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A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of
breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional
pattern. Our study is focused on the configuration produced when two long parallel filaments of
silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution,
are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this
kind of grids is that there are two qualitatively different types of drops. While one set is formed at
the crossing points, the rest are consequence of the breakup of shorter filaments formed between
the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of
the footprint and contact angle distribution along the drop periphery. The formation of a series of
short filaments with similar geometric and physical properties allows us to have simultaneously quasi
identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to
predict the number of drops that results from a filament of given initial length and width. This model
is able to yield the length intervals corresponding to a small number of drops, and its predictions are
successfully compared with the experimental data as well as with numerical simulations of the full
Navier–Stokes equation that provide a detailed time evolution of the dewetting motion of the filament
till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing
theories for infinite ones. Published by AIP Publishing. https://doi.org/10.1063/1.4985994

I. INTRODUCTION

The synthesis and assembly of structures play a crucial
role in many fields of technological and scientific interest
both at macroscopic and nanoscales.1 In the applications,
two approaches are usual: one has the possibility of gener-
ating patterns of drops either as a natural consequence of the
instabilities developed in the configuration (self assembly) or
alternatively the forcing of the pattern by external procedures
(directed one). Therefore, several aspects should be taken into
account while forming the desired structures as the wetting or
dewetting processes and hysteresis implied by them, the tex-
ture of the substrate,2,3 the variations in the surface tension,
etc. The complexity of the physics involved in the contact
line behavior is well known,4 and the hysteresis of the contact
angle is very dominant in the rupture of filaments, as shown
in previous experiments.5 However, this fact is not fully taken
into account in many of the previous treatments related to the
formation of drops. This may be partly due to the fact that
many previous studies involve ruptures of thin films where
only dewetting processes are present. However, in order to
form aligned drops, it is convenient to consider the rupture of
filaments where both wetting and dewetting processes com-
pete and may be relevant. This simple configuration is a simple
example where a combination of a directed assembly (forma-
tion of the filament) and the self assembly (rupture to drops) is
useful to produce a certain ordered structure. Moreover, when
studying the rupture of filaments, the geometry is frequently
assumed to be that of an infinite rivulet, where end effects and

two-dimensional structures can be neglected. We aim to con-
sider both aspects by introducing experiments and models that
correspond to a bidimensional grid of filaments.

One of the fields where both self and directed assem-
blies of the previous type are relevant is the generation of
nanoscale metallic particles which can be used as a basis for
controlled growth of carbon nanofibers6 that are fundamental
in numerous settings.7 In a more general fashion, the forma-
tion of nanostructures of metallic materials plays a significant
role in fields that range from plasmonics to liquid crystal dis-
plays and solar cells.8,9 For instance, the size and distribution
of metallic particles affect the coupling of surface plasmons
with incident electromagnetic energy. Thus, it is expected
that the yield of solar cell devices can be largely increased
by controlling this coupling.10 This particular case serves to
illustrate the wide technological importance of being able
to build uniformly distributed and controlled spaced metallic
nanoparticles.11,12

One approach to produce desired nanoscale structures
(metallic or not) with prescribed size and distribution is to
resort to naturally occurring forces that drive the evolution of
instabilities in the liquid phase13 from an initially patterned
nanostructure. Such an approach, if conveniently controlled,
is significantly more efficient than lithographically depositing
individual particles. A recently developed technique consists
of the fast liquefaction (with pulsed lasers) of an initial solid
metallic film, whose form (e.g., a long filament) has been pre-
viously shaped by means of electron beams on an otherwise
extended film. The metal film becomes unstable and breaks up

1070-6631/2017/29(10)/102103/12/$30.00 29, 102103-1 Published by AIP Publishing.

https://doi.org/10.1063/1.4985994
https://doi.org/10.1063/1.4985994
https://doi.org/10.1063/1.4985994
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4985994&domain=pdf&date_stamp=2017-10-09


102103-2 Cuellar et al. Phys. Fluids 29, 102103 (2017)

into droplets while in the liquid phase, and they solidify later on
remaining on the substrate as solid particles. However, a main
trouble in the study of the nanometric scale processes is that it
is very difficult to have a detailed temporal description of the
breakup process. The same type of phenomena is observed in
macroscopic films and filaments deposited on substrates par-
tially wet by a liquid. Although there are obvious differences
between experiments at such different scales, there are also
some common features that have been fruitfully analyzed in
previous work.16,17 On the other hand, the millimetric exper-
iments can be studied with reasonable detail in time and may
provide a good benchmark for the models proposed to describe
the rupture process. Therefore, the understanding of this type
of process for submillimetric scales can provide useful insights
into the processes underlying the ruptures. The focus of this
paper is to understand the patterns of drops self-assembled in
grids of fluid filaments and the way they are produced from
the hydrodynamic point of view.

In our study, the hydrodynamic unstable evolution of liq-
uid filaments deposited on a solid substrate gives rise to a
characteristic geometrical disposition of droplets, which is a
consequence of both the initial conditions and the subsequent
natural development of ruptures.14,15 This can be related to
experimental setups16,18 recently developed at the nanomet-
ric scale that considers a geometry consisting of thin strips
with thicknesses of tens of nanometers, widths of hundreds
of nanometers, and lengths of tens of microns. When lique-
fied by laser pulses of typical duration of tens of nanoseconds,
these strips quickly retract into filaments that then break up
into droplets.

