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We give local, explicit representation formulas for n-dimensional spacelike sub-
manifolds which are marginally trapped in the Minkowski space Rn+2

1 , the de
Sitter space dSn+2, the anti-de Sitter space AdSn+2 and the Lorentzian prod-
ucts Sn+1 × R and Hn+1 × R of the sphere and the hyperbolic space by the real
line. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906936]

I. INTRODUCTION

Let S be a submanifold of a pseudo-Riemannian manifold (N , g). If the induced metric on S is
non-degenerate, one may define its mean curvature H⃗ , a normal vector field along S. We shall say
that S is marginally trapped if H⃗ is a null vector, i.e., g(H⃗ , H⃗) vanishes identically (some authors
call such submanifolds quasi-minimal or pseudo-minimal). Of course this may happen only if S has
codimension greater than two and if the induced metric on the normal bundle is indefinite.

The case of a spacelike surface S of a four-dimensional Lorentzian manifold (N , g) is the most
interesting because of its physical interpretation in the setting of general relativity: marginally outer
trapped surfaces (MOTS) play a fundamental role in the study of black holes and spacetime singu-
larities (Refs. 10 and 14). Despite their physical relevance and the fact that marginally trapped is the
most natural curvature condition which is purely pseudo-Riemannian, these submanifolds are still
not very well understood. After a seminal paper (Ref. 15) where marginally trapped submanifolds
are called semi-minimal, there has been recent work on the classification of marginally trapped sur-
faces satisfying several additional properties, such as being Lagrangian (Ref. 8), isotropic (Ref. 6),
having flat normal bundle (Ref. 1), constant curvature (Ref. 7), or positive relative nullity (Refs. 9
and 16). On the other hand, in Ref. 13 (see also Ref. 2), a very interesting minimization property has
been discovered concerning marginally trapped surfaces: a minimal spacelike surface of Minkowski
space R4

1, although it is unstable, minimizes the area among marginally trapped surfaces satisfying a
natural boundary data.

The purpose of this paper is to give local, explicit representation formulas for n-dimensional
marginally trapped submanifolds in some of the simplest Lorentzian manifolds: the Minkowski
space Rn+2

1 , the non-flat Lorentzian spaces forms, i.e., the de Sitter space dSn+2 and the anti-de
Sitter space AdSn+2, and finally, the Lorentzian products Sn+1 × R and Hn+1 × R of the sphere and
the hyperbolic space by the real line.

Our construction is inspired by Ref. 3 and is based, although not explicitly, on the contact
structure enjoyed by the space of null geodesics of a pseudo-Riemannian manifold (Refs. 11 and
12). For example, in the case of Minkowski space Rn+2

1 , a spacelike, n-dimensional submanifold S̄
is locally described in terms of its height function (i.e., its timelike coordinate) and a hypersurface S
of Rn+1. Then, the marginally trapped condition amounts to a simple algebraic relation between the
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height function of S̄ and the second fundamental form of S. The interpretation in terms of contact
geometry is the following: the set of null geodesics normal to S is a Legendrian submanifold in the
set of null geodesics of Rn+2

1 , which is contactomorphic to the unit tangent bundle of Rn+1; then, the
hypersurface S is nothing but the projection on the basis Rn+1 of this Legendrian submanifold.

This idea works in the same way in the other simple Lorentzian spaces dSn+2, AdSn+2, Sn+1 ×
R, and Hn+1 × R. The construction can be performed in Robertson-Walker spaces as well, but the
analysis becomes quite more involved since the equation relating the height function of S̄ and the
second fundamental form of S is not any more polynomial, but remains algebraic. This case is
discussed in Ref. 4.

II. STATEMENT OF RESULTS

Let (Rn+1,⟨., .⟩0) be the Euclidean space endowed with its canonical Riemannian metric

⟨., .⟩0 B dx2
1 + · · · + dx2

n+1,

and denote by

⟨., .⟩1 B ⟨., .⟩0 − dx2
n+2

the flat Lorentzian metric of the Cartesian product Rn+2
1 = Rn+1 × R.

We denote by ι : Rn → Rn+1 the canonical totally geodesic embedding ι(x) = (x,0) and denote
by ν0 = (0, . . . ,0,1) its (constant) unit normal vector.

We recall that the second fundamental form h of an immersionM → (N , g) with non degen-
erate first fundamental form is the symmetric tensor h : TM × TM → NM defined by h(X,Y ) B
(DXY )⊥, where (.)⊥ denotes the projection onto the normal space NM and D is the Levi-Civita
connection of g. If ν is a normal vector field along M, we have the following important relation:
g(h(X,Y ), ν) = −g(DXν,Y ). The mean curvature vector of the immersion is the trace of h with
respect to the induced metric.

