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1.  INTRODUCTION

The study of extreme climate impacts over the
21st century has become a key focus of climate
research due to their long-lasting social and envi-
ronmental consequences. Extreme impacts are com-
monly caused by extreme climatic events, although
non-climatic events (e.g. wildfire) or even the per-
sistence of a certain conditions (e.g. dry days) also
can lead to an extreme impact. A comprehensive

study of extreme climatic events is necessary to
assess their positive or negative effects on physical,
ecological and human systems (Lavell et al. 2012).
There are different ways to define an extreme
event, based on its rarity, intensity and the damage
caused (Beniston & Stephenson 2004). In particular,
the intensity of these events as identified from dis-
tribution tails is considered more relevant to society
and natural systems than aspects related to the fre-
quency (Zhang et al. 2011).
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Temperature extremes are often described through
indices related to their intensity, in terms of their
maxima or magnitudes above or below defined
thresholds (Stephenson 2008). Frich et al. (2002)
describe a suite of extreme magnitudes defined by
the Expert Team on Climate Change Detection and
Indices (ETCCDI, http://etccdi.pacificclimate.org) in
order to quantify changes in climate extremes with
respect to a baseline period. Among them, minimum
and maximum temperature indices and the tails of
temperature distributions (10th and 90th percentiles)
have been widely used to analyze changes in the
occurrence of warm/cold days/nights over different
regions of the world (Alexander et al. 2006, Aguilar
et al. 2009, You et al. 2011, Andrade et al. 2012,
Skansi et al. 2013). Such changes could have direct
impacts on human health through thermal stress
caused by the occurrence of persistent warm tem -
peratures (during the day and night time) over sev-
eral days. Increased temperatures may also increase
energy and water demand (Bambrick et al. 2011),
and particularly affect economic sectors that carry
out their activities outdoors (agriculture, tourism, the
building sector, among others).

The fifth IPCC report (Hartmann et al. 2013) under-
lines warming changes in daily temperature, larger
in minimum (TN) than in maximum temperatures
(TX) over the whole globe since the mid-20th cen-
tury. While the frequency of occurrence of warm
days/nights has shown an increase, that of the cold
days/nights presents a decrease for that period.
These changes in the frequency of temperature
extremes are likely to be related to the asymmetric
behavior of TN and TX percentiles (Beniston &
Stephenson 2004). South America (SA) is one of the
world regions for which the strongest reductions in
cold-night frequency have occurred during the 20th
century (Vincent et al. 2005, Alexander et al. 2006,
Donat et al. 2013), with a hotspot in the Amazon
basin (Rusticucci 2012, Skansi et al. 2013). Under cli-
mate change conditions, similar changes are pro-
jected by CMIP3 (Marengo et al. 2009) and CMIP5
global climate models (GCMs) (Sillmann et al.
2013b). Specifically, (1) changes are expected to be
larger in TN than in TX extremes and (2) and
increases in the highest percentiles of TX and TN are
projected to be larger than those in the respective
lowest percentiles (Kodra & Ganguly 2014). More-
over, the largest changes are projected in tropical
regions and the smallest ones in southern SA (Sill-
mann et al. 2013b).

In order to understand the causes of these extremes
events, it is necessary to identify the climatic factors

involved, and how they could evolve under climate
change conditions. Changes in the occurrence of
warm/cold days/nights show large correlations with
TN and TX changes (Rusticucci & Barrucand 2004),
resulting in a decreasing trend in the diurnal temper-
ature range (DTR), with the magnitude of the change
being comparable to the mean warming itself (Stone
& Weaver 2003). DTR is largely influenced by cloudi-
ness, water vapor and soil moisture (Dai et al. 1999,
Andrade et al. 2012). These factors together with sur-
face winds and energy fluxes are relevant in the
analysis of daily temperature extremes. During day-
time, clouds exert an albedo effect on the tempera-
ture, (i.e. TX), thereby reducing net surface down-
ward shortwave radiation (SWR) from the sun. At
night, clouds play a greenhouse role, enhancing the
net surface downward longwave radiation (LWR) and
hence increasing the temperature (i.e. TN). Thus the
combined effect of these factors can cause a decrease
in the DTR (Rangwala et al. 2012). Variations in sur-
face wind direction may also affect DTR through
advection of air masses with different temperatures
and humidity (Garreaud 2000, Dai et al. 1999, Plav-
cová & Kyselý 2011). These factors can vary annual
and seasonally (Andrade et al. 2012, Betts et al. 2013).

Under climate change conditions, the GCMs pro-
ject decreases of DTR over most of the land regions of
the world (Lindvall & Svensson 2014). This change
corresponds well in terms of spatial pattern and mag-
nitude with increases in the cloudiness and de -
creases of SWR, but a weaker correlation exists be -
tween DTR and LWR, as it projects larger increases
(Zhou et al. 2009). These studies identify the La Plata
Basin (LPB) as the region of SA where the largest
decreases in DTR are projected in the future. Among
the main factors cited above, Zaninelli et al. (2015)
found large correlations between components of the
energy flux balance and daily temperatures (TN and
TX), using there the observational gridded dataset
developed by Tencer et al. (2011) for southeastern
SA, including the LPB.

