,pi{L’,0) is K x K_-invariant.

Proof. From Equation (9.4) it results that
pi1o T(g,g+,gf)\1/(h+,h,) (97 Cv g+,0,g—, 6) =
= (TT( (h"rgh:lv Adh+C7 g-‘rh-T-l? Adh+O[, h—g—7 Adhfﬁ) 7g+h’-T—1’ h—Q—)

= (h+gh:17 Adh+<7 g+h-l,_-17 h—g—) ;

pTL, (T(g,ng,g,)\Il(th,h,) (ga C? g+, &, g—, 5)) = (h+gh:17 Adh+<7 .ngh-T-la h,g,)

1 1
= § <Adh+C,Adh+<> = 5 <<7C>

and the invariance follows.
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9.4. Routh reduction for (M,piL’,0)

Let us implement Routh reduction on this system. We have a K, x K_-invariant
Lagrangian system (M,piL’,0), where M = K x K4 x K_; it is symmetric by the lift to
TM of the K x K_-action

(htsho) - (9,9+,9-) = (h+ghZ', g+hi  hog).
We can use diffeomorphism
xi:M/Ky x Ko = K :g,94,9-] = 9+99-

and consider instead of projection pI]\éX[(_ : M — M/Ky x K_ the simpler map

p:M—=K:(9,9+,9-) — g+99—.

Thus we have the commutative diagram

M

p%fMKw ! (9.5)

In terms of the trivializations adopted in this example its differential reads

Kxex Ky xt x K_xt. —2 L | xe

(97 Cag-‘r)avg—a B) '—>(g+gg—7 Adg+ (C +a+ Adng))

For (o, B) € €4 x £_, we have a vector field (o, §),,; on M, namely, the infinitesimal
generator for the K x K_-action, given by

(expta-g-exp—tf, gy - exp —ta,exptf - g_)
t=0
:(Q,Q—Adgﬁ,g+,—@,g—,ﬁ)~ (96)

Map p: M — K gives rise to a K x K_-principal bundle structure on K; it allows
to select a connection on this, which will be useful in performing Routh reduction of
(M,piL’,0).

By means of Diagram (9.5) and right trivialization, we have the identification

M
T(—" )~ K xt
<K+><K_> <&

as expected, projection Tp]}(/[+X x_ 1s thus replaced by T'p.

(Oz, 6)]\/[ (gag-l—?g—) =

dt

Lemma 12. The £ x t_-valued 1-form w such that

Wl(gg:,90) (G B) = (—a, )

is a connection form on principal bundle p : M — K. Its differential is given by

dwl(gg. gy €1y 01, B1; G2, a2, B2) = ([ou, a2] , = [B1, B2]) -

The horizontal lift associated to the connection form w is given by the formula
H
()",

for every (¢',(") € Ty K and (94:19/9:1,9%97) ep ' (g).
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Proof. First, we need to verify that

e As above, ¥, ;) indicates the diffeomorphism of M associated to the action of
element (hy,h_) € K4 x K_; then

‘I’?m,h,) (W’(mgh:l,gm;l,h,g,)) = Ad(h, o) w|(gvg+977) :
e For every (o, 3) € £ X £_, we have
w’(g,g_'_,g_) ((avﬁ)M) = (Ol, ﬂ) :

For first item, recall Eq. (9.4) and that by the product group structure on K, x K_,

Ad(p, hoy (e, B1) = (Adp, o1, Adp_Br)

for every (aq, 1) € &4 x £_.

For second item, just use Equation (9.6).

Now we proceed to prove the horizontal lift formula. Namely, we know that horizontal
lift of tangent vectors (¢',(’") € Ty K to

(979 9=  9+.9-) e p ' (9))
is given by

(g’,C’)H‘( = (97'9'9=", ¢ 94, a1,9-, B1)

1, -1
979’97 " 9+,9-)
if and only if

o ((.¢)"], )=o)

97 99" g9 .9-
and

H
gty ((650)7) =0,
It means that
(9,¢') = (¢, Adg, (C1 + a1 +AdBy))
(—a1,81) = (0,0);
therefore

(g’,C’)H(( = (gllg’gilyAdg;C’,%,0,9_,0)

as required. ]

9599 91.9-)

There are two quotient bundles which we need to handle in order to work with the
reduced system, namely, the adjoint bundle

M x ey xt_
b, xt = ——7——
+ K+ x K_

and the quotient
_ M M

Pow) (K, < (K), Ky x K

Now, every element

[g7g+7g—7a7/B]K+><K7 € E'i‘ Xt
is an equivalence class
[gag+’gfvaaﬁ]K+xK, =
_ {(mgm:%gmf,h,g,,Adma,Adh:lﬁ) hy €K, h_c K,}.

Using the following diagram
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pry

M x e xE_ M
M xty xt_ p
K xK_ PR, xK_
e <t M/K, x K_ > K
\‘__;;97__/,

we can consider €, x £_ as a bundle on K, with projection p’ : &4 x €. — K given by the
composition of the lower horizontal arrows, namely

I ([g,g%gﬂ a, B]KerK,) = 9+99—-

There exists another bundle isomorphism ys : €4 x 8- — K x £ x £_ such that

b o K X by x

N

It is given by
X2 - [g,g+vg—7057/3}[(+><[{_ — <g+gg—7Adg+a7Adg:16> .

