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1 Introduction

In a recent series of papers [1–3] we have studied deep inelastic scattering (DIS) of charged

leptons from scalar mesons and from polarized vector mesons at strong coupling by conside-

ring different holographic dual models based on flavor Dp-branes in the probe approxima-

tion. In those papers we have studied the planar limit of dual gauge theories corresponding

to D3D7-, D4D6D6- and D4D8D8-brane models ([4, 5] and [6], respectively).1 In [1–3] we

have investigated the hadronic tensor and, for polarized vector mesons, we have obtained

the corresponding eight structure functions. We have derived general relations, i.e. model-

independent relations, of the Callan-Gross type between different structure functions. This

is very interesting because from that one can infer a sort of universal behavior which would

also be expected for QCD in the planar limit. This universal property holds because, for all

the probe flavor Dp-brane models we have considered, mesons are described as fluctuations

of flavor Dp-branes in terms of the corresponding Dirac-Born-Infeld action. In particular,

in [1] we have studied DIS from dynamical holographic scalar and polarized vector mesons

with one flavor, by considering the flavored Dp-brane models of references [4–6]. Moreover,

in [2] we have carried out a non-trivial extension of these results for multi-flavored mesons

in the planar limit and with the condition Nf � N , where N denotes the number of colors

and Nf the number of flavors. In that paper we also have worked out the corresponding

next-to-leading order Lagrangians in the 1/N and Nf/N expansions. In [1, 2] we have

1The calculations carried out in [1–3] are inspired in the methods developed in reference [7], where DIS

of charged leptons from glueballs in the planar limit of N = 1∗ SYM theory has been considered [8].
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focused on the Bjorken parameter regime where 1/
√
λ� x < 1, and therefore the calcula-

tions have been done by using the gauge/string duality in terms of the type IIA and type

IIB supergravity dual descriptions of the gauge theories in the large N limit and at strong

’t Hooft coupling λ.

In a more recent work [3] we have studied DIS of charged leptons from hadrons in the

e−
√
λ � x� 1/

√
λ and x ∼ e−

√
λ regimes. In [3] we have focused on single-flavored scalar

and vector mesons in the planar limit. This has been investigated in terms of different

holographic dual models with flavor Dp-branes in type IIA and type IIB superstring the-

ories [4–6]. We have calculated the hadronic tensor and the structure functions for scalar

and polarized vector mesons. In particular, for polarized vector mesons we have obtained

the eight structure functions at small values of the Bjorken parameter.

In the present work we further extend our previous results by studying DIS cross

sections of charged leptons from polarized vector mesons and carrying out a qualitative

comparison between moments of structure functions calculated by using gauge/string du-

ality methods and available lattice QCD data. We emphasize that the character of the

comparison which we perform is qualitative since these structure functions have been ob-

tained in the context of the large-N and large-λ limits of confining gauge theories derived

from their string theory dual models, which in fact do not lead to real QCD. At this point

we can briefly describe some important differences between QCD and the holographic dual

models we consider. We can start from the D3D7-brane model, which is the holographic

dual description corresponding to the planar limit of the strongly coupled SU(N) N = 2

supersymmetric Yang-Mills theory with fundamental quarks [4]. Obviously, this is not the

large N limit of QCD but it is related to it. On the other hand, we study the D4D8D8-brane

model developed in [6] which at low energy is expected to be within the same universality

class as the planar limit of QCD. At high energy this model behaves in a different way

compared with QCD, since in that regime the Kaluza-Klein modes generated by the com-

patification of the x4-direction of the N D4-branes along the S1 become relevant. Therefore

these additional degrees of freedom, which are obviously absent in QCD, play a role in the

dynamics of this dual gauge theory at high energy. In addition, this model [6] enjoys

an SO(5) global symmetry, which is not present in QCD. Thus, one can say that these

Dp-brane models do not lead to holographic dual gauge theories with exactly the same

properties as QCD in the planar limit. However, these holographic dual models represent

infrared confining gauge theories and share dynamical properties with QCD at low energy.

For instance, the Sakai-Sugimoto model realizes spontaneous chiral symmetry breaking.

Also, the chiral Lagrangian has been derived from this model [6].

We also ought to mention that the comparison we carry out between our results and

phenomenology unfortunately has the disadvantage that our calculations and the existing

phenomenology and lattice QCD calculations belong to different parametric regimes. On

the one hand, in our previous papers [1–3] we have done calculations within the Regge

region. The asymptotic Regge region is relevant since it dominates total cross sections and

differential cross sections when considering small angle. However, in the asymptotic Regge

regime it is not possible to perform quantum field theory (QFT) calculations, neither one

can use lattice QCD methods in order to obtain QCD amplitudes [9]. From this discussion
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one infers that it is difficult to make any quantitative comparison of these models and

SU(3) QCD data. In this way our aim is to compare qualitatively certain aspects of

the phenomenology derived from these dual models with QCD. At the end, by taking

into account all these caveats, we would like to see how our results compare with lattice

QCD data. Indeed, this kind of comparison has proved to be qualitatively (and even in

certain cases quantitatively) interesting in several situations as we shall explain in the last

section of this paper. In fact, from a theoretical perspective it has given some important

insights about the behavior of gauge theories in general, in the strong coupling regime

where perturbative QFT methods cannot be used. This assertion is indeed very important

because given a certain solution of supergravity and/or superstring theory, in principle,

the gauge/string duality can be used to define a strongly coupled holographic dual SU(N)

gauge theory in the large N limit. Suppose in addition that such a QFT has composite

states. A natural way to study these states is in terms of the DIS calculations as described

in [1–3, 7, 9]. Therefore, the interest of these methods goes beyond the large N limit

of QCD itself, i.e. it is useful for any other confining gauge theory with a string theory

holographic dual model.

This paper is organized as follows. In section 2 we introduce and derive a number of

relevant expressions necessary to construct the DIS cross sections of charged leptons from

hadrons of spin s = 0, 1
2 and 1 in a generic form. This is a fully general expression for the

DIS differential cross section which holds for any infrared confining gauge theory at any

value of the rank of the gauge group N (i.e. beyond the planar limit), and at any value of the

coupling. In section 3 we focus on the case of polarized vector mesons and we present these

derivations in detail. Thus, in this section we derive the DIS cross section from leptons

off vector mesons which are unpolarized, longitudinally polarized, transversally polarized

and with partial polarization. We also study the corresponding helicity amplitudes of the

forward Compton scattering directly related to the DIS process and discuss on physical

implications.

In section 4 we derive general (i.e. model independent) expressions for the DIS cross

sections at large ’t Hooft coupling, in the three mentioned regimes of the Bjorken parameter.

In general terms the hadronic tensor can be derived from the operator product expansion

(OPE) of two electromagnetic currents inside the hadron. At weak ’t Hooft coupling

the OPE is dominated by approximate twist-two operators, and it corresponds to the

scattering of a lepton from a weakly interacting parton. However, in this section we consider

the strong coupling limit. In this case the OPE which leads to the hadronic tensor is

dominated by double-trace operators, and it corresponds to the scattering of a lepton from

the entire hadron. Within this strongly coupled regime we consider the parametric range

1/
√
λ� x < 1 where supergravity describes DIS. Furthermore, we consider the case where

e−
√
λ � x � 1/

√
λ, in which excited strings are produced. Also, we study the case for

x ∼ e−
√
λ, where the produced excited strings have a size comparable to the scale of the

AdS space.

In section 5 we discuss our results derived in the previous sections such as differential

cross sections in terms of the Bjorken parameter and the fractional energy loss of the

lepton, as well as the structure functions and their moments, and carry out a comparison
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Figure 1. Schematic representation of DIS. A lepton with momentum k interacts with a hadron

with momentum P through the exchange of a virtual photon with momentum q.

with moments of structure functions for the pion and the ρ meson obtained from lattice

QCD. It turns out that our results of the first three moments of the F2-structure function

of the pion and the F1-structure function of the ρ meson are in very good quantitative

agreement with the corresponding ones from lattice QCD.

2 Deep inelastic scattering cross section

In this section we first introduce some definitions of kinematical variables which will be

useful for the rest of the work. Then, we introduce the leptonic and hadronic tensors

and give an expression for the DIS differential cross section which holds for any value of

the coupling.

The DIS process is schematically represented in figure 1.

We consider the following definitions which are the same as in reference [10]2

• M is the mass of the hadron, being the on-shell condition M2 = −P 2.

• E is the energy of the incident lepton.

• k is the momentum of the incident lepton kµ = (E, 0, 0, E).

• E′ is the energy of the scattered lepton.

• k′ is the momentum of the scattered lepton k′µ = E′(1, sin θ cosφ, sin θ sinφ, cos θ).

• P is the momentum of the hadron Pµ = (M, 0, 0, 0) in the rest frame.3

• q is the momentum transfer or momentum of the virtual photon q = k − k′.

• ν is the energy loss of the lepton ν = E − E′ = −P ·q
M .

• y is the fractional energy loss of the lepton y = ν
E = P ·q

P ·k .

• x is Bjorken parameter x = − q2

2P ·q .

• t is a parameter defined as t = P 2

q2
.

In what follows we have assumed that the leptons are almost massless.