Regional climate models (RCMs) allow appraisal of
the possible future changes of daily temperature
extremes and their contributory factors at local and
regional scales (Zhou et al. 2009, Andrade et al. 2012,
Plavcová & Kyselý 2012). As SA is considered as a
 climate-data-sparse region (Menéndez et al. 2010a,
Tencer et al. 2011, Rusticucci 2012, Skansi et al.
2013), RCMs could represent a useful tool for the
 climatological study of extreme events. The ensem-
ble of RCMs over this region has been shown to be a
very interesting tool for these studies (Menéndez et
al. 2010b). Results from the CLARIS-LPB European−
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South American project have already been assessed
under present reanalysis-forced conditions (Solman
et al. 2013) and for GCM-forced conditions (Sánchez
et al. 2015), with successful results in terms of their
description of the overall and subregional spatial and
annual patterns of seasonal mean temperature and
precipitation.

This work focuses on the analyses of ETCCDI
indices of daily minimum and maximum tempera-
tures and warm/cold day/nights over the whole SA,
based on an observational database, multi-decadal
reanalyses and a multi-model ensemble of regional
climate model simulations. All these results are used
to quantify the uncertainty in reproducing extreme
indices. Moreover, the factors involved in the occur-
rence of extremes over the LPB region are analyzed.
Among the possible climatic factors, the study fo -
cuses on the role of cloudiness, surface radiative forc-
ing and meridional wind component. The analysis is
made for the austral summer (DJF) and winter (JJA)
seasons, and performed considering near present
and future climate conditions.

2.  DATA AND METHODS

Analyses are performed using a multi-model en -
semble (RCM-ENS) composed of 4 RCMs driven by
3 coupled GCMs: LMDZ (Li 1999) driven by IPSL
(Hourdin et al. 2006), PROMES (Castro et al. 1993)
driven by HadCM3 (Gordon et al. 2000) and RCA
(Samuelsson et al. 2011) and REMO (Jacob et al.
2012) driven by EC5OM (Roeckner et al. 2006). A
description of the models can be found in Solman et
al. (2013). Models were focused over the SA domain
with horizontal resolution of about 50 km, covering
the 1961−2099 time period. The models selected for
this study are those which have daily data of the
studied variables (TN, TX, LW, SW and meridional
wind at 850 hPa). The analysis is performed consider-
ing 2 periods: near present (1991− 2010) and future
climate conditions (2079−2098). The near-present
period was composed of a 10 yr run (1991−2000)
forced by historical changes in the atmospheric
 composition, reflecting both anthropogenic and nat-
ural sources (i.e. a 20th century reanalysis [20CR]
experiment), concatenated with another 10 yr run
(2001−2010) forced by SRES A1B atmospheric con-
centrations (Nakicenovic et al. 2000). The reason for
this approach is because the near present period did
not overlap with the base period (1961−1990) defined
for estimation of the threshold values of extremes
indices (Zhang et al. 2011). Future climate conditions

are simulated under the SRES A1B greenhouse gas
scenario. The climate change signal is computed
then as the difference between the future (2079−
2098) and near present (1991−2010) periods.

The Climatic Research Unit (CRU) version TS3.21
(Harris et al. 2014) gridded monthly observational
database, with a spatial resolution of 0.5°, is used to
check the ability of the climate models to reproduce
the spatial patterns of temperature. Fig. 1 (top pan-
els) shows the biases in the base period 1961−1990 in
seasonal mean surface air temperature of RCM-ENS
and the ensemble of GCM forcing models (bottom
panels) for DJF and JJA and projected changes in
mean temperature (2079−2098 minus 1991−2010) ac -
cording to regional and global models. Comparing
the biases provides a rough idea of the added value
of RCMs compared to GCMs. Biases tend to be lower
for RCMs (Fig. 1b,d) than for GCMs (Fig. 1a,c) for
both seasons, with a few exceptions, such as in south-
ern LPB (region marked with a rectangle in the
Fig. 1), where they are similar. The geographical
 distribution of biases is qualitatively similar for the
RCM and GCM ensembles, excluding the LPB in JJA
(Fig. 1c,d), but with a cold bias for the coupled mod-
els and a warm bias for RCM-ENS. In general, tem-
perature biases have opposite signs in the LPB and
eastern Brazil. Errors are relatively large in the
southern LPB for both ensembles, particularly during
DJF (Fig. 1a,b). In most cases, RCM and GCM simu-
lations are too dry (not shown) and too warm in their
present climate simulations during summer in the
LPB. Among the factors that could exacerbate this
problem, the southern LPB is an area of strong cou-
pling be tween the land surface and the atmosphere
(Sörensson & Menéndez 2011), and therefore errors
in the simulation of precipitation directly affect the
temperature through feedbacks with soil moisture
and evapotranspiration (Menéndez et al. 2016, this
Special). In winter, and land surface−atmosphere
coupling is less im portant (Ruscica et al. 2016); the
reasons behind these errors still need to be investi-
gated. When interpreting results of models, it is useful
to examine how the  climate change signal is modified
by the RCM-ENS. Projected seasonal mean tempera-
ture changes simulated by global models (Fig. 1e,g)
are modified by dynamic downscaling with the re -
gional models (Fig. 1f,h). In both seasons, differences
in the geographical distribution of warming between
both ensembles are observed. The RCM-ENS ex -
hibits greater warming compared to global models,
particularly in Bolivia, the northern LPB and south-
ern Brazil. By contrast, in Amazonia in DJF and East-
ern Brazil in JJA, RCM-ENS simulates less warming
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than GCMs. The higher spatial resolutions of RCMs
result in higher spatial variability in climate re -
sponses compared with those from GCMs. Sánchez
et al. (2015) analyze the biases and climatic signals of
individual models used in the CLARIS LPB project.
The inter-model spread is relatively large, especially
for regional models, suggesting that the results of
RCM-ENS could be sensitive to the choice of individ-
ual models that compose it.