Theorem 1. Let Ω be an open domain of Rn and τ ∈ C2(Ω). Then, the immersion ϕ̄ : Ω →
Rn+2

1 defined by

ϕ̄(x) = �
ι(x),0� + τ(x)�ν0,1

�

is flat and its second fundamental form is given by

h̄(X,Y ) = Hessτ(X,Y )(ν0,1).
In particular, ϕ̄ has null second fundamental form and is therefore marginally trapped. Conversely,
any n-dimensional spacelike submanifold with null second fundamental form is locally congruent to
the image of such an immersion.

Let ϕ be an immersion of class C4 of an n-dimensional manifoldM into Rn+1 and denote by ν
the Gauss map of ϕ, which is therefore Sn-valued. Assume that ϕ admits p distinct, non-vanishing
principal curvatures κ1, . . . , κp, p ≥ 2 with multiplicity mi and denote by τi the p − 1 roots of the
polynomial

P(τ) B
p
i=1

mi

p
j,i

(κ−1
j − τ).

Then, the p − 1 immersions ϕ̄i :M → Rn+2
1 defined by

ϕ̄i = (ϕ + τiν, τi)
are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of Rn+2
1 whose second funda-

mental form is not null is locally congruent to the image of such an immersion.
In particular, in the n = 2 case, let ϕ be a non-flat C4-immersion of a surfaceM into R3 which

is free of umbilic points. Denote by ν its Gauss map, by H and K the mean curvature with respect to
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ν and the Gaussian curvature of ϕ. Then, immersion ϕ̄ :M → R4
1 defined by

ϕ̄ B

(
ϕ +

H
K
ν,

H
K

)
is marginally trapped. As a corollary, an immersed surface which is contained in a time slice
{x4 = const.} is marginally trapped if and only if H

K
is constant, i.e., ϕ is linear Weingarten.

It may be interesting to relate the latter formula to one found by Palmer: it is proved in Ref. 13
that, givenΩ an open subset of S2 and f ∈ C4(Ω), the immersion ϕ : Ω → R4

1 defined by

ϕ̄(x) =
(
∇ f (x) + f (x)x,− f (x) − 1

2
∆ f (x)

)
, (1)

where ∇ and ∆ denote the gradient and Laplace operators with respect to the round metric, which is
marginally trapped.

We first observe that a convex surface of Euclidean space may be constructed from its support
function: let ϕ : Ω → R3 parametrized by its unit normal vector ν and introduce f (ν) = ⟨ϕ(ν), ν⟩0,
i.e., f is the support function of ϕ. Hence, we have (see Ref. 5)

ϕ(ν) = f (ν)ν + ∇ f (ν). (2)

It will be seen along the proof of Theorem 1 that a spacelike immersion ϕ̄ : Ω → R4
1 such that

the null geodesic {(ϕ(ν),0) + t(ν,1)| t ∈ R} crosses orthogonally the surface ϕ̄(Ω) at ϕ̄(ν) takes the
form

ϕ̄(ν) = (ϕ(ν) + τ(ν)ν, τ(ν)) ,
where τ is a smooth real map on Ω. Moreover, the mean curvature vector of ϕ̄ is collinear to the
null vector field ν̄ = (ν,1) if and only if τ = H

K
. On the other hand, the following formula holds (see

Ref. 5):

H
K
= − f − 1

2
∆ f , (3)

so using formulas (2) and (3) together with the formula ϕ̄ B
�
ϕ + H

K
ν, H

K

�
of Theorem 1, we recover

Palmer’s formula (formula (1)).
The same construction may be applied in the case of the Lorentzian space forms. In order to

state the result, we set

Sn+1 B {x ∈ Rn+2| ⟨x, x⟩0 = 1} and Hn+1 B {x ∈ Rn+2| ⟨x, x⟩1 = −1}.
These are the hyperquadric models of the n + 1-dimensional Riemannian space forms. Similarly,
the (n + 2)-dimensional Lorentzian space forms are defined as follows:

dSn+2 B {x ∈ Rn+3| ⟨x, x⟩1 = 1} and AdSn+2 B {x ∈ Rn+3| ⟨x, x⟩2 = −1},
where

⟨., .⟩2 B dx2
1 + · · · + dx2

n+1 − dx2
n+2 − dx2

n+3.

Theorem 2. Let Ω be an open domain of Sn (respectively, Hn) and τ ∈ C2(Ω). Denote by
ι : Sn → Sn+1 ⊂ Rn+2 (respectively, Hn → Hn+1 ⊂ Rn+2

1 ) the canonical totally geodesic embedding
ι(x) = (x,0) and denote by ν0 = (0, . . . ,0,1) the corresponding (constant) unit normal vector. Then,
the immersion ϕ̄ : Sn → dSn+2 (respectively, Hn → AdSn+2) defined by

ϕ̄(x) = �
ι(x),0� + τ(x)�ν0,1

�

is flat and its second fundamental form is given by

h̄(X,Y ) = Hessτ(X,Y )(ν0,1).
In particular, ϕ̄ has null second fundamental form and is therefore marginally trapped. Conversely,
any n-dimensional spacelike submanifold with null second fundamental form is locally congruent to
the image of such an immersion.
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Let ϕ be an immersion of class C4 of an n-dimensional manifold M into Sn+1 (respec-
tively, Hn+1) and denote by ν the Gauss map of ϕ, which is therefore Sn+1-valued (respec-
tively, dSn+1-valued). Assume that ϕ admits p distinct, non-vanishing principal curvatures κ1, . . . ,
κp, p ≥ 2 with multiplicity mi and denote by τi the p − 1 roots of the polynomial

P(τ) B
p
i=1

mi

p
j,i

(κ−1
j − τ).

