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Abstract

In the present work some generalizations of the Hawking singularity theorems in the context
of f(R) theories are presented. The main assumptions are: the matter fields stress energy tensor

satisfies the condition

(
Tij− gij

2 T

)
kikj ≥ 0 for any generic unit time like field ki; the scalaron takes

bounded positive values during its evolution and the resulting space time is globally hyperbolic.
Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic
congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space
time is geodesically incomplete. Some mathematical results of reference [62] are very important
for proving this. The generalized theorems presented here apply directly for some specific models
such as the Hu-Sawicki or Starobinsky ones [15], [21]. For other scenarios, some extra assumptions
should be implemented in order to have a geodesically incomplete space time. The hypothesis
considered in this text are sufficient, but not necessary. In other words, their negation does not
imply that a singularity is absent.

1. Introduction

One of the most interesting phenomena in cosmology is the accelerated expansion of the universe

[1]. Some models for explaining this behavior are the so called quintessence mechanisms [2]-[4]. These

models include certain components which induce a repulsive term imitating the effect of a cosmological

constant [5]. Another problem of importance in cosmology arises when studying the behavior of the

galactic rotation curves and the mass discrepancy in clusters of galaxies [6]. The observations show that

the mass increases linearly with the radius near the galaxy center. The estimated baryonic mass density

seems not enough for explaining this, and the mass discrepancy is usually explained by postulating the

existence of dark matter. This component is assumed to be neutral under electromagnetic interaction,

cold and pressureless. Several dark matter scenarios include weakly interacting massive particles

(WIMP) [7]-[10]. These components may be light or superheavy, but should interact with ordinary

matter by a very weak interaction in order not to be detected by the current accelerator technology.

It is clear from the discussion given above that the confrontation between theory and experiments

in GR is a fundamental task. A review can be found for instance in [11]. A further possibility to

explain these experiments is that GR breaks down at a typical galaxy scale. Some experimental

consequences about modified gravity theories were discussed long time ago in the book [12], and

more recently in [13] and [34]. Some of these modified scenarios are f(R) theories, and the present
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work is focused on them. Several theoretical predictions were studied for these models. For instance,

corrections of the form f(R) ∼ R + αR2 have been shown to cast an early inflationary period [14],

while f(R) ∼ R + αR−1 may induce a present accelerated period [15]. However, for functions f(R)

in powers of R, it has been shown that the resulting scale factor has a time dependence of the form

a(t) ∼ t1/2 instead of a(t) ∼ t2/3 for small and large curvature [16]-[18]. Nevertheless, these theories

describe a matter dominated period followed by an accelerated expansion, and although several models

have been discarded, it was suggested in [19]-[50] that viable models do exist.

A serious problem related to curvature singularities was pointed out in [51]-[55] and [56]. As

is well known, f(R) theories in the metric formulation reduce, by means of a suitable conformal

transformation, to GR plus an scalar field ϕ, known as the scalaron. This scalar is under the influence

of a potential term U(ϕ), and couples non trivially to the matter fields. The problem is that, for f(R)

theories which reduce to GR in the large R limit, the potential term corresponds to an unprotected

curvature singularity. The presence of such singularities has disastrous observational consequences, in

particular it may not allow the formation of relativistic stars such as neutron ones. However, there

exist some models which seems to avoid these problems and may be realistic as well, such as the ones

presented in [57].

Another relevant point is the presence of singularities in the cosmological context. For GR, one

has the powerful singularity results of [60], and it may be desirable to generalize them to other gravity

theories. The interest in this type of results is renewed by the appearance of the reference [74], and

also by the older works [75]-[78]. As is well known, the standard singularity theorems [60] assume

that that the matter content satisfies specific energy conditions. The results of reference [74] suggest

that the singularity theorems are true even in situations in which such conditions are violated. These

authors offer a kinematical argument for which, when the universe is initially expanding fast enough,

the resulting space time is null and time like geodesically incomplete. Their result relies in averaging

certain quantity, which reduces to the Hubble parameter in the isotropic and homogenous case.

The goal of the present paper is to characterize certain initial conditions for which the space is time

like geodesically incomplete, by assuming that gravity is described by an f(R) theory. We will argue

below that our results are not equivalent, but complementary to the ones in [74]. The formulation of

f(R) theories we are concerned with is the metric one, and the resulting equations for the space time

metric are of fourth order. This is precisely the formulation which gives rise to the scalaron degree

of freedom. Our main goal is to present some singularity theorems which generalize the Hawking

cosmological theorems, in the context of f(R) theories. This generalization presents some technical

complications since, for f(R) scenarios, the standard condition for matter fields

(
Tij − gij

2 T

)
kikj ≥ 0

for any generic unit time like field does not imply the condition Rijk
ikj ≥ 0, and the last condition is

of essential importance when giving a proof of the Hawking theorems. In addition, the scalaron degree

of freedom spoils the first condition. The aim of the present work is to sort out these problems and

formulate some concrete generalization of the Hawking results. Some mathematical results proven in

[62] are crucial for this achievement.
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The present work may have an overlap with the existing literature. For instance, in [70] the finite

future singularities emerging in alternative gravity dark energy models were studied both in the Jordan

and Einstein frames. These reference shows that a singularity can be present even for a flat space time.

Some viable modified gravity models were analyzed in detail and a cure to a singularity was found in

terms of higher order curvature corrections. Also, in reference [71] the future evolution of the dark

energy in modified gravity theories including f(R) gravity, string-inspired scalar-Gauss-Bonnet and

modified Gauss-Bonnet ones were studied. Several examples of modified gravity models which produce

accelerating cosmologies ending at a finite-time future singularity were found and some scenarios to

resolve the finite-time future singularity were presented. Furthermore, it is shown in those references

that the non-minimal gravitational coupling can remove the finite-time future singularities or make

the singularity stronger (or weaker) in modified gravity. Further features are described in [72].

The present work is organized as follows. In section 2 some generalities about f(R) theories are

reviewed, in particular the role of the scalaron. In section 3 the standard Hawking results are reviewed,

and some important fact about strong energy conditions is reminded. Section 4 is devoted to some

properties of the Raychaudhuri equation, which are then applied to obtain our singularity results.

These results are applied to some known f(R) theories and are all related to compact Cauchy hyper-

surfaces. Section 6 contains some results that relax the mentioned compactness assumption. Section

7 contains a discussion about the initial data formulation for these models. Section 8 contains our

conclusions.