A statistical summary of how well the models simu-
late the seasonal geographical patterns of TX and TN
in terms of the centered root mean square difference
(RMSD), the correlation coefficient (R) and the stan-
dard deviation (SD) is described by means of Taylor
diagrams (Taylor 2001). These diagrams (see Fig. 2)
provide a visual framework to easily compare results

be tween models and gridded observations. Points
in the diagram represent the statistical values for
a model and for the climatology of reference. The
radial distance from the origin is proportional to STD,
the radial distance from the reference climatology
(CRU, black point in Fig. 2) is proportional to the cen-
tered RMSD and the correlation between each single
model/ ensemble and the reference climatology is
given by the azimuthal position. Taylor diagrams are
calculated over the full SA domain for DJF and JJA,
and the statistics are obtained after removing the
spatial mean value of each database or model.

To date, there is no direct daily gridded observa-
tional dataset of surface temperature covering the
whole SA domain available. Therefore, the HadEX2
gridded observational-based extremes dataset, docu-
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Fig. 1. Seasonal mean surface air temperature bias (°C) of ensembles of global and regional models. Top panels: Difference be-
tween the Climatic Research Unit (CRU) gridded monthly observational database (Harris et al. 2014) and simulated austral
summer (DJF) and winter (JJA) values for the 1961−1900 period. (a) Global ensemble, DJF; (b) regional ensemble (RCM-ENS),
DJF; (c) global ensemble, JJA; (d) RCM-ENS, JJA. Bottom panels: Changes projected by global and regional models
(2079−2098 minus 1991−2010, SRES A1B). (e) Global ensemble, DJF; (f) RCM-ENS, DJF; (g) global ensemble, JJA; (h) RCM-

ENS, JJA. The box indicates the La Plata Basin (LPB) subdomain selected for detailed analysis
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mented in detail in Donat et al. (2013) and available
from the CLIMDEX project website (www.climdex.
org/), is used to evaluate RCM-ENS extremes. This
dataset is based on climate extremes indices defined
by the ETCCDI (Zhang et al. 2011), in which the
 percentile-based threshold are derived from the
1961−1990 period. Indices selected here are those
related with diurnal and nocturnal temperature ex -
tremes (see Table 1). HadEX2 is available on a 2.5° ×
3.75° longitude−latitude grid and has been previ-
ously used by other authors (e.g. Flato et al. 2013,
Sillmann et al. 2013a, 2014, Thibeault & Seth 2014).
One of the main constraints of HadEX2 is the spatial
coverage based on the station network. Moreover, as
noted by Sillmann et al (2013a), indices are calcu-
lated directly from station-based observations and
then interpolated to a global grid, which results in a
spatial-scale mismatch with indices calculated from
model output because the latter represents area (grid
box) averages rather than point values. Therefore,
we complement the HadEX2 indices with ex tremes
computed from the National Center for En viron -
mental Prediction/National Center for Atmo spheric
Re search (NCEP/NCAR) Reanalysis 1 (NCEP1) (Kal -
nay et al. 1996) and the second Japanese global
atmospheric reanalysis (JRA-55) (Koba yashi et al.
2015). Both reanalyses are obtained from the CISL
Research Data Archive (http://rda. ucar. edu/). NCEP1
data is available on a 192 × 94 Gaussian grid and
JRA-55 on a 640 × 320 Gaussian grid (no other
reanalysis is available for the period 1961−2010 that
provides daily data over SA). All the datasets have
been interpolated to a common grid (0.5° × 0.5°) to
ensure consistency among them.

Following Giorgi & Francisco (2000, their Table 2),
temporal and spatial averaged statistics of extremes
have been estimated over 2 sub-regions of SA: north
South America (NSA, north of 20°S) and south South
America (SSA, south of 20°S). For each extreme
index and for each dataset, a space- and  time-
varying mask according to the HadEX2 data avail-
ability has been applied in order to properly compare
indices from RCM-ENS and reanalysis with those of

HadEX2. Results are summarized by box-
and-whisker plots for each dataset (see
Fig. 4). The validation of the simulated
spatial patterns of the extreme indices is
done against HadEX2 and reanalysis.

Use of multi-model averages to en -
hance signals is common practice (see
e.g. Carril et al. 2012). Therefore, the
 climate change projection of TN, TX
and extreme temperature indices are

 displayed as the multi-model ensemble mean differ-
ence between future and near present periods, iden-
tifying regions with statistically significant signal-to-
noise ratio (SNR), i.e. the signal due to anthropogenic
gases increases versus the noise from individual
models. Following Kendon et al. (2008), SNR is
defined as:

(1)

where the numerator indicates the projected average
change, calculated as the different between future
(F) and near present conditions (P), while σ2

P and σ2
F

in the denominator represent the variances across
the ensemble for each time slice. To interpret SNR in
terms of its significance, a Student t-test with α = 0.05
is applied, where the null hypothesis indicates that
values between near present and future are different.

