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ABSTRACT. In this paper we study the following singular perturbation problem for the p.(z)-
Laplacian:

(P=(f*,pe)) Ay @yu = div(|Vu' (2) <O 72 Vu) = B.(u) + 5, w® >0,
where € > 0, f.(s) = 1 (£), with 8 a Lipschitz function satisfying 8 > 0 in (0,1), 8 = 0 outside

B
(0,1) and [ B(s)ds = M. The functions u°, f° and p. are uniformly bounded. We prove uniform
Lipschitz regularity, we pass to the limit (¢ — 0) and we show that, under suitable assumptions,

limit functions are weak solutions to the free boundary problem: u > 0 and

{Ap<z)u =f in {u > 0}

(P(f7p7 >‘*)) u=0, |Vu| = )\*(x) on 3{u > O}

with A" (z) = ( p(x)_ np

p(z)—1
In [19] we prove that the free boundary of a weak solution is a C*® surface near flat free boundary
points. This result applies, in particular, to the limit functions studied in this paper.

1/p(z)
) : , p=limp. and f = lim f°.

1. INTRODUCTION

Singular perturbation problems of the form

(1.1) Lu® = B:(u%)

with f:(s) = % B(£), B nonnegative, smooth and supported on [0, 1] and L an elliptic second order
differential operator have been widely studied due to their appearance in different contexts. One
of its main application being to flame propagation. See [3, 4, 7, 29] and also the excellent survey
by J. L. Vazquez [26].

A natural generalization is the consideration of inhomogeneous problems
(1.2) Lu® = p.(u®) + f°

with f¢ uniformly bounded independently of . The inhomogeneous terms may represent sources
as well as nonlocal effects, when the family «° is uniformly bounded (see [17]).

Problem (1.1) was first studied for a linear uniformly elliptic operator L by Berestycki, Caffarelli
and Nirenberg in [3] and then for the heat equation by Caffarelli and Vazquez in [7]. The two phase
case for the heat equation was studied by Caffarelli and the authors in [5, 6]. A natural question is
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the identification of the limiting problem as ¢ — 0. To this end, estimates uniform in € are needed.
These two questions were the object of the above mentioned articles [3, 7, 5, 6].

For the inhomogeneous problem (1.2) and L = A or L = A — 0, these questions were settled in
17, 18].

The homogeneous problem (1.1) in the case of the p-Laplacian was considered in [10] and then, for
more general operators with power like growth in [21]. Uniform estimates for the inhomogeneous
problem (1.2) and the p-Laplacian were obtained in [22]. Additional results for these type of
problems were obtained in [2, 15, 16, 22, 23, 27].

In this paper we study the case where the operator L is the p.(z)-Laplacian, defined as
Ayt = div(|Vu(z) =02 T0),

that extends the Laplacian, where p.(z) = 2, and the p-Laplacian, where p.(z) = p with 1 < p < c0.
The p(x)-Laplacian has been used in the modeling of electrorheological fluids ([24]) and in image
processing ([1], [9]).

We consider the inhomogenous problem (1.2) but we remark that this singular perturbation
problem for the p.(z)-Laplacian had not been studied even in the homogeneous case (1.1). More-
over, the identification of the limiting problem in the inhomogeneous case had not been done even
for pe(z) = p.

As stated above, this singular perturbation problem may model flame propagation in a fluid with
electromagnetic sensitivity. Hence its interest from a modeling point of view. On the other hand,
the presence of a variable exponent p.(z) and a right hand side f.(x) brings new mathematical
difficulties, that can be found scattered all along this paper, that were not present in the constant
case p:(z) = p. An important tool we use is the Harnack Inequality for the inhomogeneous p(z)-
Laplacian that we recently proved in [28].

More precisely, in this paper we study the following singular perturbation problem for the p.(z)-
Laplacian:

(PE(f£7ps)) Apg(;t)wS = ﬁs(ug) + f67 u® >0

in a domain Q C RY. Here £ > 0, B.(s) = % (£), with 8 a Lipschitz function satisfying 3 > 0 in
(0,1), 3 =0 outside (0,1) and [ 3(s)ds = M.

We assume that u®, f¢ are uniformly bounded and that p. are uniformly bounded in Lipschitz
norm. We prove uniform Lipschitz regularity, we pass to the limit (¢ — 0) and we show that, under
suitable assumptions, limit functions are weak solutions to the following free boundary problem:

u > 0 and

(P(f,p, X)) {Apmu =f in {u >0}

u=0, |Vu|=X(z) on df{u>0}

. " p(z) 1/p(z) . .
with A*(z) = (p(m)il M) , p=Ilimp. and f = lim f¢.