In general, the droplets’ spacing is not uniform, which
is qualitatively compatible with a dispersion curve of the
Rayleigh–Plateau (R–P) type stability analysis. At a first
approach, the breakup mechanism can be thought of in terms of
the R–P analysis of the breakup of a free standing fluid jet.19–21

However, the presence of a substrate adds further physical
effects that strongly modify the instability scenario.22,23 More-
over, if the wettability of the substrate is prone to elicit contact
angle hysteresis effects (as it is the case in our experiments),
the instability mechanisms turn out to be quite different from
those in the free jet problem. Clear evidence of these differ-
ences is the fact that the resulting drops have footprints far
from circular.5,25

It has been proved in the nanometric cases18 that by vary-
ing the width of the deposited metal strip with a sinusoidal
perturbation of a well defined wavelength, the dewetting pro-
cess yields an array of uniformly spaced particles, as long
as this imposed wavelength is unstable in the R-P instability
analysis. It has also been shown that perturbing with stable
(short) wavelengths leads to distances between the particles
that are nonuniform and not related to the imposed perturba-
tion. Although our model problem is in a much larger scale
than the nanometric one, it can be useful to understand part
of the dynamic behavior of the liquid metal when thermal
or molecular origin is neglected. Thus, this approach can
be used as a benchmark to test whether these other phe-
nomena are relevant or not to determine the flow evolution
and geometrical features of the final drops in the nanometric
scale.

In this paper, we focus on the description of the final drop
pattern that results from a given rectangular grid of liquid fil-
aments. The latter is characterized by the distance between
the parallel filaments and its width, 4. In Sec. II, we describe
the experimental setup to generate the grid and discuss the
main features of the liquid and substrate used. In the first
stage, the grid rapidly breaks up around the nodes leading
to a set of shorter filaments along the sides of the rectangles
as well as drops at the crossings. In a later stage, the filaments
start a retraction process from their ends24 and, finally, each
one breaks up into a certain number of drops. Interestingly,
the drops formed at the crossings and those formed along
the filaments have a different morphology. Thus, we devote
Sec. III to study in detail the different geometrical features
of each type of drops. In Sec. IV, we analyze how the spac-
ing and distribution of the final droplets depend on the initial
length of the filament, Li. We study the relationship between
the number of drops and Li by developing a simple hydrody-
namic model and compare its predictions with the experiments
as well as with numerical simulations of the full Navier–
Stokes equation (see Sec. VII). In Sec. VIII, we summarize
the results and we elaborate on applications to nanoscale
configurations.

II. EXPERIMENTAL SETUP

The experiments were carried out by producing liquid fil-
aments made of silicone oil (polydimethylsiloxane, PDMS),
which are placed on a substrate that they partially wet. The
substrate is a microscope slide (glass) which is coated by
immersion in a fluorinated solution (EGC-1700 of 3M) under
controlled speed using a Chemat Dip Coater. This process
ensures that PDMS partially wets the substrate, since the solid-
ified EGC–1700 coating lowers the surface energy of the glass.
In order to have reproducible wetting properties and to get
rid of the solvent remaining in the coating, the coated sub-
strates are left for a pair of days until the solvent is evaporated
and the properties of the coating stabilized. The detailed wet-
tability properties of PDMS on these substrates have been
measured previously.24,25 The wetting phenomenology is of
the hysteretic type, and it is characterized by the advancing
and receding (static) contact angles, θa and θr , respectively.
For the experiments in this work, we have θa = 52◦ and
θr = 44◦.

Both the surface tension, γ, and density, ρ, of PDMS are
measured with a Krüss K11 tensiometer, while its viscosity,
µ, is determined with a Haake VT550 rotating viscometer.
The values obtained for these parameters are γ = 21.0 dyn/cm,
ρ= 0.97 g/cm3, and µ = 90.7 P at temperature T = 23 °C. Thus,
the filament evolution occurs with small values of both the
capillary and Laplace numbers (see Sec. VII for details).

In order to study the formation of different types of
drops, as well as the evolution of short filaments, we develop
a particular configuration that consists of a pair of parallel
long filaments that are crossed at the right angle by another
pair of filaments. We achieve this geometry by first captur-
ing the filaments from two jets flowing down a vessel full
with PDMS. This is done by rotating the substrate holder
360◦ around a vertical axis (see Fig. 1). Quickly afterwards,
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FIG. 1. Experimental setup to produce and capture the pairs of filaments on
the substrate in two steps.

the holder is rotated 90◦ around a horizontal axis and spun
again around the vertical axis to capture another pair of
filaments.

A typical elementary unit of the grid is shown in Fig. 2(a).
After some seconds, four necks develop around the intersec-
tions till finally a drop at the crossings is formed as the necks
break up. Then, the sides of the grids are now short filaments
of an initial length, Li, which start an axial dewetting process
[see Fig. 2(b)]. Each one breaks up into a certain number of
drops as shown in Fig. 2(c). Interestingly, the drops resulting
from the breakup of the filaments have a different morphol-
ogy than those formed at the intersections (see the insets
in Fig. 2).

This arrangement of filaments has several advantages with
respect to a single long filament. First, it enables us the possibil-
ity to study a new type of drop, namely, the one that is formed at
the intersections of the captured filaments. We will see below
that these drops have features (shape, contact angle distribu-
tion, etc.) differing from those generated by the breakup of
the short filaments (see the insets in Fig. 2). Second, since
breakup processes mentioned above originate in the presence
of ends or crossings in the filaments, we wish to study the rela-
tion between the length Li of the filaments and the number of
resulting drops. Note that the short filaments formed after the
breakups at the intersections acquire lengths and shaped ends
that are very similar, allowing a convenient way to have simul-
taneously quasi identical unstable evolutions. Consequently,
we separate our analysis into two different aspects. One is the
characterization of the drops at the intersections of the original
long filaments and of those formed along the short filaments
between the intersections (Sec. III). The other one is the rup-
ture mechanism of these short filaments of controlled length,
whose breakup leads to a linear array of drops (Sec. IV). The

compound effects of these two aspects lead to a bidimensional
array of drops with different shapes and sizes that are arranged
regularly. The possibility of a self-assembly of drops by using
this processes can be of technological interest as explained in
the Introduction.