2. Generalities about f(R) theories

The signature convention to be adopted in the following is (−,+,+,+). As it was mentioned in the

introduction, f(R) models are generalizations of the standard GR. We collect here some of their basic

features, further information can be found in the extensive references [19]-[50]. These theories start

with the following lagrangian

S =
1

16πGN

∫
f(R)

√
−gd4x+ Sm, (2.1)

where the matter action Sm for a given component takes the same form as in GR. This class of theories

reduce to the Einstein GR when f(x) = x.

One of the main differences between f(R) models and the standard GR is that, for the former,

the Palatini or metric formalism give the same theory. It is convenient to remind that the Palatini

formalism involves an independent variation of the metric and the connection, while for the metric

formalism the metric is the only object to be varied. For GR, both formalisms give the same system

of equations, while for f(R) theories both systems are inequivalent. The following exposition will

be centered in the metric formalism. The corresponding generalized Einstein equations are of fourth

order, and their explicit form is given by

f ′(R)Rij −
1

2
f(R)gij − [∇i∇j − gijgab∇a∇b]f ′(R) = 8πGNTij . (2.2)
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When the matter fields are described by a lagrangian Lm the energy momentum tensor Tij introduced

of the left hand side is given by

Tij = −2
δLm
δgij

+ gijLm. (2.3)

The equations (2.2) become of second order only in the specific situation f(x) = x, which corresponds

to the GR limit. In other situations, the contraction of these equations with the inverse metric tensor

gµν shows that

f ′(R)R− 2f(R) + 3gab∇a∇bf ′(R) = kT,

which is a differential equation for f(R) unless f(x) = x. This is a non algebraic equation, and suggest

that that f(R) can be interpreted as an additional degree of freedom. In order to clarify this, it is

convenient to introduce the following formulation of the theory

S =
1

16πGN

∫
(Rφ− V (φ))

√
−gd4x+ Sm, (2.4)

where φ is an auxiliary field, since it has no kinetic term. The lagrangian L(φ,R) = Rφ−V (φ) should

be identified as f(R). Therefore f(R) is the Legendre transform of V (φ). From the equations of

motion for φ and some standard properties of Legendre transforms it follows that

R = V ′(φ), φ = f ′(R), (2.5)

The equations of motion resulting from (2.4) may be simplified by making the following conformal

transformation (to the Einstein frame)

φ −→ ϕ =

√
3

2k
log φ, gab → g̃ab = φgab,

√
−g = φ−2

√
−g̃. (2.6)

The inverse transformations are

ϕ −→ φ = e
√

2k
3
ϕ, g̃ab → gab = e−

√
2k
3
ϕg̃ab,

√
−g̃ = e

√
8k
3
ϕ√−g. (2.7)

By taking into account the well known transformation of the curvature scalar R under conformal

transformation

φR̃ = R− 3

2
gµν∂µ log φ∂ν log φ− 32 log φ, (2.8)

and by introducing the last expression into (2.4), it is obtained after neglecting a total derivative term

the following action

S′g[g̃ab, ϕ] =

∫ [
R̃

2k
− 1

2
g̃ij∂iϕ∂jϕ− U(ϕ)

]√
−g̃d4x+ Sm. (2.9)

Here

U(ϕ) =
V (φ)

2κφ2
=
Rf ′(R)− f(R)

2κf ′(R)2
, (2.10)

and the matter lagrangian in Sm should be related to the new frame. An elementary calculation shows

that the matter lagrangian L̃m in the new frame is related to Lm by

L̃m(X, g̃, ϕ) =
1

φ2
Lm(X, g̃φ). (2.11)

The field ϕ is known as the scalaron. Thus the f(R) system has been reduced to GR coupled to

the scalaron ϕ plus generic mater fields X interacting with the scalaron as well.
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3. Strong energy conditions and cosmological singularity theorems

The aim of the present work is to study possible generalizations of the GR singularity theorems for

the f(R) models discussed above. As is well known in GR, an special role in studying singularity

theorems is played by matter whose energy momentum tensor satisfy the condition(
Tij −

gij
2
T

)
kikj ≥ 0, (3.12)

where ki is any generic time like field of unit length. For GR this implies the following inequality for

the curvature tensor

Rijk
ikj ≥ 0, (3.13)

which is known as the strong energy condition. On the other hand, given such vector field ki, it can

be interpreted as a congruence of non intersecting world lines, not necessarily geodesics.

The following discussion is restricted to a generic globally hyperbolic space time (M , g), with

a particular choice of a Cauchy hyper-surface Σ where the initial data is formulated. Consider the

geodesic congruence orthogonal to Σ. As is well known, the expansion scalar θγ of this congruence

satisfies the Raychaudhuri equation

dθγ
dτ

= −
θ2γ

n− 1
− Ricc(γ′, γ′)− 2σ2, θγ(0) = θγ0. (3.14)

Here n is the space time dimension, Ricc(γ′, γ′) = Rabγ
′aγ′b and γ : [0,∞) → M is any of the future

complete unit speed geodesic of the congruence, which emanates orthogonally from Σ. The vectors

γ′a are assumed to be of unit length and the geodesics are parameterized by the proper time τ .

The expansion scalar θγ described by (3.14) has a fundamental geometrical interpretation. Given

two points p and q in the space time (M , g), they are named conjugate points to each other when

there is a non zero Jacobi field which vanishes both at p and q. A necessary and sufficient condition for

q to be conjugate to p is that, for the geodesic congruence emanating from p, the expansion θγ → −∞
at q. This notion can be extended to space like surfaces, such as Σ. A point q on a geodesic γ

of the geodesic congruence orthogonal to Σ is said to be conjugated to it, if there is a Jacobi field

which does not vanish at Σ but vanish at q. Intuitively, the point q is conjugated to Σ when there

are two infinitesimally close geodesics emanating from Σ which converge to q. The divergence of θγ

corresponding to the geodesic congruence will also diverge at q in this situation [69], [60].

The conjugate points discussed above characterize the presence of a singularity. It is important to

note that, in the signature (−,+,+,+) we are working with, and for globally hyperbolic space times,

there exist a time like curve joining two points p and q which maximizes the proper time. This curve

is a geodesic without conjugate points between p and q, and is maximizing along all the continuous

time like curves connecting p and q, not only the differentiable ones [69], [60]. In these terms it is

possible to prove the following generic singularity theorem.
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Proposition 1: Consider a globally hyperbolic space time (M , g) with a given Cauchy surface Σ.

If any solution θγ of the Raychaudhuri equation (3.14) explodes before finite proper time τ1 > 0 (a

condition which is to be developed further), then the space is future geodesically incomplete.

Recall that a Cauchy hyper-surface is achronal, and it is assumed that Σ corresponds to the proper

time τ = 0.