There are different processes and climatic vari-
ables that could affect surface air temperature, and
consequently, its extremes. In the context of climate
change, these variables are changing and also inter-
acting with each other. In particular, the characteris-
tics of the temperature fields in the LPB are closely
related to both the large-scale circulation and the
synoptic conditions that transport heat in a merid-
ional direction (Garreaud et al. 2009). Therefore,
based on the RCM-ENS, the influence of cloud cover,
radiation fluxes and winds on temperature and its
projections are investigated for the area-averaged
LPB domain (25° S to 40° S, 50° W to 68° W). Consid-
ered variables are total cloud cover (TCC), SWR,
LWR, surface net radiation (Rn) and 850 hPa merid-
ional wind component (v850). Rn is defined as the
sum of SWR and LWR, and the DTR as the difference
between TX and TN. We chose the wind at the
850 hPa level because this is usually above the
boundary layer, but not too far from the surface,
where the extremes actually occur (Andrade et al.
2012). To examine the influence of these variables on
TX and TN changes, the following computations are
made. In analogy with the procedure used to obtain
the extreme in dices, daily temperature and wind

F P

P F

= −
σ + σ

SNR
( ) / 2’2 2
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ID            Name                Description

TN10p    Cold nights       Percentage of days when TN < 10th percentile
TX10p     Cold days         Percentage of days when TX < 10th percentile
TN90p    Warm nights    Percentage of days when TN > 90th percentile
TX90p     Warm days       Percentage of days when TX > 90th percentile

Table 1. Expert Team on Climate Change Detection and Indices (ETCCDI)
definitions of extreme temperature indices. Units are percent for all indices
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anomalies are computed as deviations from the sea-
sonal mean baseline period value. Therefore, daily
temperature anomalies are grouped with daily meri -
di onal wind at 850 hPa. Moreover, as RCMs provide
a set of physically consistent variables, the joint vari-
ability among the TCC, surface radiation budget
(Rn, SWR and LWR), temperature fields (TN, TX)
and DTR is quantified for both the near-present and
future periods. This analysis is a contribution towards
better understanding of temperature changes in the
LPB region.

3.  RESULTS AND DISCUSSION

3.1.  Seasonal mean fields of minimum and
 maximum temperature

Taylor diagrams for TN and TX (Fig. 2) show that
RCM-ENS (red point) has a good performance rela-
tive to each individual model (red dots are further
away from the outlier points and near to the cluster
of best models). As in e.g. Carril et al. (2012) and
Menéndez et al. (2010a), combining models in a multi-
model ensemble gives a better climate description
than any individual model, independently of the vari-
able and the season. The regional models capture
better the spatial characteristics of TN than those of
TX: the spread between models is large for TX, with
PROMES being the outlier model in this case. Note,
however, that reanalysis errors are comparable to
RCM-ENS. This simple analysis provides a crude but
useful measure of uncertainty to put the magnitude
of the model errors into context (ideally model errors
should be similar to or smaller than the uncertainty).
Similar results have been found using other datasets
and considering 2 subregions of SA: for TN, TX and
precipitation over LPB (Carril et al. 2012), and for
temperature extremes in southeast SA (Carril et al.
2016, this Special).

Fig. 3 shows the geographical distribution of sea-
sonal mean TN and TX for DJF (first 2 columns) and
JJA (last 2 columns), for the reference observational
climatology (CRU, first row) and the model ensemble
(RCM-ENS, second row). During DJF, the CRU cli-
matology displays the highest temperatures (TN and
TX) over the Gran Chaco region. During JJA, the
highest TN values are located over the Amazon re -
gion, whereas the warmest region for TX is located
more to the south at around 10°S. The LPB domain is
characterized by a temperature gradient, mostly
north−south oriented, which is especially evident
for TX in JJA. In summer, as high values of TX occur

inland over the northern and western part of this
domain, the gradient has a zonal component, sug-
gesting the influence of ocean as a temperature mod-
erator. In general the main features of the distribu-
tion of TN and TX are well captured by the model
ensemble during both seasons. The TN bias tends to
be mostly positive throughout SA (i.e. models are
warmer than the reference climatology), reaching
maximum deviation with regard to the CRU climato -
logy over Amazonia and central-northern Argentina.
The TX bias is positive in the LPB and negative over
Brazil. In both cases (TN and TX) the highest biases,
in absolute value, are in the range of 2° to 4°C. The
largest differences occur along the Andes, especially
for TX which is underestimated. However, this bias
should be interpreted with care, since the quality of
observational datasets over areas with complex topo -
graphy is critical for evaluating model performance
(Solman et al. 2013). Similar spatial patterns of biases
have been previously reported by Solman et al.
(2013) and Sánchez et al. (2015) for seasonal mean
surface air temperature, and by Carril et al. (2012) for
TX in DJF and TN in JJA. The simulated TN and TX
warming is largest between 10° and 35°S, affecting
the LPB particularly in JJA (Fig. 3, third row). The
projected changes in tropical regions are lower. In
general, the changes in TN exhibit a greater level of
confidence than those projected in TX. Geographic
patterns of changes in TN and TX are similar to each
other for each season. The warming in the LPB is
larger in JJA than in DJF, implying that the ampli-
tude of the seasonal cycle of temperature is projected
to decrease.