III. MORPHOLOGY OF THE SESSILE DROPS

In these experiments, we have two types of drops, those
along the filaments and those at the intersections. Both types
of drops have non-circular footprints, but only the first type
has been studied previously.5,25 The drops of the second type
are different and have not been considered before. Therefore,
we shortly revisit the approach done for the former and extend
the analysis to the latter.

The study of sessile drops with non-circular footprint
is performed by looking for solutions of the equilibrium
equation,25

−∇2h + h = C, (1)

where h(ρ, ϕ) is the drop thickness, ρ and ϕ are the radial and
angular polar coordinates, respectively, and C is a constant.
Here, all lengths are expressed in units of the capillary length,
a =

√
γ/ρg and 0 < ϕ < 2π. A solution of this equation can

be written in the separable form h = C + R(ρ)Φ(ϕ). The two
resulting uncoupled ordinary differential equations for R and
Φ can be solved straightforwardly, and we finally get a full
solution of the form25

h(ρ, ϕ) = C +
∞∑

m=0

(Am cos mϕ + Bm sin mϕ)Im(ρ), (2)

after the diverging terms have been discarded. Here, Im(ρ) is
the modified Bessel function of the first kind of order m, and
Am and Bm are constants to be determined.

In the case of the drops along the filament axis, we can
further use the fact that the drops have mirror symmetry with
respect to this axis as well as in the perpendicular direction.
Thus, we must have both Bm = 0 for all m and Am = 0 for
odd m. If we further assume that the shape of the drop can be
reasonably estimated by the first four terms in the summation
of Eq. (2) with even m, a simpler approximate expression can
be used,

h(ρ, ϕ) ≈ C + A0I0(ρ) + A2I2(ρ) cos 2ϕ

+ A4I4(ρ) cos 4ϕ + A6I6(ρ) cos 6ϕ, (3)

where the five unknown constants, (C, A0, A2, A4, A6), must be
determined from the experimental data. In fact, by measuring
the values of the drop diameters 4x and 4y, and the maximum

FIG. 2. Time evolution of a square con-
figuration obtained from two pairs of
parallel filaments that are superimposed
perpendicularly to each other. The insets
show the two different types of drops
that are formed at the intersections and
along the filaments.



102103-4 Cuellar et al. Phys. Fluids 29, 102103 (2017)

FIG. 3. Comparison between the theoretical model (blue
solid lines) and experimental data (black symbols) for
a drop from a filament: (a) shape of the footprint and
(b) contact angle at the drop periphery as a function of
the azimuthal angle. The dashed lines (θa, θr ) stand for
the advancing and receding contact angles used in the
calculation of the theoretical curve.

thickness at its center hmax, we can form the following system
of independent equations,

h
(
wx

2
, 0

)
= 0, h

(wy

2
,
π

2

)
= 0, h(0, 0) = hmax,

∂h
∂x

(
wx

2
, 0

)
= θr ,

∂h
∂y

(wy

2
,
π

2

)
= θa, (4)

where the angles θa and θr stand for the (static) advancing
and receding contact angles of the corresponding hysteresis
cycle. These values are used because the contact line recedes
along the filament (ϕ = 0) after the breakup, while it advances
in the transverse direction (ϕ = π/2). The system of equations
resulting from Eqs. (3) and (4) can be solved analytically for
(C, A0, A2, A4, A6) with which it is possible to calculate the
shape of the footprint as well as the contact angle distribution
around the drop periphery, θ(ϕ). The former can be measured
from digitalized drop images, while the latter is obtained from
the refraction pattern of the drop when impinged by a laser
beam perpendicularly to the substrate.5,25

The comparison between the theoretical results and the
experimental data for one drop along the filament is shown in
Fig. 3. Clearly, the approximate solution is able to reproduce
the quasi-elliptical shape of the footprint [see Fig. 3(a)]. Fur-
thermore, it gives account of the relation θ(ϕ) [see Fig. 3(b)],
and it shows how θ changes from θr = 44◦ at ϕ = 0 and ϕ = π
(along the filament axis) to θa = 52.4◦ at ϕ= 90◦ and 270◦

(in the transverse direction). However, the effect of the cut-
off of terms in the series is more pronounced here than for
the shape of the footprint. In fact, the comparison shows that
the description of the rapid variation of θ(ϕ) at the borders
of the plateau regions, say in the ϕ-intervals (70◦, 130◦) and
(240◦, 300◦), requires more terms in the summation.

Unlike the drops along the filaments, in the case of drops at
the intersections, we have receding (dewetting) motions along
both perpendicular filaments, while there are advancing (wet-
ting) motions along the bisectors (ϕ = ±45◦ and ±135◦). In
fact, as shown in Fig. 4, after breakup, there are regions in
the contact line of the intersection which can be described
as advancing straight and oblique lines. On the contrary, the
vertex regions recede (dewet) along perpendicular directions.
Interestingly, secondary droplets are also formed between the
vertexes and the drops, whose study is out of the scope of this
work.