Then, the p − 1 immersions ϕ̄i :M → dSn+2 (respectively, AdSn+2) defined by

ϕ̄i = (ϕ + τiν, τi)
are marginally trapped.

Conversely, any n-dimensional marginally trapped submanifold of dSn+2 (respectively, of
AdSn+2) whose second fundamental form is not null is locally congruent to the image of such an
immersion.

We observe that all the examples found in Refs. 6 and 9 have null fundamental form (see
Sec. VI).

The construction works as well in the case of the Lorentzian product of a space form by the real
line. We endow Sn+1 × R with the Lorentzian metric ⟨., .⟩0 − dx2

n+3, where ⟨., .⟩0 is the round metric
of Sn+1 and xn+3 denotes the canonical coordinate of the real line R.

Theorem 3. There is no non-totally geodesic n-dimensional submanifold of Sn+1 × R with null
second fundamental form.

Let ϕ be an immersion of class C4 of an n-dimensional manifold M into Sn+1. Denote by
ν the Gauss map of ϕ and by κ1, . . . , κp its p distinct curvatures with multiplicity mi. Then, the
polynomial

P(s) B
p
i=1

mi(κis + 1)
p
j,i

(s − κ j)

admits exactly p − 1 roots si if ϕ is minimal and p roots otherwise. Moreover, the p − 1 or p
immersions ϕ̄i :M → Sn+1 × R defined by

ϕ̄i B
*..
,

siϕ + ν
1 + s2

i

,cot−1si
+//
-
, 1 ≤ i ≤ p − 1 or p

are marginally trapped.
Conversely, any n-dimensional marginally trapped submanifold of Sn+1 × R is locally congru-

ent to the image of such an immersion.
In particular, in the n = 2 case, given a non minimal C4-immersion ϕ of a surface into S3 and

a B
κ1κ2 − 1
κ1 + κ2

,

the two immersions into S3 × R defined by

ϕ̄± B
*..
,

(a ± √a2 + 1)ϕ + ν
√

2


a2 + 1 ± a
√

a2 + 1
,cot−1(a ± √a2 + 1)+//

-
are marginally trapped.

Analogously, Hn+1 × R is endowed with the metric ⟨., .⟩1 − dx2
n+3, where ⟨., .⟩1 is the standard

metric of Hn+1 and xn+3 denotes the canonical coordinate of the real line R.

Theorem 4. There is no non-totally geodesic n-dimensional submanifold of Hn+1 × R with null
second fundamental form.
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Let ϕ be an immersion of class C4 of an n-dimensional manifold M into Hn+1. Denote by ν
the Gauss map of ϕ and by κ1, . . . , κp its p distinct curvatures with multiplicity mi. Denote by si,
1 ≤ i ≤ q ≤ p, the q roots of the polynomial

P(s) B
p
i=1

mi(κis − 1)
p
j,i

(s − κ j)

satisfying |si | > 1. Then, the q immersions ϕ̄i :M → Hn+1 × R defined by

ϕ̄i B
*..
,

siϕ + ν
s2
i − 1

,coth−1si
+//
-
, 1 ≤ i ≤ q

are marginally trapped.
Conversely, any n-dimensional marginally trapped submanifold of Hn+1 × R is locally congru-

ent to the image of such an immersion.
In particular, in the n = 2 case, given a non minimal C4-immersion ϕ of a surface into H3 such

that a B κ1κ2+1
κ1+κ2

∈ (1,∞), the immersion into H3 × R defined by

ϕ̄ B
*..
,

(a + √a2 − 1)ϕ + ν
√

2


a2 − 1 + a
√

a2 − 1
,
1
2

coth−1(a)+//
-

is marginally trapped.

III. THE MINKOWSKI CASE: PROOF OF THEOREM 1

Let ϕ̄ = (ψ,τ) be an immersion of a n-dimensional manifold M into Rn+2
1 which is space-

like, i.e., the induced metric ḡ B ϕ̄∗⟨., .⟩1 is definite positive. In particular, the induced metric on
the normal space of ϕ̄ is Lorentzian, and we may define locally two null, non-vanishing normal
vector fields. Moreover, a null vector field ν̄ may be normalized in the following form: ν̄ = (ν,1),
with ν :M → Sn. From now on, we consider a null normal vector field ν̄ B (ν,1) and we set
ϕ B ψ − τν.