3.2.  Extreme temperature indices

Making an accurate estimate of the uncertainty in
climate observations is a difficult task. To provide a
useful measure of the uncertainty of extremes, we
compare several alternative datasets (Covey et al.
2002) to put into context the magnitude of the errors
of the simulations. Fig. 4 provides an overview of
the differences in extreme indices, i.e. warm nights
(TN90p), warm days (TX90p), cold nights (TN10p)
and cold days (TX10p) (see Table 1 for definitions),
estimated from different datasets (HadEX2, NCEP1,
JRA-55 and RCM-ENS) for the period 1991−2010.
The box-and-whisker plots display some basic statis-
tics of the area-averaged extremes over NSA and
SSA. The interquartile range (IQR, which is spanned
by the 25th and 75th quantiles) provides an estima-
tion of the variability of the extremes indices in each
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dataset. As in Carril et al. (2012), we consider the
RCM-ENS as ‘satisfactory’ if its IQR intersects at least
part of the corresponding IQR of HadEX2 and/or
reanalysis data (a more strict criteria than just com-
paring the min.−max. ranges). In general, the criteria
is fulfilled and the RCM-ENS match between the

spread across the IQR of the other climatologies.
Exceptions occur in SSA for indices based on TX
(i.e. daytime ex tremes TX90p and TX10p; Fig. 4d,h).
Moreover, the variability is larger for warm extremes
(TN90p and TX90p; Fig. 4a−d) than for cold extremes
(TN10p and TX10p; Fig. 4e–h). Variability peaks

157

Fig. 2. Statistics displaying the spread of modeled and reanalysis summer (DJF) and winter (JJA) temperature indices (°C) for
South America in the period 1991−2010 compared to the reference observational climatology (CRU, black point). Panels are
Taylor diagrams (see Section 2: ‘Data and methods’). Colored dots show values for individual regional models (PROMES, RCA,
LMDZ  and REMO), the ensemble mean (RCM-ENS) and NCEP1 and JRA-55 reanalyses. (a) Minimum temperature (TN), DJF;
(b) maximum temperature (TX), DJF; (c) TN, JJA; (d) TX, JJA. Each panel illustrates three statistics: the standard deviation (ver-
tical axis), the correlation coefficient (axial) and the mean root square error (concentric dashed lines around the CRU dot)
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in NSA, where both IQR but also total min.−max.
ranges display maximum values, and the RCM-ENS
captures those characteristics. There is consensus
among the data sets about the high frequency of
occurrence of warm extremes (Fig. 4a−d). This is
 particularly notable in NSA, where mean values

(Fig. 4a,c, left column) are clearly >10% (the mean
expected value of the indices by definition, REF).
However, the inter-dataset differences for warm
extremes are also notable. For TX90p in NSA, the
NCEP1 mean value lies outside the HadEX2 IQR
(Fig. 4c, left panel), while for both TN90p and TX90p

158

Fig. 3. Observed and modeled minimum (TN) and maximum (TX) temperatures (°C) for summer (DJF) and winter (JJA) over
South America. Columns (left to right) show TN−DJF, TX−DJF, TN−JJA and TX−JJA. Rows (top to bottom) show observed val-
ues for the near-present (PRE) period (1991−2010) from the CRU dataset, the regional multi-model ensemble (MME) mean
(RCM-ENS) for the same period, and changes projected (FUT) by RCM-ENS (2079−2098 minus 1991−2010). Hatching (bottom 

panels): anthropogenic climate change signal not significant at the 95% level
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Fig. 4. Box-and-whisker plots of ex-
treme temperature indices for
northern South America (NSA, left
panels) and southern South Amer-
ica (SSA, right panels) in 1991−
2010, calculated from observational
data (HadEX2 [blue]), reanalyses
(NCEP1[red] and JRA-55 [green])
and the regional multi-model en-
semble (RCM-ENS [purple]). (a,b)
Warm nights (TN90p); (c,d) warm
days (TX90p); (e,f) cold nights
(TN10p); (g,h) cold days (TX10p).
Boxes: inter quartile range (IGR, i.e.
the range between the 25th and
75th percentiles); black solid lines
within the boxes: median; whiskers:
maximum and minimum values. For
the regional averages (NSA and
SSA), a spatial- temporal variable
mask according to the availability
of the HadEX2 indices was applied

A
ut

ho
r c

op
y



Clim Res 68: 151–167, 2016

in SSA, JRA-55 is a warm biased dataset (Fig. 4b,d
right column). On the other hand, there is consensus
about the low frequency of occurrence of cold nights
(TN10p) and days (TX10p) in NSA (Fig. 4e,g, left col-
umn), while in SSA (Fig. 4f,h right column) results
are obscured by NCEP1 that appears as a cold biased
dataset (with mean values outside the IQR of other
climatologies).