Therefore, we must consider only solutions with biaxial
symmetry, i.e., with multiplicity 4, and write the following
approximate expression of Eq. (2):

h(ρ, φ) = C + A0I0(ρ) + A4I4(ρ) cos(4ϕ) + A8I8(ρ) cos(8ϕ)

(5)

with (C, A0, A2, A8) being four unknown constants. Analogous
to the drops in the filament, these are determined from the

FIG. 4. Time evolution of the drop formation at the intersection of two long filaments (time increases from left to right and top to bottom). (a) t = 0 s, (b) t = 6
s, (c) t = 12 s, (d) t = 18 s, (e) t = 24 s, (f) t = 30 s, (g) t = 36 s, and (h) t = 42 s.
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FIG. 5. Comparison between the theoretical model (blue
solid lines) and experimental data (black symbols) for a
drop at an intersection: (a) shape of the footprint and
(b) contact angle at the drop periphery as a function of
the azimuthal angle. The dashed lines (θa, θr ) stand for
the advancing and receding contact angles used in the
calculation of the theoretical curve.

boundary conditions,

h
(
wx

2
, 0

)
= 0, h(0, 0) = hmax,

∂h
∂x

(
wx

2
, 0

)
= θ ′r ,

∂h
∂x

(
wb

2
,
π

4

)
= θ ′a, (6)

where 4b is the drop width along the bisector and the angles
(θ ′r , θ ′a) are fitting parameters, which are expected to be close
to the values (θr , θa) obtained from the filament drop. This
system of equations for (C, A0, A2, A8) can also be solved
analytically. Note that, unlike the conditions for the fila-
ment drop in Eq. (4), we do not impose h = 0 at (wb,
π/4), since it is not necessary to determine the four coef-
ficients in Eq. (5). It turns out that this condition is prac-
tically satisfied by the solution, since the resulting thick-
ness is less than 10−2hmax, so that the imposed slope at
(wb, π/4) actually corresponds to a point on the contact line
where h ≈ 0.

A comparison of these theoretical results with the experi-
mental data is shown in Fig. 5. We observe that for θ ′r = 44.8◦

and θ ′a = 51◦, we have a very similar degree of agreement
between theory and experiment for both the footprint shape
and the angular distribution, θ(ϕ), as obtained for the fila-
ment drop case in Fig. 3. The main difference between the
footprints of both types of drops is that now it adopts a quasi-
square shape [Fig. 5(a)], instead of an ellipsoidal one. On
the other hand, the angular distribution in Fig. 5(b) has four
maximums and four minimums for θ(ϕ). As expected, the
latter are located in the middle of the sizes of the rounded
square (ϕ = ±45◦ and ±135◦), and the former are located
at its vertexes (ϕ = k 90◦, k = 0, 1, 2, 3). Interestingly, the
θ-interval for the intersection drop, namely (44.8◦, 51◦), lies
inside the one of the filament drops (44◦, 52.4◦), which is con-
sistent with the expected hysteretic behavior of the contact
angle.

IV. RUPTURE OF SHORT FILAMENTS

The time evolution of the contact line profiles is shown in
Fig. 6 for some filaments seen from top. In this study, we carry
out experiments with Li and w in the ranges 2 mm< Li < 8 mm
and 0.25 mm < 4 < 0.45 mm. As expected, the number of
drops resulting from the breakup process occurring between
the end heads strongly depends on Li or, more precisely, on
the aspect ratio ∆ = Li/w. Our experimental device allows us
to explore the range 5 < ∆ < 38.

When both heads have stopped, their tips have receded a
certain distance Ld , so that the new filament length is

L0 = Li − 2Ld . (7)

In Fig. 7, we show by symbols the measured values of L0

versus Li in units of the corresponding filament width, w. The
distinctive symbols correspond to different numbers of drops
that result from the filament breakups. By approximating these
data with Eq. (7), we find Ld = (2.73 ± 0.06)w, which is
consistent with the results in Ref. 24, where the proportionality
between Ld and 4 was predicted. The axial displacement of
the contact line after the first neck breakup is important to
estimate the final number of drops, since it is the ratio Li/w
that actually determines it.

V. MODEL FOR THE NECK FORMATION BEHIND
THE HEAD

Here, we develop a simple hydrodynamic model to
account for the process formation of the neck at a certain dis-
tance away from the head. We will take into consideration the
approximate shape of the head when it stops receding, which is
close to the moment when the neck begins to form. As a result
of the characteristic positions of the resulting breakups and
the sizes of the drops given by the model, we obtain the pre-
dicted number of drops formed from a filament of given length

FIG. 6. Three times of the evolution of four filaments with different aspect ratios, ∆ = Li/w: (a) ∆ = 7.34, (b) ∆ = 13.5, (c) ∆ = 17.84, and (d) ∆ = 34.65. The
upper, middle, and bottom rows correspond to initial (t = 0), intermediate (t = 110, 130, 200, 210 s), and final (t = 210, 240, 290, 360 s) times of the evolution,
respectively.
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FIG. 7. Filament length when the heads have stopped, L0, versus the initial
length, Li, in units of the filament width, 4. The different symbols stand
for the resulting number of drops. The line corresponds to L0/w = Li/w −
(5.46± 0.13).

and width, w, which can be compared with the experimental
evidence.

We consider that the initial condition, t = 0, is given by the
filament formed after the breakup from the intersections and
that its length is Li. For t > 0, the ends of the filament recede
along the axis of the filament, and a head starts growing in that
region (see Fig. 6), and later on, the motion of the tip stops with
a filament length equal to L0. After a while, a neck region starts
forming in the filament some distance away from the head.
Our aim is to model the process resulting from the flow that
develops between the head and the filament, which determines
the actual position of a neck, where the width is minimum (see
Fig. 8). Since the experiments show that the breakup processes
occur as a consequence of the unstable pinch off of the necks,
we posit that the determination of their positions is closely
related to the number and size of drops that will result from a
given filament.

