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Abstract

We propose using a deep convolutional neural net-
work (CNN) for the problem of plant identification
from leaf vein patterns. In particular we consider
classifying three different legume species: white
bean, red bean and soybean. The introduction of a
CNN avoids using handcrafted feature extractors as
in state of the art pipeline. Furthermore, this deep
learning approach significantly improves the accu-
racy of the referred pipeline. We also show that this
accuracy is reached by increasing the depth of the
model. Finally, by analyzing the resulting models
with a simple visualization technique, we are able
to discover which vein patterns are relevant.
Keywords: Deep Learning, Machine Vision,
Automatic Plant Identification, Leaf Vein Image.

1 Introduction

Nowadays, in many typical applications of machine
vision there is a tendency to replace classical tech-
niques with deep learning algorithms [1]. The ben-
efits are valuable: on one hand it avoids the need of
specialized handcrafted features extractors and, on
the other hand, results are not damaged, moreover
they typically get improved. Some examples of this
can be found in [2-4].

Deep learning refers to training neural network
architectures composed of several nonlinear pro-
cessing layers. The success of deep learning is based
on new model regularization techniques [5], im-
proved nonlinearities design [6], and current hard-

ware capabilities, among others. In particular, for
Machine Vision tasks, the success of deep learning
is based on convolutional neural networks (CNN,
[7]) which have become the standard neural net-
work variant to process images [1].

There are many agricultural problems currently
addressed with classical machine vision techniques
that may benefit from using a deep learning ap-
proach. We consider in this paper a successful ex-
ample of this behavior by applying deep learning
to automatic plant identification.

Automatic plant identification is a challenging
problem that has drawn the attention of many
works in the recent years, in particular those based
on leaf image analysis. Much of this work make use
leaf features that humans can perceive. The goal of
automatization in this case is to avoid human ex-
perts to handle huge catalogs of plant species and
to reduce classification time. Some works are fo-
cused on leaf shape [8-14], some use shape and
texture [15], while others consider color and tex-
ture [16].

Recently, however, more attention has been
payed to vein morphological patterns as a finger-
print of the leaf. A clear correlation has been
established between vein characteristics and some
properties of the leaf (such as damage and drought
tolerance, among others) [17,18]. This suggests
that vein morphology carries information suitable
for plant classification when shape, color or tex-
ture differences are not observable, as in the case
of trying to separate different cultivars from the
same species. This kind of features may not be
easily spotted by a human observer and automated



recognition becomes indispensable.

Following this premise, Larese et al. [19] per-
formed computer vision techniques to extract sev-
eral vein morphological measures and showed that
it is possible to separate three different plant
species by using only this information and super-
vised machine learning algorithms. In a later work
[20], they used similar techniques to reach some de-
gree of discrimination between plants belonging to
different cultivars of the same species.

In this work we evaluate a deep learning model
for this predefined problem of plant identification
based on vein morphology. We show that the plain
application of such learning model leads us to bet-
ter results than those obtained with a standard ma-
chine vision pipeline. Furthermore, the utilization
of a simple model visualization technique allows us
to identify meaningful vein patterns. All these suc-
cessful results on plant classification from leaf vein
morphology are a valuable step for motivating fur-
ther research and extension of our leaf database
with more species and cultivars.

The rest of the paper is organized as follows. In
Sec. 2 we review the task specific approach for the
problem at hand as proposed by Larese et al. [20].
In Sec. 3 we introduce the proposed deep learning
approach and explain the performed experiments
in Sec. 4. Results are presented in Sec. 5 and in
Sec. 6 we show which patterns resulted relevant for
classification. Finally, we draw some conclusions in
Sec. 8. In Appendix A a more detailed information
about the data acquisition and processing can be
found.

2 Task specific approach

Many successful Machine Learning applications
make intensive use of specific knowledge about the
task provided by human experts. In this section we
summarize the approach considered in [20] for plant
classification based on leaf veins, which makes use
of expert knowledge.