We remark that, in the inhomogeneous case, there are examples of limit functions that are not
solutions to the free boundary problem P(f,p, \*). These examples were produced with p.(z) = 2

in [17]. Hence, some extra assumptions on the limit functions are needed.

In a companion paper [19] we study the regularity of the free boundary for weak solutions of
P(f,p,\*) with p(z) Lipschitz and \*(z) a Holder continuous function. In [19] we show that the
free boundary is a Cb* surface near flat free boundary points. This regularity result applies in
particular to limits of this singular perturbation problem, under the above mentioned assumptions.
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These additional assumptions are verified if, for instance, the functions u® are local minimizers of
an energy functional. We prove this last result in [20]. Moreover, in this special case, we show in
[20] that the set of singular points has zero H™¥~! measure.

In conclusion, in this first paper of a series on the singular perturbation problem P.(f¢,pe)
we study the fundamental uniform properties of the solutions and we determine the limiting free
boundary problem.

An outline of the paper is as follows: In Section 2 we obtain uniform bounds of the gradients
of solutions to the singular perturbation problem P.(f¢,p.) (Theorem 2.1). In Section 3 we pass
to the limit, in Section 4 we analyze some basic limits and in Section 5 we study the asymptotic
behavior of limit functions. Finally, in Section 6 we define the notion of weak solution to the free
boundary problem P(f,p, \*) and we show that, under suitable assumptions, limit functions to the
singular perturbation P.(f¢,p.) are weak solutions to the free boundary problem P(f,p, \*) with

1/p(x)
M (x) = (p{;()xll M) . (Theorem 6.1). We also state the result from [19] on the regularity of the

interface for weak solutions (Theorem 6.2). We finish the paper with an appendix where we collect
some results on variable exponent Sobolev spaces as well as some other results that are used in the

paper.

1.1. Assumptions. Throughout the paper we let Q C RV a domain.

Assumptions on p.(z) and p(x). We will assume that the functions p.(z) verify
(1.3) 1 < pmin < Pe(®) < Pmax <00, T € Q.

When we are restricted to a ball B, we use p._ and p._ to denote the infimum and the supremum
of p:(x) over B;.

We also assume that p.(x) are continuous up to the boundary and that they have a uniform
modulus of continuity w: R — R, i.e. |p-(z) — p:(y)| < w(|z — y|) if |x — y| is small.

For our main results we need to assume further that p.(x) are uniformly Lipschitz continuous in
Q. In that case, we denote by L the Lipschitz constant of p.(z), namely, ||Vpe|[z~q) < L.

The same assumptions above will be made on the function p(z).

Assumptions on F.. We will assume that the functions (. are defined by scaling of a single
function § : R — R satisfying:
i) [ is a Lipschitz continuous function,
ii) > 0in (0,1) and § = 0 otherwise,
i) [ B(s)ds = M.
And then B.(s) := 13(%).

e

1.2. Definition of solution to p(x)-Laplacian. Let p(z) be as above and let g € L*>(92 x R).
We say that u is a solution to
Apzyu = g(w,u) in Q

if u € WP (Q) and, for every ¢ € Wol’p(')(Q), there holds that

/ \Vu(z)P® 2V - Vo de = —/ vg(x,u)d.
Q Q

By the results in [28], it follows that u € L{$ (12).
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1.3. Notation.

e N spatial dimension

e ONo{u>0} free boundary

e |S| N-dimensional Lebesgue measure of the set S
e HN=1 (N — 1)-dimensional Hausdorff measure

e B.(zp) open ball of radius r and center xg

e B, open ball of radius r and center 0

e B!(rg) open ball of radius r and center zo in RV !
e B open ball of radius r and center 0 in RV—!
'JCBT(IO) |BT($0 1B (z0)] fBT (a0) W4T

® fon, (o) U = @B G)) Jom. (o) WAHY T

® X characteristic function of the set S

e vt = max(u,0), v~ = max(—u,0)

e (-, -) scalar product in RV

s) = fos Be(T)dr
2. UNIFORM BOUND OF THE GRADIENT

In this section we consider a family of uniformly bounded solutions to the singular perturbation
problem P.(f¢,p.) and prove that their gradients are locally uniformly bounded. Our main result
in the section is the following theorem

Theorem 2.1. Assume that 1 < pymin < pe() < Pmax < 00 with p-(z) Lipschitz continuous and
|\Vpe|lree < L, for some L > 0. Let u® be a solution of

(P=(f%,pe)) Ap @u” =B:(u) + 5, u*>0 inQ,

with |[uf|| o) < L1, || f¥]|Loe(q) < L2. Then, for ' CC Q, we have
|[Vus(z)| < C  in SV,

with C = C(N, L1, Lo, || 8]| Lo , Pmin, Pmax; L, dist(Q',09)), if € < go(2, ).