The visual inspection of the spatial patterns of
extremes from different datasets (Fig. 5) highlights
the important degree of uncertainty obtained: the
spread among indices of extremes from HadEx2,
NCEP1 and JRA-55 is large. If we are to trust in the
models’ ability to simulate the near-present  climate
conditions, RCM-ENS errors (i.e. RCM-ENS minus
HadEX2) need to be smaller than the uncertainty. Fol-
lowing Menéndez al. (2010a), uncertainty is defined
here as the interclimatology range (i.e. HadEX2,
NCEP1, JRA-55) of extreme indices (differences
between the highest and the lowest value at each
grid point). In this case, uncertainty is as large as the
model errors over vast areas of SA, and the ensemble
bias exceeds the uncertainty only in hatched regions
(Fig. 5, bottom panels). It is worth noticing that RCMs
used in this study were driven by atmospheric fields
and sea surface temperatures from ‘non-perfect’
global coupled climate models (see Giorgi et al.
2009), in which chronology and some relevant pro-
cesses (as e.g. land use changes) are missing. Only in
case of RCMs driven by ‘perfect boundary condi-
tions’ (i.e. from any reanalysis dataset) could we, ide-
ally, expect models to agree with observations.

Projected changes in extreme indices are displayed
in Fig. 6. RCM-ENS projects a significant warming
over the whole continent by the end of the 21st cen-
tury: the warm extremes are generally in creased,
while the cold extremes are diminished. In particular,
the projected warming in nighttime ex tremes (TN) is
larger than that in daytime extremes (TX).

In terms of change measured in percentage, the
frequency of extreme warm nights (Fig. 6a) is pro-
jected to increase by up to the 80% in tropical SA, by
about 50 to 70% in subtropical SA and by about 15 to
30% in SSA. A similar pattern of change is expected
in extreme warm days (Fig. 6b), but to a lesser extent:
in the majority of cases, their frequency in tropical
and subtropical SA increases by <50%, while the

southern portion of LPB is the region with the lowest
sensitivity to climate change (<10%). In Amazonia,
the larger increases in TN90p (Fig. 6a) compared
with those of TX90p (Fig. 6b) are associated with pro-
jected increases in TN and not significant changes in
TX (Fig. 3, bottom panels). In SSA different relation-
ships are found for DJF and JJA. The small changes
projected in the occurrence of warm nights (Fig. 6a)
and days (Fig. 6b) in the LPB correspond well with
small in creases, or even decreases, in TN and TX in
DJF (Fig. 3i,j).

On the other hand, projected changes in the num-
ber of cold nights/days are small (Fig. 6c,d). The
largest changes are expected in the number of cold
nights, and especially over the LPB and the Brazilian
Highlands. These results of the projections are in
agreement with the trends observed during the last
decades of the 20th century (Rusticucci 2012, Skansi
et al. 2013).

3.3.  Factors influencing daily temperature
extremes over the La Plata Basin

3.3.1.  Cloud and surface radiative forcing

The relation of cloud and surface radiative forcing
with TN and TX, under near present and future cli-
mate conditions is depicted in Fig. 7, which Rn, SWR,
LWR, TN and TX as a function of TCC for DJF and
JJA over the LPB domain. Here, 2 main factors are
involved. The first is the role of cloudiness in
decreasing TX during the daytime by reflecting solar
radiation (i.e. reducing SWR). The second is green-
house warming at night, which increases TN due to
the infrared energy emitted by clouds returning to
the surface (i.e. increasing LWR). Both processes
tend to dampen the DTR for larger values of cloudi-
ness (Zhou et al. 2009). Overall, RCM-ENS is able to
capture these processes for both seasons: Fig. 7
shows that, as TCC decreases, SWR dominates and
TX increases with Rn, while TN has an opposite and
smaller slope. Increasing DTR with decreasing
cloudiness is related to the corresponding increase of
Rn. Furthermore, under future conditions (dashed
lines) a generally larger increase of TN compared to
TX is projected, especially in summer, associated
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Fig. 5. Frequency of occurrence of temperature extremes (percentage of days in a year) in the near present period
(1991−2010). Columns (left to right) show warm nights (TN90p), warm days (TX90p), cold nights (TN10p) and cold days
(TX10p) (see Table 1 definitions of indices). Rows (top to bottom) show values from the HadEX2 observational dataset (areas
with no data availability are masked), NCEP1 reanalysis, JRA-55 reanalysis, and the regional multi-model ensemble RCM-

ENS. Hatching (bottom row): ensemble bias exceeds the uncertainty
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Fig. 6. Projected changes (2079−2098 minus 1991−2010) in the frequency of occurrence (percentage of days in a year) of tempera-
ture extremes over South Amercia. Values are means from the regional multi-model ensemble RCM-ENS. (a) Warm nights
(TN10p), (b) warm days (TX90p), (c) cold nights (TN10p) and (d) cold days (TX90p). All changes are significant at the 95% level