The processing pipeline is divided in four stages
as shown in Fig. 1. The starting point is the set of
images of first foliage leaves acquired with a stan-
dard flatbed scanner (see Appendix A for more de-
tails). These images are processed according to the
following stages:

(i) Vein Segmentation. First, an unconstrained

version of the Hit or Miss Transform (UHMT)
[21] is applied, in order to extract the vein mor-
phological patterns. The output of this trans-
form is a binary image and therefore it elimi-
nates color information.

Central patch extraction. A central patch
(100x100 pixels) of the binary image is cropped
and the rest of the image is discarded, in order
to dismiss any influence of the leaf shape.

(iii) Vein measures. At this stage a set of features of
interest was extracted with the help of LEAF
GUI [22]. This set includes measures such as
total number of veins, total number of nodes,
mean vein width, among others.

Classification. Three different Machine Learn-
ing algorithms were tested: Support Vec-
tor Machines (SVM), Penalized Discriminant
Analysis (PDA) and Random Forests (RF)
[23]. These models were trained using the fea-
tures obtained in the last step.

There are two main observations about this
pipeline. First, in order to highlight different levels
of vein details, Larese et al. applied the UHMT to
resized versions of the leaf image. The scale factors
considered were 100% (no resize), 80%, and 60%.
The processed images were resized back to the orig-
inal size. With these three output images, two al-
ternatives were studied. In the first one, a single
combined image was obtained by adding them. For
the second alternative, the three output images and
the combined one are kept. We will refer to this two
setups as S1 and S2 respectively. Figure 2 shows
some example images after stage (ii), for the S2
setup. The S1 setup correspond to select only the
first column for each sample.

The second point to notice is that stage (iii) is the
only one that require specific domain knowledge.
All the considered measures can be automatically
extracted but were designed by experts specifically
to characterise vein patterns.

Also, it is important to remark that the number
of features extracted in stage (iii). Larese et al.
extracted 52 features from each patch image. This
means 52 features in the S1 setup, but 208 features
in the S2 setup.
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Figure 1: Adopted pipeline (as in Larese et al. [20]). In this work the greyed stages were replaced by a
deep convolutional network. Stages (i) and (ii) were kept in order to allow a fair comparison with Larese
et al. results. By design, this two stages filter color and leaf shape information.
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Figure 3: Diagram of a three layer version of the CNN considered in this work. The first two are
convolutional layers and the last one is a softmax layer. We evaluate CNNs up to 6 layers.

3 Deep Learning proposal

In this work we replace stages (iii) and (iv) of the
previous pipeline (see Fig. 1) with a CNN (ex-
plained in the next subsection). We expect that
the CNN can automatically learn from the training
set the appropriate features to solve the classifica-
tion problem. This implies that we can put aside
the expert knowledge for designing the features.

It should be noticed that stages (i) and (ii) ensure
that color and leaf shape information is deleted.
The reason for this is that the main objective in [20]
is to show that it is possible to classify plant species
only from vein morphological patterns. It should be
remarked that this setup mimics the case where it
is expected to find only morphological differences,
as in the case of different cultivars from the same
species.

In order to fairly compare our results with those
from [20], we also include stages (i) and (ii) in
our pipeline. That is, we consider the classifica-
tion problem using only the vein morphological pat-
terns, passing to the CNN images as in Fig. 2.

3.1 Convolutional Neural Networks

CNNs were first introduced by Y. LeCun [7]. They
have an architecture specially designed to deal with
images. In this section we make a brief introduction
to CNNs mainly for defining the hyperparameters
considered in this work. For a more detailed de-
scription of this kind of models we refer the reader
to [24] and the references therein.

Figure 3 depicts a diagram of the considered
CNN model. Each layer is composed of three trans-
forms. First, there is a convolution operation be-



Figure 2: Image samples obtained after processing
stages (i) and (ii). The first column correspond to
preprocessing S1, while setup S2 is formed by all
the columns. These images are the input to the
CNN.

tween the input image and a filter bank of size
n_maps. Each filter has a bounded size associated
to a small receptive field in the input image (blue
squares in Fig. 3). We use square filters of width
filter_size. For each filter in the bank the con-
volution produces a feature map.