2Notice however that we use the mostly-plus metric ηµν =diag(−,+,+,+).
3Fixed-target experiment.
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The DIS differential cross section can be written in terms of the so-called leptonic and

hadronic tensors lµν and Wµν , respectively. Thus, we have

d2σ

dx dy dφ
=

e4

16π2q4
y lµν Wµν , (2.1)

where e denotes the electron charge. The leptonic tensor depends on the incident lepton

beam and it can be easily derived from perturbative QED, leading to

lµν1
2

= [2(kµk′ν + kνk′µ)− 2ηµνk · k′] + [−2iεµναβqαslβ ] , m2
l ∼ 0 (2.2)

= lµνsym + lµνant ,

where lµνsym and lµνant denote the symmetric and antisymmetric parts, respectively. sµl is the

lepton spin four-vector defined by boosting (0, ~sl) from the rest frame, or equivalently by

using the spinor states u and u which leads to

sµl = u(k, sl)γ
µγ5u(k, sl) . (2.3)

On the other hand, the hadronic tensor describes the internal structure of the hadron.

It cannot be calculated by using perturbative QCD because there are soft processes in-

volved. In this paper we focus on spin-one hadrons since they have a very rich structure

given in terms of eight structure functions which follow from the most general Lorentz-

tensor decomposition of the hadronic tensor. We also write the results of the structure

functions for the case of scalar mesons since we shall discuss them in section 5.

In general terms, the hadronic tensors for a spin s = 1, 1
2 and 0 can be written as

follows

W 1
µν = W SF

µν +W Sb
µν +WAg

µν , (2.4)

W
1
2
µν = W SF

µν +WAg
µν , (2.5)

W 0
µν = W SF

µν , (2.6)

where

W SF
µν = F1ηµν −

F2

P · q
PµPν , (2.7)

W Sb
µν = b1rµν −

b2
6

(sµν + tµν + uµν)− b3
2

(sµν − uµν)− b4
2

(sµν − tµν) , (2.8)

WAg
µν = − ig1

P · q
εµνλσq

λsσ − ig2

(P · q)2
εµνλσq

λ(P · q sσ − s · q P σ) . (2.9)

The superscripts refer to the symmetry properties under the exchange of Lorentz indices

(S and A) and to the usual name given to the structure functions involved in each term

(Fi’s, bi’s and gi’s). In addition, we have used the following definitions [11]

rµν ≡
1

(P · q)2

(
q · ζ∗ q · ζ − 1

3
(P · q)2κ

)
ηµν , (2.10)

sµν ≡
2

(P · q)3

(
q · ζ∗ q · ζ − 1

3
(P · q)2κ

)
PµPν , (2.11)

– 5 –
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tµν ≡
1

2(P · q)2

[
− 4

3
(P · q)PµPν +

(
(q · ζ∗)(Pµζν + Pνζµ) + c.c.

)]
, (2.12)

uµν ≡
1

P · q

[
(ζ∗µζν + ζ∗νζµ)− 2

3
M2ηµν −

2

3
PµPν

]
, (2.13)

sσ ≡ −i
M2

εσαβρζ∗αζβPρ , (2.14)

κ = 1− 4x2t , (2.15)

where ζµ is the polarization vector of the hadron. Then, one can write a general expression

for the differential cross section of the DIS of a charged lepton from a hadron in terms of

the symmetric and antisymmetric parts of these tensors

d2σ

dxdydφ
=

e4

16π2q4
y [lµνsym W SF

µν + lµνant W
Ag
µν + lµνsym W Sb

µν ] , (2.16)

where φ is the azimuthal angle. The differential cross section depends trivially on φ but

non-trivially on x and y, which can be chosen as two independent parameters describing

the DIS process, together with the spin polarizations of the lepton and the hadron. It is

worth to note that in the case of spin-zero hadrons only the first term in the square bracket

of eq. (2.16) contributes, while for the spin-1/2 case the second term also appears. The last

term contributes for spin-one hadrons and contains four additional bi structure functions.

3 DIS differential cross sections and structure functions

In this section we derive the DIS differential cross sections of charged leptons scattered

from hadrons with spin s = 0, 1
2 and 1. We consider first the general case, and then we

study different polarization states of the hadron beam.

3.1 The general case

Let us begin with the first term of eq. (2.16), which is present in hadrons with spin 0, 1
2 and

1. We obtain the following term expressed in terms of the F1 and F2 structure functions

e4

16π2q4
y lµνsymW

SF
µν =

e4ME

4π2q4

{
xy2 F1 +

[
1− y + x2y2t

]
F2

}
' e4ME

4π2q4

{
xy2 F1 + [1− y] F2

}
, (3.1)

where in the last step we have approximated |t| ' 0.4 The second term, which appears for

both s = 1
2 and s = 1 spins is given by

e4

16π2q4
y lµνantW

Ag
µν =

e4ME

4π2q4

{
y2g1

[
2x

(sh · sl)
(p · q)

+
(q · sh)(q · sl)

(p · q)2

]
+2xy2g2

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
. (3.2)

4This is the equation (5.2) of reference [10]. An extra factor 2π appears in the denominator because we

are calculating d2σ
dxdydφ

as in [10]. In reference [11], on the other hand, it has been calculated d2σ
dxdy

= 2π d2σ
dxdydφ

.

– 6 –
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This term depends on the structure functions g1 and g2. Notice that in the expression for

the first term we contract only symmetric factors, while in the expression for the second

one only antisymmetric tensors are contracted. In addition, in the last calculation we have

used the identity εµναβεµνλσ = −2
(
ηαλη

β
σ − ηαση

β
λ

)
.

Let us now calculate the most general form of the third term which only appears for

spin-one hadrons, and can be written in terms of the bi structure functions. Firstly, we

need to calculate the contractions

lµνsymrµν ; lµνsymsµν ; lµνsymtµν ; lµνsymuµν . (3.3)

In order to simplify the notation we define a pseudo-scalar product 〈··〉 given by

〈k1k2〉 ≡
3

2

(k1 · ζ∗)(k2 · ζ) + c.c.

(P · q)2
, (3.4)

where c.c. indicates complex conjugate. This pseudo-scalar product is linear on both sides

and it is also commutative. In addition, since we take the |t| � 1 limit we set κ = 1. Then,

we obtain

lµνsymrµν = [2(kµk′ν + kνk′µ)− 2ηµνk · k′] 1

(P · q)2

(
q · ζ∗ q · ζ − 1

3
(P · q)2

)
ηµν

= −4

3
(k · k′) [〈qq〉 − 1]

=
4

3
MExy [〈qq〉 − 1] , (3.5)

lµνsymsµν = [2(kµk′ν + kνk′µ)− 2ηµνk · k′] 2

(P · q)3

(
q · ζ∗ q · ζ − 1

3
(P · q)2

)
PµPν

=
4

3

[
2(P · k)(P · k′)

(P · q)
− P 2(k · k′)

(P · q)

]
[〈qq〉 − 1]

= −8

3
ME [〈qq〉 − 1]

[
1

y
− 1 + x2yt

]
, (3.6)

lµνsymtµν = [2(kµk′ν + kνk′µ)− 2ηµνk · k′] 1

2(P · q)2
×[

− 4

3
(P · q)PµPν +

(
(q · ζ∗)(Pµζν + Pνζµ) + c.c.

)]
=

−1

〈qq〉 − 1
lµνsymsµν +

4

3
〈qk′〉(k · P ) +

4

3
〈qk〉(k′ · P )

=
4

3
ME

[
2

(
1

y
− 1 + x2yt

)
− 〈qk′〉 − 〈qk〉(1− y)

]
, (3.7)

and

lµνsymuµν = [2(kµk′ν + kνk′µ)− 2ηµνk · k′] 1

(P · q)

[
(ζ∗µζν + ζ∗νζµ)− 2

3
M2ηµν −

2

3
PµPν

]
=

[
4

3
〈kk′〉(P · q)− 2

M2(k · k′)
(P · q)

]
− 2M2

(P · q)[〈qq〉 − 1]
lµνsymrµν −

1

〈qq〉 − 1
lµνsymsµν

=
8

3
ME

[
−y〈kk′〉+

(
1

y
− 1

)
+ 2x2yt

]
. (3.8)

– 7 –
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Finally, by writing the cross section contribution from the bi structure functions as α1b1 +

α2b2 + α3b3 + α4b4 one finds the following expressions for the αi coefficients

α1 =
e4

16π2q2
y lµνsymrµν =

MEe4

223π2q4
xy2 [〈qq〉 − 1] , (3.9)

α2 = − e4

16π2q4

y

6
lµνsym (sµν + tµν + uµν)

=
MEe4

2332π2q4
×[

2 (〈qq〉 − 3) (1− y) + y〈qk′〉+ y(1− y)〈qk〉+ 2y2〈kk′〉 − 2 (4− 〈qq〉)x2y2t
]
,

α3 = − e4

16π2q4

y

2
lµνsym (sµν − uµν)

=
MEe4

223π2q4

[
(1− y) 〈qq〉 − y2〈kk′〉+ x2y2t (〈qq〉+ 1)

]
, (3.10)

α4 = − e4

16π2q4

y

2
lµνsym (sµν − tµν)

= − MEe4

233π2q4

[
2 (1− y) 〈qq〉 − y〈qk′〉 − 〈qk〉y(1− y) + 2〈qq〉x2y2t

]
. (3.11)

By using the linearity of 〈··〉 we obtain

e4

16π2q4
y lµνsymW

Sb
µν = (3.12)

MEe4

12π2q4

{
b1xy

2[〈qq〉 − 1] +
1

6

[
(2− 3y)〈qq〉+ y(2− 3y)〈qk〉+ 2y2〈kk〉 − 6(1− y)

]
b2

+
[
(1− y) 〈qq〉 − y2〈kk〉+ y2〈qk〉

]
b3 +

1

2
[(2− y) 〈qq〉+ y(−2 + y)〈qk〉] b4 +O(t)

}
.