Proof: Assume that there exists a future directed time like curve λ with length τ > τ1 in M . Let

q a point of M lying on λ beyond the length τ1. For any globally hyperbolic space time there exists a

curve γ which maximizes the proper time between Σ and q [69], [60]. Let p the intersection between

this curve γ and the Cauchy hyper-surface Σ. By its definition, the curve γ maximizes the proper time

between p and q. Thus, it should be a geodesic without conjugate points between p and q. However,

by the theorem assumptions, the expansion parameter θγ explodes at a finite proper time τ < τ1 and

thus there is a conjugate point between p and q. This contradiction shows that the curve λ does not

exists and the space is future geodesically incomplete. (Q. E. D)

The generalization of the previous theorem to past directed curves presents no difficulties at all. It

is important to remark that the Raychaudhuri equation (4.23) is purely geometric, and its deduction

does not take into account wether the geometry is described by the Einstein equations or other type

of gravity model. In addition, when the condition (3.13) is satisfied, the second term of the right hand

side is positive. Thus
dθγ
dτ

+
θ2γ

n− 1
≤ 0, θγ(0) = θγ0, (3.15)

which implies that
1

θγ
≥ 1

θγ0
+

1

n− 1
τ.

Clearly, this implies that when θγ0 > 0 in all the Cauchy surface, then θγ → −∞ at a finite proper

time τ ≤ (n− 1)/C. Thus, the following theorem follows [60].

Hawking singularity theorem (future version): Consider an hyperbolic space time (M , g) with a

Cauchy hyper-surface Σ for which θ0(p) ≥ C > 0 for every point p at that surface. If the Ricci tensor

satisfy the condition (3.13) then the space time is future geodesically incomplete. More precisely, all

the future directed curves have length with absolute value no larger than τ0 = (n− 1)/C.

The past version of this theorem is straightforward.

Hawking singularity theorem (past version): Consider an hyperbolic space time (M , g) with a

Cauchy hyper-surface Σ for which θ0(p) ≤ C < 0 for every point p at that surface. If the Ricci tensor

of the geometry satisfies the condition (3.13) then space time is past geodesically incomplete. More
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precisely, all the past directed curves have length with absolute value no larger than τ0 = (n− 1)/C.

It is important to remark that this theorem is valid when the conditions (3.13) are satisfied,

independently on the gravity model describing the Ricci tensor Rij . An example for which it applies

is GR with matter satisfying the strong energy condition (3.12), since this automatically implies (3.13).

This simple argument does not apply for f(R) theories even when the matter content satisfies (3.12).

In fact, the equation (2.2) does not imply (3.13). Thus, it is not trivial to understand for which

situations θγ → −∞ at finite time for f(R) models.

In addition, it should be emphasized that several realistic matter content (2.11) of the theory are

not conformally invariant. An example of a conformally invariant matter system is the electromagnetic

one in four dimensions

Lm = − 1

4π
FµνF

µν . (3.16)

However, there exist other realistic systems for which conformal invariance is broken. An example is

the stress tensor of a perfect fluid, which is given by

Tab = (p+ ρ)uaub + Pgab, (3.17)

where the 4-velocity ua such that gabuaub = −1. As usual, P denotes the pressure of the fluid and ρ

its energy density. The corresponding tensor in a conformally related frame g̃ab = φgab is still of the

form

T̃ab = (p̃+ ρ̃)ũaũb + P̃ g̃ab, (3.18)

where the 4-velocity ũa such that g̃abũaũb = −1. This can be deduced directly from the equations

(2.2). It follows that

T̃ab =
1

φ
Tab, (3.19)

which implies that

P̃ =
P

φ2
, ρ̃ =

ρ

φ2
. (3.20)

The last relations show that for a barotropic equation of state P = (γ − 1)ρ conformal invariance

is respected. In the general case the state equation would be of the form P = P (ρ) and conformal

invariance will be broken.

Despite these drawbacks, there is an interesting observation to be made. By taking into account

(2.11) it follows that the energy momentum for matter (2.3) in the Einstein frame is

T̃ij =
1

φ
Tij , T̃ g̃ij = (T̃abg̃

ab)g̃ij =
1

φ
Tgij , g̃ijk

ikj = −φ. (3.21)

This also holds for the perfect fluid due to (3.19). Thus, when the matter energy momentum tensor

satisfies the strong energy conditions (3.12) in the Jordan frame, it also satisfies them in the Einstein

frame if φ > 0. In other words (
T̃ij −

g̃ij
2
T̃

)
k̃ik̃j ≥ 0, (3.22)
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with k̃i = φ−1/2ki a generic time like field of unit length defined on (M̃ , g̃). This suggests the

possibility of studying the time geodesically completeness of the conformal metric g̃ defined in (2.6)

and the properties of the scalaron ϕ first, in order to analyze these matters for the Jordan metric g

later on.

The fact that (3.22) is satisfied in the Einstein frame is encouraging, since it suggests that the

analysis of cosmological singularities for f(R) models may be quite analogous as in GR. However, it

should be kept in mind that the scalaron ϕ does not satisfy the strong energy condition (3.12). In fact,

scalar fields usually do not satisfy this condition either. Thus, further work should be made in to avoid

this problem. We turn the attention to some specific theorems which, under certain circumstances,

insure that the Einstein metric g̃ geodesically incomplete when the matter field satisfy (3.12). After

this point is clarified, we will deal with the singularities of the Jordan metric g, which is our main

goal.

4. Generalized singularity theorems for compact Cauchy hypersur-
faces

4.1 General statements

The previous section shows that a fundamental tool for studying singularity theorems is the Ray-

chaudhuri equation
dθγ
dτ

= −
θ2γ

n− 1
− Ricc(γ′, γ′)− 2σ2, θγ(0) = θγ0. (4.23)

Some properties of its solutions may be deduced by making the change of variables y(τ) = −(θγ +

cγ)e−2cγτ/(n−1). This transforms the last equation into

dy

dτ
=

y2

q(τ)
+ p(τ), y(0) = y0, (4.24)

with

q(τ) = (n− 1)e−2cγτ/(n−1), p(τ) = e−2cγτ/(n−1)
(

Ricc(γ′, γ′) + 2σ2 +
c2γ

n− 1

)
. (4.25)

Equations of the type (4.24) were considered in the literature [62] for a wide variety of functions p(τ)

and q(τ), and some general knowledge about them is the following.

Proposition 2: Consider an equation of the form (4.24), and suppose that the functions p(τ) and

q(τ) satisfy ∫ ∞
0

dτ

q(τ)
=∞, lim

T→∞
inf

∫ T

0
p(τ)dτ > −y0, (4.26)

with q(τ) > 0 in [0,∞). Then, any of the solutions y(τ) of (4.24) with the initial condition y(0) = y0

does not extend to the interval [0,∞). In other words, the solution y(τ) explodes for a time τ0 <∞.
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Proof: Assume on the contrary that y(τ) extend to the whole interval [0,∞). This will imply a

contradiction. To see that, note that second assumption (4.26) implies the existence of a time τ1 for

which ∫ t

0
p(τ ′)dτ ′ > −y0, for τ > τ1.

