
WEIGHTED EMBEDDING THEOREMS FOR RADIAL BESOV

AND TRIEBEL-LIZORKIN SPACES
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Abstract. We study the continuity and compactness of embeddings for radial

Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt class A∞.
The main tool is a discretization in terms of an almost orthogonal wavelet

expansion adapted to the radial situation.

1. Introduction

Weighted embedding theorems for smooth function spaces have beeen studied
by many authors, mainly because they are a fundamental tool in the variational
analysis of some nonlinear partial differential equations, for instance of degenerate
or singular elliptic equations. It is therefore natural to study embedding results
in the framework of Triebel-Lizorkin and Besov spaces, since these include many
of the classical functional spaces. In the unweighted case, a fundamental result
in this context is the embedding theorem of Jawerth [14] and Franke [10], which
generalizes the classical Sobolev embedding theorem.

Weighted Besov and Triebel-Lizorkin spaces have also been studied by many
authors under different assumptions on the weights (see e.g. [2, 3, 25]). Embeddings
of Besov and Triebel-Lizorkin spaces with Muckenhoupt’s A∞ weights were studied
by Haroske and Skrzypczak in [12, 13] and Meyries and Veraar in [20] (see also [19]
for an earlier work by the same authors in the case of power weights).

On the other hand, it is well known, since the pioneering works of Ni [21] and
Strauss [29], that many embedding results can be improved when one considers sub-
spaces of radial functions. More precisely, by restricting ourselves to the subspace
of radial functions, we can recover, for instance, compactness properties of embed-
dings that are in general non-compact due to the action of some non-compact group
of transformations such as the group of translations in Rn (see, e.g. [18]). Notice
that compact embeddings are a fundamental feature for the success of variational
methods in PDE. In the case of weighted embedding theorems one can also obtain
a wider range of exponents for the admissible power weights in the radial situation
(see e.g. [6]).

In the case of unweighted radial subspaces of Besov and Triebel-Lizorkin spaces,
Sickel and Skrzypczak [26, 27] and Sickel, Skrzypczak and Vybiral [28] obtained
compactness of the related embeddings and an extension of Strauss’ radial lemma.
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Quantitative information in terms of entropy numbers for the embeddings was
obtained by Kühn, Leopold, Sickel and Skrzypczak in [16]. In these papers, the
main tool is an atomic decomposition adapted to the radial situation.

Early results on embeddings for weighted radial Besov and Triebel-Lizorkin
spaces can be found in Triebel’s book [31, Section 6.5.2], where the weights consid-

ered are of the special forms wα(x) = (1 + |x|2)α/2 with α ∈ R, and wβ(x) = e|x|
β

with |x| ≥ 1 and 0 < β ≤ 1 (see also references therein). However, to the authors
knowledge, results on weighted radial Besov and Triebel-Lizorkin spaces for other
important classes of weights, such as power weights or, more generally, Mucken-
houpt weights, were still missing in the literature. The first two authors recently
showed in [7] that the approach used by Meyries and Veraar [19] to obtain em-
bedding theorems with power weights can be improved to obtain a better range of
admissible exponents in the radial case. In this work we consider embedding the-
orems for radial subspaces of Besov and Triebel-Lizorkin spaces with general A∞
weights. It is important to stress that in the latter case the functions considered
are radially symmetric, but the weights can be arbitrary. In the Triebel-Lizorkin
case, we follow an argument by Meyries and Veraar [20] to derive the embeddings
from the Besov case, but this time restrict ourselves not only to radially symmetric
functions but also to radially symmetric A∞ weights (see the discussion in Section
5). In both cases we obtain sufficient conditions for the continuity and compactness
of the embeddings that improve with respect to the non-radial case.

For our proof, instead of using the atomic decomposition for radial subspaces of
Sickel and Skrzypczak [26], we shall follow closely the approach used by Haroske
and Skrzypczak [12, 13] in the non-radial case, which is based on a discretization
in terms of wavelet bases. To this end, we need a wavelet decomposition adapted
to the radial situation, which we obtain by adapting arguments used by Epperson
and Frazier [9] in the unweighted radial case. We remark that this is not a wavelet
decomposition in the traditional way, since the wavelets are localized near certain
annuli instead of cubes. Hence, they have the advantage of being better adapted
to the radial situation but have no translation structure and, more importantly,
since they are not actual bases but rather frames, they do not characterize the
(weighted) Besov and Triebel-Lizorkin spaces. In other words, they are useful to
obtain sufficient conditions for the continuity and compactness of the embeddings,
but cannot be used to prove sharpness of the conditions obtained. Unfortunately,
as far we know, there are no known orthogonal wavelet decompositions for radial
functions except in dimension three (see, e.g. [24, 4]).

The rest of the paper is as follows. In Section 2 we recall some definitions
and known properties of Besov and Triebel-Lizorkin spaces. Section 3 in devoted
to the construction of the wavelet bases and the representation of the weighted
radial Besov and Triebel-Lizorkin spaces in terms of sequence spaces (Theorems
3.1 and 3.2). In Section 4 we prove our main theorem (Theorem 4.1) on sufficient
conditions for the continuity and compactness of the embeddings for weighted radial
Besov spaces and use it to analyze some important special examples. Finally, in
Section 5 we obtain sufficient conditions for the continuity and compactness of the
embeddings for Triebel-Lizorkin spaces with radial A∞ weights (Theorem 5.1) and
an example in this case.
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2. Weighted Besov and Triebel-Lizorkin spaces

First we recall some necessary definitions. For classical references on Besov and
Triebel-Lizorkin spaces see [22, 30]. For weighted versions see [3, 25].