Now, in the
√
−t � 1 limit we can relate the values of 〈qq〉, 〈qk〉, and 〈kk〉, since in this

limit qµ

q0
= kµ

E , where the Lorentz index µ runs from 0 to 3. Then, in the hadron rest frame

we obtain the relations

qµqν

M2(q0)2
=

1
2(qµkν + kµqν)

M2q0E
=

kµkν

M2E2
,

2
qµqν

(P · q)2
ζµζ
∗
ν =

(qµkν + kµqν)

(P · q)(P · k)
ζµζ
∗
ν = 2

kµkν

(P · k)2
ζµζ
∗
ν ,

3

2

(q · ζ∗)(q · ζ) + c.c.

(P · q)2
=

(P · q)
(P · k)

3

2

(q · ζ∗)(k · ζ) + c.c.

(P · q)2
=

(P · q)2

(P · k)2

3

2

(k · ζ∗)(k · ζ) + c.c.

(P · q)2
,

and

〈qq〉 = y〈qk〉 = y2〈kk〉 .

Thus, for
√
−t� 1 the part of the cross section associated with the bi structure functions

of the hadronic tensor reduces to a simpler form

e4

16π2q4
y lµνsymW

Sb
µν =

MEe4

223π2q4
(〈qq〉 − 1)

[
b1xy

2 + b2(1− y)
]

+O
(√
−t
)
. (3.13)
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Notice that in this limit the contributions to the cross section coming from b3 and b4 are

sub-leading in t even if b3 and b4 are not necessarily sub-leading themselves. Thus, the full

DIS differential cross section from spin-one hadrons to this order becomes

dσspin1

dx dy dφ
=
MEe4

4π2q4

{[
xy2F1 + (1− y)F2

]
+

1

3
(〈qq〉 − 1)

[
xy2b1 + (1− y)b2

]
(3.14)

+y2g1

[
2x

(sh · sl)
(p · q)

+
(q · sh)(q · sl)

(p · q)2

]
+ 2xy2g2

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
=
MEe4

4π2q4

{
xy2

[
F1 +

1

3
(〈qq〉 − 1)b1

]
+ (1− y)

[
F2 +

1

3
(〈qq〉 − 1)b2

]
+y2g1

[
2x

(sh · sl)
(p · q)

+
(q · sh)(q · sl)

(p · q)2

]
+ 2xy2g2

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
.

3.2 Hadron polarizations

Now, we calculate the dimensionless factor

〈qq〉 =
3

2

(q · ζ∗)(q · ζ) + c.c.

(P · q)2
= 3

qµqν

(P · q)2
ζµζ
∗
ν , (3.15)

for different polarizations of the hadron in order to obtain the DIS differential cross section
dσ

dx dy dφ for the particular cases which may be phenomenologically relevant, namely: when

the hadron beam is unpolarized, longitudinally polarized, transversally polarized and also

we study partial polarizations of the hadron beam. In all cases the longitudinal or ẑ-axis is

defined by the spatial components of k, in other words, the direction of the incident lepton

beam.

Unpolarized hadron beam. In order to describe unpolarized hadron beams we have

to average over polarizations obtaining

ζµζ∗ν =
1

3
(ηµνM

2 + PµPν) . (3.16)

Then,

〈qq〉unpol = 〈qq〉 =
1

(P · q)2
[M2q2 + (P · q)2] = 1− 4x2t = κ ' 1 , (3.17)

thus, we obtain a null contribution from the bi structure functions as expected for an

unpolarized target [11]. In particular, for a longitudinally polarized leptonic beam we have

sl = Hlk with Hl = ±1 for positive and negative helicity, respectively. Then, we obtain

dσ

dx dy dφ
=
MEe4

4π2q4

{
xy2F1 + (1− y)F2

}
.

Longitudinal polarization. Now, we consider the case when the hadron beam is po-

larized in the direction of the incident beam and call it ẑ-axis. Thus, we can take the

polarization to be

ζL =
M√

2
(0, 1, iHh, 0) → sσ = HhMẑ , (3.18)
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where Hh = ±1 indicates that the hadron polarization is parallel or anti-parallel to the

beam direction, respectively. Then, we obtain the following expressions

(q · ζL) = −ME′sinθ√
2

eiHhφ ,

(q · ζ∗L)(q · ζL) =
M2E′2sin2θ

2
=
q2M2

2
[(1− y) + tx2y2] ,

〈qq〉LP =
3

2

1

(P · q)2
M2E′2sin2θ = −6x2t[(1− y) + tx2y2] ' 0 . (3.19)

In this case the factor 〈qq〉 − 1 only gives a minus sign. In particular, for a longitudinally

polarized lepton beam we obtain

dσ

dx dy dφ
=
MEe4

4π2q4

{
xy2

[
F1 −

1

3
b1

]
+ (1− y)

[
F2 −

1

3
b2

]
−HlHh(2− y)yxg1 +O(t)

}
.

(3.20)

Transversal polarization. Since the system under consideration has azimuthal sym-

metry we can choose any polarization for the hadron in the (x̂, ŷ)-plane. For transversal

polarization we choose for example the x̂-axis and set

ζT =
M√

2
(0, 0, 1, iHh) → sσ = HhMx̂ ; Hh = ±1 . (3.21)

Then, we obtain

(q · ζT ) =
M2

√
2

[√
(1− y)

−t
− x2y2 sinφ+ iHh

(
− 1

2xt
+ xy

)]

' M2

√
2

[√
(1− y)

−t
sinφ− iHh

2xt

]
,

(q · ζ∗T )(q · ζT ) =
M4

2t2

[
1

4x2
− t(1− y)sin2φ

]
,

〈qq〉TP =
3

2

1

(P · q)2

M4

t2

[
1

4x2
− t(1− y)sin2φ

]
= 6x2

[
1

4x2
− t(1− y)sin2φ

]
' 3

2
, (3.22)

and the dimensionless factor becomes 〈qq〉 − 1 ≈ 1
2 . In particular, for a longitudinally

polarized lepton beam we obtain

dσ

dx dy dφ
=
MEe4

4π2q4

{
xy2

[
F1 +

1

6
b1

]
+ (1− y)

[
F2 +

1

6
b2

]
+HlHh2x2

√
−t
√

1− y(yg1 + 2g2) cosφ

}
. (3.23)
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Partial polarizations. The bi structure function terms in eq. (3.13) and in particular

the dimensionless factor 〈qq〉 − 1 can be written in a more general form

e4

16π2q4
y lµνsymW

Sb
µν =

MEe4

2
√

3π2q4
Tr(ρ · λ8)

[
b1xy

2 + b2(1− y)
]

+O
(√
−t
)
, (3.24)

where λ8 = 1√
3

diag(1, 1,−2) and ρ is the spin-one density matrix that accounts for the

possibility of having a statistical production of the hadron beam. Notice that

Tr(ρ · λ8) =
1

2
√

3

[
〈S2
x〉+ 〈S2

y〉 − 2〈S2
z 〉+ 3〈Sz〉

]
. (3.25)

We can study particular cases with partial longitudinal and transversal polarizations. In

the ẑ-axis basis we have ρunpol = (1/3) diag(1, 1, 1) and

ρpLP =
1

2

H2
L 0 0

0 2(1−H2
L) 0

0 0 H2
L

 ; ρpTP =
1

4

 2−H2
T 0 −2 + 3H2

T

0 2H2
T 0

−2 + 3H2
T 0 2−H2

T

 (3.26)

where HL and HT are the fraction of longitudinally and transversally polarized hadrons,5

respectively. Here, H2 = 1 represents the totally polarized case and H2 = 2
3 describes an

unpolarized hadron beam. In the former notation we identify

〈qq〉pLP = −3

(
2

3
−H2

L

)
〈qq〉LP + 3

(
1−H2

L

)
〈qq〉unpol , (3.27)

〈qq〉pTP = −3

(
2

3
−H2

T

)
〈qq〉TP + 3

(
1−H2

T

)
〈qq〉unpol , (3.28)

where the subindex p stands for partial polarization. Then, the results for this part of the

DIS differential cross sections corresponding to a partially polarized target are

e4

16π2q4
y lµνsymW

Sb
µν =

MEe4

22π2q4

(
2

3
−H2

L

) [
b1xy

2 + b2(1− y)
]

+O
(√
−t
)
, (3.29)

for partial longitudinal polarization, and

e4

16π2q4
y lµνsymW

Sb
µν =

MEe4

23π2q4

(
H2
T −

2

3

) [
b1xy

2 + b2(1− y)
]

+O
(√
−t
)
, (3.30)

for partial transversal polarization.

These expressions lead to the final results of DIS differential cross section for partially

polarized hadrons as a generalization of the previous cases. For a partially longitudinally

polarized target HL we obtain

dσ

dx dy dφ
=
MEe4

4π2q4

{
xy2

[
F1 +

(
2

3
−H2

L

)
b1

]
+ (1− y)

[
F2 +

(
2

3
−H2

L

)
b2

]
−HlHh(2− y)yxg1

}
, (3.31)

5Again, we are writing the transversal polarization along the x̂-axis. However, by choosing the ŷ-axis

instead it would lead to the same results.
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while for a partially transversally polarized target HT we obtain

dσ

dx dy dφ
=
MEe4

4π2q4

{
xy2

[
F1 −

(
1

3
− 1

2
H2
T

)
b1

]
+ (1− y)

[
F2 −

(
1

3
− 1

2
H2
T

)
b2

]
+HlHh2x2

√
−t
√

1− y(yg1 + 2g2) cosφ

}
. (3.32)

We have assumed longitudinally polarized leptonic beams Hl in both cases. Once again, by

assuming that F2(x) = 2xF1(x) and b2(x) = 2xb1(x) are satisfied, we recover the formulas

shown in [11].