Lemma 1. The map (ϕ, ν) :M → Rn+1 × Sn is an immersion.

Proof. Suppose (ϕ, ν) is not an immersion, so that there exists a non-vanishing vector v ∈ TM
such that (dϕ(v),dν(v)) = (0,0). Since we have dψ = dϕ + τdν + dτν, it follows that

dϕ̄(v) = (dψ(v),dτ(v)) = (dτ(v)ν,dτ(v)) = dτ(v)ν̄,
which is a null vector. This contradicts the assumption that ϕ̄ is spacelike. �

Lemma 2. We have the following relation (this corresponds to the fact that the immersion (ϕ, ν)
is Legendrian with respect to the canonical contact structure of the unit bundle of Rn+1):

⟨dϕ, ν⟩0 = 0.

Proof. Using again that dψ = dϕ + τdν + dτν and observing that ⟨ν,dν⟩0 = 0, we have

0 = ⟨dϕ̄, ν̄⟩1 = ⟨(dψ,dτ), (ν,1)⟩1 = ⟨dψ, ν⟩0 − dτ = ⟨dϕ, ν⟩0.

�

Lemma 3. Given x ∈ M and ϵ > 0, there exists a neighbourhood U of x and t0 ∈ (−ϵ, ϵ) such
that ϕ + t0ν is an immersion of U and ν

�
U

is its Gauss map.

Proof. The claim follows from the fact that, ∀x ∈ M, the set

{t ∈ R| dϕx + t dνx has not maximal rank}
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contains at most n elements. To see this, observe that given a pair of distinct real numbers (t, t ′), we
have

Ker(dϕx + t dνx) ∩ Ker(dϕx + t ′ dνx) = {0}
(otherwise, we would have a contradiction with the fact that (ϕ, ν) is an immersion). Hence, there
cannot be more than n distinct values t such that Ker(dϕx + t dνx) , {0}. Moreover, such real
numbers t depend continuously on the point x ∈ M, so we may choose a neighbourhood U of x
such that {t ∈ R | ϕ + tν is an immersion of U} contains a neighbourhood of 0, which implies the
first part of the claim.

The fact that ν is the Gauss map of ϕ + t0ν comes from Lemma 2

⟨d(ϕ + t0ν), ν⟩0 = ⟨dϕ, ν⟩0 + t0⟨dν, ν⟩0 = 0.

�

Since the whole discussion is local, Lemma 3 shows that there is no loss of generality in
assuming that ϕ is an immersion: if it is not the case, we may translate the immersion ϕ̄ along the
vertical direction, setting ϕ̄t0 B ϕ̄ − (0, t0). Of course ϕ̄ is marginally trapped if and only if ϕ̄t0 is so,
and moreover, the vector field ν̄ is still normal to ϕ̄t0. Finally, observe that the map ϕt0 :M → Rn+1

associated to ϕ̄t0 is

ϕt0 = ψ − (τ − t0)ν = ψ − τν + t0ν = ϕ + t0ν,

hence an immersion.
We now describe the first fundamental form of ϕ̄ and its second fundamental form with respect

to ν̄, both in terms of the geometry of the immersion ϕ.

Lemma 4. Denote by g B ϕ∗⟨., .⟩0 the metric induced on M by ϕ and A the shape operator
associated to ν, i.e., A(v) B −dν(v), ∀v ∈ TM . Then, the metric ḡ B ϕ̄∗⟨., .⟩1 induced onM by ϕ̄ is
given by the formula

ḡ = g(., .) − 2τg(A., .) + τ2g(A., A.).
In particular, the non-degeneracy assumption on ḡ implies that τ−1 is not equal to any principal
curvature of ϕ. Moreover, the second fundamental form of ϕ̄ with respect to ν̄ is given by

h̄ν̄ B ⟨h̄(., .), ν̄⟩1 = g(., A.) − τg(A., A.)
and

⟨H⃗ϕ̄, ν̄⟩1 =
1
n

n
i=1

κi
(1 − τκi) , (4)

where the κi are the principal curvatures of ϕ.

Proof. Since ⟨dϕ, ν⟩0 = ⟨dν, ν⟩0 = 0, we have given v1, v2 ∈ TxMn,

ḡ(v1, v2) = ⟨dϕ̄(v1),dϕ̄(v2)⟩1

= ⟨dϕ(v1),dϕ(v2)⟩0 + τ⟨dϕ(v1),dν(v2)⟩0 + τ⟨dν(v1),dϕ(v2)⟩0

+ τ2⟨dν(v1),dν(v2)⟩0 + dτ(v1)dτ(v2)⟨ν, ν⟩0 − dτ(v1)dτ(v2)
= g(v1, v2) − τ(g(v1, Av2) + g(Av1, v2)) + τ2g(Av1, Av2)
= g(v1, v2) − 2τg(Av1, v2) + τ2g(Av1, Av2).