Definition 2.1 (Construction of the Littlewood-Paley partition). Let ϕ ∈ S (Rn)
be such that

(2.1) 0 ≤ ϕ̂(ξ) ≤ 1, ξ ∈ Rn, ϕ̂(ξ) = 1 if |ξ| ≤ 1, ϕ̂(ξ) = 0 if |ξ| ≥ 3

2
.

Let ϕ̂0 = ϕ̂, ϕ̂1(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ), and

ϕ̂µ(ξ) = ϕ̂1(2−µ+1ξ) = ϕ̂(2−µξ)− ϕ̂(2−µ+1ξ), ξ ∈ Rn, µ ≥ 1.

Then

0 ≤ ϕ̂µ(ξ) ≤ 1, ϕ̂µ(ξ) = 1 if
3

2
2µ−1 ≤ |ξ| ≤ 2µ, supp ϕ̂µ ⊂

{
2µ−1 ≤ |ξ| ≤ 3

2
2µ
}
.

Let Φ be the set of all sequences (ϕµ)µ≥0 constructed in the above way from a
function ϕ that satisfies (2.1).

For ϕ as in the definition and f ∈ S ′(Rn) one sets

Sµf := ϕµ ∗ f = F−1[ϕ̂µf̂ ],

which belongs to C∞(Rn)∩S ′(Rn). Since
∑
µ≥0 ϕ̂µ(ξ) = 1 for all ξ ∈ Rn, we have∑

µ≥0 Sµf = f in the sense of distributions.

Given a weight w, that is a non-negative locally integrable function on Rn, and
a real number p ∈ [1,+∞], we denote by Lp(Rn, w) the weighted Lebesgue space
defined as the space of those measurable functions f : Rn → R such that

‖f‖pLp(Rn,w) :=

∫
Rn
|f |p w(x) dx <∞

if 1 ≤ p < +∞, and ‖f‖L∞(Rn,w) = ‖f‖L∞(Rn).
Let us recall that, for 1 < p < +∞, the Muckenhoupt class Ap is the class

of weights w for which the maximal Hardy-Littlewood operator is bounded from
Lp(Rn, w) to itself, and that it can be characterized by the condition(

1

|B|

∫
B

w

)(
1

|B|

∫
B

w1−p′
)p−1

≤ C

for all balls B ⊆ Rn, where the constant C depends on w but is independent of
B. On the other hand, we say that w ∈ A1 if Mw(x) ≤ Cw(x) a.e., and we set
A∞ =

⋃
p≥1Ap. We refer to [11] for a detailed account of these weights.

Given real numbers p, q ∈ [1,∞], s ∈ R and a weight w ∈ A∞, we can de-
fine following [2] the weighted Besov and Triebel-Lizorkin spaces Bsp,q(Rn, w) and
F sp,q(Rn, w) in the following way

Definition 2.2. The (inhomogeneous) Besov space Bsp,q(Rn, w) is defined as the
space of all f ∈ S ′(Rn) for which

‖f‖Bsp,q(Rn,w) :=
(∑
µ≥0

2qµs‖Sµf‖qLp(Rn,w)

)1/q

<∞.

with the usual modifications for q =∞.
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Definition 2.3. Assume that p <∞. The (inhomogeneous) Triebel-Lizorkin space
F sp,q(Rn, w) is defined as the space of all f ∈ S ′(Rn) for which

‖f‖F sp,q(Rn,w) :=
∥∥∥(∑

µ≥0

2qµs|Sµf |q
)1/q∥∥∥

Lp(Rn,w)
<∞.

with the usual modifications for q =∞.

Remark 2.1. (1) It can be proved that these definitions do not depend on the
choice of the particular ϕ in (2.1), see e.g. [3].

(2) The corresponding homogeneous spaces denoted by Ḃsp,q(Rn, w) and Ḟ sp,q(Rn, w)
are defined in a similar way with the sum running over Z with appropriate
modifications of the partition of unity. Observe that ‖f‖Bsp,q(Rn,w) = 0 if

and only if supp f̂ = {0}, i.e., f is a polynomial. For this reason it is usual

to consider instead the quotient spaces Ḃsp,q(Rn, w)/P and Ḟ sp,q(Rn, w)/P
where P is the space of polynomials.

(3) If w ≡ 1, we write Bsp,q(Rn) instead of Bsp,q(Rn, w) and F sp,q(Rn) instead of
F sp,q(Rn, w).

The group O(n) of Rn acts on S (Rn) by (σ, φ) ∈ O(n)×S (Rn)→ σφ ∈ S (Rn)
with σφ(x) := φ(σ−1x). Then, for any f, φ ∈ S (Rn) and σ ∈ O(n) there holds
that (σ.f, φ)L2 = (f, σ−1φ)L2 . We thus define the action of O(n) on S ′(Rn) by
(σ, f) ∈ O(n)×S ′(Rn)→ σ.f ∈ S ′(Rn) with

(2.2) (σ.f, φ) := (f, σ−1φ) for any φ ∈ S (Rn).

This motivates our next definition:

Definition 2.4. We say that a tempered distribution f ∈ S ′(Rn) is radial if σ.f =
f for any σ ∈ O(n) where σ.f is defined by (2.2).

The Besov and Triebel-Lizorkin spaces of radial distributions will be denoted by
RBsp,q(Rn, w) and RF sp,q(Rn, w), respectively. The following embeddings between
these spaces are elementary and follow from the corresponding non-radial situation
(see [2, Theorem 2.6]).

Theorem 2.1. Let w ∈ A∞. Then

(1) For all 1 ≤ q1 ≤ q2 ≤ ∞ and s ∈ R one has

RBsp,q1(Rn, w) ↪→ RBsp,q2(Rn, w), p ∈ [1,∞];

RF sp,q1(Rn, w) ↪→ RF sp,q2(Rn, w), p ∈ [1,∞].