3.3 Helicity amplitudes

Deep inelastic scattering is related to the forward Compton scattering. Let us briefly

describe the forward Compton scattering by using the virtual photon momentum q and

the hadron momentum p in analogy with our DIS notation, and the variables λ and λ′

which denote the initial and final hadronic helicities. In the forward Compton scattering

both the initial and final states of the system contain a photon and a hadron. The related

amplitude is a function of a tensor Tµν defined in terms of the matrix elements of two

electromagnetic currents by the formula

(Tµν)λλ′ ≡ i
∫
d4x eiq·x〈p, λ′|T (Jµ(x)Jν(0)) |p, λ〉 , (3.33)

which has a structure similar to the hadronic tensor Wµν involved in DIS. On the other

hand, the definition of Wµν in terms of the currents is given by

(Wµν)λλ′ =
1

4π

∫
d4x eiq·x〈p, λ′| [Jµ(x), Jν(0)] |p, λ〉. (3.34)

Since both Tµν and Wµν have the same Lorentz symmetry transformation properties, they

have the same tensor structure decomposition. Thus, the information they contain can be

encoded in their structure functions in the same way.

DIS and forward Compton scattering are related to each other by the optical theorem

in quantum field theory as it is schematically shown in figure 2. It implies that twice

the imaginary part of the forward Compton scattering amplitude leads to the total DIS

amplitude. Therefore, the imaginary part of the Tµν structure functions give the Wµν

structure functions times an extra numerical factor. Actually, this relation between the

two processes is one of the basis of our construction to obtain the structure functions. As

we will see in the next section, it is possible to describe a holographic dual version of the

forward Compton scattering from the point of view of supergravity and string theory via

the gauge/string duality.

The Compton amplitude can be analyzed for different helicities of the incoming and

out-going particles. The amplitudes in each case are commonly denoted by Ah,H;h′,H′ ,

where the subindex h corresponds to the helicity of the photon and H labels the helicity

of the hadron. Primed variables indicate helicities of final states, otherwise labels indicate

helicities of initial states. These helicities can take three different values in the spin-one
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Figure 2. The relation between DIS and forward Compton scattering processes as given by the

optical theorem in terms of Feynman diagrams.

case, −1, +1 and 0, and they must satisfy the condition h + H = h′ + H ′. As shown

in [10, 11] they can be calculated as

AhH,h′H′ = εµ?h ε
ν
h′Tµν(sH) , (3.35)

where the ε’s are the photon polarization vectors and sH is the hadron spin. For spin-

one hadrons there are eight independent helicity amplitudes. By considering a general

kinematical regime, and by using the notation from [11], where a3 ≡ b2/3 − b3 and a4 ≡
b2/3− b4, these helicity amplitudes can be written in the following form

A++,++ = F1 −
(1− 4x2t)b1

3
− xt

3
a3 − g1 − 4x2tg2

' F1 −
b1
3
− g1 , (3.36)

A+0,+0 = F1 +
2(1− 4x2t)b1

3
+

2xt

3
a3

' F1 +
2b1
3
, (3.37)

A+0,0+ =
√
−t
[
2x(g1 + g2) +

a3

2
+

(1− 4x2t)a4

4

]
'
√
−t
[
2x(g1 + g2) +

a3

2
+
a4

4

]
, (3.38)

A+−,+− = F1 −
(1− 4x2t)b1

3
− xt

3
a3 + g1 + 4x2tg2

' F1 −
b1
3

+ g1 , (3.39)

A+−,00 =
√
−t
[
2x(g1 + g2)− a3

2
− (1− 4x2t)a4

4

]
'
√
−t
[
2x(g1 + g2)− a3

2
− a4

4

]
, (3.40)

A+−,−+ = −2xta3 ' 0 , (3.41)

A0+,0+ = −F1 +
(1− 4x2t)F2

2x
+

(1− 4x2t)b1
3

− (3− 12x2t+ 16x4t2)b2
18x

+
4(−2x2t)b3

3x
+

2xt

3
(1− 4x2t)b4

' −F1 +
F2

2x
+
b1
3
− b2

6x
, (3.42)
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A00,00 = −F1 +
(1− 4x2t)F2

2x
− 2(1− 4x2t)b1

3
+

(3− 12x2t+ 16x4t2)b2
9x

− 8(−2x2t)b3
3x

− 4xt

3
(1− 4x2t)b4

' −F1 +
F2

2x
− 2b1

3
+
b2
3x

. (3.43)

Notice that the first line in each equation (3.36)–(3.43) coincides with the corresponding

one in equations (7) in reference [11],6 and we write them here for completeness. On the

other hand, the second line in each of these equations corresponds to the limit |t| � 1.

These amplitudes are useful tools in order to study the hadron structure, specially in

the cases with s > 1/2. They provide a simple way to understand the meaning of the

structure functions in theoretical terms, and give important insights about how they can

affect the scattering amplitudes and how to measure them. This is the reason why we shall

explicitly show the form of these helicity amplitudes in terms of the structure functions we

found by using the gauge/string duality.

For instance, in the spin-1/2 case one has A+↑,+↑ ∼ F1 − g1 and A+↓,+↓ ∼ F1 +

g1, which indicates that F1 is the cross section for a transverse photon scattered off an

unpolarized target, while g1 is the spin asymmetry in the scattering cross section for a

transverse photon [10]. One can also say that g1 + g2 is proportional to the single helicity

flip amplitude ∼ A+↓,0↑. For spin-one hadrons a similar analysis can be carried out. The

function F1 ∼ A++,++ + A+0,+0 + A+−,+− can be interpreted in the same way. Also

b1 ∼ A++,++ +A+−,+−−2A+0,+0 has an interpretation from a transverse photon scattered

off a polarized spin-one target [11]. The combination g1 + g2 also appears in the A+−,00

amplitude, and at first order in t this is the only place where g2 is present. The combinations

F1−b1/3 and F2−b2/3 define A0+,0+ and will be important when we present our structure

functions. Also, the A+−,−+ ∼ −b3 + b2/3 is an interesting amplitude (even being sub-

leading in t) since it characterizes the double helicity flip. As pointed out in [10]7 this

quantity does not receive contributions from quark interactions at first order in αs because

quarks cannot change their helicity by two.8

Finally, all these linear combinations of structure functions that define the helicity

amplitudes are positive, and this is a consistency check for the structure functions we

obtained in our previous papers [1–3] in terms of the holographic dual models.

4 DIS differential cross sections from the gauge/string duality

The present approach is based on a method developed by Polchinski and Strassler in [7],

where the structure functions corresponding to glueball states were derived in terms of

the gauge/string duality. They consider the planar limit of the N = 1? SYM theory

obtained from a deformation of the N = 4 SYM theory. The N = 1? SYM theory has

6This is easy to see by writing κ in terms of x and t, by taking into account an overall sign in the

definition of the four-dimensional metric, and by noting that the definition of ν = P · q in reference [11]

differs from the one used in the present work which is ν = −P · q/M .
7In the mentioned paper this is the so-called ∆(x) structure function.
8Recall that αs = g2QCD/4π.
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a running coupling and becomes conformal when the energies involved are higher than a

color confinement scale Λ. Therefore, this SYM theory and QCD share some important

qualitative properties: they exhibit confinement of the color degrees of freedom and a mass

gap in the infrared. In the context of the gauge/string duality it was shown that the N = 1?

SYM theory is dual to strings propagating in a certain deformed AdS5×S5 background [8].

In order to describe DIS, it has been calculated the scattering amplitude of a process where

a particular graviton perturbation coming from the boundary couples to the dilaton, which

is dual to a glueball state [7]. In addition, the optical theorem is used to relate DIS and

forward Compton scattering. Therefore, in the gravity dual description the graviton and

the dilaton perturbations are taken to describe both initial and final states leading to a

process which turns out to be dual to the forward Compton scattering described in the

previous section.9 It is important to emphasize that in the large-x case the supergravity

description is appropriate to derive the structure functions, while in the small-x regime the

string theory description is unavoidable.

The calculations of DIS from vector mesons have been presented in our papers [1–3].

We have obtained the leading order behavior of the eight structure functions involved in the

hadronic tensor Wµν for a spin-one target, namely F1, F2, b1, b2, b3, b4, g1 and g2 in terms

of x, Λ2

q2
and some other parameters which define the holographic dual description.

The Bjorken parameter x is a very important kinematic variable, and its physical

range 0 ≤ x ≤ 1 can be divided in four regions.10 In the region 1/
√
λ � x < 1 (which

we call the large-x region or range A) the ten-dimensional Mandelstam variable associated

with the intermediate state s̃ ∼ (α′2λ)−1/2(1/x − 1) indicates that only massless string

states are exchanged and thus we only have to consider the low energy limit of string

theory, leading to a supergravity description. The second kinematic region (range B) is

reached when e−
√
λ � x � 1/

√
λ. Thus, in this region the dynamics of string theory

provides the appropriate description. Fortunately in this region, it is possible to think

of locally interacting strings, in the sense that the characteristic length scales are smaller

than the AdS radius, leading to some important simplifications [7]. This is the region

we call small-x (but not exponentially small). The third region (range C) corresponding

to x ∼ e−
√
λ is important because the non-locality of the string scattering is described

by a diffusion operator. This operator leads to the convergence of the first moments of

the structure functions [7, 9]. For smaller x values, there is fourth region which is not

accessible with the present approach since it would require to consider strings propagating

in a curved background. Finally, we point out that for actual experiments large x generally

corresponds to 0.1 < x < 1, while the small x measurements are supposed to describe the

0 < x < 0.1 region.