Once the axially dewetting motion of the ends has fin-
ished, the pressure in the head, ph, is balanced by that in the
connecting region with the filament, pf . Assuming that the fil-
ament cross section in that region is also circular and that the
contact lines are ready to dewet there, we have

pf =
2γ sin θr

w
. (8)

On the other hand, considering the axial and transverse curva-
ture radii at the head region, the pressure in this region can be

FIG. 8. Sketch of the head and neck regions showing the parameters used in
the model.

estimated as

ph = 2γ

(
sin θa

wh
+

sin θr

Lh

)
, (9)

where wh and Lh are the width and length of the head, respec-
tively. Now, we assume that the shape of the head (or at least
the region between the apex and the tip) does not differ sig-
nificantly from that of the resulting drop at rest, a fact that
has been observed in the experiments. Thus, we can use the
following geometrical property

Lh =
θa

θr
wh, (10)

that has been found to be valid for drops in similar experiments
with long filaments from both experimental and theoretical
grounds.25 As a consequence, due to the pressure balance
ph = pf , we find the following expression for the width of the
head as a function of the contact angles and the width of the
filament,

wh = w
θa sin θa + θr sin θr

θa sin θr
. (11)

In our case, we have from Eqs. (10) and (11) that

Lh = 2.34w, wh = 1.98w. (12)

As the neck becomes thinner at a certain distance from
the head, the pressure there increases and, consequently, a
fluid motion away from the neck is established (see Fig. 8).
We assume that this flow is of the Stokes type, so that there
is a balance between the gradients of pressure and viscous
stress,

∇p = µ∇2v . (13)

Here, we consider this balance between the neck region and
the filament by means of the approximation,

pf − pn

Ln
= µ

v

h2
f

, (14)

where pn is the pressure at the neck,

hf = w
1 − cos θr

2 sin θr
, (15)

Ln is the thickness of the filament at the region connecting
the head with neck (see Fig. 8), and 3 is the mean axial flow
velocity. Here, the value of pn can be estimated as

pn = γ

(
2 sin θr

wn
−

1
R

)
, (16)

where R is the axial radius of curvature in that region. Since
the thickness at the filament, hf , and at the neck, hn, do not
differ too much (hf − hn � Ln), we can approximate this
radius by

R =
L2

n

2(hf − hn)
, (17)

where hn is obtained under the assumption of a neck with a
circular cross section,

hn = wn
1 − cos θr

2 sin θr
, (18)

wn being the neck width.



102103-7 Cuellar et al. Phys. Fluids 29, 102103 (2017)

FIG. 9. Time evolution of two filaments practically iden-
tical which break up into a different number of drops: (a)
two drops (Li = 5.44 mm and 4 = 0.33 mm, ∆ = 16.5)
and (b) three drops (Li = 5.66 mm and 4 = 0.32 mm,
∆ = 17.7).

On the other hand, the mean velocity v can be written as
v = ωLn, where ω is the maximum growth rate of the linear
stability analysis of an infinitely long filament. For the viscous
regime, we have26

ω =
0.379γ

30µ
θ3

r

w
. (19)

Thus, at a time τ = 1/ω, we have wn = w/e. By using
Eqs. (8)–(19) along with the numerical values of the parame-
ters, we finally obtain an expression for the Stokes balance in
Eq. (14) as a biquadratic equation for Ln in terms of the width
filament, w,

L2
n +

8.496w4

L2
n

= 24.81w2. (20)

In consequence, we have two possible values for Ln, which we
call “short” and “long,”

Ls = 0.59w, Ll = 4.95w. (21)

An experimental example of these two solutions is shown in
Fig. 9(a), where the formation of the neck behind the left
head is clearly visible. Therefore, the number of drops that
result from a given filament depends on how many necks
can be formed when the filament has reached the length
L0 after having started with Li. It is interesting to note
that

Ll ≈ Ld + Lh = (5.07 ± 0.06)w. (22)

This means that the long length corresponding to a
breakup allows for the formation of a head of size Lh after
a retraction close to Ld , which is precisely the receding dis-
tance observed at the ends of the filaments. This fact has
been observed in several experiments [see, e.g., Fig. 9(a)].
Equation (22) will be useful in understanding the relationship
between Li and the number of resulting drops, N, as it will be
explained in Sec. VI.

Note that very small secondary drops5 can be observed
in the region of the breakup [see Fig. 9(a)]. These secondary
drops are generally at a distance close to Ls from one of the
bulges. Their origin and behavior is different from the primary
drops we are interested in, but their presence at Ls is indicative
of where necks have occurred and that Ls is a relevant distance
for explaining the ruptures.

VI. FILAMENT ASPECT RATIO VERSUS NUMBER
OF DROPS

Based on the previous models and analysis, we establish
here the conditions that must be fulfilled to obtain a given
number of drops from the rupture of a filament of certain initial

length, Li. In the following, we perform the corresponding
analysis as the number of drops increases.