(2) For all q1, q2 ∈ [1,∞], s ∈ R and ε > 0 one has

RBs+εp,q1(Rn, w) ↪→ RBsp,q2(Rn, w), p ∈ [1,∞];

RF s+εp,q1 (Rn, w) ↪→ RF sp,q2(Rn, w), p ∈ [1,∞].

(3) For all q ∈ [1,∞], s ∈ R and p ∈ [1,∞) one has

RBsp,min{p,q}(R
n, w) ↪→ RF sp,q(Rn, w) ↪→ RBsp,max{p,q}(R

n, w).
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We now state a weighted version due to [2] of the continuity of Peetre maximal
function originally defined in [23].

Let a > 0 and {φµ}µ≥0 be a sequence of functions in S (Rn) such that

supp φ̂µ ⊂ {2µ−a ≤ |ξ| ≤ 2µ+a},
and

|Dαφ̂µ(ξ)| ≤ Cn2−µ|α| for all µ ≥ 0, α ∈ Nd, ξ ∈ Rn.
This holds e.g. if φ̂µ(ξ) = φ̂1(2−µξ). For a given λ > 0 the Peetre maximal functions
of f ∈ S ′(Rn) are

(2.3) φ∗µ,λf(x) = φ∗µf(x) = sup
y∈Rn

|φµ ∗ f(x− y)|
(1 + 2µ|y|)λ

, x ∈ Rn, µ ≥ 0.

Theorem 2.2. [2, Section 5] Let r0 = inf{r : w ∈ Ar}.
i) If λ > max{nr0p , nq } then

(2.4)

∥∥∥∥∥∥∥
∑
µ≥0

[2µsφ∗µf(x)]q

 1
q

∥∥∥∥∥∥∥
Lp(Rn,w)

≤ C‖f‖F sp,q(Rn,w) for all f ∈ S ′(Rn).

ii) If λ > nr0
p then∑

µ≥0

[2µs‖φ∗µf‖Lp(Rn,w)]
q

 1
q

≤ C‖f‖Bsp,q(Rn,w) for all f ∈ S ′(Rn).

3. Construction of radial wavelets for weighted Besov and
Triebel-Lizorkin spaces

In this section we develop a suitable wavelet decomposition adapted to the
weighted radial situation. Our starting point is the construction of radial wavelets
of Epperson and Frazier [9].

Let Φ,Ψ, ϕ, ψ ∈ S (Rn) be radial functions such that

supp Φ̂, supp Ψ̂ ⊂ {|ξ| ≤ 1}, |Φ̂(ξ)|, |Ψ̂(ξ)| ≥ c > 0 if |ξ| ≤ 5/6,

supp ϕ̂, ψ̂ ⊂ {1/4 < |ξ| < 1}, |ϕ̂|, |ψ̂| ≥ c > 0 if 3/10 ≤ |ξ| ≤ 5/6,

and

Φ̂(ξ)Ψ̂(ξ) +
∑
µ≥1

ϕ̂µ(ξ) ψ̂µ(ξ) = 1 for ξ 6= 0.

where ϕµ(x) = 2µnϕ(2µx) and ψµ(x) = 2µnψ(2µx). We then define a family of
functions (ϕµk)µ≥0,k≥1 by

ϕµk =


(

2(µ(n−2)+1)

jnν,kJ
2
ν+1(jν,k)ωn−1

)1/2

ϕµ ∗ dσ2−µjν,k for µ ≥ 1,(
2

jnν,kJ
2
ν+1(jν,k)ωn−1

)1/2

Φ ∗ dσ2−µjν,k for µ = 0,

where dσt denotes the (unnormalized) surface Lebesgue measure on the sphere of
radius t in Rn, ωn−1 the surface of the unit sphere, and

0 < jν,1 < jν,2 < . . . < jν,k < . . .
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denote the positive zeros of the Bessel function Jν with ν = (n − 2)/2. We define
in a similiar way the functions (ϕµk)µ≥0,k≥1. Then the Epperson-Frazier wavelet
expansion for a radial distribution f ∈ S ′(Rn) is given by

f =
∑
µ≥0

∑
k≥1

〈f, ϕµ,k〉ψµ,k.

Epperson and Frazier were able to characterize the membership of f to (un-
weighted) Besov or Triebel-Lizorkin spaces in terms of the wavelet coefficients
〈f, ϕµ,k〉. Our purpose in this section is to show that analogous results hold for
the weighted version of these spaces when the weight belongs to the A∞ class.

We consider the annuli Aµ,k, µ ≥ 0, k ≥ 1, defined by

Aµ,k = {x ∈ Rn, 2−µjν,k−1 ≤ |x| ≤ 2−µjν,k} with jν,0 = 0,

and denote by χµ,k := |Aµ,k|−1/2χAµ,k its L2-normalized characteristic function.
Given real numbers p, q ∈ [1,∞], s ∈ R and a weight w ∈ A∞ we let bsp,q(w) and
fsp,q(w) be the spaces of sequences of complex numbers λ := (λµ,k)µ,k such that

‖λ‖bsp,q(w) :=
(∑
µ≥0

∥∥∥∑
k≥1

2µs|λµ,k|χµ,k
∥∥∥q
Lp(Rn,w)

) 1
q

<∞,

and

‖λ‖fsp,q(w) :=
∥∥∥(∑

µ≥0

∑
k≥1

[2µs|λµ,k|χµ,k]q
) 1
q
∥∥∥
Lp(Rn,w)

<∞

respectively, with the usual modifications if q =∞.