In the following sections we present our results for the structure functions in the first

two regimes and show how they affect the differential cross section of the DIS process in

the different polarization cases. We also consider the corresponding helicity amplitudes.

9For the large-x case there is also a sum over intermediate dilaton states.
10Recall that x = 1 corresponds to elastic scattering.
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Model / Parameter p α β

D3D7 7 2 -2

D4D8D8 8 3/2 −3/2

D4D6D6 6 3/2 −3/2

Table 1. Parameters for each Dp-brane model.

4.1 Range A: 1/
√
λ� x < 1

The structure functions found in our previous paper [1] in this regime of the Bjorken

parameter at leading order in t are

F1 = ASF(x)
1

12x3
(1− x) ,

F2 = ASF(x)
1

6x3
(1− x) ,

b1 = ASF(x)
1

4x3
(1− x) ,

b2 = ASF(x)
1

2x3
(1− x) ,

b3 = ASF(x)
1

24x3
(1− 4x) , (4.1)

b4 = ASF(x)
1

12x3
(−1 + 4x) ,

g1 = ASF(x)
t

8x2
(−7 + 6x) ,

g2 = ASF(x)
1

16x4
(3− 3x) ,

where

ASF(x) = ASF
0 µ2

pQ2α′4R2p−6

(
Λ2

q2

)γ
xγ+2n+5(1− x)γ−1 , (4.2)

is the only model-dependent factor and it is written in terms of q2 and the different variables

involved in the string theory calculation: the Dp-brane tension µp, the charge of the hadron

Q, the confining scale Λ, the sphere radius R, the string constant α′ and the exponents

γ2 =
A2 + `(`+ p− 5)

B2
, A =

1− 2α− β(p− 3)/2− p+ 4

2
, B =

α− β − 2

2
(4.3)

related to the general induced asymptotic metric on the probe Dp-branes

ds2 =
( r
R

)α
ηµνdx

µdxν +
( r
R

)β [
dr2 + r2dΩ2

p−4

]
. (4.4)

Furthermore, we have defined n = 2+β
4B . Notice that ` is the usual spherical harmonic index

that appears in the solutions of the scalar and vector mesons, and ASF
0 is a dimensionless

normalization constant which depends on the model [1, 2]. As explained in [2], for the three

considered Dp-brane models the values of the parameters are shown in table 1. Using the
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redefinition Wi = 1
12x3

ASF(x)W̃i we obtain

F̃1 = (1− x) , F̃2 = 2(1− x) ,

b̃1 = 3(1− x) , b̃2 = 6(1− x)

b̃3 =
1

2
(1− 4x) , b̃4 = −(1− 4x) ,

g̃2 =
3

4x
(3− 3x) , g̃1 =

3xt

2
(−7 + 6x) ≈ 0 .

This means that in this regime we obtain the relations [1, 2]

F2 = 2F1 , b2 = 2b1 , b1 = 3F1 , g2 =
9

4x
F1 , b4 = −2b3 .

Note that the first two are typical Callan-Gross type relations, except for the lack of a factor

x, which in this regime is understood as if the lepton is scattered by the entire hadron due

to the strong coupling and the specific kinematic regime. By looking at the q2-dependence

we obtain a power-law decay, which is not exactly the same as in perturbative QCD. This

was already observed in [7] where it was pointed out that at weak ’t Hooft coupling the

leading contribution comes from twist-2 operators, while at strong coupling the dominant

contribution is given by double-trace operators.

For completeness we also write the results for the scalar mesons, which as mentioned

only have two structure functions

F1 = 0 , F2 = Ascalar
0 µ2

pQ2α′4R2p−6

(
Λ2

q2

)γ+1

xγ+3+2n(1− x)γ , (4.5)

where Ascalar
0 = 22γ+4B2γ+2π5|ci|2|cX |2 Γ2[γ+n+2]

Γ2[n+1]
, while the constants ci and cX have been

defined in [1].

By plugging the structure functions from the holographic vector mesons in the general

spin-one DIS differential cross section we find

dσ

dx dy dφ
=
MEe4

4π2q4

{
〈qq〉

[
xy2 + 2(1− y)

]
F1 + 2xy2g2

[
(sh · sl)
(P · q)

− (q · sh)(P · sl)
(P · q)2

]}
=
MEe4

4π2q4
F1

{
〈qq〉

[
xy2 + 2(1− y)

]
+

9

2
y2

[
(sh · sl)
(P · q)

− (q · sh)(P · sl)
(P · q)2

]}
=
MEe4

4π2q4

ASF(x)(1− x)

12x3
×{

〈qq〉
[
xy2 + 2(1− y)

]
+

9

2
y2

[
(sh · sl)
(P · q)

− (q · sh)(P · sl)
(P · q)2

]}
. (4.6)

For a longitudinally polarized lepton beam where sl = Hlk with Hl = ±1 for positive and

negative helicity, we can rewrite this expression in the following form

dσ

dx dy dφ
=
MEe4ASF(x)

48π2q4x3
(1− x)

{
〈qq〉

[
xy2 + 2(1− y)

]
− 9Hl

2ME
sµh (ykµ − qµ)

}
. (4.7)

We can study the behavior of this result for each polarization as follows.
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• Unpolarized target: 〈qq〉unpol = 1, sh = 0.

dσ

dxdydφ

∣∣∣
unpol

=
MEe4ASF(x)

48π2q4x3
(1− x)

[
xy2 + 2(1− y)

]
. (4.8)

• Longitudinally polarized target: 〈qq〉LP = 0, sh = (0, HhMẑ) (and using cos θ ≈ 1).

dσ

dxdydφ

∣∣∣
LP

= 0 . (4.9)

This is the result at leading order. It is easy to see why this happens: since 〈qq〉LP = 0,

the bi = 3Fi relations for i = 1, 2 imply that the b-F part of the cross section vanishes.

Now, as pointed out in [10] sh is dotted with k or q both of which have similar 0

and 3 components at leading order. Thus, we replace it by −Hhp
11 without changing

the results. This implies that the g2-piece becomes sub-leading in this case, and as

g1 ≈ 0 at first order, therefore the cross section vanishes.

• Transversally polarized target: 〈qq〉TP = 3/2, sh = (0, HhMx̂)

dσ

dx dy dφ
|TP =

MEe4ASF(x)

48π2q4x3
(1− x)

{
3

2

[
xy2 + 2(1− y)

]
− 9HlHh

2

M

|q|
(1− y) cosφ

}
(4.10)

Note that the M/|q| =
√
−t factor makes the spin-dependent term sub-leading. The

reader could think that it is not a reliable result since in early steps of our calculations

we have ignored this kind of terms. This is not the case because this has been done

in terms involving the bi functions, which contribute to the leading term, and mainly

because the spin-dependent part is easily distinguished within experiments.

In addition, for the helicity amplitudes in this case we obtain

A++,++ ' 0 +O(t) ,

A+0,+0 ' 3F1 ,

A+0,0+ '
√
−t
[

9F1

2
+
a3

2
+
a4

4

]
=
√
−t 6F1 ,

A+−,+− ' 0 +O(t) , (4.11)

A+−,00 '
√
−t

[
9F1

2
− a3

2
− a4

4

]
=
√
−t 3 F1 ,

A+−,−+ ' 0 ,

A0+,0+ '
4b3
3x

,

A00,00 ' 3
(1

x
− 1
)
F1 −

8b3
3x

.

11The minus sign accounts for the difference in the four-dimensional Minkowski metric components η00
and ηzz.
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4.2 Range B: e−
√

λ � x� 1/
√
λ

The results we have obtained in our previous paper [3] in the small-x (but not exponentially

small) regime for the polarized vector meson structure functions can be summarized in the

following equations

F1 =
1

12x2
I1 , F2 =

1

6x
(I1 + I0) ,

b1 =
1

4x2
I1 , b2 =

1

2x
(I1 + I0), (4.12)

b3 = − 1

3x
(I1 + I0) , b4 =

1

6x
(I1 + I0) ,

g1 = 0 , g2 =
1

8x2
(I1 + I0),

where I1 and I0 are x-independent factors given by integrals of Bessel functions and some

constants, plus the q2-dependence. According to these results, in this regime the Callan-

Gross type relations become

F2 = 2xF1

(
1 +

I0

I1

)
, b2 = 2xb1

(
1 +

I0

I1

)
, b4 =

1

3
b2 = −1

2
b3 . (4.13)

Notice that the first two relations have a Bjorken parameter factor x with respect to the

ones in the regime A described in the previous section. The pre-factors are given by

I1 = C
α2Σ2q4

√
λΛ4Γ2(n+ 1)B

(
qR

B

)(2n+1)−D
In+1,D , (4.14)

I0 = C
α2BΣ2q2

√
λΛ4R2Γ2(n+ 1)

(
qR

B

)(2n+3)−D
In,D , (4.15)

where C is a normalization constant and D = 2n + 1 + 1
B [2∆ + α + (β2 + 1)(p − 5)]. We

have used the definition Σ2 = ∆2 + ∆(∆−2). This is where the `-dependence enters, since

∆ = γ(`)B −A. Note that the x-dependence of the structure functions is the same for all

models, which was not the case in the previous section. The Bessel function integrals are

defined as12∫ ∞
0

dω ωmK2
n(ω) = In,m = 2m−2 Γ(ν + n)Γ(ν − n)Γ2(ν)

Γ(2ν)
, ν =

1

2
(m+ 1). (4.16)

In the D4D8D8-brane and D4D6D6-brane models Kn(w) functions turn out to be fractional

Bessel functions, however all the integrals are finite. Again, all these factors are independent

of x and y.13 Finally, the only model-dependent and `-dependent numerical factor that

enters the Callan-Gross type relations is

δ ≡ 1 +
I0

I1
= 1 +

In,D
In+1,D

=
2D

D + 2n+ 1
. (4.17)

12Recall that this result is valid provided that the arguments of the gamma functions are positive.
13We refer the reader to [3] for a careful derivation and analysis of these results.
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Model D3D7 D4D8D8 D4D6D6

δ 2∆+3
∆+2

4(4∆+3)
8∆+9

16(∆+1)
8∆+11

Table 2. Parameter δ in each model.