Fig. 7. Mean relation between total
cloud cover (TCC) and other climate
variables in summer (DJF, left panels)
and winter (JJA, right panels) calcu-
lated by the regional multi-model en-
semble RCM-ENS for the La Plata Basin
(LPB). Rows (top to bottom) show TCC
vs. surface net radiation (Rn); TCC vs.
surface net downward shortwave flux
(SWR) and surface net downward long-
wave flux (LWR); and TCC vs. minimum
daily temperature (TN), maximum daily
temperature (TX) and diurnal range
temperature (DTR). PRE: near-present
period (1991−2010, continuous lines);
FUT: future period (2079−2098, dashed
lines). Results are area averaged over
the LPB domain. Note different y-axes 

for the 2 seasons
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with increases of GHGs and decreases in the magni-
tude of LWR. Some differences are found between
both extreme seasons. In the near-present period, the
difference between warm and cold seasons is likely
to be mainly related to SWR, as in winter the solar
 radiation is much weaker than in summer. In DJF
(Fig. 7a, continuous lines), i.e. the austral summer, the
magnitude of SWR (ranging from 100 to 300 Wm−2),
and consequently the temperatures, are higher than in
JJA (Fig. 7b, continuous lines) (range 20 to 140 Wm−2).
Moreover, it is noticeable that RCM-ENS simulates a
sharp reduction of TN in DJF and of TN and TX in
JJA under TCC >90%, suggesting the possible influ-
ence of other processes related to frontal activity,
precipitation and wetter soils. However, this non -
linear behavior between TCC and temperature is
not reflected so clearly in DTR for high values of
cloudiness.

Under SRES-A1B emissions scenario (Fig. 7, dashed
lines), values under clear-sky conditions (left part of
each panel) indicate the direct effect of increasing
GHGs without the effect of clouds, while values
under high cloudiness conditions (right part of each
panel) show the combined effect of increasing GHGs
and TCC. During DJF (Fig. 7a, dashed lines) RCM-
ENS projects larger increases of TN than TX with in
general somewhat larger changes of LW than of SW
in conditions up to 70% TCC. This result is associ-
ated with larger increases of warm night tempera-
tures (associated with TN) than of warm days (TX), as
presented in Sections 3.1 and 3.2. The effect of GHGs
is to keep the energy captured at the surface during
the day, warming the surface at night. However, a
strong nonlinear behavior regarding the relationship
between TCC and both TN and TX is evident for

TCC values >90%, with large decreases, relative to
less cloudy conditions, in both temperatures. During
the cold season (Fig. 7b, dashed lines), temperature
and surface radiative forcing present qualitatively
similar behavior as in DJF for TCC values up to 90%.
However, for full cloud cover conditions, TX does not
show a large decrease over less cloudy conditions, but
shows a large increase over near-present climate con -
ditions, both being qualitatively changes in opposition
to what was observed in the DJF case. Fig. 8 shows
the changes (expressed as absolute differences) in
SWR, LWR and Rn as a function of TCC. LWR is pro-
jected to decrease in magnitude for both seasons, but
especially in summer and for low cloudiness values
(note that LWR has negative values). A marked de -
cline of Rn in the case of total cloud cover conditions
in DJF can be observed. Overall changes in SWR,
LWR and Rn present a different pattern in DJF and
JJA for TCC >90%. These results are in agreement
with Zhou et al. (2009), who found that large de -
creases in DTR reflect the effects of TCC increases
over the LPB domain under future conditions (see
their Fig. 3). The lower projected increase in the
occurrence of extremes in TX than TN over the LPB
(Fig. 6) is also consistent with the decrease in DTR.

3.3.2.  Meridional wind component influence

The dependence of TN and TX anomalies over the
LPB upon the meridional wind component is shown
in Fig. 9. For near present climate conditions and for
both seasons, there is a high concordance between
the sign of the meridional wind component and the
sign of the temperature anomaly: northerly fluxes are
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Fig. 8. Projected changes (2079−2098 minus 1991−2010) in the relation between total cloud cover (TCC) and surface net radia-
tion (Rn), surface net downward shortwave flux (SWR) and surface net downward longwave flux (LWR) in (a) summer (DJF) 

and (b) winter (JJA) in the La Plata Basin. Results are area averaged over the LPB domain
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associated with warm anomalies, while southerly
fluxes are associated with cold anomalies. Under
future climate conditions, the warming is evident in
both seasons and for both TN and TX. Nevertheless,
summertime cold anomalies only occur during those
days in which the southerly wind component is
greater than a certain threshold (Fig. 9a), i.e. 6 m s−1

(4 m s−1) for anomalies in TN (TX). In winter (Fig. 9b),
it is sufficient to have days with southerly wind com-
ponent >2 m s−1 to have cold anomalies in both TN
and TX.

Under present climate conditions (Fig. 9, continu-
ous lines), the higher the northerly (southerly) wind
component, the greater the positive (negative) tem-
perature anomaly. However, the temperature is more
sensitive to the southerly wind intensity (positive
wind values in Fig. 9) than to the northerly wind
intensity. Conversely, temperature is less sensitive to
the intensity of the strongest northerly winds in DJF
(Fig. 9a): northerly winds between −4 m s−1 and –10 m
s−1 are associated with temperature anomalies of 1°
to 2°C, while for southerly winds of 8 m s−1, TN and
TX anomalies are about −3°C and −5°C respectively.
In winter (Fig. 9b) the temperature is more sensitive
to intensity of the meridional wind component than
in summer, and southerly wind component is associ-
ated with larger cold anomalies in TX than in TN.

In both periods, warm anomalies in TN are larger
than those in TX in DJF (in JJA the relationship is
less clear), while cold anomalies in TX are always
larger than those in TN. Anomalies in TN and TX dif-
fer from each other much more clearly when the
southerly wind component is large. In general, the

difference between TN and TX anomalies are pro-
jected to increase in the future climate, especially for
intense southerly winds.