We calculate the second fundamental form of ϕ̄ with respect to ν̄ B (ν,1),
h̄ν̄ = −⟨dϕ̄,d ν̄⟩1

= −⟨dϕ + τdν + dτν,dν⟩0

= −⟨dϕ,dν⟩0 − τ⟨dν,dν⟩0

= g(., A.) − τg(A., A.).
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To complete the proof, observe that in the totally umbilic case A = κId, we obviously have

⟨H⃗ϕ̄, ν̄⟩1 =
κ

1 − τκ
.

If ϕ is not totally umbilic, we introduce, away from isolated umbilic points, a principal orthonormal
frame (e1, . . . ,en) alongM, i.e., such that g(ei,e j) = δi j and Aei = κiei. Hence,

ḡ(ei,e j) = (1 − 2τκi + τ2κ2
i )δi j,

h̄(ei,e j) = κi(1 − τκi)δi j
and the proof follows. �

We are now in position to complete the proof of Theorem 1. We first assume that ϕ is totally
geodesic, i.e., A vanishes. This is locally equivalent to assume that ν is constant, and without loss of
generality, we may assume that ν = ν0 B (0, . . . ,0,1).

From Eq. (4), it is immediately seen h̄ν̄ vanishes, so the second fundamental form h̄ of
ϕ̄ takes value in the null line directed by ν̄. It is then straightforward to check that h̄(X,Y ) =
Hessτ(X,Y )(ν,1). We therefore recover the first part of Theorem 1.

In order to complete the proof, we order the non-vanishing principal curvatures κi, taking into
account their multiplicity mi, in such a way that the corresponding radii of curvature are increasing
r1 B κ−1

1 < · · · < rp B κ−1
p . Hence,

⟨H⃗ϕ̄, ν̄⟩1 = 0

⇐⇒
p
i=1

miκi
(1 − τκi) = 0

⇐⇒
p
i=1

mi

ri − τ
= 0

⇐⇒ P(τ) B
p
i=1

mi

p
j,i

(r j − τ) = 0.

We have

P(ri) =
p−1
k=1

mk

p−1
j,k

(r j − ri) = mi

p−1
j,i

(r j − ri).

It follows that P(rp) > 0,P(rp−1) < 0 and that more generally, the signs of P(ri), i = 1, . . . ,p are
alternate. We deduce that P(τ) admits at least p − 1 distinct roots τi, i = 1, . . . ,p − 1, satisfying
ri < τi < ri+1. Since P(τ) has degree p − 1, it have no other roots.

Remark 1. If ϕ is minimal, τ = 0 is a root of P(τ). The corresponding immersion ϕ̄ = (ϕ,0) is
not only marginally trapped but also minimal.

IV. THE DE SITTER AND ANTI-DE SITTER CASES: PROOF OF THEOREM 2

A. The de Sitter case

Let ϕ̄ = (ψ,τ) :M → dSn+2 an immersion such that the induced metric ḡ B ϕ̄∗⟨., .⟩1 is space-
like. Let ν̄ = (ν,1) be one of the two normalized, null normal field to ϕ̄. We define the null projec-
tion of ϕ̄ to be ϕ B ψ − τν. The fact that (ν,1) ∈ Tϕ̄dSn+2, i.e., 0 = ⟨(ψ,τ), (ν,1)⟩1 = ⟨ψ, ν⟩0 − τ,
implies that ⟨ψ, ν⟩0 = τ. Hence,

⟨ϕ,ϕ⟩0 = ⟨ψ,ψ⟩0 − 2τ⟨ψ, ν⟩0 + τ
2⟨ν, ν⟩0

= ⟨ψ,ψ⟩0 − τ2

= ⟨ϕ̄, ϕ̄⟩1

= 1,
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which shows that ϕ is Sn+1-valued. The proofs of the next two lemmas are omitted, since they are
similar to the Minkowski case.

Lemma 5. The map (ϕ, ν) :M → Sn+1 × Sn+1 is an immersion.

Lemma 6. We have the following relations (this corresponds to the fact that the immersion
(ϕ, ν) is Legendrian with respect to the canonical contact structure of the unit bundle of Sn+1):

⟨ϕ, ν⟩0 = 0 and ⟨dϕ, ν⟩0 = 0.

Unlike in the Minkowski case, there is no vertical translation in dSn+2. We may however, up to
a arbitrarily small, linear perturbation, assume that ϕ is an immersion.

Lemma 7. Given x ∈ M and ϵ > 0, there exists a neighbourhood U of x, α ∈ (−ϵ, ϵ) and a
hyperbolic rotation Rα of angle α such that the null projection ϕα of ϕ̄α B Rαϕ̄ is an immersion.

Proof. Set

Rα =
*...
,

cosh α sinh α
Id

sinh α cosh α

+///
-

∈ SO(n + 2,1)

and ϕ̄α B Rαϕ̄, ν̄α B Rαν̄. Observe that ν̄α B (να,σα) is not anymore normalized, a priori, since
its last component σα B ν̄α

n+3 is equal to cosh(α) + sinh(α)ν1, where ν1 is the first component of the
vector ν.