Table 2 shows the values of δ for the three models we consider. In all the cases we have

1 < δ < 2 since ∆ is positive. As for the scalar mesons the results are the following

F1 =
π2

16x2
ρ3|ci|2

(
Λ2

q2

)∆−1
1√

4πgcN
I1,2∆+3 , (4.18)

F2 =
π2

8x
ρ3|ci|2

(
Λ2

q2

)∆−1
1√

4πgcN
(I0,2∆+3 + I1,2∆+3) . (4.19)

Equations (4.14) and (4.15) show the dependence of our small-x structure functions with

the momentum of the virtual photon: they always fall-off as a power of q2. In the Regge

regime the calculations and measurements suggest that a Pomeron is exchanged14 both

at weak and strong ’t Hooft coupling. However, there is an important difference: when

λ is small the virtual photon scatters off a parton inside the hadron, leading to a small

(growing) dependence in q2, while at large λ a Pomeron is supposed to collide with the

entire hadron. This is what happens in the present case, since we are using the gauge/string

duality at strong coupling. Thus, we have obtained the same q2-power fall-off as in the

large-x case, and the amplitude is again dominated by the same double-trace operators [7].

Plugging our structure functions in the most general DIS differential cross section for

a spin-one target we obtain

dσ

dxdydφ
=
MEe4

4π2q4

{
〈qq〉[xy2 + 2x(1− y)δ]F1 + 2xy2g2

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
=
MEe4

4π2q4
F1

{
〈qq〉[xy2 + 2x(1− y)δ] + 3xy2δ

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
=
MEe4

48π2q4

I1

x

{
〈qq〉[y2 + 2(1− y)δ] + 3y2δ

[
(sh · sl)
(p · q)

− (q · sh)(p · sl)
(p · q)2

]}
. (4.20)

Once again, the experimentally relevant situation occurs when the lepton is longitudinally

polarized, i.e. when sl = Hlk with Hl = ±1. Therefore, the differential cross section takes

the form

dσ

dxdydφ
=
MEe4

48π2q4

I1

x

{
〈qq〉[y2 + 2(1− y)δ]− 3δ

ME
Hls

µ
h(ykµ − qµ)

}
. (4.21)

Then, we can study the behavior of this result for each hadronic polarization as follows.

• Unpolarized target: 〈qq〉unpol = 1, sh = 0. In this case the spin-dependent term

vanishes automatically and we obtain

dσ

dxdydφ
|unpol =

MEe4

48π2q4

I1

x
[y2 + 2(1− y)δ] . (4.22)

14There are some important differences between hard and soft Pomerons that we shall not address here,

for this see [9].
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• Longitudinally polarized target: 〈qq〉LP = 0, sh = (0, HhMẑ)

dσ

dxdydφ

∣∣∣
LP

= 0 . (4.23)

This is just like in the large-x regime. We obtain a vanishing result at leading order

since g1 = 0 (notice that the g1 structure function together with the difference F1− 1
3b1

give the main contribution to the longitudinally polarized cross section), and this is

a consistency check of our results at small x for the polarized vector meson structure

functions.

• Transversally polarized target: 〈qq〉TP = 3/2, sh = MHhx̂. Now, we have a vanishing

sh·k but a non-vanishing s·q = MHhk
′x = ME′Hh sin θ cosφ, and since E′ = E(1−y)

and sin(θ) ∼ θ ∼M/|q| we finally obtain

dσ

dxdydφ
|TP =

MEe4

48π2q4

I1

x

{
3

2
[y2 + 2(1− y)δ]− 3δ(1− y)

M

|q|
HlHh cosφ

}
. (4.24)

Since M/|q| ∼
√
−t the second term also becomes sub-leading in this case.

We can also obtain the helicity amplitudes in this regime which become

A++,++ ' 0 , A+0,+0 ' 3F1 ,

A+0,0+ ' 0 , A+−,+− ' 0 , (4.25)

A+−,00 = O(
√
−t) ≈ 0 , A+−,−+ = 0 ,

A0+,0+ = 2(δ − 1)F1 > 0 , A00,00 = 3(δ − 1)F1 > 0 .

Note that in this parametric region the factor a3 = b2/3− b3 defined in the section 3.3

becomes a3 = b2 at leading order. This is interesting since it means that the b2 structure

function characterizes the double helicity flip amplitude. The corresponding A+−,−+ he-

licity amplitude is proportional to t, thus it is always small in the DIS regime, but the

b2 ∼ x−1 growth could in principle lead to a non-vanishing helicity amplitude.

4.3 Range C: x ∼ e−
√

λ

This is the exponentially small region of the Bjorken parameter. In the region B we have

neglected the factor s̃α
′ t̃/2. The effect of this factor is very important within the parametric

region x ∼ exp (−
√
λ) [3]. The tildes indicate ten-dimensional Mandelstam variables. Let

us consider the strong coupling regime 1 � λ � N ,15 and exponentially large values of

s̃ with log s√
λ

fixed. In this region the interaction cannot be considered local in the AdS

background, since t̃ becomes a differential operator [7, 9], and consequently we have to

replace it by the following operator

α′t̃→ α′∇2 = α′
(
R2t

r2
+∇2

⊥

)
, (4.26)

15In this subsection we focus on the D3D7-brane model, the other models have a few modifications but

the discussion is very similar.
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which takes into account the momentum transfer in the transverse directions, and it induces

the factor

(α′s̃)α
′ t̃/2 ∼ x−α′ t̃/2 ∼ x−α′∇2/2 . (4.27)

The physical meaning of this is that within this region C there is a Pomeron exchange

in the t-channel.16 The consequence of this leads to include a factor xα
′ζ/2 multiplying

the structure functions. This is obtained in the region C by replacing the differential

operator −∇2 = −D2 by its smallest eigenvalue ζ. Then, the structure functions become

F1 ∝ x−2+α′ζ/2 and F2 ∝ x−1+α′ζ/2, where the Pomeron intercept is identified as 2−α′ζ/2.

This is the expected behavior for these functions. In particular, for the D3D7-brane model

we have ζ = 4
R2 (1 −∆2) ≤ 0. This implies that in our results of the previous section 4.2

in the region B we have to multiply all the structure functions by the factor xα
′ζ/2. This

implies that the differential cross sections for different meson polarizations as well as the

helicity amplitudes must also be multiplied by this factor in the parametric region C.

5 Results and discussion

In this section we present our results and discuss them.

5.1 Structure functions and differential cross sections

Let us begin with the case of vector mesons. Figures 3, 4 and 5 show the structure functions

F1, F2, b1 and b2 for polarized vector mesons as a function of the Bjorken parameter. We

consider the D3D7-, D4D8D8- and D4D6D6-brane models, respectively. In each case we

focus on the lightest particles given by ` = 1, 2, 3. For the small-x region the structure

functions F1, F2, b1 and b2 are represented by a continuously decreasing curve, which has

very little dependence on the values of ` = 1, 2, 3. On the other hand, for large x-values

all the figures show a set of bell-shaped curves with maxima around x ' 0.6. The height

of these curves decreases as ` increases. The normalization constants are specified in the

next section and, they have been chosen in order to have the best fitting to the lattice

QCD results of the first three moments of the ρ meson.17 These moments are shown

in table 5 and discussed below. Recall that in the small-x parameter region there is a

model-dependent and `-dependent factor in the structure functions. All the structure

functions behave similarly. On the one hand, the x > 0.2 region is dominated by a smooth

bell-shaped function with maximum around x ' 0.6 (the specific value depends on `,

as it can be seen from equations (4.1) and (4.2)). It approaches zero as x → 1. On

the other hand, as x decreases these bell-shaped functions also decrease, and the small-x

structure functions defined in equations (4.12), (4.14) and (4.15) dominate. The x < 0.1

region is described by functions x−1 or x−2 (depending on which structure function one

considers). The two type of functions (the hyperbolic and the bell-shaped ones) overlap for

0.1 < x < 0.2, which is a transition region between both regimes of the Bjorken parameter.

This behavior is understood from the Callan-Gross type relations in each range of the

16In reference [3] we have not considered multi-Pomeron exchange.
17We omit the possible dependence of these constants with ` since we compare with the moments of the

structure functions for ` = 1, i.e. the moments corresponding to the ρ meson, so the curves for ` > 1 have

been drawn for the same values of the constants as for ` = 1.
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(d) b2(x) function.

Figure 3. Structure functions F1, F2, b1 and b2 in terms of the Bjorken parameter x for the ` = 1, 2

and 3 vector mesons in the D3D7-brane model. Bell-shaped curves correspond to the large-x region

(height decreases as ` increases) while the hyperbolic curves correspond to the small-x region.
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(d) b2(x) function.

Figure 4. Structure functions F1, F2, b1 and b2 in terms of the Bjorken parameter x for the ` = 1, 2

and 3 vector mesons in the D4D8D8-brane model. Bell-shaped curves correspond to the large-x

region (height decreases as ` increases) while the hyperbolic curves correspond to the small-x region.
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Figure 5. Structure functions F1, F2, b1 and b2 in terms of the Bjorken parameter x for the ` = 1, 2

and 3 vector mesons in the D4D6D6-brane model. Bell-shaped curves correspond to the large-x

region (height decreases as ` increases) while the hyperbolic curves correspond to the small-x region.