Our first result is the following:

Theorem 3.1. Let p, q ∈ [1,∞] and w ∈ A∞. Then, the operators

S : f ∈ RF sp,q(Rn, w)→ (〈f, ϕµ,k〉)µ,k ∈ fsp,q(w)

and

T : λ ∈ fsp,q(w)→
∑
µ≥0

∑
k≥1

λµ,kψµ,k ∈ RF sp,q(Rn, w)

are bounded, and the composition T ◦ S is the identity on RF sp,q(Rn, w). In partic-
ular, ‖f‖RF sp,q(w) ' ‖S(f)‖fsp,q(w).

Remark 3.1. The same type of result holds for homogeneous spaces with the usual
modification, namely, by summing over µ ∈ Z and suppressing Φ and Ψ.

Proof. The case w ≡ 1 corresponds to [9, Theorem 2.1 and 2.2]. Since the proof
in the general case is a modification of those results, we sketch it indicating where
changes are needed. These mainly concern the continuity of the Peetre maximal
function and of the Hardy-Littlewood maximal function for sequences of functions.

Concerning the continuity of S we have as in the proof of [9, Theorem 2.1] that
for any µ ≥ 0 and λ > 0,∑

k≥1

(2µs|〈f, ϕµ,k〉|χµ,k(x))q ≤ Cλ2µsq|ϕ∗µf(x)|q a.e.
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where ϕ∗µ is the Peetre maximal function as defined in (2.3) for λ > 0. According
to Theorem 2.2 we obtain, taking λ big enough, that

‖S(f)‖fsp,q(w) ≤ C
∥∥∥(∑

µ≥0

2µsq|ϕ∗µf(x)|q
) 1
q
∥∥∥
Lp(Rn,w)

≤ C‖f‖RF sp,q(w).

Concerning the continuity of T , fix λ ∈ fsp,q(w) and let f =
∑
µ≥0

∑
k≥1 λµ,kψµ,k.

Then for any η ∈ (0, 1] such that p/η, q/η > 1 we have as in [9] that

‖f‖RF sp,q(w) =
∥∥∥(∑

µ≥0

(2µs|ϕµ ∗ f |)q
) 1
q
∥∥∥
Lp(Rn,w)

≤ C
∥∥∥(∑

µ≥0

(
M
(∑
k≥1

(2µs|λµ,k|χµ,k)η
)) q

η
) η
q
∥∥∥ 1
η

L
p
η (Rn,w)

,

where M is the Hardy-Littlewood maximal function. According to [1, Theorem 3.1]
or [15, Theorem 1], the vector-valued maximal function between weighted spaces

M : (fµ)µ ∈ Lα(`β , w)→ (Mfµ)µ ∈ Lα(`β , w)

is continuous when the weight w belongs to the Aα class with 1 < α, β <∞. Here
Lα(`β) denotes the space of sequences of locally integrable functions (fµ)µ such
that

‖(fµ)µ‖αLα(`β ,w) :=

∫
Rn

(∑
µ

|fµ|β
)α
β

w dx <∞.

Since w ∈ Ap, taking η small enough to have p/η > r0 := inf {r : w ∈ Ar} we get

that w ∈ A p
η

. It follows that M : Lp/η(`q/η, w)→ Lp/η(`q/η, w) is continuous. We

thus obtain

‖f‖RF sp,q(w) ≤ C
∥∥∥(∑

µ≥0

(∑
k≥1

(2µs|λµ,k|χµ,k)η
) q
η
) η
q
∥∥∥ 1
η

L p
η

(Rn,w)
.

Since for given µ the annuli Aµ,k, k ≥ 1, are essentially disjoint we obtain

‖f‖RF sp,q(w) ≤ C
∥∥∥(∑

µ≥0

∑
k≥1

(2µs|λµ,k|χµ,k)q
) 1
q
∥∥∥
Lp(Rn,w)

= C‖λ‖fsp,q(w).

�

The analogous statement for weighted Besov spaces reads as follows:

Theorem 3.2. Let p, q ∈ [1,∞] and w ∈ A∞. Then, the operators

S : f ∈ RBsp,q(Rn, w)→ (〈f, ϕµ,k〉)µ,k ∈ bsp,q(w)

and

T : λ ∈ bsp,q(w)→
∑
µ≥0

∑
k≥1

λµ,kψµ,k ∈ RBsp,q(Rn, w)

are bounded, and the composition T ◦ S is the identity on RBsp,q(Rn, w). In partic-
ular, ‖f‖RBsp,q(w) ' ‖S(f)‖bsp,q(w). The same result holds also for the homogeneous

version of these spaces.
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Proof. The unweighted case w = 1 corresponds to [9, Theorems 5.1 and 5.2].
For the continuity of S, as in the proof of the previous theorem, we obtain that∑

k≥1

2µs|(〈f, ϕµ,k〉)|χµ,k(x) ≤ C2µs|ϕ∗µf(x)| a.e.

where ϕ∗µ is the Peetre maximal function for a given λ > 0. Taking λ big enough
and using Theorem 2.2 we have

‖S(f)‖bsp,q(w) ≤ C
(∑
µ≥0

2µsq‖ϕ∗µf‖
q
Lp(Rn,w)

) 1
q ≤ C‖f‖RBsp,q(w).

For the continuity of T , fix λ ∈ bsp,q(w) and let f =
∑
µ≥0

∑
k≥1 λµ,kψµ,k. Then,

arguing similarly as in the Triebel-Lizorkin case we see that for any µ ≥ 0,

‖ϕµ ∗ f‖Lp(Rn,w) ≤ C
µ+1∑

ν=µ−1

∥∥∥(M(∑
k≥1

|λν,k|ηχην,k
)) 1

η
∥∥∥
Lp(Rn,w)

= C

µ+1∑
ν=µ−1

∥∥∥M(∑
k≥1

|λν,k|ηχην,k
)∥∥∥1/η

Lp/η(Rn,w)
.