By integrating the equation (4.24) and taking into account the last inequality, it follows that

y(τ) =

∫ τ

0

y2

q
dτ ′ +

∫ τ

0
pdτ ′ + y0 >

∫ τ

0

y2

q
dτ ′. (4.27)

Now, let us introduce the quantity given by

R(τ) =

∫ τ

0

y2(τ ′)

q(τ ′)
dτ ′.

As q(τ) is positive in the half positive line and τ > 0, it can directly be seen that this quantity is

always positive. This definition and the inequality (4.27) shows that

R2

q
< Ṙ =

y2

q
, (4.28)

for τ > τ1. From here it is concluded that, for every τ2 > τ1, the following inequality takes place∫ τ

τ2

dτ ′

q
<

∫ τ

τ2

Ṙ

R2
dτ ′ =

1

R(τ2)
− 1

R(τ)
<

1

R(τ2)
.

However, from the first condition (4.26) it follows that the left hand side of the last expression is not

bounded when τ → ∞. Thus, the last inequality makes sense only for times τ < τ0, with τ0 a fixed

time. This shows that y(τ) can not extend to the whole interval [0,∞), but only to an interval inside

[0, τ0]. (Q. E. D)

Note that the last proposition predicts the existence of a finite time τ0 > 0 for which the solution

y(τ) explodes but it does not give an estimate about it. Now, the first condition (4.26) applied to the

equation (4.25) simply give that cγ > 0. The second (4.26) is translated after an elemental integration

into the following proposition [62].

Generalized future singularity theorem: Consider a globally hyperbolic space time M with dimen-

sion n > 2 and let Σ a compact Cauchy surface for it. Suppose that for each future directed time like

geodesic γ : [0,∞)→M issuing orthogonally from Σ there exist a constant cγ > 0 for which

lim
T→∞

inf

∫ T

0
e−2cγτ/(n−1)rγ(τ)dτ > θ0γ +

cγ
2
, (4.29)

where rγ(τ) = Ricc(γ′, γ′) and θ0γ the value of the expansion parameter at the intersection point be-

tween γ and Σ. Then θγ diverges at a finite time τγ and the space M is future geodesically incomplete.

Proof: The proof is a consequence of proposition 2. As discussed below (4.23), the Raychaudhuri

equation may be converted by a change of variables y(τ) = −(θ + cγ)e−2cγτ/(n−1) into (4.24) with
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the functions p(τ) y q(τ) defined by (4.25). The function q(τ) clearly satisfies the condition of the

proposition 2, when cγ > 0. The function p(τ) will satisfy them if∫ τ

0
p(τ ′)dτ ′ > −y0,

which is translated by (4.25) into∫ τ

0
e−2cγτ

′/(n−1)
(

Ricc(γ′, γ′) + 2σ2 +
c2γ

n− 1

)
dτ ′ > θ0γ + cγ ,

The last term is a simple integral whose maximal value is cγ/2, and the second is strictly positive.

Thus, it is clear that if the inequality

lim
T→∞

inf

∫ T

0
e−2cγτ/(n−1)rγ(τ)dτ > θ0 +

cγ
2
,

is fulfilled, with rγ(τ) = Ricc(γ′, γ′), then the proposition 2 applies. In these terms, the last condition

for quantity rγ(τ) becomes exactly (4.29). Now, the proposition 2 implies that for such space time θγ

explodes at a finite future time τγ . When Σ is compact, these results imply incompleteness. Details

of the last affirmation can be found in [62], [73]. (Q. E. D)

In many applications, the singularity theorems are formulated in terms of a past singularity, in-

stead of a future one. By simple following the arguments of the previous propositions, it is elementary

to find such version.

Generalized past singularity theorem: Consider a globally hyperbolic space time M with dimension

n > 2 and with a given compact Cauchy hyper-surface surface Σ. Suppose that for each past directed

time geodesic γ : (−∞, 0]→M issuing orthogonally from Σ there exist a constant cγ < 0 for which

lim
T→−∞

inf

∫ 0

T
e−2cγτ/(n−1)rγ(τ)dτ ≥ −θ0γ −

cγ
2
, (4.30)

where rγ(τ) = Ricc(γ′, γ′) and θ0γ the value of the expansion parameter at the intersection point

between γ and Σ. Then θγ diverges at a finite past time and thus, the space M is past incomplete1.

In the last theorem, the condition (4.30) implies the existence of a given fixed time τ1 < 0 for

which ∫ 0

τ
e−2cγτ/(n−1)rγ(τ ′)dτ ′ ≥ −θ0γ −

cγ
2
,

for any τ < τ1. In the following, these theorems will be applied to concrete f(R) theories.

Note that if rγ(t) satisfies the strong energy condition, then the future version theorem implies

that c = 0 and θ0(p) ≤ 0 while the past version implies that θ0(p) ≥ 0. This is the content of the

standard singularity theorem of Hawking [60], although this theorem is not restricted to compact

hyper-surfaces.

1Note that a given space time is geodesically incomplete when there exist at least one geodesic γ : [0, a) →M which
can not be extended for all the values of the affine parameter a, that is, to a→ ∞. The propositions given above are in
fact too restricted, since it shows that every time like geodesic is incomplete.
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4.2 Application to f(R) theories

The two generalized singularity theorems described above are not related to any specific gravity model.

In the present section, these theorems will be applied to f(R) models (2.9) with matter lagrangian

Lm satisfying the strong energy condition (3.12)-(3.13). The energy momentum tensor of the scalaron

field ϕ is given by

Tab = ∇aϕ∇bϕ−
g̃ab
2

(
∇cϕ∇cϕ+ U(ϕ)

)
, (4.31)

and such component generally does not satisfy the energy inequalities (3.12)-(3.13). The Einstein

equations for the model (2.9) give the following expression for rγ(t) = R̃abγ
′aγ′b

rγ(t) = 8π

(
(∇γϕ)2 − U(ϕ)

n− 1

)
+

(
T̃mab −

g̃ab
2
T̃m

)
γ′aγ′b, (4.32)

where T̃mab is the stress energy momentum of matter in the Einstein frame. As it was discussed in

formulas (3.16)-(3.20) a generic stress energy tensor Tmab for matter is usually not covariant under the

change from the Jordan to the Einstein frame. However, the important point here is that, when the

contribution of matter to r(t) satisfies (3.12)-(3.13) in the Jordan frame, then it will satisfy (3.22) in

the Einstein one. Therefore the contribution of T̃mab to the right hand side of (4.32) will be positive.