The second transform is an elementwise nonlin-
ear function applied to all the feature maps. Typi-
cally this function is a ReLU?.

Finally, there is a subsampling transform. In
this pooling stage, each map is divided in a set
of non-overlapping square neighborhoods of width
pool_size (red squares). From each neighbor-
hood, this transform only retains the maximum
value.

The last layer in the network is a softmax func-
tion. It returns the estimated probability of each
class, given a concrete sample. This layer is fully
connected to all the output feature maps of the last
convolutional layer.

The described topology produces a huge reduc-
tion in the number of free trainable parameters in
comparison to a standard (fully connected) artifi-
cial neural network. This is due to the sparse neu-
ral connectivity (restricted to small receptive fields)
and to the sharing of filter values along image lo-
cations exploiting translational invariance.

A last relevant comment on CNNs is about vi-

LReLU(x) = max(0,z)

sualization techniques. Recently published proce-
dures [25] allow visualizing which patterns are de-
tected at each layer of the deep network, partially
removing the CNNs from the category of black-box
models. In this paper we use a simple procedure
considered in [25] for highlighting the most rele-
vant input image regions for the network output
probabilities (see Sec. 6).

4 Experiments

We evaluated the proposed pipeline with a CNN
stage by performing a set of numerical experiments
in which several models were trained in order to
estimate test error. Below we detail the experiment
outlines.

Datasets. We consider the leaf images already
processed with stages (i) and (ii) of the original
pipeline (Fig. 1) with the two setup variations S1
and S2 (as explained in Sec. 2) as input of our CNN
without any further processing. For the S2 setup,
in which we have four images per sample, they are
considered as four different input channels for the
CNN (as it is standard with the three channels in
a RGB image). We have therefore two series of
experiments associated with these two setups S1
and S2, as in [20]. Summarizing, the input of the
CNN is a 100x100x1 binary image in the setup S1
and a 100x100x4 one in the setup S2.

Models. We trained CNN models of increasing
depth: from 2 layers (1 conv. layer 4+ 1 softmax)
to 6 layers (5 conv. layers + 1 softmax). The ar-
chitecture is the same for all the convolutional lay-
ers in each model. That is fixed filter_size and
n_maps for the convolution transform followed by a
2x2 pooling and a ReLU elementwise nonlinearity?.

Training algorithm. The parameters were opti-
mized using stochastic gradient descent (SGD) over
a training set using minibatches of 20 samples. We
use a 50% dropout rate [5] in the training stage for
regularization. After some preliminary training ex-
periments we set the learning rate at 0.01 and set
momentum to zero.

2The best model configuration obtained by cross valida-
tion for a 5-layer CNN has filter_size=12 and n_maps=10.
See Sec. 5.



Error estimation. For each model depth, the fi-
nal test errors were estimated, as in [20], averaging
over 100 runs (10 independent runs of 10-fold cross-
validation). The hyperparameters filter_size
and n_maps were chosen by minimizing the clas-
sification error over a validation set. We used early
stopping for the SGD iterations by monitoring the
validation error.

Implementation. All the experiments were car-
ried out using Pylearn2 [26].

5 Results

Figures 4 and 5 show that the final accuracy consis-
tently improves with the depth of the model, with
independence of the selected setup (S1 or S2).