4.  SUMMARY AND CONCLUSIONS

This study analyzes the seasonal mean fields of
maximum and minimum daily temperature and 4
ETCCDI indices of extreme temperatures under
near-present (1990−2010) and future climate condi-
tions (2079−2098). Several observational databases
and re analyses are used to evaluate the uncertainty
linked to the use of regional models and to put into
context the biases of a set of 4 RCMs when reproduc-
ing the regional mean climate and extreme features.
The influence of the cloudiness, the radiative forcing
and the meridional winds on temperature anomalies
are also analyzed, focusing on the LPB region.

The RCM-ENS captures the regional spatial fea-
tures of the seasonal mean TN and TX better than
any of the individual models. However, warm biases
are identified over the Amazon basin and LPB, and
cold biases are found in orographic areas with high
altitude and in Patagonia especially during the aus-
tral summer.

Despite this uncertainty in the data, the simulation
of warm/cold days/nights by the RCM-ENS is satis-
factory, fulfilling the criterion of matching between
the spread across the interquartile range of the other
climatologies (HadEX2, NCEP1 and JRA-55). In par-
ticular, there is consensus among the climatologies
that variability of warm extremes (TN90p, TX90p)
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Fig. 9. Minimum temperature (TN) and maximum temperature (TX) anomalies (°C) related to meridional wind component at
850hP (v850, m s−1) at 2 m s−1intervals in (a) summer (DJF) and (b) winter (JJA) in the La Plata Basin (LPB). Results are area
 averaged over the LPB domain. Positive (negative) meridional wind values correspond with southerly (northerly) wind 

components. PRE: present period (1991−2010, continuous lines); FUT: future period (2079−2098, dashed lines)
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is larger than variability of cold extremes (TN10p,
TX10p), with maximum variability in NSA. Accord-
ing to results from RCM-ENS and HadEX2, during
the near present period, LPB is a region with rela-
tively low frequency of occurrence of warm extremes
(TN90p and TX90p). These results are in agreement
with previous findings based on observational data
(Rusticucci 2012, Skansi et al. 2013).

At the end of 21st century, RCM-ENS depicts a
consistent picture between the projected changes of
seasonal mean TX and TN and changes in tempera-
ture extremes. Areas where the warm nights increase
more than warm days are also those where TN
increases more than TX in summer, as it is the case
for the LPB where the lowest warming of TX is pro-
jected. A contributory factor limiting the increase in
TX is the response of summer precipitation and eva -
potranspiration in the LPB (Menéndez et al. 2016).

The reflective cooling and greenhouse effects of
TCC on TX, TN and DTR are analyzed. The influ-
ence of clouds has opposite effects on night- and day-
time processes. While their property of absorbing
outgoing radiation affects principally TN, their prop-
erty of reflecting solar radiation has a direct influence
on TX. In the LPB, the RCM-ENS projects larger
changes for LWR than for SWR. RCM-ENS simulates
a nearly linear relationship between temperature
and cloudiness for TCC values up to 90% (decreased
TX and increased TN as TCC increases). However,
for very cloudy to full cloud cover conditions, this
slope is usually sharply reversed, suggesting a cool-
ing effect connected to other processes such as rain-
fall and frontal passages. The different behavior for
high values of TCC is also reflected in Rn. Changes
in TN and TX simulated by RCM-ENS are consistent
with a reduction in DTR on LPB. The same conclu-
sion can be drawn from data presented by Zhou et al.
(2009, their Fig. 2), in which the LPB is identified as
the area of SA where the largest decrease in DTR is
projected. We find here that this decrease occurs in
summer and winter and for any value of TCC (except
for high cloudiness in JJA), and is larger on days with
low cloudiness.

We also examine how the intensity of the merid-
ional wind component influences TN and TX anom-
alies under near present and future climate condi-
tions. During the 2079−2098 future period and for
summer conditions, warm anomalies (relative to the
near present climate) are exhibited on all days except
for those with a strong southerly flow (which repre-
sent <1% of the days; data not shown). In general,
temperature is more sensitive to the intensity of the
meridional flow in winter than in summer, and it is

more sensitive to southerly winds than northerly
winds. Moreover, southerly winds are associated
with larger negative anomalies in TX than in TN. The
separation between the TN and TX anomalies is
larger by the end of the 21st century than during the
near-present climate, no matter what the wind speed
is, although this is more evident when the wind is
from the south.

The study demonstrates that RCMs are a valuable
tool for the study of daily temperature extremes at
regional scales. Crucially, they can be used over
regions where the observational datasets are scarce,
as it is the case of SA. Furthermore, RCMs can simu-
late in a physically-consistent way the influence of
cloud cover, radiative fluxes and meridional wind
over the daily temperature extremes, despite the
inherent limitations involved in modelling the com-
plex interrelationship between these variables. The
results obtained will serve as the basis for further
studies that should take into account other features
and climatic mechanisms such as soil moisture,
evapo transpiration, rainfall, and humidity advection.
It is clearly necessary to perform further analysis of
other related physical processes that could affect the
behavior and characteristics of daily temperatures
extremes over the LPB and other regions of SA.
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