The contribution from the term (∇γϕ)2 is positive as well. The only negative part may come from

the term with the potential U(ϕ). By taking this into account it follows that∫ T

0
e−

2cγt

n−1 r(t)dt > −K
2

2cγ
, (4.33)

for all T and cγ . Here

K =

√
8π(n− 1)Umax

(n− 2)
,

with Umax the maximum value that the potential takes during the evolution of ϕ, if this maximum

exists. Then, the conditions of the generalized singularity theorem will be satisfied when

−K
2

2cγ
− cγ

2
> θ0.

The left hand of the last inequality is minimized when cγ = K, and it follows that when the Cauchy

surface Σ is compact and

θ0 < −K, (4.34)

then the space is future geodesically incomplete. Results of this type were considered in [62] for GR

with free scalar fields and for other types of matter as well.

The results described above apply in presence of a maximum value for the potential Umax. There

are several realistic models for which this assumption is justified. The f(R) function is a free parameter

of the model, but there are some physical constraints on it. The condition for the theory to be free

of ghosts is that f ′(R) > 0. The conditions for being free of tachyons is f ′′(R) > 0. In addition, there

exists a large class of models in the literature for which, in the limit of large curvature R→∞

f(R)→ R, f ′(R)→ 1, f ′′(R)→ 0. (4.35)
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These conditions implies that the scalaron ϕ have finite values as the curvature diverges. Some known

examples are

f(R) = R−Rsβα
{

1− 1[
1 +

(
R
Rs

)n] 1
β

}
. (4.36)

These models encode a variety of scenarios, in particular the Starobinsky [15] or the Hu-Sawicki ones

[21]. When n = 1 and β →∞ the last model reduces to [57]

f(R) = R−Rsα log

(
1 +

R

Rs

)
, (4.37)

which satisfies all these constraints. Another interesting model is the following [58]

f(R) = R

[
1− b

1 + log R
Rs

]
. (4.38)

The interest in the last model is that the effective Newton GeffN constant runs with the curvature in

analogous fashion as the running of the QCD coupling constant g(µ) with the energy scale µ of a given

process.

In order to apply the condition (4.34) to any of these f(R) models it is needed to know if Umax

exists. It is important to determine wether or not φ takes finite positive values during the universe

evolution, since this field represents the conformal transformation between the Jordan and the Einstein

frame. The last point is of great importance since, otherwise, the presence of a singularity in the

Einstein metric may be due to a bad behavior or the conformal transformation and not due to a

singularity in the Jordan metric.

Let us focus in the model (4.36) first. From (2.5) and (4.36) it is directly deduced that

φ = f ′(R) = 1− nα

(
R
Rs

)n−1
[
1 +

(
R
R∗

)n] 1
β
+1
.

The maximum of the second term is given at the point(
R

Rs

)n
=

β(n− 1)

n+ 1 + β
,

and therefore the minimum value of f ′(R) is

φ = f ′min(R) = 1− αn

(
β(n−1)
n+1+β

)n−1
n

[
1 + β(n−1)

n+1+β

] 1
β
+1
.

By choosing α appropriately, it may be shown that always φ > 0. In addition, the value of f ′(R) is

bounded from above. Thus φ is bounded both from above and below and takes always positive values.

This means that the conformal transformation between the Jordan and the Einstein frame is always

well defined. On the other hand (2.6) shows that

ϕ =

√
3

2k
log φ,
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and thus ϕ also takes bounded values. However, this fact does not ensure that U(ϕ) is bounded, since

it may have poles for finite scalaron values. Thus, a further check is needed in order to see that this

is not the case. The expression for the potential (2.10) in terms of the function f(R) is

U(ϕ) =
Rf ′(R)− f(R)

2κf ′(R)2
, (4.39)

The denominator never goes to zero, since f ′(R) > 0. The numerator is

Rf ′(R)− f(R) = −nRsα

(
R
Rs

)n
[
1 +

(
R
R∗

)n] 1
β
+1

+Rsβα

{
1− 1[

1 +

(
R
Rs

)n] 1
β

}
.

This expression obviously has a maxima, and does not diverge for any value of the curvature when n

is even. Thus, U(ϕ) does not have poles and reaches a maximum value. Thus the condition (4.34)

makes sense and, when is satisfied, it follows that the space is future geodesically incomplete.

Consider now the model (4.37). The scalar field φ is

φ = f ′(R) = 1− α

1 + R
Rs

, (4.40)

and is always positive when α < 1. The numerator in (4.39) is

Rf ′(R)− f(R) = − αR

1 + R
Rs

+Rsα log

(
1 +

R

Rs

)
.

This numerator is not bounded. Thus, it can not be guaranteed that the generalized future singularity

theorem 2 of the previous section directly applies for this model.

It is interesting to note that, for the last model, when the curvature R is finite during the universe

evolution, then the scalaron has positive finite values and the theorem indeed apply when θ0γ < −K.

Thus, for non singular curvature values, the space may be geodesically incomplete. This makes perfect

sense, since geodesic incompleteness does not necessarily implies a curvature singularity [59]. On the

other hand, when Umax → ∞ then the curvature R is exploiting. But it may be the case that the

curvature R→∞ only when τ →∞, and this is not a point in the space time manifold. The universe

is regular in this case. We can not distinguish between these two situations with the tools presented

here.

Finally, for the model (4.38) the scalar φ is

φ = f ′(R) = 1− b

1 + log R
Rs

+
b

(1 + log R
Rs

)2
.

This scalar is not bounded from above, although it has a minimum. Again, the theorem does not

apply in this situation without further ad hoc assumptions.

We finish this section by noticing that the past version of this result is that when θ0 > K the space

time is past geodesically incomplete. The deduction of this fact is completely analogous to the future

case.
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5. Relaxing the compactness assumption for the Cauchy surface

The singularity results described above correspond to compact Cauchy hyper-surfaces. However, the

following variation of proposition 2 allows to circumvent this limitation [62].

Proposition 3: Consider an equation of the form (4.24), and suppose that there exists a fixed time

t1 for which the functions p(τ) and q(τ) satisfy∫ ∞
0

dτ

q(τ)
=∞, infT≥0

∫ T

0
p(τ)dτ + y0 = α > 0, (5.41)

with q(τ) > 0 in [0,∞). Then, any of the solutions y(τ) of (4.24) with the initial condition y(0) = y0

exploits inside the interval [0, τ ], where τ is the time defined by∫ τ

0

dt

q(t)
=

2

α
.