Nevertheless, the null geodesic passing through the point ϕ̄α and directed by the vector ν̄α

crosses the slice dSn+2 ∩ {xn+3 = 0} at the point

(ϕα,0) B
(
ψα − τα

σα
να,0

)
.

Clearly, ϕα is an immersion if and only if R−αϕα = ψ − τα

σα ν = ϕ +
(
τ − τα

σα

)
ν is so. Observe that

τ − τα

σα
= τ − cosh(α)τ + sinh(α)ψ1

cosh(α) + sinh(α)ν1

= τ − τ + tanh(α)ψ1

1 + tanh(α)ν1

= tanh(α)(−ψ1 + τν1) + o(α)
= −α ϕ1 + o(α).

Now, assume that R−αϕα fails to be an immersion in any compact neighbourhood U of x, ∀α ∈
(−ϵ, ϵ). Hence, there exists a sequence (xn, vn) ∈ T1M (the unit tangent bundle of M) such that
xn → x and d(R−1/nϕ1/n)xn(vn) = 0. We have

d(R−1/nϕ1/n)xn(vn) = d
(
ϕ − 1

n
ϕ1ν + o(1/n))

xn
(vn)

= dϕxn(vn) − 1
n

((dϕ1)ν + ϕ1dν
)
xn
(vn) + o(1/n).

Thus, there exists a non vanishing v0 such that a subsequence of vn tends to v0, and we obtain




dϕx(v0) = 0
(dϕ1)x(v0)ν(x) + ϕ1(x)dνx(v0) = 0

.

Remembering that ϕ1 is the first coordinate of ϕ, this system implies the vanishing of ϕ1(x)dνx(v0).
By Lemma 5, dνx(v0) and dϕx(v0) cannot vanish simultaneously, therefore ϕ1(x) vanishes. Re-
peating the argument with suitable rotations yields that all the other coordinates of ϕ(x) vanish, a
contradiction since ϕ ∈ Sn+1. �
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By the previous lemma, since the discussion is local, we may assume that ϕ is an immersion.
The remainder of the proof of Theorem 2 follows the lines of Theorem 1, in particular, Lemma 4
still holds here.

B. The anti-de Sitter case

Let ϕ̄ = (ψ,τ) :M → AdSn+2 an immersion such that the induced metric ḡ B ϕ̄∗⟨., .⟩2 is space-
like. Let ν̄ = (ν,1) be a normalized, null vector field which is normal to ϕ̄. We define the null
projection of ϕ̄ to be ϕ B ψ − τν.

The fact that (ν,1) ∈ Tϕ̄AdSn+2, i.e., 0 = ⟨(ψ,τ), (ν,1)⟩2 = ⟨ψ, ν⟩1 − τ implies that ⟨ψ, ν⟩1 = τ.
Hence,

⟨ϕ,ϕ⟩1 = ⟨ψ,ψ⟩1 − 2τ⟨ψ, ν⟩1 + τ
2⟨ν, ν⟩1

= ⟨ψ,ψ⟩1 − τ2

= ⟨ϕ̄, ϕ̄⟩2

= −1,

which shows that ϕ is Hn+1-valued.
The remainder of the proof is similar to the previous case (de Sitter case) and is therefore

omitted.

V. THE CASE OF THE PRODUCT OF A SPACE FORM BY THE REAL LINE: PROOF OF
THEOREMS 3 AND 4

A. The Sn+1 × R case

Let ϕ̄ = (ψ,τ) :M → Sn+1 × R an immersion such that the induced metric ḡ B ϕ̄∗⟨., .⟩1 is space-
like. Let ν̄ = (ν,1), where ν ∈ Sn+1 be a normalized, null normal field along ϕ̄. We set ϕ B cos(τ)ψ −
sin(τ)ν and νϕ = sin(τ)ψ + cos(τ)ν.

Lemma 8. The map (ϕ, νϕ) :M → Sn+1 × Sn+1 is an immersion.

Lemma 9.

⟨dϕ, νϕ⟩0 = 0.

Lemma 10. Given x ∈ M and ϵ > 0, there exists a neighbourhood U of x and t0 ∈ (−ϵ, ϵ) such
that cos(t0)ϕ + sin(t0)νϕ is an immersion of U and cos(t0)νϕ − sin(t0)ϕ is its Gauss map.

The proof of Lemmas 8, 9, and 10 is similar to that of Lemmas 1, 2, and 3 of Sec. III and is
therefore omitted. Since we are working locally, Lemma 10 proves that, up to a vertical translation,
we may assume that ϕ is an immersion.