For S1 setup (Fig. 4) the best performance is
reached at a depth of 5 layers, attaining a mean
accuracy of (92.6+0.2)%. This value surpasses the
best mean accuracy reported in [20] corresponding
to a PDA classifier (90.4 & 0.3, horizontal dashed
line in Fig. 4). The reached accuracy does not
improve by adding extra layers: there is no clear
difference between 5 and 6 layer results.
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Figure 4: Classification accuracy as a function of
CNN depth for setup S1. Each box resumes the
results from 100 runs (10 runs of 10-fold cross val-
idation) for the corresponding depth. The box size
covers the two central quartiles, while the whiskers
span the central 95% of the runs. The horizontal
dashed line indicates the best mean value obtained
by a task specific approach [20] for this setup.
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Figure 5: Classification accuracy as a function of
CNN depth for setup S2. See Fig. 4 caption for
details.

For the S2 setup (Fig. 5) we find similar results.
The best performance is also reached with the 5-
layer model with no clear difference with the 6-layer
results. As in [20] the accuracy levels with setup
S2 are consistently higher than with setup S1. In
this case the 5-layer model accuracy reaches a mean
value of (96.940.2)%, surpassing the (95.1+0.2)%
best accuracy in [20].

Table 1 shows the mean accuracy for each class
for the best models. The improved performance
of the 5-layer model in both setups, S1 and S2,
comes mainly from a better classification of red
bean leaves.

For the S1 setup the accuracy of the 5-layer
model over white bean leaves drops significatively
with respect to the best model of [20]. However, as
white bean is the least numerous class, this drop
is not enough for changing the overall result. This
behavior banishes for the S2 setup, where the ac-
curacy of the 5-layer model is similar or better for
all classes.

Finally, we show Receiver Operating Character-
istic (ROC) curves for the S2 setup in order to eval-
uate classifier output quality. Figure 6 show one-
vs-all ROC curves for each class for the different
models (from 2 to 6 layers). Consistently, white
beans are harder to classify for all depths. How-
ever, we found that all curves improves with depth
until layer 5 model. Bottom left panel shows av-
erage curves for different depth models where the
6-layer model fall below the 5-layer model curve.



Model White bean (%) Red bean (%) Soybean (%) Total (%)
Combined veins only (S1 setup):

PDA, best of [20] 82.7£0.9 85.8 £ 0.6 96.5+ 0.3 90.4+£0.3
CNN 5 layers 7T7.6+£1.1 93.8£0.5 98.8 £ 0.2 93.0+0.3
Combined veins with 3 scales (S2 setup):

PDA, best of [20] 90.9+ 0.6 91.7£0.5 99.0+0.1 95.14+0.2
CNN 5 layers 90.2+1.0 98.3+£0.3 98.8 £ 0.2 96.9 £ 0.2

Table 1: Per class and total accuracy (mean =+ stdev). Values correspond to CNN model and best

accuracies reached in [20] for the S1 and S2 setups.
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Figure 7: Heatmaps indicating the locations of the input images to which the network correct-class
output probability is more sensitive to partial occlusion. Red colored regions correspond to a decrease of
the output probability while green indicates an increase. Each panel shows 9 examples from each class.

6 Visualizing relevant

terns

pat-

In order to have an idea of which patterns an al-
ready trained CNN is attending for class labeling
we perform an experiment similar as in [25]. We oc-
clude different parts of an input image with a 10x10
black patch and we observe the variation in the out-
put probability for the correct class®. The result is
a heatmap indicating the locations of the image to
which the output is more sensitive. Figure 7 shows
some example images for the three classes. Red col-
ored regions correspond to a decrease of the output
probability while green indicates an increase. As all
the shown examples were correctly classified, this
oclution procedure typically lowers the probability

3We use a trained 5-layer CNN with filter_size=12 and
n_maps=10 in S2 setup.

of the correct class, biasing the heatmap results to
red as observed. We can see that different parts of
the vein patterns are taken into account for each
class. For example, in the case of the soybean sam-
ples, the most sensitive regions are in the central
vein and in particular, in the place where the sec-
ondary veins join to it. However, for white and red
bean classes, the results suggest that the outer and
smaller veins are also relevant for the network out-
put. In these highlighted regions we expect to find
the patterns relevant for the task at hand.