Proof: By integrating the equation (4.24) it follows that

y(τ) =

∫ τ

0

y2

q
dτ ′ +

∫ τ

0
pdτ ′ + y0 >

∫ τ

0

y2

q
dτ ′ + α > α, (5.42)

the last equality follows from the positivity of q(t). Now, let us introduce the quantity given by

R(τ) =

∫ τ

0

y2(τ ′)

q(τ ′)
dτ ′.

From (5.42) it is clear that

R(τ) = α2
∫ τ

0

1

q(τ ′)
dτ ′. (5.43)

As q(τ) is positive in the half positive line and τ > 0, it can directly be seen that this quantity is

always positive. On the other hand, an analogous reasoning to (5.42) shows that

R2

q
< Ṙ =

y2

q
, (5.44)

for τ > 0. From here it is concluded, by fixing τ2 > 0, that∫ τ

τ2

dτ ′

q
<

∫ τ

τ2

Ṙ

R2
dτ ′ =

1

R(τ2)
− 1

R(τ)
<

1

R(τ2)
.

By properly taking into account the inequality (5.43) it follows that(∫ τ

τ2

dτ ′

q

)(∫ τ2

0

dτ ′

q

)
≤ 1

α2
,

for 0 ≤ t2 ≤ t. Now, the intermediate value theorem allows to find a value t2 for which the left hand

side is (∫ τ

0

dτ ′

q(τ ′)

)2

≤ 1

α2
,

from where the proposition follows. (Q. E. D)
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In terms of the previous proposition, it is possible to prove the following theorem, for which the

initial Cauchy surface is not assumed to be compact.

Generalized future singularity theorem 2: Consider a globally hyperbolic space time M with di-

mension n > 2 and with a given Cauchy hyper-surface Σ for it. Suppose that for each future directed

time geodesic γ : [0,∞) → M issuing orthogonally from Σ there exist two constants cγ > 0 and

βγ ≥ C > 0 and a time τ1 for which

infT≥0

∫ T

0
e−2cγτ/(n−1)rγ(τ)dτ = βγ + θ0γ + cγ , (5.45)

for τ > τ1, where rγ(τ) = Ricc(γ′, γ′). Then θγ diverges at a finite proper time τ ≤ (n − 1)/C and

thus, the space M is future incomplete.

Proof: Assume that the hypothesis of the theorem are true. Then

inf

∫ T

0
e−2cγτ

′/(n−1)Ricc(γ′, γ′)dτ ′ = βγ + θ0γ + cγ .

From the last expression it follows that

inf

∫ T

0
e−2cγτ

′/(n−1)
(

Ricc(γ′, γ′) + 2σ2 +
c2γ

n− 1

)
dτ ′ = αγ + θ0γ + cγ , (5.46)

where αγ > βγ > C > 0. This inequality follows since the two added terms are positive or zero.

As discussed below (4.23), the Raychaudhuri equation may be converted into (4.24) by making the

variable redefinition y(τ) = −(θ + cγ)e−2cγτ/(n−1) with the functions p(τ) y q(τ) defined by (4.25).

The function q(τ) clearly satisfies the hypothesis of the proposition 2, when cγ > 0. The function p(τ)

also is inside these assumptions of the theorem when

y0 + inf

∫ T

0
p(τ ′)dτ = αγ > 0,

which is exactly equivalent to (5.46) under this variable change. Under these circumstances, the

proposition 3 applies. Now, this proposition implies that the value of θγ will explode at a time inside

the interval [0, τγ ] being τγ the solution of the equation

∫ τγ

0

e2cγt/(n−1)

(n− 1)
dt =

1

αγ
,

in deriving the last formula (4.25) has been taken into account. By calculating explicitly the last

integral it follows that

τγ =
n− 1

2cγ
log(1 +

3cγ
αγ

).

The last formula can be expressed as

τγ =
2(n− 1)

3αγ

1

x
log(1 + x),
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with x = 3cγ/αγ a positive variable. The maximum value of the function f(x) = x−1 log(1 + x) for

positive values of x is f(0) = 1. Thus

τγ ≤
2(n− 1)

3αγ
≤ 2(n− 1)

3C
.

The last part of this inequality does not depend on the choice of the curve γ, thus any θγ explodes at

a time less than τ0 = 2(n− 1)/C. A direct application of proposition 1 and the previous results shows

that the space is geodesically incomplete. (Q. E. D)

Note that, the smaller C is, the larger the bound for the explosion time will be. In fact, the

singularity theorems of the previous sections correspond to the case C → 0. For completeness, we

mention that the past version of this theorem follows by replacing
∫ T
0 by

∫ 0
T , θ0γ by −θ0γ and by

considering constants cγ < 0. The constants αγ are, as before, positive.

5.1 Singularities for f(R) models

In order to apply the generalized future singularity theorem 2 to f(R) models, it should be noted that,

when e−2cγτ/(n−1)rγ(τ) is integrable, it follows from (4.30) that∫ T

0
e−2cγτ/(n−1)rγ(τ)dτ ≥

∫ ∞
0

e−2cγτ/(n−1)rγ−(τ)dτ,

for any value of T > 0. Here r−γ(τ) =Min(0, rγ(t)). Therefore, if∫ ∞
0

e−2cγτ/(n−1)rγ−(τ)dτ = βγ + θ0γ + cγ ,

is satisfied with βγ > C > 0, then the hypothesis of the generalized future theorem 2 will be fulfilled.

By further taking into account (4.31) and (4.32), it follows from the last condition that∫ ∞
0

e−
2cγt

n−1 rγ−(t)dt > −K
2

2cγ
, (5.47)

with

K =

√
8π(n− 1)Umax

(n− 2)
,

Umax being the maximum value of the potential during the evolution of ϕ, if this maximum exists.

Then, the conditions of the generalized singularity theorem will be satisfied when

−K
2

2cγ
− cγ = θ0γ + βγ .

The left hand is minimized when
√

2cγ = K, thus the theorem will hold when

−
√

2K − β′γ > θ0γ ,

with β′γ > C > 0. The previous theorem insures that the blowup proper time is less than τ0 = 2(n−1)
3C .
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Analogous considerations hold for past singularities. The manifold will be past geodesically in-

complete when
√

2K + β′γ < θ0γ .

where β′γ ≥ C > 0 for this case as well. The past blowup proper time τ0 satisfy 0 > τ0 > −2(n−1)
3C .

The application of this result to the previous discussed theories is straightforward. The results are

completely analogous, but the compactness assumption for the Cauchy surface is removed.