Since w ∈ A∞, setting as before r0 := inf{r : w ∈ Ar} and taking η small enough to
have r0 < p/η we get that w ∈ A p

η
so that the maximal operatorM : Lp/η(Rn, w)→

Lp/η(Rn, w) is continous. Then∥∥∥M(∑
k≥1

|λν,k|ηχην,k
)∥∥∥1/η

Lp/η(Rn,w)
≤ C

∥∥∥∑
k≥1

|λν,k|ηχην,k
∥∥∥1/η

Lp/η(Rn,w)

= C
∥∥∥∑
k≥1

|λν,k|χν,k
∥∥∥
Lp(Rn,w)

,

where we have used the fact that for given ν, the annuli Aν,k are essentially disjoint.
We deduce that

‖f‖qRBsp,q(w) =
∑
µ≥0

2µsq‖ϕµ ∗ f‖qLp(Rn,w)

≤ C
∑
µ≥0

2µsq
µ+1∑

ν=µ−1

∥∥∥∑
k≥1

|λν,k|χν,k
∥∥∥q
Lp(Rn,w)

≤ C
∑
µ≥0

2µsq
∥∥∥∑
k≥1

|λν,k|χν,k
∥∥∥q
Lp(Rn,w)

= C‖λ‖qbsp,q(w)

�

4. Continous and compact embeddings of weighted radial Besov
spaces

In this section we use Theorem 3.2 to obtain sufficient conditions for the con-
tinuity and compactness of the embeddings of weighted radial Besov spaces, and
apply these results to some relevant examples.
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Theorem 4.1. Let p1, p2, q1, q2 ∈ [1,∞] and w1, w2 be A∞-weights. There is a
continuous embedding RBs1p1,q1(Rn, w1)→ RBs2p2,q2(Rn, w2) provided that

(4.1)

2−µ(s1−s2)

∥∥∥∥∥
{
w2
µk

w1
µk

}
k

∥∥∥∥∥
`p∗


µ

∈ `q∗

where

w1
µk = ‖χ̃Aµk‖Lp1 (Rn,w1), w2

µk = ‖χ̃Aµk‖Lp2 (Rn,w2),

and
1

p∗
:=

(
1

p2
− 1

p1

)
+

,
1

q∗
:=

(
1

q2
− 1

q1

)
+

.

The embedding is compact provided that (4.1) holds and moreover

lim
µ→+∞

2µ(s2−s1)

∥∥∥∥∥
{
w2
µk

w1
µk

}
k

∥∥∥∥∥
`p∗

= 0 if q∗ =∞

lim
|k|→+∞

w1
µk

w2
µk

=∞ for all µ ≥ 0 if p∗ =∞.

Proof. By Theorem 3.2 it suffices to study the embedding of the corresponding
sequence spaces

bs1p1,q1(w1)→ bs2p2,q2(w2)

that is, using the notation of [17, section 3],

`q1(2µs1`p1(w1))→ `q2(2µs2`p2(w2)).

Notice that the continuity of this embedding is equivalent to the continuity of the
embedding

`q1(2µ(s1−s2)`p1(
w1

w2
))→ `q2(`p2).

Indeed

‖λ‖`q2 (2µs2`p2 (w2)) = ‖λ̃‖`q2 (`p2 ), with λ̃µk = λµkw
2
µk2µs2 .

We can rewrite this embedding using the notation of [17] as

`q1(βµ`p1(w))→ `q2(`p2) with βµ = 2µ(s1−s2), w = (wµk)µk, wµk =
w1
µk

w2
µk

.

According to [17, Theorem 3.1], this embedding is continuous if and only if

(β−1
µ ‖(w−1

µk )k‖`p∗ )µ ∈ `q∗

which proves that RBs1p1,q1(w1) ⊆ RBs2p2,q2(w2) if (4.1) holds.
This embedding is compact if moreover

lim
µ→+∞

β−1
µ ‖(w−1

µk )k‖`p∗ = 0 if q∗ =∞

lim
|k|→+∞

wµk =∞ for all µ ≥ 0 if p∗ =∞.

which proves the theorem. �
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As an example of application we now consider the case w1(x) = |x|γ1 , w2(x) =
|x|γ2 with γ1, γ2 > −n so that w1, w2 are A∞-weights. In order to simplify the
statement of the following examples we introduce

(4.2) δ := s1 −
n

p1
− s2 +

n

p2
.

Example 4.1. Let p1, p2, q1, q2 ∈ [1,∞] and γ1, γ2 > −n. There is a continuous
embedding RBs1p1,q1(Rn, |x|γ1)→ RBs2p2,q2(Rn, |x|γ2) provided that{

γ1
p1
− γ2

p2
≥ (n− 1)

(
1
p2
− 1

p1

)
if p∗ =∞

γ1
p1
− γ2

p2
> n

p∗ if p∗ <∞
and

{
δ ≥ γ1

p1
− γ2

p2
if q∗ =∞

δ > γ1
p1
− γ2

p2
if q∗ <∞

where δ is as in (4.2). This embedding is compact provided that the previous con-
ditions hold and moreover

γ1

p1
− γ2

p2
> (n− 1)

(
1

p2
− 1

p1

)
if p∗ =∞ and δ >

γ1

p1
− γ2

p2
if q∗ =∞.

Proof. Since |x| ∼ k2−µ for x ∈ Aµk, we have for i = 1, 2 that

wiµk = ‖χ̃Aµk‖Lpi (|x|γi ) ∼ |Aµk|−1/2((k2−µ)γi |Aµk|)
1
pi .