An essential tool in the proof will be the following Harnack’s Inequality for the inhomogenous
p(z)-Laplacian equation, proven in [28], Theorem 2.1

Theorem 2.2. Assume that p(x) is locally log-Holder continuous in Q. This is, p(x) has locally
a modulus of continuity w(r) = C(log2)~!. Let 29 € Q and 0 < R < 1 such that Byg(zo) C Q.
There exists C such that, if u € WP (Q) N L®(Q) is a nonnegative solution of the problem

(2.1) Ap(x)u = f m Q,
with f € L1(Q) for some max{1, ]%} < qo < 00, then

sup u < C| inf w+ R+ Ry
Br(z0) Br(zo)

where )
IR

_ Rl_% o
p=| 1] L0 (Bar(z0))]

The constant C depends only on N, p*ft .= infp, . (z0) P pift = SUPB, o (xo) Ps S5 405 WAR, upiR_piR,
—pif

Iz Hp+ e
(Bar(z0))

qu )) and HUHLSTO

(for certain ¢’ = q%’l with ro,q € (1,00) and q% + % + % =1
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depending on N, qq and p*f). Here s > piR —pB s arbitrary and wap is the modulus of log-Holder
continuity of p(x) in Bar(xo).

We will also use the following result proven in [12], Theorem 1.1,

Theorem 2.3. Assume that 1 < pmin < p(2) < Pmax < 00, and that p(x) has a modulus of
continuity w(r) = Cor®™ for some 0 < ag < 1. Let f € L®(Q) and let u € WPO)(Q) N L®(Q) be
a solution of

(2.2) Apyu = fin Q.

p(z

Then, u € C'llo’?(Q), where the Holder exponent o depends on N, pmin, Pmax, [|fllzo(@)s [Ullre= (@),
w(r) and, for any Q' CC Q,
[ullcra@y < €

the constant C depending on N, Pmin, Pmax, ||f||zc(@), [|ullr=(), w(r) and dist (€, 092).

In order to prove Theorem 2.1, we need to prove first some auxiliary results.

Lemma 2.1. Assume that 1 < pmin < pe() < Pmax < 00 with p.(x) Lipschitz continuous and

IVpel[ree < L, for some L > 0. Let u® be a solution of P(f*,pe) in Byy(x0) with |[u|| (B, (z0)) <

Ly, ||f8||Loo(BTO(CCO)) < Lo, such that u®(xg) < 2e. Then, there exists C > 0 such that, if ¢ < 1,
|Vu®(zo)| < C,

with C' = C(N7 L17L27 H/gHLO"ypminypmavayTO)-

Proof. Let v°(z) = 1uf(z¢ + ex). Then, denoting p-(z) = p.(ex + z0) and f(z) = f*(ex + x0),
we have, if e < 1,
(23) Aﬁg(:p)vs = B(’UE) + fT‘E in BTO'
We will apply Harnack’s Inequality (Theorem 2.2). Let 7y = min{ro,4}. We first observe that
7= (p:) = (P=)7 = sup p — inf p. < Le2ro,
Bz Bry
so that
|\U€||Woo(3fo) < (Ly /)0 < Cy(L, Ly, o).

It follows that
sup v° < C1[v*(0) + 70/4 + pro /4],
Bz /4
S S
for p = (%Hﬂ(ve) +f€HLoo(BFO(IO)))(ﬁf)r—o_l < Cy(La, |8z Pmin,T0) and a constant Cj with

Cl - CI(N7 L17 L27 H/BHLOO y Pmins Pmax; L7 TO)-
Now, observing that v°(0) < 2, and using the estimates of Theorem 2.3, we have that

[Vus(z0)| = [Vo5(0)| < C,
with C = C(N,Ll, Lo, ||6||L°°,pmin7pmax; L,To). O
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Lemma 2.2. Assume that 1 < ppin < p(2) < Pmax < 00 with p(x) Lipschitz continuous and
IVpl|lLe < L, for some L > 0. Forzg € RN, p >0, >0, A>0, consider

Assume moreover that 6 < A < Ag. Then, given D > 0, there exist i = (N, Pmin, Pmax) @nd
7 = T(Pmin, Pmax, L, D, Ao, 1) such that, if p > i and 6 <7, there holds that

Apy¥(z) > D in Bs(xo) \ Bsa(wo).
Proof. For M >0 and p > 0 let
(2.4) w(z) = M(e Pl — em.