Some selected samples shown in Fig. 8 help us to
understand the tradeoff between the output proba-
bilities for the three classes. Rows (a) and (b) show
two samples images from white bean leaves, while
rows (c¢) and (d) correspond to a single sample im-
age from red bean and soybean respectively. Each
column shows the variation of the output proba-
bilities of the model associated to each class, when



r
0.8
0.6

0.4

soybean
red bean
-|_white bean

True Positive Rate

0.2

ot 2 layers

1 f
0.8

0.6

3 layers

—

0.4

0.2

True Positive Rate

0 4 layers 5 layers

0 02 04 06 08 1

08 .

06 0.95

04 ;
02 0.9

True Positive Rate

0 6 layers

0 02 04 06 08 1 0

False Positive Rate

0.05 0.1

False Positive Rate

0.15

Figure 6: Receiver Operating Characteristic (ROC)
curves for the S2 setup. The first 5 panels show
one-vs-all ROC curves for each class for the differ-
ent models (from 2 to 6 layers). Bottom left panel
shows average curves for different depth (black, 2
layers; red, 3 layers; blue, 4 layers; orange, 5 layers;
and green, 6 layers).

performing the same procedure as in Fig. 7. Given
that these probabilities sum 1, a decrease in one
class (red regions) is associated to an increase in
the others (green regions).

The first thing we can observe from rows (a) and
(b) is that by occluding the higher order veins in
the left side of the image the correct class output
probability drops (first column) in favor of soybean
probability (third column). This is because soy-
bean leaves’ higher order veins are sparser than in
the case of red and white beans (see samples in
Fig. 7). Another observation we can make con-
cerns the central vein in row (b). This particular
white bean presents these lower order veins simi-
lar to a soybean, given its ramification angle. This

Figure 8: Heatmaps indicating the locations of the
input images to which each class output proba-
bility is more sensitive to partial occlusion. The
columns correspond to each of the three outputs
(white bean, red bean, and soybean). Red colored
regions indicate a decrease of the corresponding
output probability while green, an increase. Rows
(a) and (b) correspond to white bean images; (c),
to red bean; and (d), to soybean. For these exam-
ples, the variation of the probability assigned to the
correct class is also shown in Fig. 7.

is why when we occlude parts of the central vein
the probability of the correct class increases, at the
expense of the soybean probability.

Regarding row (c), the selected red bean sample
shows a pattern typically found in that class. The
cell-like pattern in the higher order veins seems to
be a subtle difference with the white bean class.
Therefore, when occluding these patterns the prob-
ability of red bean decrease (second column) in fa-
vor of the white beans.

Rows (c) and (d) also show a typical behavior
of the red bean and soybean classes. Both classes
interact with the white bean class in the probability
exchange but they do not interact with each other.
This suggests that these two classes do not have a
frontier in common in the representation computed
by the deep network at the input to the softmax



layer.

7 Discussion: overall effi-

ciency

When comparing two approaches for solving a spe-
cific task it is advisable to consider the overall effi-
ciency, that is the ratio between the results quality
measure and the weight of the resources employed.
In Sec. 5 we present a comparative summary in
terms of classification accuracy. The counterpart of
resources spent is harder to compare given that it
requires to measure time and effort spent designing
and training neural models vs. manually design-
ing and selecting feature extractors and performing
classification. However, we can state a few points
for helping comparison.

Designing features extractors is labor-intensive
and require expert skills. We have no available
data about resources employed in ref. [22] for de-
signing leaf vein features. Nevertheless, for most
vision applications, suitable feature extractors can
be found publicly available as in this case. The
effort is transferred however to the search and se-
lection of proper feature extractors for the task,
within a very large corpus of machine vision liter-
ature. This learning process is the most time con-
suming task and can take from one to two weeks of
research. Once selected features, performing classi-
fication can be done with a predefined application
agnostic pipeline. The evaluation of different clas-
sification algorithms (SVM, PDA, RF) and cross
validation selection of hyperparameters can be au-
tomated and requires few hours of computational
load on a standard CPU.