Moreover |Aµk| ∼ kn−12−µn. Hence

w2
µk

w1
µk

∼ 2µ(
n+γ1
p1
−n+γ2

p2
)k

γ2
p2
− γ1p1 +(n−1)( 1

p2
− 1
p1

).

Then if e.g. p∗, q∗ <∞ then (4.1) writes∑
k

kp
∗(
γ2
p2
− γ1p1 +(n−1)( 1

p2
− 1
p1

)) <∞ and
∑
µ

2µq
∗(
γ1
p1
− γ2p2−δ) <∞

i.e.

p∗
(
γ2

p2
− γ1

p1
+ (n− 1)

(
1

p2
− 1

p1

))
< −1 and q∗

(
γ1

p1
− γ2

p2
− δ
)
< 0.

Recalling the definition of p∗, q∗ this gives the statement.
Concerning the compactness we have

2µ(s2−s1)

∑
k

(
w2
µk

w1
µk

)p∗
1
p∗

∼ 2µ(
γ1
p1
− γ2p2−δ)

{∑
k

k
p∗

(
γ2
p2
− γ1p1 +(n−1)( 1

p2
− 1
p1

)
)} 1

p∗

where the sum in the right hand side is finite.
�

Remark 4.1. (1) It is immediate form the above example that one has an
improvement with respect to the non-radial case, c.f. [12, Proposition 2.8].
Indeed, in the case p∗ = ∞ (that is, p1 ≤ p2) we can have γ1

p1
− γ2

p2
< 0,

in which case δ can be negative as well, while in the non-radial case both
values must be non-negative.

(2) An alternative proof of the continuity part of the above example can be found
in [7, Theorem 12]. For the corresponding non-radial case see [19, Theorem
1.1].
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Our next examples concern weights of purely polynomial growth. To this end,

let wα,β =

{
|x|α if |x| ≤ 1

|x|β if |x| > 1
with α, β > −n.

Example 4.2. Let −∞ < s2 ≤ s1 <∞, 0 < p1 <∞, 0 < p2 ≤ ∞ and 0 < q1, q2 ≤
∞. Then, there is a continuous embedding RBs1p1,q1(Rn, wα,β)→ RBs2p2,q2(Rn) pro-
vided {

β
p1
≥ (n− 1)( 1

p2
− 1

p1
) if p∗ =∞

β
p1
> n

p∗ if p∗ <∞

and one of the following conditions is satisfied:
δ ≥ max( αp1 , (n− 1)( 1

p2
− 1

p1
)) if q∗ =∞, p∗ =∞

δ > max( αp1 , (n− 1)( 1
p2
− 1

p1
)) if q∗ <∞, p∗ =∞

δ ≥ max( αp1 ,
n
p∗ ) if q∗ =∞, p∗ <∞, np∗ 6=

α
p1

δ > max( αp1 ,
n
p∗ ) otherwise

Moreover the embedding RBs1p1,q1(Rn, wα,β)→ RBs2p2,q2(Rn) is compact provided that{
β
p1
> (n− 1)( 1

p2
− 1

p1
) if p∗ =∞

β
p1
> n

p∗ if p∗ <∞

and {
δ > max( αp1 , (n− 1)( 1

p2
− 1

p1
)) if p∗ =∞

δ > max( αp1 ,
n
p∗ ) if p∗ <∞

Proof. Consider first the Besov case. We have

w2
µk

w1
µk

∼ k(n−1)( 1
p2
− 1
p1

) 2−µn( 1
p2
− 1
p1

) ×

{
k−

α
p1 2

µα
p1 if k ≤ 2µ

k−
β
p1 2

µβ
p1 if k > 2µ

Then if e.g. p∗ =∞, q∗ <∞, (4.1) writes

∑
µ

2µq
∗[(s2−s1)−n( 1

p2
− 1
p1

)+ α
p1

]

(
sup
k≤2µ

k(n−1)( 1
p2
− 1
p1

)− α
p1

)q∗
<∞

and ∑
µ

2µq
∗[(s2−s1)−n( 1

p2
− 1
p1

)+ β
p1

]

(
sup
k>2µ

k(n−1)( 1
p2
− 1
p1

)− β
p1

)q∗
<∞

which gives the statement. As for the compactness, we need that

lim
|k|→∞

k(n−1)( 1
p2
− 1
p1

)− β
p1 = 0.

The remaining cases are analogous.
�

The generalization to the following two-weighted embeddings is straightforward:
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Example 4.3. Let −∞ < s2 ≤ s1 < ∞, 0 < p1 < ∞, 0 < p2 ≤ ∞ and
0 < q1, q2 ≤ ∞. Then, there is a continuous embedding RBs1p1,q1(Rn, wα1,β1) →
RBs2p2,q2(Rn, wα2,β2