Let us first consider the conditions for the appearance of a
single drop. Of course, a very short filament will retract to one
drop. However, not all of these filaments allow for the forma-
tion of large enough drops, in whose evolution two processes
occur simultaneously: wetting (of previously dry regions) in
the transverse direction and dewetting in the axial direction.
Since we are interested in relatively large drops that are sim-
ilar to those appearing in very long filaments, it is legitimate
to pose the question of which is the minimal length leading
to the formation of a single anisotropic drop comparable to
those observed in long filaments. In order to obtain this type
of drops, one needs a retraction distance leading to the forma-
tion of a head with axial length Lh. Therefore, Li could not be
less than Ll ≈ Ld + Lh plus a short tail on the other side of the
head [see Fig. 10(a)]. If the possible formation of a breakup
leading to another drop is to be avoided, then this tail cannot
be larger than Ls. Consequently, the minimal length to form a
single drop of this kind is

L1 ≡ Ll + Ls = 5.54w, (23)

as shown by the lowest horizontal line in Fig. 11.
If Li = L2 ≡ 2L1, the possibility of forming two drops can-

not be prevented since a breakup in the small bridge between
the two heads formed from both ends of the filament is long
enough to allow for the formation of a breakup at a distance Ls

from each head [see Fig. 10(b)]. Following a similar reason-
ing, a general formula for the limit of Li to allow the formation
of N drops can be written as

LN ≡ NL1, (24)

where N = 1, 2, . . .. In Fig. 11, we compare this prediction
with the experimental lengths, Li, that give place to a certain
number of drops. Considering the approximations made in

FIG. 10. Sketches of the filament showing the parameters used in the model
to define the limiting lengths of the filaments that yield (a) one drop and (b)
two drops.
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FIG. 11. Number of drops, N, versus different aspect ratios, ∆ = Li/w. The
horizontal lines correspond to the limiting lengths predicted by the analysis,
∆N = LN /w, and the solid circles to the numerical simulations.

the model, we observe a very good agreement between the
experiment and the theoretical models.

Note, however, that these limits are only lower lim-
its for the existence of a certain number of drops but not
the upper ones. For example, when Li is slightly below L2,
there is the possibility that both heads coalesce into a sin-
gle drop. Then, the upper limit of one drop can be reason-
ably estimated as L2. Regarding the upper limit for more
drops, this coalescence process could occur on both sides
of the remaining bridge, and therefore its maximum length
should be 2L1. Then, the upper limit for the formation of N
drops can be written as (N + 2)L1 for N ≥ 2. This means
that the upper limit for more than two drops is coincident
with the lower limit for (N + 2) drops. Even though the
model is based on some rough approximations, these pre-
dicted limits agree very well with the experimental data (see
Fig. 11).

The characteristic length L1 can be compared with
the critical (marginal) wavelength, λc, of the linear sta-
bility analysis for an infinitely long filament, given
by27,28

s tanh(qcs) tanh(s) = 1, (25)

where s = 4/a and qc = 2πa/λc. The resulting dependence
between λc and 4 is shown in Fig. 12, where we also plot the
linear relationship between L1 and 4 as given by Eq. (23).
Clearly, Eq. (25) can be accurately approximated by this
straight line within the range of our experiments, namely,
w ∈ (0.25, 0.45) mm.

This comparison shows that the critical wavelength of the
instability predicted for an infinite filament corresponds to the
observations and the model characteristic lengths up to fil-
aments as short as those which give place to a single drop.
Interestingly, while both models for finite and infinite fila-
ments yield similar lengths in the range of parameters from
our experiments, we consider successive steps in the breakup
process as actually seen in the experiments, while the infinite
filament theory predicts simultaneous breakups, which have
not been observed.

FIG. 12. Critical (marginal) wavelength of the linear stability analysis for an
infinitely long filament, λc, versus the filament width, 4. The dashed straight
line corresponds to the linear dependence of L1 with 4, as given by Eq. (23).
The experimental interval of the filament widths, (0.25, 0.45) mm, is shown
as a hatched region.

VII. NUMERICAL SIMULATIONS OF THE EVOLUTION
OF SHORT FILAMENTS

In this section, we numerically simulate the evolution of
a filament of length, Li, and width, w. We consider that at t = 0
the filament has a body shape of a cylindrical cap of length
Lcyl < Li, width w, and the transverse equilibrium contact
angle, θa, along both parallel contact lines. In order to emulate
the ends of an actual filament, which have round shapes due
to the breakup process that took place at the intersections for
t < 0, we approximate them by additional ellipsoidal caps at
the ends of the cylinder (x = 0 and x = Lcyl).

Thus, the fluid domain is composed of a cylindrical cap
plus two ellipsoidal caps at the ends, and the whole filament has
length Li. The ellipsoidal caps are determined by two param-
eters, namely, the maximum width in the transverse direction,
wc, and the contact angle at the end, θx. In all the cases, we
take θx = 25◦ since this is the contact angle observed in the
experiments just after the breakup,25 and wc & w as necessary
to better adjust the shape of the initial head to the actual initial
condition of each experiment.

The time evolution of this liquid filament is obtained by
numerically solving the dimensionless Navier-Stokes equa-
tion,

La

[
∂~v

∂t
+ (~v · ~∇)~v

]
= −~∇p + ∇2~v −~z, (26)

where the last term stands for the gravity force. Here, the scales
for the position ~x = (x, y, z), time t, velocity ~v = (u, v , w), and
pressure p are the capillary length a, tc = µa/γ, γ/µ, and γ/a,
respectively. Therefore, the Laplace number is La = ργa/µ2. In
our experiments, we have a = 1.49 mm and La = 0.006, so that
inertial effects are practically irrelevant. The x and y axes are
assigned along and across the original filament, respectively.
Besides, the normal stress at the free surface accounts for the
Laplace pressure in the form

Σn = −
(
~∇τ · n̂

)
n̂, (27)

where n̂ = (nx, ny, nz) and τ̂ are the versors standing for the
normal and tangential directions to the free surface, respec-
tively. Since, the surrounding fluid (e.g., air) is passive, we
assume that the tangential stress is zero at this surface,
i.e., Στ = 0.
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As regards to the boundary condition at the contact line,
the dynamic contact angle, θ, is given by the dimensionless
contact line velocity, Ca = µ3cl/γ, according to the hybrid
model,24