On the other hand, for our proposal, we just use a
general purpose standard CNN configuration (con-
volutional layer + ReLU activation + dropout, [1]).
An implementation of such network can be found
as a toy example in any deep learning library. We
add none special feature to adapt this standard
model to this particular application. Therefore,
having the model trained on the leaf vein dataset
with competitive validation accuracies take us a few
hours. The rest of the time (around two weeks*)
was spent designing and running cross validation
experiments (as in any classification task) for pa-

4Repeating single training 50 times

rameter optimization and error estimation which is
only hardware intensive.

Summarizing, we cannot precisely state which
pipeline is less time consuming. However, deep
learning approach relieves research for feature ex-
tractors by automatic learning proper features.
This conveniently transfers human expert time to
computational load and, for this specific applica-
tion, we also get improved accuracies.

8 Conclusion

In this work we show a successful example of ap-
plication of deep learning in the area of agricul-
ture, specifically plant identification from leaf vein
patterns. We replaced a task specific module in
a state of the art processing pipeline with a deep
convolutional network. The main result is that we
obtained an improved accuracy using a standard
deep learning model. This implies that it is not
necessary to handcraft a specific feature extraction
method for this task. We also showed that the ac-
curacy monotonically improves with the depth of
the model. This implies that depth is a key ele-
ment for solving the problem.

It is commonly argued that neural network solu-
tions does not shed light on the solved problems as
they are black box models. However, using a simple
visualization technique, we obtained the relevant
vein patterns for the classification task performed
by the deep model.

We are currently exploring other potential ap-
plications of deep learning in agriculture, as weeds
detection and identification or seeds viability tests.
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A Dataset

In this work we use the dataset introduced by [19].
It is formed by 866 leaf images provided by INTA
(Instituto Nacional de Tecnologia Agropecuaria,
Oliveros, Argentina). It is divided in three classes:
422 images correspond to soybean leaves, 272 to red
bean leaves and 172 to white bean leaves. These are



first foliage leaves after 12 days of seedling grow.
The images were acquired using a standard flatbed
scanner (Hewlett Packard Scanjet-G 3110) at a res-
olution of 200 pixels per inch. The images corre-
spond to the abaxial surface of the leaves.

B Processing pipeline details

In this appendix we describe in more detail the first
two stages in the processing pipeline. That is, the
stages that we maintain in the proposed method.

(i) The color information was removed by convert-

ing the RGB images to grayscale.
(ii) A binary mask was obtained for each leaf, us-
ing the automatic iterative threshold selection
algorithm [27]. Tts holes were filled using mor-
phological reconstruction [21] and finally all
the connected components except the largest
one were removed.

An unconstrained version of the Hit or Miss
Transform (UHMT) [21] on five different sized
(100%, 90%, 80%, 70% and 60%) versions of
the images were computed. For this purpose,
four composite structuring elements were used
aimed at detecting leaf veins in four directions:
vertical, horizontal, +45°and -45°(shown in
Fig. 9).

(iii)

(iv) The resulting UHMTSs were resized back to its
original size and added to obtain the combined
UHMT. The resized UHMTs at 100%, 80%

and 60% were also preserved.

An adaptive histogram equalization and adap-
tive thresholding was performed and all the
connected components with less than 20 pix-
els were removed.

The UHMTSs were masked using the result of
step (ii).

Finally, a central patch (100x100 pixels) of the
binary image is cropped and the rest of the
image is discarded. Since the images are taken
with a resolution of 200 dpi, this corresponds
to a square of 0.5x0.5 inches roughly at the
center of the leaf.
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Figure 9: The four pairs of flat composite struc-
turing elements used in the UHMT computation to
detect veins in four directions, from left to right:
vertical, horizontal, +45°, and —45°. Foreground
pixel configurations are depicted in red while back-
ground pixel configurations are in green. The cen-
ter of the composite structuring element is marked
with a black dot.
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