) provided{
β1

p1
− β2

p2
≥ (n− 1)( 1

p2
− 1

p1
) if p∗ =∞

β1

p1
− β2

p2
> n

p∗ if p∗ <∞

and one of the following conditions is satisfied:
δ ≥ max(α1

p1
− α2

p2
, (n− 1)( 1

p2
− 1

p1
)) if q∗ =∞, p∗ =∞

δ > max(α1

p1
− α2

p2
, (n− 1)( 1

p2
− 1

p1
)) if q∗ <∞, p∗ =∞

δ ≥ max(α1

p1
− α2

p2
, np∗ ) if q∗ =∞, p∗ <∞, np∗ 6=

α1

p1
− α2

p2

δ > max(α1

p1
− α2

p2
, np∗ ) otherwise

where δ is as in (4.2).
Moreover the embedding RBs1p1,q1(Rn, wα1,β1

) → RBs2p2,q2(Rn, wα2,β2
), p1, p2 ∈

(0,∞), is compact provided that{
β1

p1
− β2

p2
> (n− 1)( 1

p2
− 1

p1
) if p∗ =∞

β1

p1
− β2

p2
> n

p∗ if p∗ <∞
and one of the following conditions is satisfied:{

δ > max(α1

p1
− α2

p2
, (n− 1)( 1

p2
− 1

p1
)) if p∗ =∞

δ > max(α1

p1
− α2

p2
, np∗ ) if p∗ <∞

5. Continuous and compact embeddings of weighted radial
Triebel-Lizorkin spaces

Our next result concers embeddings for Triebel-Lizorkin spaces with radial A∞
weights. We will follow the approach in [20], which is based on a Gagliardo-
Nirenberg type inequality and two lemmas on products of Muckenhoupt weights
that we recall for the reader’s convenience.

Proposition 5.1. [19, Proposition 5.1] Let q, q0, q1 ∈ [1,∞] and θ ∈ (0, 1). Let
p, p0, p1 ∈ (1,∞) and −∞ < s0 < s1 <∞ satisfy

1

p
=

1− θ
p0

+
θ

p1
and s = (1− θ)s0 + θs1.

Let further w,w0, w1 ∈ A∞ be such that w = w
(1−θ)p/p0
0 w

θp/p1
1 . Then there exists a

constant C such that for all f ∈ S ′(Rn) one has

‖f‖F sp,q(w) ≤ C‖f‖1−θF
s0
p0,q0

(w0)
‖f‖θ

F
s1
p1,q1

(w1)
.

Lemma 5.1. [20, Lemma 3.1] Let 1 < p < ∞ and w1, w2 ∈ Ap. Then, there is

η0 > 0 such that, for all ε, δ ∈ [0, η0) one has w−ε1 w1+δ
2 ∈ Ap.

Lemma 5.2. [20, Lemma 3.2] Let w1, w2 ∈ A∞. Then there are η0 > 0 and a
constant C > 0 such that for all ε, δ ∈ (0, η0) and all cubes Q ⊂ Rn we have∫

Q

w−ε1 w1+δ
2 dx ≤ C|Q|ε−δ

(∫
Q

w1 dx

)−ε(∫
Q

w2 dx

)1+δ

.
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Since our functions are supported on annuli instead of cubes, we will need another
auxiliary lemma on the behavior of products of radial Muckenhoupt weights over
these sets. To this end, we first recall the following characterization of radial Ap
weights given by Duoandikoetxea et al. in [8]:

Lemma 5.3. [8, Theorem 3.2] Let w0 : (0,∞) → [0,∞] and wn(x) = w0(|x|)
for x ∈ Rn. Then wn is in Ap(Rn) if and only if δnw0 is in Ap(0,+∞), where

δnw0(t) = w0(t1/n).

Lemma 5.4. Let w1, w2 ∈ A∞, w1(x) = w̃1(|x|), w2(x) = w̃2(|x|) for all x ∈ Rn.
Then, there exists η0 > 0 such that for all ε ∈ (0, η0) and any annnulus Dab = {x ∈
Rn : a ≤ |x| ≤ b}, a, b ∈ R+,∫

Dab

w−ε1 w1+ε
2 dx ≤ C

(∫
Dab

w1 dx

)−ε(∫
Dab

w2 dx

)1+ε

Proof. Fix p > 1 such that w1, w2 ∈ Ap, let η0 be as in Lemma 5.2 and ε ∈ (0, η0).
Taking polar coordinates we obtain∫

Dab

w−ε1 w1+ε
2 dx = ωn−1

∫ b

a

w̃−ε1 w̃1+ε
2 rn−1 dr

= ωn−1

∫ bn

an
(δnw̃1)−ε (δnw̃2)1+ε dr

n

≤ Cωn−1

(∫ b

a

δnw̃1 dr

)−ε(∫ b

a

δnw̃2 dr

)1+ε

where the last bound follows from Lemma 5.2, and we have used the fact that
δnw̃1, δnw̃2 ∈ Ap(0,+∞) by Lemma 5.3. Changing variables again we obtain the
desired bound. �

Now we are ready to prove our result for Triebel-Lizorkin spaces:

Theorem 5.1. Let 1 ≤ p1 ≤ p2 ≤ ∞, q1, q2 ∈ [1,∞] and w1, w2 be radi-
ally symmetric A∞-weights. There is a continuous embedding RF s1p1,q1(Rn, w1) →
RF s2p2,q2(Rn, w2) provided that

(5.1) sup
µ,k

{
2−µ(s1−s2)

w2
µk

w1
µk

}
< +∞

where

w1
µk = ‖χ̃Aµk‖Lp1 (Rn,w1), w2

µk = ‖χ̃Aµk‖Lp2 (Rn,w2),

The embedding is compact provided that (5.1) holds and

lim
|k|→+∞

w1
µk

w2
µk

=∞ for all µ ≥ 0.

Proof. The proof has two steps: proving the continuity of the embedding and then
the compactness.

For the first part, we follow closely the approach in [20], which we outline for the
reader’s convenience. Note that it suffices to prove the continuity of the embedding
RF s1p1,q1(Rn, w1) ↪→ RF s2p2,q2(Rn, w2) with q2 ≤ min{p1, p2} since then the result
follows from Theorem 2.1(3).
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Since p2 ≥ p1, there exists θ0 ∈ [0, 1) such that 1
p2
− 1−θ0

p1
= 0 (in fact, θ0 = p2

p1
−1).