θ3 = arccos3
[
cos θ0 −

1
Γ

sinh−1
(

Ca
Ca0

)]
+ 9Ca ln

(
1
ˆ̀

)
, (28)

where Ca0 = µ30/γ and ˆ̀ = `/a. The contact line velocity is
calculated from the velocity field as Ca = Nxu + Ny3, where

(Nx, Ny) = (nx, ny)/
√

n2
x + n2

y is the versor normal to the con-
tact line. Note that this condition introduces a high nonlinearity
to the problem, since the solution itself, namely, the velocity
field at z = 0, yields the corresponding contact angle. Since
we are using the same type of fluid (PDMS) and the sub-
strate as in Ref. 24, the values of the coefficients Γ, `, and v0

are equal to those given in that reference, i.e., Γ = 95.4553,
` = 0.000 830 2a = 1.24 × 10−4 cm, and v0 = 6.2121 × 10−7

cm/s.
We use a finite element technique in a domain which

deforms with the moving fluid interface by using the Arbitrary
Lagrangian-Eulerian (ALE) formulation.29–32 The interface
displacement is smoothly propagated throughout the domain
mesh using the Winslow smoothing algorithm.33,34 The main
advantage of this technique is that the fluid interface is and
remains sharp,35 while its main drawback is that the mesh
connectivity must remain the same, which precludes achiev-
ing situations with a topology change (e.g., when the filament
breaks up). The default mesh used throughout is unstructured
and typically has 3 × 104 triangular elements (linear elements
for both velocity and pressure). The mesh nodes are con-
strained to the plane of the boundary they belong to except
those at the free surface.

There are in the literature other numerical techniques that
are able to deal with the breakup problem of a film on a partially
wetting substrate, such as those based on the volume-of-fluid
method,23,36,37 or level-set.38,39 However, up to our knowl-
edge, none of them has been implemented with an hysteretic
relationship vcl(θ) at the moving contact line, as used here for

the present problem. Instead, they limit themselves to impose
a fixed contact angle there or use the precursor film of a cer-
tain thickness (small, but not zero) ahead of the contact line.
The use of these simple boundary conditions in our code yields
time evolutions that compare very badly with the experimental
data.

In order to validate the numerical scheme, we simulate the
evolution of actual filaments and compare the numerical con-
tact line profiles at different times with those from the experi-
ments. This comparison can be seen in Fig. 13 for two different
filaments, one which ends up into a single drop and another one
that breaks up into two drops. Although these filaments have
almost the same width and they differ on their initial length on
about 20%, the respective aspect ratios, ∆= Li/w, are different
enough to yield completely diverse results. Note that the end
shapes of the initial filaments studied here are pretty peculiar,
since they are the result of the breakup process that occurs at
the intersections of two very long filaments. For simplicity,
we emulate these shapes in the simulations by ellipsoidal caps
whose lengths and widths (&w) correspond to the measured
experimental values.

Considering the fact that it is not easy to generate filaments
of prescribed width with a precision less than 0.05 cm and that
the results are strongly dependent on the aspect ratio ∆= Li/w,
the numerical simulations may be used as an important tool
to contrast the predictions of the model developed in Sec. V.
Thus, we perform a series of runs with the same initial length,
Li, and vary the width, w. We take a typical Li equal to the aver-
age of a group of experiments, Li = 0.308 25 cm, and vary w
in the range (0.017, 0.035) cm. Then, inside the corresponding
∆-range, namely (8.8, 18.1), the model predicts the transition
from one to two drops at ∆2 = 11.08 and from two to three at
∆3 = 16.62. The results shown in Fig. 11 by solid circles for
six values of ∆ are in agreement with this prediction. In partic-
ular, in Fig. 14, we show the evolution of three filaments with
the same initial length and different widths, where the diverse
aspect ratios lead to different number of drops, as predicted by
the model of Secs. V–VI . While the simulations are not able
to end in a breakup of the connecting bridge, which remains

FIG. 13. Comparison between numer-
ical simulations (red lines) and experi-
mental data (black symbols) for the time
evolution of the contact line shape of
two filaments leading to (a) one drop [Li
= 0.361 cm, w = 0.037 cm (∆ = 9.76)]
and (b) two drops [Li = 0.441 cm, w =
0.036 cm (∆ = 12.25)].
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FIG. 14. Initial (dashed lines) and final (solid lines) foot-
prints of three filaments with the same initial length, Li
= 0.308 25 cm, and different widths: (a) w = 0.030 cm
(∆ = 10.27), (b) w = 0.025 cm (∆ = 12.33), and (c) w =
0.018 cm (∆ = 17.12). The resulting number of drops is in
agreement with the model predictions (see, e.g., Fig. 11).

forever, the results of the simulations confirm that the model
of Secs. IV–VI has the essential features needed to explain the
final pattern of drops.