6. Singularities for the Jordan metric

6.1 The vacuum case

As it was shown in (2.9), there exists a conformal transformation for which the f(R) models reduce

to ordinary GR plus an scalar field ϕ, the scalaron, together with matter coupled non trivially to the

scalar degree of freedom by a term of the form (2.11). In this context, it is of great importance to

analyze whether or not the resulting system is well behaved. For instance, it may be of interest to

understand in which situations, given some suitable boundary conditions, the scalaron ϕ is uniquely

defined. Otherwise, the conformal transformation to the original Jordan frame would be ambiguous.

The present section deals with these type of issues.

It is convenient to study first the vacuum model, that is, the case for which Lm = 0. In this

case, as previously stated, the theory is reduced in the Einstein frame to GR coupled to an scalar

field ϕ. Surprisingly, it was only recently that the properties of such system were firmly established.

These properties are fully proved in [63] and we refer the reader to that reference for further details.

However, the main results will be exposed here without proof.

Let (M , g) be a time oriented Lorentz manifold, together with an scalar field ϕ which can be

considered as an smooth function on M . Let Σ an smooth space like surface and let hij and kij

the metric and the second fundamental form on Σ induced by the space time metric gij . The future

directed normal unit vector to Σ will be denoted by N and the Levi-Civita covariant derivative induced

on Σ by h will be denoted by Dµ. In these terms, the following equalities take place for the Einstein

tensor Gij = Rij − gijR of the space time manifold (M , g)

G(Np, Np) =
1

2

[
S − kijkij + (Trgk)2

]
(p), (6.48)

G(Np, v) =
1

2

[
Djkji −DiTrgk

]
vi. (6.49)

Here p ∈ Σ and v ∈ TpΣ. In addition, S denotes the scalar curvature of the three dimensional space

like hyper-surface (Σ, h).

The relations given above are quite general and the scalaron does not play any role in its deduction.

But if it is further assumed that the system in consideration is the Einstein one coupled to an scalar

field ϕ, then it is deduced from (6.48) the so called hamiltonian constraint

1

2

[
S − kijkij + (Trgk)2

]
= ρ, (6.50)
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with ρ defined as

ρ =
1

2

[
(Nϕ)2 +DiϕD

iϕ

]
+ U(ϕ).

On the other hand, the constraint (6.49) give the so called momentum constraint

Djkji −DiTrgk = j(ϕ), (6.51)

with j(ϕ) = N(ϕ)Diϕ.

Given the equations (6.48)-(6.51) the initial formulation for the vacuum problem for the coupled

scalar-Einstein model goes as follows. The initial data consist on an n dimensional manifold Σ endowed

with a riemannian metric g0 on it, together with a covariant tensor kij , and two smooth functions ϕ0

and ϕ1 on Σ, satisfying

r − kijkij + (Trgk)2 = (ϕ1)
2 +Diϕ0D

iϕ0 + 2U(ϕ0). (6.52)

Djkji −DiTrgk = ϕ1D
iϕ0. (6.53)

Here Dj is the Levi-Civita connection on Σ and r the scalar curvature of (g0, Σ), and the indices are

raised and lowered with the help of g0. Given this data, the problem is to find an n + 1 manifold

M endowed with a Lorenzian metric g and a C∞(M) map ϕ such that the Einstein equations are

satisfied, together with an embedding i : Σ→ M such that i∗ : g → g0 and ϕ o i = ϕ0. If in addition

N is a future directed normal time like vector to Σ and K is the second form of i(Σ), then i∗(K) = k

and (Nϕ) o i = ϕ1. The triple (M , g, ϕ) is known as the development of the data. If furthermore

i(Σ) is a Cauchy hyper-surface in (M , g) then (M , g, ϕ) is called globally hyperbolic development.

The first question that arise is wether or not such developments exist. The answer is affirmative, as

shown in the following proposition [63].

Proposition 4: There always exists a global hyperbolic development for the data (Σ, k, g0, ϕ0, ϕ1)

satisfying the constraints (6.52)-(6.53) described above.

The following proposition shows that two different developments of a given data are an extension

of a common development [63].

Proposition 5: Consider a given data (Σ, k, g0, ϕ0, ϕ1) and two hyperbolic developments (Ma, ga,

ϕa) and (Mb, gb, ϕb) with corresponding embeddings ia : Σ→Ma and ib : Σ→Mb. Then there exist

sa global hyperbolic development (M , g, ϕ) with a corresponding embedding i : Σ→M and an smooth

orientation preserving maps ψa : M → Ma and ψb : M → Mb, which are diffeomorphisms onto their

images, such that ψ∗aga = g, ψ∗aϕa = ϕ and ψ∗bgb = g, ψ∗bϕb = ϕ. In addition ψa oi = ia and ψb oi = ib.

A fundamental notion is then the notion of an maximal hyperbolic development. An hyperbolic

development (M , g, ϕ) is called maximal if, for any other global hyperbolic development (M ′, g′, ϕ′),
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there is an embedding i′ : Σ → M ′ and an smooth orientation preserving maps ψ : M ′ → M such

that ψ∗g = g′, ψ∗ϕ = ϕ′ and ψ o i′ = i. The following proposition shows that maximal hyperbolic

developments always exist [63].

Proposition 6: Given a data (Σ, k, g0, ϕ0, ϕ1) there exists a maximal global hyperbolic develop-

ment, which is unique up to an isometry.

The last proposition we would like to mention is related to the Cauchy stability of the problem [63].

Proposition 7: Let (M = Σ × I, g, ϕ) a background solution of the Einstein-scalar system. By

denoting by (Σ, k, g0, ϕ0, ϕ1) the data induced on {0} × Σ by the full solution, consider a sequence

(kj , g0j , ϕj0, ϕ1j) of initial conditions converging to (Σ, k, g0, ϕ0, ϕ1) in the Sobolev norm H l+1, with

2l > n+2 with n+1 the space time dimension, and satisfying the corresponding constraint equations.

Then there are two values t1j and t2j such that on Mj = Σ× (t1j , t2j) there exists a Lorentzian metric

hj and an scalar ϕj which satisfies the combined Einstein scalar field equations, and such that the

initial data is (kj , g0j , ϕj0, ϕ1j). The surface τ ×Σ is a Cauchy one when τ ∈ (t1j , t2j). Furthermore,

when τ ∈ I, the data on such Cauchy hyper-surface induced by (hj , ϕj) converges to the one induced

by (g, ϕ) for large j.

The last statement is the most subtle of this theorem. In any case, all these results shows that the

Einstein-scalar field system is a well conditioned one. However, the analysis is more involved when

matter is added. This problem is to be discussed below.

6.2 The addition of matter

The theorems described above apply for a vacuum solution of the theory only. The theorems are

not generalized in straightforward manner when matter is added, since the addition of the lagrangian

(2.11) changes the equations of motion for ϕ. This is unless the matter term is conformally invariant.