The calculations in the proof of Lemma B.4 in [13] show that if ¢(z) is a Lipschitz continuous
function, with 1 < ppin < ¢(z) < pmax < 00, there exist o = po(Pmax, Pmin, N) and € = £0(Pmin)
such that, if © > pp and ||Vg||ze < o, then

ol 20 ) " Vw2 IO A yyw > Crp — Col| Vgl poe (|log M| +1)  in By \ By,
with C1,Cy depending only on ppin. If, in addition, g > 11 (pmin), we get
_ ol C :
M) VP I Ayyw = Zou — Col| Vgl el log M| in By \ By,
and therefore,

—pl|z z)— c .
Ay > e pl |2\Vw|q( ) =29 M <21,u - 02||quLoo|10gM|> in By \ Bys-

So that we have

Aq(x)w > eiu(pmaxfl)MQ(z)flupmin*1 (él,U« . C«2qu”Lm|logM’> in Bl \B1/47

with C’l, C’g depending on ppin and pmax if, in addition, g > 1.
We now observe that, letting in (2.4)

A
M= (5(@‘#/16 — e*ﬂ)7
we have
,u\I;ﬂ;OF —u
i (& — € . 7#‘T*$0|2_ *,LL) B T — X0
P(z)=A ey Ta— =0M (e 5 e = dw 5 .
We want to show that the constants fi, 7 in the statement can be chosen in such a way that
(25) Ap(x)’(/}([l}) > D in Bg(l‘o) \35/4(1'0).
We notice that showing (2.5) is equivalent to showing that
(26) Aﬁ(z,)w(m) Z 0D in Bl \31/4,

for p(z) = p(zo + 0x).
Since ||Vp||re = 6||Vp||pe < L, the previous calculations give, if y1 is as above and 6 < r; = £,

Aﬁ(x)w 2 efu(pmaxfl)Mﬁ(x)*lupminfl (él/,l/ — éQéL‘ log M’) n Bl \ B1/4.
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Using that A > §, we have M > e*/16 > 1 implying that
1
(e=#/16 — e=H)Pmin—
= C3(u)(Crp — C20L1og M) in B1\ By
(here C3(u) is a constant depending on i, Pmin, Pmax)- NOW using that
—0LlogM > —1—46Lu,
if § <ry=r9(Ag, L) and p > p9, we conclude that

A;E(x)w Z e_u(pmax_l) 1 lu/pmin_]- (élﬂ _ 6’26L log M)

C )
Appyw > Cs(#)zlﬂ in By \ By,

if W= ug = M3(pmin7pmax) and § < r3 = 7’?)(pminapmaxv L) This is,

Aﬁ(z)w > 05, in Bl \ Bl/4

with C5 = C5(14, Pmin, Pmax)- If we now let fi = max{po, p1, po, 3, 1}, fix p > fr and take 6 <7
min{ry, ra, 73, %}, we conclude that (2.6) holds, thus implying (2.5).

Ol

Lemma 2.3. Assume that 1 < ppin < pe(z) < Pmax < 00 with pe(x) Lipschitz continuous and
|Vpellzee < L, for some L > 0. Let u® be a solution of P-(f%,pe) in By with ||uf||pec(p,) < L,
[ f¥llLoo(By) < L2 and 0 € O{u® > e}. Then, there exists 0 < ro < 1 such that, for x € B;,N{u® > €}
and e <1,

ut(z) < e+ Cdist(z, {u® < e} N By),
with ro = TO(N,L17L2apminapmaXa L) and C = C(Na Ly, Lo, ||ﬂHL°°apminapmaXa L)-

Proof. Let 0 < rg < 1/4 be a constant to be chosen later. For z¢p € B,, N {u® > ¢}, take
mo = u(zg) — € and dp = dist(zg, {u® < e} N By). Since 0 € 9{u® > e} N By, oy < rg. We want to
prove that mg < Cdp, with C = C(N, L1, La, ||B|| Lo¢ ; Pmins Pmax, L)-
Since Bs,(zo) C {u® > e} N By, we have that u® —e > 0 in Bs, (7o) and Ap_;)(u® —¢) = f°. By
Harnack’s Inequality (Theorem 2.2)
sup (u® —¢e) <Oy inf (u® —e)+ do/4+ 1dp/4],