Bjorken parameter, as well as from the fact that bi = 3Fi in both cases. Also, remember

that when x becomes exponentially small this description fails because the approximation

that strings interact locally enough in order to use a flat space amplitudes breaks down.

In this case the correct behavior should be obtained by considering a diffusion operator,

and ultimately the description of full string theory on a curved background. The analysis

in this parameter region is very difficult. However, there is evidence that the divergence

disappears (at least for the glueball DIS [7]), leading to finite moments of the structure

functions, but this is beyond the scope of this work. In the next section we will deal with

this by introducing a low-x cutoff. We can see that for ` = 1 it gives similar curves for the

three models we consider, even if the normalization constants are different for each model.

It is interesting to see that the structure functions at small x have similar behavior for

` = 1, 2, 3, while at large x they get smaller as the parameter ` increases. This is more

evident in the D4D8D8 and D4D6D6-brane models than in the D3D7-brane model. In

those cases, for ` = 3 the corresponding curve is one order of magnitude smaller than the

corresponding one for ` = 1 of the large-x structure function.

We can also compare with the existing literature. In particular, at large x the curves

for F1 and F2 have a similar bell-shaped behavior as those presented in [12], although

the maxima in that reference occurs for x ' 0.8. In [12] the DIS structure functions for

the lightest vector mesons (they only consider the unpolarized case) have been obtained

by using the D4D8D8-brane model, i.e. the ρ meson and the a1 axial-vector meson. In
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fact, in that reference F1 and F2 structure functions have been obtained in the range

0.2 < x < 1. We recall that the calculations in that reference are different from ours since

they considered a four-dimensional effective Lagrangian only describing the 1/
√
λ� x < 1

range. Obviously, this describes only a part of the problem. Instead, in [1, 2] we have

derived the corresponding Lagrangians for the three holographic dual models from first

principles from type IIA and type IIB supergravities within this parametric region, while

for small x in our paper [3] we have obtained the structure functions by using type IIA and

type IIB string theories. From the structure functions obtained in [12] they found the ratio

F2/(2F1) ≈ 1, satisfying this Callan-Gross type relation (as expected from the supergravity

calculation [7] within this parametric range, note that it has not the factor x multiplying

F1 which agrees with our results) within the interval 0.4 < x < 0.6 and momentum transfer

10 GeV2 < |q2| < 80 GeV2. However, in [1–3] we have proved that a modified version of

the Callan-Gross relation holds within the whole range of the Bjorken parameter and for

any value of the momentum transfer, in fact there appear two Callan-Gross type relations:

F2 = 2F1 for 1/
√
λ � x < 1 (supergravity) and F2 = 2xF1δ for exp(−

√
λ) � x � 1/

√
λ

(from superstring theory, see section 4.2). Note that 0.5 < δ < 1 for all mesons described

by the models we consider. Moreover, we have also obtained new exact relations among

the structure functions for scalar and for polarized vector mesons in the planar limit at

strong ’t Hooft coupling. In addition, in reference [12] only structure functions for the

lowest states of vector and axial vector mesons were studied, while our results hold for any

scalar or polarized vector meson.

Now, we present our results for the DIS differential cross section of unpolarized vector

mesons depicted as contour line maps in terms of x and y variables. We show that for

large x in figure 6 and for small x in figure 7, and for the three different Dp-brane models

we have considered. Broader curves in figure 6 correspond to lower values of the DIS

differential cross section. On the other hand, in figure 7 curves with larger slope correspond

to larger values of the DIS differential cross section. In figure 6 we can observe that the

differential cross section of unpolarized holographic vector mesons is larger around x ≈ 0.5,

and also it becomes less spread for the Sakai-Sugimoto model. Another feature is that this

differential cross section is larger for smaller values of the fractional energy loss of the

charged lepton y, having a maximum when the energy of the incident lepton and the one

of the scattered lepton are the same. On the other hand, curves in figure 7 show contour

line maps of DIS differential cross section for unpolarized holographic vector mesons for

the three flavor-brane models we describe, in the region exp (−
√
λ) � x � 1/

√
λ. The

horizontal axis represents the Bjorken parameter within the range [0.01, 0.1], while the

vertical one corresponds to the variable y, [0, 1].

Next, let us focus on the comparison with phenomenology of the meson structure

functions. This turns out to be difficult because the experimental data of these functions

is actually much more limited than in the case of baryons. Moreover, it is more difficult

to carry out such a comparison when the Bjorken parameter x is small. In the case

of pions there have been important phenomenological studies [13–16], however all these

investigations focus on the valence structure function related to fixed-target pion Drell-

Yan experiments. The corresponding data are restricted to the parametric region x ≥ 0.2.
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Figure 6. Contour line maps of DIS differential cross section for unpolarized holographic vector

mesons for the three flavor-brane models we consider, in the region 1/
√
λ � x < 1. Different

mesons are labeled with ` = 1, 2, 3 and 10 (displayed on the four rows). The differential cross

sections have been normalized as explained in the main text. The horizontal axis represents the

Bjorken parameter within the range [0.1, 1], while the vertical one corresponds to the variable y,

[0, 1]. Broader curves correspond to lower values of the DIS cross section.
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Figure 7. Contour line maps of DIS differential cross section for unpolarized holographic vector

mesons for the three flavor-brane models we consider, in the region exp (−
√
λ) � x � 1/

√
λ.

Different mesons are labeled with ` = 1, 2, 3 and 10 (displayed on the four rows). The differential

cross sections have been normalized as explained in the main text. The horizontal axis represents

the Bjorken parameter within the range [0.01, 0.1], while the vertical one corresponds to the variable

y, [0, 1]. Curves with larger slope correspond to larger values of the DIS cross section.
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Notice that in our calculations the pion corresponds to the ` = 1 meson in the D3D7-

model, since it is the lightest pseudoscalar particle. These phenomenological studies could

in principle be compared with the results obtained in our previous papers studying the

parametric range 1/
√
λ� x < 1 [1, 2]. The small-x behavior we find is difficult to compare

with the existing phenomenological models. However, in [17] it was proposed a model in

which the parton distribution functions have a sea term that diverges as x→ 0, as it occurs

for our structure functions. In addition, this type of divergences beyond the valence term

was shown to appear on the pion contribution to the deuteron structure function b1 (see

for instance figure 3 in reference [18]).

In general terms, our approach shares fundamental concepts with references [9, 19–

22] as well as it involves somehow similar techniques to the ones used by them. Very

interestingly, in those references there is agreement with baryon DIS data from H1 and

ZEUS experiments at HERA. In fact in these references the objects of study are the glueball

structure functions. Since the structure functions of scalar mesons behave similarly as those

of glueballs for all values of the Bjorken parameter, we regard it as an indication suggesting

that our predictions should be correct. Keeping in mind that the results for glueballs can

be compared with experimental information from HERA, we would expect that our results

for mesons (which at least for scalar ones are closely related to the glueball results of [7])

could be confirmed.

5.2 Comparison with lattice QCD

Now, let us focus on the comparison with lattice QCD results. Particularly, we can compare

the lower moments of DIS structure functions of the pion and the ρ meson obtained from

lattice QCD [23] with our own predictions. The n-th moment of a generic function h(x, q2)

is given by

Mn[h] ≡
∫ 1

0
dxxn−1h(x, q2) . (5.1)

We consider the spin-dependent structure functions of the pion and ρ mesons. In particular,

the lattice QCD calculations in [23] have considered Wilson fermions and they have been

carried out for three values of the quark mass. Therefore, it allows one to carry out an

extrapolation to the chiral limit. The way we can compare our results with the lattice QCD

ones for the pion is by using our expressions of the F2 structure function18 for small and

large x values, and integrate them with appropriate lower and upper cut-offs. The former is

integrated from x = 0.0001 to x = 0.1, while the latter is integrated from x = 0.1 to x = 1.

Notice that within each structure function there is an undetermined constant containing

Λ, R, q2 and some other numbers. In fact, there is a different constant for each parametric

regime of the Bjorken variable. Thus, for each model there are two undetermined constants.

They are effectively two free parameters for each flavor-brane model, which are determined

by carrying out the best fitting to the lattice QCD data for the moments Mi(F2) with

i = 1, 2, 3. The rest of the fittings are performed in the same way.

18For the pion we use F2 and not F1 because one of the features of the large N limit is that the virtual

photon strikes the entire hadron, thus F1 = 0 in the large-x region.
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Model / Moment M1(F2) M2(F2) M3(F2)

Lattice QCD 0.3047 0.1180 0.0583

D3D7 0.3067 0.0962 0.0658

Percentage error -0.6 18.5 -12.8

D4D8D8 0.3061 0.1018 0.0643

Percentage error -0.5 13.7 -10.3

D4D6D6 0.3064 0.0990 0.0650

Percentage error -0.6 16.1 -11.6

Table 3. Comparison of our results for the first moments of the structure function F2 of the pion

for a suitable choice of the normalization constants with respect to the average results of the lattice

QCD computations in [23]. Uncertainties in the lattice computations are omitted.