Lemma 11. Denote by g = ϕ∗⟨., .⟩0 the metric induced onM by ϕ and A the shaped operator
associated to ν. Then, the metric ḡ = ϕ̄∗⟨., .⟩1 induced onM by ϕ̄ is given by the formula

ḡ = cos2(τ)g(., .) − 2 sin(τ) cos(τ)g(A., .) + sin2(τ)g(A., A.).
In particular, the non-degeneracy assumption on ḡ implies to cot(τ) is not equal to a principal
curvature of ϕ. Moreover,

h̄ν̄ B ⟨h̄(., .), ν̄⟩1 = (cos2(τ) − sin2(τ))g(A., .) + sin(τ) cos(τ)(g(., .) − g(A., A.))
and

⟨H⃗ϕ̄, ν̄⟩1 =
1
n

n
i=1

κi + tan(τ)
1 − tan(τ)κi ,

where the κi are the principal curvatures of ϕ.
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We first claim that if h̄ν̄ vanishes, it must be totally geodesic: according to the previous lemma,
this implies A = ±κId, (hence, κ is constant) and κ = cot(τ + π/2). Then, a routine calculation
shows that the shape operator of ψ = cos(τ)ϕ + sin(τ)ν vanishes, i.e., ψ is totally geodesic. Since
the height function τ is constant, ϕ̄ is totally geodesic itself.

We now label the principal curvatures κ1 < · · · < κp, taking into account their multiplicity mi.
Hence, ⟨H⃗ϕ̄, ν̄⟩1 vanishes if and only if

p
i=1

mi
κi + tan(τ)

1 − tan(τ)κi = 0.

Introducing s B cot(τ), we see that ϕ̄ is marginally trapped with respect to ν̄ if and only if the
following polynomial vanishes:

P(s) B
p
i=1

mi(κis + 1)
p
j,i

(s − κ j) = 0.

It is easy to check that signs of P(κi) are alternate. Therefore, the polynomial P(s) admits at least
p − 1 distinct roots si such that κi < si < κi+1. In particular, the degree of P(s) is at least p − 1.
Since the term of degree p of P(s) is

p
i=1 miκi = nH , it has degree p − 1 when ϕ is minimal

and degree p otherwise. In the first case, since we already found p − 1 roots, we conclude that
there are exactly p − 1 roots. Observe moreover that if ϕ is minimal and τ = 0 (which corresponds
to s = ±∞), the immersion ϕ̄ = (ϕ,0) is not only marginally trapped but also minimal. In the
non-minimal case, by looking at lims→±∞

P(s)
sp

, we check that there exists one more root sp in
(−∞, κ1) or in (κp,∞), depending on whether p is even or odd and H is positive or negative.

The conclusion of Theorem 3 comes from the formula
�
cos(cot−1s),sin(cot−1s)� =

(
s

√
1 + s2

,
1

√
1 + s2

)
.

Finally, if n = 2, and ϕ is not minimal, setting a B κ1κ2−1
κ1+κ2

, the polynomial P(s) is equivalent to

s2 − 2as − 1 = 0,whose two distinct roots are s± = a ±
√

a2 + 1. Hence,

τ± = (cot)−1
(
a ±
√

a2 + 1
)
,

so we get the required formula. Observe however that if a = 0, then τ is constant and moreover,
ψ = 1√

2
(±ϕ + ν) is minimal, so again ϕ̄ is minimal.

B. The Hn+1 × R case

Let ϕ̄ = (ψ,τ) :M → Hn+1 × R an immersion whose induced metric is spacelike. Let ν̄ =
(ν,1), where ν ∈ dSn+1, be a normalized, null normal field along ϕ̄. We set ϕ B cosh(τ)ψ +
sinh(τ)ν. Reasoning like in the previous cases, we easily prove that, up to a vertical translation
and reasoning locally, we may assume that ϕ is an immersion and that νϕ B sinh(τ)ψ + cosh(τ)ν is
its Gauss map. Moreover, the non-degeneracy assumption on the induced metric on ϕ̄ implies that
coth(τ) is not equal to a principal curvature κi of ϕ. Finally, counting the principal curvatures with
their multiplicity mi, we have that ⟨H⃗ϕ̄, ν̄⟩1 vanishes if and only if

p
i=1 mi

κi−tanh(τ)
1−tanh(τ)κi vanishes as well.

Hence, if si is a root of the polynomial,

P(s) B
p
i=1

mi(κis − 1)
p
j,i

(s − κ j)

satisfying in addition |si | > 1, the immersion

ϕ̄i B
�
cosh(coth−1(si))ϕ + sinh(coth−1(si))ν,coth−1(si)�

=
*..
,

siϕ + ν
s2
i − 1

,coth−1(si)+//
-

is marginally trapped.
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It seems difficult to determine exactly the number q of roots of P(s) such that |s| > 1. However,
observe that given a monotone sequence of κi such that κi < −1, |κi | < 1 or κi > 1, the signs of
P(κi) = mi(κ2

i − 1)p
j,i(κi − κ j) are alternate. Hence, introducing

α B #{κi,1 ≤ i ≤ p, κi < −1},
β B #{κi,1 ≤ i ≤ p, |κi | < 1},
γ B #{κi,1 ≤ i ≤ p, κi > 1},
δ B #{κi,1 ≤ i ≤ p, |κ | = 1}.