VIII. SUMMARY AND CONCLUSIONS

We study the complete breakup processes of a set of two
sets of parallel silicone oil (PDMS) liquid filaments crossing
each other perpendicularly. They are deposited on a glass sub-
strate previously coated with a fluorinated solution to achieve
partial wetting conditions. Interestingly, the resulting rect-
angular grid yields two different types of drops, depending
on whether they are formed at the filament intersections or
along the filaments themselves. We find that they differ on
the shape of the footprint as well as on the contact angle
distribution along the periphery, θ(φ), where φ is the polar
angle. The drops at the intersections have a rhomboidal-like
shape [see Fig. 5(a)], while those along the filaments have an
ellipsoidal-like shape [see Fig. 3(a)]. These differences have a
natural implication on the contact angle distribution. In the
first case, θ is maximum at φ = kπ/4 (k = 1, 3, 5, 7) and
minimum at φ = kπ/2 (k = 0, 1, 2, 3) [see Fig. 5(b)], while
in the second case, the maximum is at φ = kπ/2 (k = 1, 3)
and the minimum at φ = kπ (k = 0, 1) [see Fig. 3(b)]. These
extreme angles correspond to the advancing, θa, and receding,
θr , contact angles of the hysteresis cycle (Ref. 25), respec-
tively. Here, we develop an analytical solution for both drops
in polar coordinates by solving the equilibrium equation cor-
responding to the balance of pressures inside the drop. This
solution is expressed as series expansion in modified Bessel
functions.25

While the drops at a vertex of the rectangle are a conse-
quence of four quasi simultaneous breakups, those formed at
the sides are similar to those observed previously for a sin-
gle filament. One advantage of our system is that one can
compare at once four similar short filaments and see whether
they all have the same behavior. Although, probably due to
unavoidable initial perturbations, there is some variability in
the number of drops formed in filaments with equivalent aspect
ratios, it is restricted to precise bounds that can be predicted
with our model.

In order to find them, we developed a hydrodynamical
model that accounts for all the possible types of breakups that
can occur in a filament of given length and width, i.e., on its
aspect ratio ∆ = Li/w. We find that there are different ranges of

∆ in which a certain number of drops are possible. The model
considers the distance traveled by the filament end before a
first neck shows up and then evaluates the admissible values
of the distance between the head and the breakup point con-
sistent with a Stokes flow between the neck region and the
head. The model predictions are successfully compared with
the experimental data (see Fig. 11), and then it constitutes a
useful tool to help designing grids with a desirable number of
drops between intersections.

We can compare the value of the critical ratio ∆2 as given
by our model with experimental data within the nanoscale. For
instance, in Ref. 16, the authors study the pulsed laser-induced
dewetting of a flat Ni strip on a SiO2 substrate, which is melted
by nanosecond pulses of laser beams. In Fig. 4(a) of that paper,
they report the critical filament length for the transition from
one to two drops as given by the best fit line of the experiments
in the form `c = 31.27A1/2, where A is the cross section of the
cylindrical cap shape of the filament. This cross-sectional area
is assumed to be the same as that of the original rectangular flat
strip. The rationale for this is that after some fast dewetting,
the system evolves to form a cylindrical cap of the same length
of the original strip and this cap is prone to the formation of
drops. Since A = R2(θs − sin θs cos θs) with R = w/(2 sin θs)
being the cylinder radius and θs being the single static contact
angle, we have

`c = 31.27

√
θs − sin θs cos θs

2 sin θs
w = ∆nano

2 w. (29)

In Ref. 16, they report θs = (69◦ ± 8◦), so that ∆nano
2 =

15.9 ± 3.06. On the other hand, the value predicted by our
model is ∆2 = 9.40, where we used γNi = 1.78 N/m, µNi =
4.61 mPa s, and θa = θr = θs. This is not so bad an estimation
considering several facts. First, besides the experimental error
in the determination of θs (which is certainly a difficult task),
we must also bear in mind that `c in Ref. 16 refers to the length
of the flat strip that evolves into a cylindrical cap when melted
by the laser heating and not to the length of the cylindrical
filament itself as we mean here. It is known that the ends of
the strip retract when melting and evolving into the cylindri-
cal filament so that one must expect that `c is actually larger
than the filament length L2, which justifies a larger value of
the proportionality constant. If one estimates this retraction of
the order of Ld , which seems reasonable, the results fit fairly
well. Moreover, a second factor to be taken into account is a
consequence of the previous one. If the filament retracts, the
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mass at the ends is relocated in a filament of shorter length.
When this happens, it is not exactly true that the cross-sectional
area of the original strip is equal to that of a cylindrical cap of
equal length, since the cylindrical cap is shorter and the central
region has increased its mass per unit length. Then, the real
value of 4 can be expected to be larger than the value given
by the assumption used in Ref. 16, which further reduces the
value of the aspect ratio of the initial filament as our theory is
pointing out.

Finally, we also numerically simulate the time evolution of
the filament by solving the complete Navier–Stokes equation,
including both a slip condition and a contact angle depen-
dence on contact line velocity. These boundary conditions are
certainly constitutive relations for our physical system, so we
employ the laws derived for it in a previous work.24 The time
evolution is first validated by comparison with experimental
results (see Fig. 13). Even though the numerical scheme is
not able to completely describe the breakup process, the sim-
ulations are still useful to give the trend of the formation of a
given number of drops. The results as shown in Fig. 14 are suc-
cessfully compared with both the experiments and the model
(see Fig. 11). Therefore, the simulations with the correspond-
ing conditions at the contact line are useful to describe some
details of the whole dynamics in addition to the final drop
pattern.

In summary, we have shown that experiments can be dealt
satisfactorily with full simulations and a simple physical model
of the rupture process. Moreover, the model predicts the time
evolution as the succession of breakups seen in experiments, a
factor not taken into account in previous infinite length models
which assume simultaneous breakups. It also leads to predic-
tions that can be related to previous attempted approaches and
yields a useful tool to estimate the number of drops resulting
from a given filament by considering the wetting properties
of the liquid/substrate interaction in the submillimetric scale
while, within the experimental uncertainties, it can be used as
a first approach in nanometric scales.
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