In four dimensions, this is the case for the Maxwell electromagnetic lagrangian (3.16). When such

type matter is added, there should not be a problem coupling the scalar field to any other type of

matter for which local existence and uniqueness has been proven. Nevertheless, this has to be checked

in each individual case.

For the non conformal case, such as the stress energy tensor of a perfect fluid (3.17), the problem is

more difficult, but it may be studied following the suggestions in [64]-[66]. Following these references,

one may study the theory in the O’ Hanlon formulation with the following harmonic coordinate choice

F iφ = F i −H i = 0 with F i := gpqΓipq, H i =
1

φ
∇iφ. (6.54)

The equation of motions for the free case reduce to

Rij =
1

φ

[
Tij −

1

2
Tgij

]
, (6.55)
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where the energy momentum tensor is

Tij = ∇i∇jφ− gijgpq∇p∇qφ−
1

2
V (φ)gij , (6.56)

The Ricci tensor in this gauge takes the simpler form

Rij = Rφij +
1

2

[
gip∂j

(
F pφ +Hp

)
+ gjp∂i

(
F pφ +Hp

)]
(6.57)

with

Rφij = −1

2
gpq∂2pqgij +Aij(g, ∂g), (6.58)

where only first order derivatives appear in the functions Aij . Assuming that F iφ = 0 and taking the

expression of H i into account, we obtain the following representation

Rij = −1

2
gpq∂2pqgij +

1

φ
∂2ijφ+Bij(g, φ, ∂g, ∂φ) (6.59)

where the functions Bij depend on the metric g, the scalar field φ and their first order derivatives. In

addition
1

φ

[
Tij −

1

2
Tgij

]
=

1

φ
∂2ijφ+ Cij(g, φ, ∂g, ∂φ)

Again, in the functions Cij , only first order derivatives are involved. The last two formulas show that

the equations of motion are

gpq∂2pqgij = Dij(g, φ, ∂g, ∂φ). (6.60)

The initial data for these equations should satisfy the two constraints

Fφ = 0, G0i =
1

φ
T 0i i = 0, . . . , 3, (6.61)

the last one is the hamiltonian constraint. On the other hand

∇i (φGij − Tij) =
(
∇iφ

)
Rij −

1

2
φj

(
R− dV

dφ

)
+ φ∇iGij −

(
∇i∇i∇j −∇j∇i∇i

)
φ (6.62)

Now, by taking into account that ∇iGij = 0, the equality

(∇iφ)Rij = −
(
∇i∇i∇j −∇j∇i∇i

)
φ,

and that R = V ′(φ) it is obtained that

∇i (φGij − Tij) = 0. (6.63)

This can be generalized to the case when matter fields are present, such as electromagnetic, perfect

fluids and dust. In these case the authors of [64]-[66] suggest that the Leray and Choquet-Bruhat

theorems [67]-[68] can be implemented to show that this is a well posed problem. It may be of interest

to make an explicit proof of this important fact in the future.
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6.3 The singularity in the Jordan frame

The propositions of the previous sections have shown two main results for the metric formulation of

f(R) theories. The first is that, when the space time is assumed to be globally hyperbolic and the

scalaron ϕ takes bounded values during its evolution then, for some suitable conditions on a Cauchy

surface Σ, the Einstein metric g̃µν is time like geodesically incomplete. On the other hand, when these

conditions are fulfilled, the scalaron and the metric evolutions are both well posed. In particular, the

values of ϕ and g̃ at future or past times are uniquely determined by the initial data on the Cauchy

surface. The metric in the Jordan frame is given by (2.6) and it follows that

g̃ab = e
√

2k
3
ϕgab.

Therefore the following inequality takes place

e−
√

2k
3
ϕmax g̃ab < gab < e−

√
2k
3
ϕmin g̃ab.

Here ϕmin and ϕmax are the minimum and the maximum of ϕ at the full evolution. We gave above

some examples for which these extreme values do exist. The singularity theorems described in the

previous section show that Einstein metric g̃ can not be extended beyond certain finite time τ0 and

therefore gab can not be extended beyond certain time τ ′ defined by

e−
√

k
6
ϕmaxτ0 < τ ′ < e−

√
k
6
ϕminτ0.

In other words, the Jordan metric is also past or future geodesically incomplete.

It is usually emphasized in the literature that the scalaron ϕ is not a surjective function of the

curvature R. In other words there may exist different values of the curvature R1 and R2 giving rise

to the same value for ϕ. However, this is not related to the uniqueness results described here. These

results shows instead that, once the initial data is properly formulated on the Cauchy surface, the

evolution of ϕ and g̃ is completely determined. Note that, in addition, the information about the

curvature is given by both quantities g̃ and ϕ, not by ϕ alone.

7. Discussion

In the present work, the cosmological singularity theorems of Hawking where extended to f(R) models,

by assuming that the matter coupled to these models satisfies the condition

(
Tij − gij

2 T

)
kikj ≥ 0 for

any generic unit time like field. The difficulty relies in that, for f(R) theories, this condition does not

imply that Rijγ
iγj ≥ 0 for every unit time like vector field. The last is a key property in proving the

standard singularity theorems. Furthermore, the additional degree of freedom, the scalaron, violates

the condition

(
Tij− gij

2 T

)
kikj ≥ 0. These complications were sorted out by the use of certain generic

results about non Lipschitz differential equations.

The application of theorems presented here is straightforward for certain f(R) models such as the

Hu-Sawicki or the Starobinsky ones [15], [21]. For these scenarios, the corresponding scalaron potential
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has a maximum, which is one of the requirements for the singularity to occur. For other models, this

condition is not automatically satisfied and should be checked individually, by considering different

types of matter couplings. However, the negation of the hypothesis of these propositions presented

here does not necessarily imply that a singularity is absent. In other word, we do not claim that we

have exhausted all the possible situations for which a singularity takes place, but just a class of them.

In our opinion, the results presented here complements those of [74]. Those results are based on

certain weighted averages of a parameter, which reduces to the Hubble constant when the space time

is isotropic and homogenous. Instead, our results are based on certain theorems in [62], which are

obtained by generalizing the so called average null energy conditions (ANEC) appropriately. Other

reference also dealing with these types of averages are [79]-[81]. These conditions are formulated in

terms of the matter content stress energy momentum tensor, and its translated into conditions for the

Ricci tensor. So it is likely that the results presented here are complementary to those in [74], and

enlarge the list of situations in which a singularity is unavoidable.

An interesting task may be to relax the global hyperbolicity condition for the underlying space

time. In addition, it may be of interest as well to generalize the Penrose singularity theorems [61] to

these scenarios. We leave these matters for a future investigation.
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