Now let us consider the quotient bundle M/ (K4 ), x (K-),. In order to work with it,
fix a pair of elements p € & ,v € £, and indicate with (’): C €,0, C ¥ the coadjoint
orbits through them.

Let us indicate by [g, 9+, 9-]
have a map

) an equivalence class in M/ (K3), x (K-),; then we

X3 M/ (K1), x (K-), = K xOf x Oy :[9,9+,9-] () = <9+99—7Ad;-1u, Ad;_V)
+
so that the following diagram commutes
M/ (Ky), % (K-), —=— K x Off x O
ﬁ(,u,,u) pbry
M/K, x K_ — K
It is an isomorphism of bundles on x;.

Theorem 7. The map

Tx1 X x3 X x2:

M M . B
T(K+xK->X<K+> (K, <t BB 0y ) O by b

is an isomorphism of bundles on x1: M/K, x K_ — K.
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Proof. These maps fit in the following diagram

M Tx1
T
<K+XK_> K x¢t E+XE_
TM/K4 xK_ bry 4 X2

M
K. xK_ X1 i pry KXty xt
P(u,v) P

M

+ —
(), x (K, o KxOx0

where it was used identification TK = K x ¢ with right trivialization. O

Proposition 18. Reduced Lagrangian is given by
V(o ¢ AT Ad 0,3, 8) = (¢ v @ — AdyB, ¢ +a — Ady B
q,¢, 91:1#’ giy,a,ﬁ —5 ¢+a- gIIB’C +ta— g’ﬁ
for any (g’,C’,Ad*,l,u,Ad;_u,&,g) e K xtx (’)/‘f x O, x bt xt_.
9+
Proof. We have that

—1
(g;lg/gzl’g_"_,g_) e (pé\g(+)u><(K*)y) (gI,AdZIIN7 Ad;_y)

indicates an arbitrary element in this fiber. Moreover, any element of M x £, x£_ belonging

to this fiber and projecting onto [g’, a, E} € ¢, x t_ ig of the form

(9119’911,g+,g—,Adg;1&, Adgﬁ> €M xtyxt.

Using horizontal lifting calculated in Lemma 12 and expression (9.6) for infinitesimal
generator for the K x K_-action on M, we can obtain reduced Lagrangian

I'e C® (K xtxOf x O, xt, xt_)
using the following formula
V(¢ Ad A 1,8, B) =
9+
:L'< ',/H‘ +(Ad,&,Ad ~) g7, ,_>.
(¢.¢) (95'9'9=" 9+.9-) g 90 M(ng g'9-"9+.9-)
Now

1 nH (
(4.¢) ‘(9+19’g179+79) *

- <g;1 g'9=" Adya¢ + Ady 1@ — A, 1 Ad B, 9+, ~Ady1d, g, Ady_ B’) . (9.7)

Ad, 2@ Ady B) (97997 94.9-) =

so the formula follows from here. O
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Recall that the Routhian is given by formula
R(u,y) =L —((p,v) 7w> :

We have calculated the reduced Lagrangian I, so we need to take care only of the term
containing w. Recalling Equation (9.7), it results that

Adgll&,Adgﬁ)M (9119’9‘1,9+79—)> =

= (u A ) + (v, Ady_B),

() ((0.)"

+(
97'9'9-" 9+4.9-)

so we obtain the formula
E(u,l/) (g,a C,a Ad;;hua Ad;, v, &7 6) =
_ 1 I~ Do~ a * ~ * a
= << +a—AdgB, ¢ +a - Adglﬂ> _ <Adg;1u,a> _ <Adg71/,6> (9.8)

for the reduced version of Routhian function.
This function defines a current Lagrangian function on T' (K X O:[ x O x By x E_)
via pull back along a map

m T (K xOF xOpf xtp xt ) = KxtxOf xO) xty xt_.

This map is defined as follows: In terms of the original spaces, fix an arbitrary element

M
w = ([gvg+>g*] ’ [gaaaﬁ]K+xK_) € (K—i-)'u % (K—)V X EJr X E*;

then it reads
w1 (V) = (Tp(uyy) (Vi) ,w)

for every

M
(B, < (K, < E‘) |

Using the isomorphisms defined above, it simplifies to

Vi € Ty (
1 (glv Clv Nt Uny, 1—, Un_, a) 6217 57 ﬂl) = <g/a C/a N5 M-, aa ﬁ) .
Thus we have a singular Lagrangian

L) = Ru)-

Additionally, the reduced Lagrangian system requires the force term arising from the
differential of connection form w; this force term f, , is a bundle map

M . M
Twwr T ((fmu S <K>y> -t ((Km >< <K>V>

associated to the 2-form on M/(K}), x (K-), induced by ((4,v),dw). Using Lemma 12,
it becomes

<f(u,l/) (glv CL N+, u717+7 n—, vrll_) ) (gla Cé7 N+, u727+a n—, ’1)72]_) > =
= (o[t ]) = (o [ ]) o 09)
where 27}7: ct,, v}? €t_,i=1,2 are Lie algebra elements such that