Our results and the lattice QCD data as well as the deviations from each other are

listed in table 3. The constants of the small-x regime which leads to the best fitting to the

lattice QCD data of reference [23] are 0.025, 0.020 and 0.022, while for the large-x regime

we found 24, 2020 and 267, for the D3D7-, the D4D8D8- and the D4D6D6-brane models,

respectively. We find discrepancies with respect to the lattice QCD calculations up to 18%

for our results in the case of the pion, ` = 1. Recall that in the 1/N expansion discrepancies

are of order 30%, thus our results are within the expectations. We should keep in mind that

when analyzing discrepancies between gauge/string duality predictions, phenomenology

and experimental data, for instance bottom-up models in five dimensions (the AdS/QCD

model) give results related to masses and decay constants of mesons with discrepancies of

order 5% [24, 25]. On the other hand, for the case of more involved calculations leading

to the ∆I = 1/2 rule describing the kaon decays, related to the calculation of four-point

correlation functions, discrepancies become of order 30% [26, 27].

There are more recent results in the lattice QCD literature to compare with. For

instance we can consider data from references [28, 29]. The results for these fittings are

shown in table 4. One can see that all the results are improved being the deviation smaller

than 10%. In this case, the constants we find are 0.014, 0.011 and 0.012 for the small-x

regime, and 29, 2450 and 325 for the large-x regime, for the D3D7-, the D4D8D8- and the

D4D6D6-brane models, respectively.

It is possible to understand a bit better the comparison between lattice QCD data and

our holographic results by isolating the contributions from the small-x and large-x structure

functions to each moment. We are tempted to associate the small-x region with the concept

of sea-quark distribution function, which describes the possibility of finding a quark or an

anti-quark (generated by gluon splitting) carrying a very small fraction of the hadron

momentum. In this picture the large-x structure function is then related to the valence

distribution function associated with quarks that carry a considerable fraction of the hadron

momentum.19 Table I in [30] shows that both for lattice and for phenomenological results

one finds that the contribution of the sea of quarks is important only for the first moment

of the structure functions, since it yields a considerable fraction of the final result. In the

19These are not formal definitions of these concepts.
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Model / Moment M1(F2) M2(F2) M3(F2)

Lattice QCD 0.27 0.13 0.074

D3D7 0.2708 0.1161 0.0803

Percentage error -0.3 10.7 -8.5

D4D8D8 0.2705 0.1221 0.0779

Percentage error -0.2 6.1 -5.2

D4D6D6 0.2706 0.1191 0.0791

Percentage error -0.2 8.4 -6.9

Table 4. Comparison of our results for the first moments of the structure function F2 for the pion

for a suitable choice of the normalization constants with respect to the average results of the lattice

QCD computations in [28, 29]. Uncertainties in the lattice computations are omitted.

Model / Moment M2(F1) M3(F1) M4(F1)

Lattice QCD 0.1743 0.074 0.035

D3D7 0.1755 0.059 0.040

Percentage error -0.7 21.3 -14.1

D4D8D8 0.1752 0.062 0.040

Percentage error -0.5 16.4 -11.8

D4D6D6 0.1754 0.060 0.040

Percentage error -0.6 18.8 -13.0

Table 5. Comparison of our results for the first moments of the structure function F1 for the ρ

meson for a suitable choice of the normalization constants with respect to the average results of the

lattice QCD computations in [23]. Uncertainties in the lattice computations are omitted.

second and third moments its contribution is substantially reduced, and the contribution

from the valence distribution function gives almost the full result. This is similar to what

happens with our structure functions: the integral for the small-x region is important in

order to fit the first moment M1, but one can almost ignore it for M2 and M3.

Table 5 shows the comparison of our results for the first moments of the structure

function F1 for the ρ meson for a suitable choice of the normalization constants with

respect to the average results of the lattice QCD computations in [23]. The constants in

this case are 0.013, 0.011 and 0.012 for the small-x regime, and 14, 1229 and 162 for the

large-x regime, for the D3D7-, the D4D8D8- and the D4D6D6-brane models, respectively.

As it was commented for table 3, it is very interesting that the relative discrepancies are

smaller than 21 percent. Now, by using tables 4 and 5 we can draw figures 8 and 9. In

figure 8 the first three moments for F2 are displayed for the pion. The free parameters

for each dual holographic model are chosen in order to fit the results in [23] obtained with

lattice QCD as explained before. The three studied holographic dual models are shown,

together with the value obtained in the reference. We find good agreement with lattice

QCD data with discrepancies lower than 20%. By using more recent lattice QCD results

of references [28, 29] the fittings improve with discrepancies lower than 10%. In addition,

in figure 9 the first three moments of F1 are shown for the ρ meson. The three holographic

dual models are presented in a similar way as in figure 8. Discrepancies with respect to
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Figure 8. The first three moments of F2 are shown for the π meson. The free parameters for each

dual holographic model are chosen in order to fit the results in [23], obtained with lattice QCD

as explained before. The three holographic dual models are shown, along with the average value

obtained in the mentioned reference. Discrepancies with respect to the reference are under 20%.
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Figure 9. The first three moments of F1 are shown for the ρ meson. The free parameters for each

holographic dual model are chosen in order to fit the results in [23], obtained with lattice QCD. The

three holographic dual models are shown, along with the average value obtained in this reference.

Discrepancies with respect to the reference are under 21% in all cases.
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that reference are under 21% in all cases. Therefore, this also shows good agreement with

lattice QCD data.

Notice that in all our fittings the constant of the structure function corresponding to

the small-x regime is always a few orders of magnitude smaller than the one associated

with the large-x structure function. This is in full agreement with our calculations, at least

in the regime where the holographic dual model represents an accurate description of the

dual gauge theory. This could have been directly predicted from our analytical results. By

examining the difference between the constants in front of (4.5) and (4.18, 4.19) one can

see that for the ` = 1 scalar meson the numerical coefficients and normalization constants

are of the same order, and the main difference is given by the λ−1/2 factor that appears in

the small-x case. This is small at large ’t Hooft coupling, and it is directly related to the

value of x = 0.1 which we use in order to separate the first two regimes (A and B) in our

calculations.

Another important point comes also from the comparison between our analytical re-

sults and the different models formulated in the literature in order to fit the phenomenolog-

ical data for the measurement of the pion valence distribution functions. As it is explained

in [30, 31] there have been different attempts to describe the available data, and while

there are some differences between them, they all agree on the fact that the distribution

functions should behave as (1 − x)2 in the x→ 1 limit. In [32] it has been found a fall-off

(∼ (1− x)2±0.1) for the valence distribution function consistent with Drell-Yan data. This

is consistent with theoretical predictions based on perturbative QCD (see for instance [33]

and references therein) as well as with calculations using Dyson-Schwinger equations [34].

This is exactly what happens with our structure functions (4.5) in the D3D7-brane model

for the ` = 1 scalar meson, i.e. the pion. This would suggest that the D3D7-brane model

gives better predictions than the other two ones studied in this work. In the D4D8D8-brane

and D4D6D6-brane models the exponents are 4.59 and 3.33, respectively.

A very interesting review of lattice QCD calculations on moments of hadron distri-

bution functions, as well as other important hadron structure observables is given in [35].

The earliest calculations of the lowest two moments of the pion quark distribution function

have been done in [36–38] in quenched lattice QCD. An extensive study of several moments

of the pion and the ρ meson have been done in [23]. In fact, we have compared our results

with those in that reference in our tables 3 and 5 and in our figures 8 and 9, while in our

table 4 we compare with references [28, 29]. The earliest results of [23] have been obtained

by using quenched lattice QCD simulations, which means that the fermion determinant is

set to one, thus neglecting all quark-antiquark quantum fluctuations. This introduces an

error which can only be quantified by comparison with dynamical simulations with physi-

cal quark masses, which are only computationally possible since a few years.20 In fact for

instance in [28, 29, 31] dynamical quarks have been considered.

We may also try to use this kind of fittings to compare the first few moments corre-

sponding to our bi functions with the ones calculated in [23]. However, in that paper the

results found for these moments are smaller than the Fi moments.21 Since the structure
20We thank Andreas Schäfer for this comment.
21In fact, even if we actually tried to do this the very small values of these moments and the considerable

errors associated with them in [23] would probably make the fittings unreliable.
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functions we obtained from string theory satisfy the relations bi = 3Fi, the numerical com-

parison becomes meaningless. It seems that there is a conceptual difference, and it would

be very interesting to study where it comes from or to be able to resolve this discrepancy

from new experimental data.

Once again we would like to emphasize that the discussion presented in this last section

has to be understood qualitatively. One should keep in mind that the gauge theories that

we are able to study in terms of string theory dual models do not look exactly like QCD.

What makes them interesting though is that they have some important similarities related

to the meson spectrum and the concepts of color confinement, chiral symmetry breaking

and other properties. Thus, it is really interesting that these holographic dual models

give predictions of the moments of the structure functions which are comparable to lattice

QCD results.

The good agreement we have obtained with lattice QCD data is somehow not un-

expected taking into account several examples where the supergravity dual models give

results which compare reasonably well with lattice QCD data. For instance, in the case of

SYM plasmas good level of agreement has been found between lattice QCD results and the

gauge/gravity duality approach by including string theory corrections to the supergravity

calculations as it has been shown for the mass and electric charge transport coefficients.

In the case of the mass transport the quantitative agreement between lattice QFT calcula-

tions for η/s [39] and the gauge/string duality [40, 41] is remarkable (η is the N = 4 SYM

plasma shear viscosity and s the entropy density). Also for electric charge transport the DC

conductivity has been calculated using lattice QCD [42] and the gauge/string duality [43],

including O(α′3) corrections, leading to good level of agreement [44–47]. Of course, also

in those cases the gauge/string dual calculations strictly hold for large N and the strong

coupling expansion (1/λ), but if one insists on using N = 3 and λ ≈ 15 it leads to the

results we mention in this paragraph.

Also, the fact that the methods developed for the holographic dual description of DIS

can be extended to other strongly coupled SU(N) gauge theories is very interesting.
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