For θ ∈ (θ0, 1), let

ε =

1−θ
p1

1
p2
− 1−θ

p1

> 0

which clearly tends to zero as θ → 1, and let v, r, t be defined by the identities

v = w−ε1 w1+ε
2 ,

1

p2
=

1− θ
p1

+
θ

r
, s2 = (1− θ)s1 + θt.

Then, one can check that w2 = w
(1−θ)p2/p1
1 vp2θ/r, r ∈ [p2,+∞) and t < s2 < s1.

Moreover, v ∈ Ap2 ⊆ Ar if θ is sufficiently close to 1 by Lemma 5.1. Hence, by
Proposition 5.1, it holds

(5.2) ‖f‖RF s2p2,q2 (Rn,w2) ≤ C‖f‖
1−θ
RF

s1
p1,q1

(Rn,w1)
‖f‖θRF tr,r(Rn,v)

Now, since RBsp,p = RF sp,p and r ≥ p2, by Theorem 4.1

‖f‖RF tr,r(Rn,v) ≤ C‖f‖RF s2p2,p2 (Rn,w2)

holds provided that

(5.3) sup
k,µ

2−µ(s2−t)

(∫
Aµk

v

)1/r (∫
Aµk

w2

)1/p2

< +∞.

But, by Lemma 5.4 ∫
Aµk

v ≤ C

(∫
Aµk

w1

)−ε(∫
Aµk

w2

)1+ε

whence, replacing this bound into (5.3) and noting that s2 − t = (s1 − s2) 1−θ
θ ,

ε
r = 1

p1
1−θ
θ , and 1+ε

r = 1
θp2

, the desired bound finally follows from condition (5.1).

Since q2 ≤ p2 by the above assumption, we may replace RF s2p2,p2 on the right

hand side of (5.2) by RF s2p2,q2 , and divide by ‖f‖θ
RF

s2
p2,q2

(Rn,w2)
to obtain the bound

‖f‖RF s2p2,q2 (Rn,w2) ≤ C‖f‖RF s1p1,q1 (Rn,w1).

Notice that, in principle, this bound holds in the intersection RF s1p1,q1(Rn, w1) ∩
RF s2p2,q2(Rn, w2), but it can be extended by density to RF s1p1,q1(Rn, w1) (see [20,
Proof of Theorem 1.2]).

It remains to prove that the embedding is compact. To this end, let (fk)k∈N be
such that ‖fk‖RF s1p1,q1 (w1) ≤ C. Then, by the embedding we have already proved,

(fk)k∈N is also bounded in RF s2p2,q2(w2) with q2 ≤ min{p1, p2} and, by Theorem

2.1 in RBs2p2,p2(w2). Since, under our hypotheses, the embedding RBtr,r(v) ↪→
RBs2p2,p2(w2) is compact by Theorem 4.1, we have that fk → f in Btr,r = F tr,r.
Then,

‖fk − f‖RF s2p2,q2 (w2) ≤ ‖fk − f‖
1−θ
RF

s1
p1,q1

(w1)
‖fk − f‖θRF tr,r(v) → 0

which proves our statement.
�
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Examples for the same weights considered in the Besov case can be obtained in
an analogous manner. We leave the proofs to the reader.

An interesting special case of the inhomogenous Triebel-Lizorkin spaces is given
by the Bessel potential spaces. In [6] the first two authors proved (with a more
elementary argument) the following result.

Example 5.1. [6, Theorems 6.4 and 7.2] Let 1 < p <∞, 0 < s < n
p , p ≤ q ≤ p∗c =

p(n+c)
n−sp . Then we have a continuous embedding

(5.4) Hs,p
rad(R

n) ⊂ Lq(Rn, |x|cdx)

provided that

(5.5) −sp < c <
(n− 1)(q − p)

p

Morevover, the embedding is compact when p < q < p∗c .

Proof. To see this result as a special case of the embeddings in Theorem 5.1, notice
that Hs,p

rad = RF sp,2 and Lqrad(|x|c) = RF 0
q,2(|x|c) provided |x|c ∈ Aq (that is, −n <

c < n(q−1)). Hence, this case corresponds to the choice w1 = 1, w2 = |x|c, p1 = p,
q1 = 2, p2 = q, and q2 = 2. Moreover, since we are interested in the case q ≥ p,
this implies p∗ = ∞, while q∗ = ∞ by the choice of spaces. Therefore, we obtain

c < (n−1)(q−p)
p and q < p(c+n)

n−sp . The remaining conditions c > −sp and s < n
p are

needed to have a non-empty interval of admissible values of q. �

A different proof of the previous example for p = 2 was also given in [5] by the
first two authors jointly with R. Durán, where that result was used to analyze the
existence of radial solutions of a weighted elliptic system with hamiltonian structure
in Rn.
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[7] P. L. De Nápoli, I. Drelichman. Weighted convolution inequalities for radial functions. Ann.
Mat. Pura Appl. 194 (2015), no. 1, 167–181.

[8] J. Duoandikoetxea, A. Moyua, O. Oruetxebarria, E. Seijo. Radial Ap weights with applications

to the disc multiplier and the Bochner-Riesz operators. Indiana Univ. Math. J. 57 (2008), no. 3,
1261–1281.

[9] J. Epperson, M. Frazier. An almost orthogonal radial wavelet expansion for radial distribu-
tions. J. Fourier Anal. Appl. 1 (1995), no. 3, 311–353.

[10] J. Franke. On the spaces F s
p,q of Triebel-Lizorkin type: Pointwise multipliers and spaces on

domains. Math. Nachr. 125 (1986), 29–68.
[11] J. Garcia-Cuerva, J. L. Rubio de Francia. Weighted norm inequalities and related topics.

North-Holland, Amsterdam, 1985.
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