K — . . —— .
Tp(fa)u (ng,u;H) - (17+,uf7+) ’ Tp(K,)V (g,,v%i) = (77*’1}77,> .
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9.5. Routh reduction and Fehér Lagrangian
Our aim is to relate Lagrangian L, ,) with Fehér Lagrangian (9.1),
;o 1 1
<< ,C>—|—§<OZ,OZ> +§<57/B>+
+ <a7CI - :U’> + <67 CI - V> + <aaAdg’B>
- <Va ﬁ> :

N | =

Lp (9/7 </>n+7’r/7a Oé,,B) =

(('+a+Adyf, " +a+Adyf) — (u,a)

N | =

The main tool in this task will be Proposition 9; in order to do it, we will need to

define a bundle isomorphism
TM; —2— TM,

™M, M,

MlT)Ml

and to prove that together with L, ) and Lp, they meet the conditions of this result.
In order to define these maps, we will fix a pair of (perhaps local) sections

S+ZO:—>K+
5-:0, - K_

such that
- =Ady_g v

= Adig g y-1#

for every ny € OF,n_ € O, in a suitable open set. Let us indicate by T'sy
¢, Ts_ : TO, — t_ the trivialized differential maps of these sections, i.e.

:T(’):{—>

TS+ . ’U,mr — TL[S+(77+)]71T77+8+ (Un+)

Ts_ :vy_ TR[L(”?)]an_ S_ (Un—)

Then

@ (gla C/a N5 Uny > M-, U’l]faa; a1767 51)

<3+ (77-1-) g,S_ (77—) 7Ads+(r]+)cl =+ Ads+(n+)TS+ (u77+) B

Ad$+(77+)9’TS— (UTF) 2 Ty Uny s 11— v7777Ad5+(77+) (& —Tsy (“m)) 7O‘/lv

Ady, - (BT (vy) ﬂ)

where o, 51 are chosen in order to ensure that ® is a contact map. Then we have that

((ld X q))* L(,U,,V)) <g,7 C/a N Uny s N—5 Uy &7 &17 B/v gl) =
= LF (gla Cla N5 M- &a E) + <,U/7T5+ (Un+)> + <7/7 Ts_ (Un_)> . (910)
Now let iy, € Q' (K1),vp € Q' (K_) be the left- and right-invariant 1-forms respec-

tively, such that
pr(e) =n,  Vr(e) =v;
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these forms can be pulled back along sections si, giving us 1-forms
Wy = Sy, v® = s"vp.
These forms, in turn, induced the contact forms
0, €' (RxTO}),0, € Q" (RxTO;)
such that
Ol ) = (Tun. T3 ) 15 = 1 (wy,) dt
@y|(t,vn7) = (Tv,,_ TOV—)* Ve =2 (v, ) dt.

Using these definitions, Equation (9.10) and that

1y (UTH) = <tu’ Tsy (un+)> J Ve (UW—) - <V’ Ts- (UW—)>‘

it results

*

(id X B)" (Liuuydt) = Lidt — 0 = O, + (T, 705 ) 15+ (Toy_70;) ¥

Now, forms p? ,v? are pullback along s of the contraction with p € €, v € £ of the
(left and right respectively) Maurer-Cartan forms, so

dpf = =5 [pihut], At =g her]

Thus from Proposition 9 we obtain the relation between Lagrangian system (Fehér system)
(N1, Lp,0) and Routh reduction

(M1, Ly fun)

where f(,, ) is defined by Equation (9.9).

V)

Theorem 8. FEquations for Fehér system (N1, Lp,0) and Routh reduction

(M, Ly fiu)
coincide.

Proof. 1t is consequence of Proposition 9 and the fact that

Ty + (T“"+ Tof ) dpy + (Tv,,_ To, ) dvZ = 0;
this last equation can be proved from Equation (9.9) using the fact that

Tsy (un+) i T's— (Unf)
are Lie algebra elements that lift vectors u,, ,v;,_. O

Remark 10. This seemingly miraculous cancellation of the force term with forms coming
from a section of the principal bundle K, x K_ — (’);r x O, is related to the fact that
the chosen connection is flat. In fact, if we see orbits (’);r x O, as a kind of generalized
rigid body, transformation ® can be interpreted as the map that carry body coordinates
to space coordinates, and the force term f(, ,) becomes the pseudoforce associated to the
new coordinates. Because this transformation is constructed with a section of the bundle
K, xK_ — O: x O, , existence of Fehér Lagrangian is local, and associated to the
flatness of the connection.
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10. Conclusions and outlook

In the present article an scheme for implicit Lagrange-Routh equations was constructed

using a kind of unified formalism for the unreduced Lagrangian system. This yielded to
an unified formalisms for reduced systems, and invariant expressions for the associated
equations of motion were obtained. These considerations served as a framework for the
interpretation of some Lagrangian toy systems related to reduction of WZNW field theo-

ries.
Future work includes the extension of these techniques to the realm of field theories,

in order to apply them in the more realistic framework of WZNW field theories.
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