We deduce that there exist α − 1 roots si satisfying κi < si < κi+1 < −1, giving rise to α − 1
marginally trapped immersions ϕ̄i. Analogously, there exist γ − 1 solutions satisfying 1 < κi < si <
κi+1. Analysing the signs of lims→±∞

P(s)
sp

as in the Sn+1 × R case, we see that if
p

i=1 miκi = nH
does not vanish, the existence of one more solution s ∈ (−∞, infi κi) ∪ (supi κi,+∞) is granted. On
the other hand, if β , 0, the β − 1 roots satisfying −1 < κi < si < κi+1 < 1 lead to no marginally
trapped immersion. Finally, if 1 or −1 is a principal curvature, it is also a root of P(s), which
again corresponds to no marginally trapped immersion. Finally, if ϕ is not minimal, we obtain the
following inequalities:

α + γ − 1 ≤ q ≤ p − (β − 1) − δ = α + γ + 1.

If n = 2 and ϕ is not minimal, the polynomial P(s) is equivalent to s2 − 2as + 1, where we
set a B κ1κ2+1

κ1+κ2
. Without loss of generality, we assume that a > 0. If a < 1,P(s) has no real solu-

tion and if a = 1, the unique solution is s = 1. Finally, if a > 1, the two distinct roots of P(s)
are a ±

√
a2 − 1, one of which is less than one and the other greater than one. Hence, we get

τ B (cot)−1
(
a +
√

a2 − 1
)
, so we get the required formula. Observe that if |κ1| > 1 and |κ2| > 1, we

have α + γ − 1 = q = 1, i.e., the left hand side inequality above is sharp.

VI. EXAMPLES

Here, we briefly discuss how some of the examples of Ref. 9 can be recovered from our
construction.

The two families of marginally trapped surfaces found by Chen and Van der Veken in R4
1 are

L1(x, y) B (x, y, f (x), f (x)),
where f is an arbitrary differentiable function with f ′′(x) being nowhere zero, and

L2(x, y) B
(
y cos x −

 x

0
r(x) sin xdx, y sin x +

 x

0
r(x) cos xdx,

q(x)y +
 x

0
r(x)q′(x)dx,q(x)y +

 x

0
r(x)q′(x)dx

)
,

where q and r are defined in an open interval I ∋ 0 satisfying q′′(x) + q(x) , 0 for each x ∈ I.
Thus, L1(x, y) = (ι(x, y),0) + f (x)(ν0,1), where ν0 = (0,0,1), so we are in the first case (null

second fundamental form) of Theorem 1. Moreover, since

T(x, y) B
(
y cos x −

 x

0
r(x) sin x dx, y sin x +

 x

0
r(x) cos x dx

)
is simply a reparametrization of an open subset of the plane, setting

τ(x, y) B q(x)y +
 x

0
r(x)q′(x)dx,

the second family takes the form L2(x, y) = (ι ◦ T(x, y) + τ(x, y)ν0, τ(x, y)), so we are again in the
case of null second fundamental form.

Next, consider the immersion in dS4 given by

L3(x, y) B �
sin x cos y,sin y,cos x cos y, f (x) cos y, f (x) cos y

�
,
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where f is an arbitrary differentiable function defined on an open interval I satisfying f ′′ + f , 0 at
each point in I. It takes the form

L3(x, y) = (sin x cos y,sin y,cos x cos y,0,0) + f (x) cos y(0,0,0,1,1)
= (ι(x, y),0) + τ(x, y)(ν,1),

where τ(x, y) B f (x) cos y , ν B (0,0,0,1) and ι(x, y) : S2 → S3 is the totally geodesic embedd-
ing given in coordinates by ι(x, y) = (sin x cos y,sin y,cos x cos y,0). Hence, L3 has null second
fundamental form (first case of Theorem 2).

Finally, consider the immersion in AdS4 given by

L4(x, y) B
(
ey − 2 sinh y, xey, x2ey − 1

2
ey,

3
2

ey − 2 sinh y, x2ey

)
.

A straightforward calculation shows that a normalized, null normal vector along L4 is ν̄ = (−1,0,1,
−1,1) = (ν,1). Since ν̄ is constant, ⟨h̄(., .), ν̄⟩2 vanishes, so is in particular the second funda-
mental form h̄(., .) is null and L4 is marginally trapped. Observe moreover that ϕ B ψ − τν =
ψ − x2ey(−1,0,1,−1) is an immersion whose normal unit vector ν = (−1,0,1,−1) is constant, there-
fore ϕ is totally geodesic.

We leave to the reader the easy task to check that all other examples of Ref. 9 have null second
fundamental form.
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