350/4({20) B50/4(10)

1
—1
for i = (%HfanLOO(Bgo(m))) (be) 21 < CO(LQ,pmin)a with Cp = Cl(N, L17L2,Pmin,PmaX,L)~ It
follows that
mo < Cq7 inf (ua — 8) + C%09,
Bgsq/a(wo)
Wlth CQ = CQ(N; Lla L2apmin3pmaXa L)
If there holds that mg < 20500, the conclusion follows.
So let us assume that mgy > 2C58y. Then, there exists ¢; = ¢1(V, L1, L2, Pmin, Pmax, L) such that
camo < inf  (u —e).
Bs /a(z0)
If c1mg < §p there is nothing to prove. So now assume that cymg > dg.

Let us consider
_ lz—=zq|?
e 52  —eTH

Vo) = amo | — ==
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with g = (N, Pmin, Pmax ), the constant in Lemma 2.2.

Then, observing that c;mg < ¢1L1, we can apply Lemma 2.2 with § = §y, A = cymg, Ag = c1lq
and D = Lo, if there holds that §y < 7, where 7 = 7(Pmin, Pmax, L, D, Ao, i) is the constant in
Lemma 2.2.

If we choose 19 = min{7, 1/8} above, we have 1o = ro(N, L1, L2, Pmin, Pmax, L) and Lemma 2.2
applies, so we get

Ap @)¥(x) > Lo > f° in Bs,(20) \ Bs,/4(w0)
=0 on JdBs, (o)
Y = c1my on 0Bs, /4(0)-

By the comparison principle (see the appendix), we have

(2.7) Y(z) <u(z) —e  in Bsy(20) \ Bs,/a(zo).-
Take yo € 0Bs,(w0) N O{u® > e}. Then, yo € By /5 and

(2.8) (o) = w(yo) — € = 0.
Let v°(z) = 1uf(ex + yo), Pe(z) = pe(ex + yo) and fe(x) = ef(ex + yo). Then if ¢ < 1 we
have that Ap ;)v® = B(v°) + f¢ in Byjp and v°(0) = 1. Therefore, by Harnack’s Inequality
(Theorem 2.2), using similar arguments as those employed in the proof of Lemma 2.1, we obtain
maX§1/8 v® < c= E(Na Lla L27 ||5||L°°apminapma><a L)
Now, by Theorem 2.3, we get

(2.9) [Vu (yo)| = Vi (0)] < e,
with ¢g = c3(N, L1, Lo, || B|| Lo, Pmin; Pmax, L'). Finally, by (2.7), (2.8) and (2.9), we have that
IV (yo)| < |Vus(yo)| < cs. Since |Vib(yo)| = clmocgﬁ), we obtain

cs

c1e(p)

o

and the result follows.

Now, we can prove the following important result

Proposition 2.1. Assume that 1 < pmin < Pe(®) < Pmax < 00 with p.(x) Lipschitz continuous and
[VpellLee < L, for some L > 0. Let u® be a solution of Pe(f¢,pe) in B with ||[u®||pe(p,) < L1 and
[l Loo(By) < La. Assume that 0 € O{u® > e}. Then, there exists 0 < r1 < 1 such that, for x € By,
and e <1,

|[Vu®(z)] < C
with r; = Tl(N, L1, Lo, pmin, Pmax; L) and C = C(N, Ly, Lo, ||ﬂHL°°apminapmaXa L)-
Proof. By Lemma 2.1 we know that if xo € {u® < 2e} N By, then,

|Vu5(x0)| S C()

with Cp = CO(N; Ly, Lo, ”/BHLOO7pmin;pmaxa L)

Let ro = ro(N, L1, L2, Pmin, Pmax, L)) be as in Lemma 2.3.

Let xg € B, /2 N {u® > ¢} and §y = dist(wo, {u® < €}).

As 0 € 0{u® > e} we have that o9 < ro/2. Therefore, Bs,(z9) C {u® > ¢} N By, and then
A, (z)u° = f© in Bs, (7o) and, by Lemma 2.3,

(2.10) u®(z) < e+ Cidist(z, {u® <e}) in Bs,(zo),
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with Cy = Cl(Na Ly, Lo, ||ﬁ||L°°7pminapmaxa L)~
(1) Suppose that € < éjp with ¢ to be determined. Then, (2.10) gives

sup u® <e+ C126) < (E-i— 201)50.
Bs (z0)

Now let v*(z) = %ua(xo + 6oz) and pX(x) = p.(zo + doz). Then, we have Apgo
50f£($0 + 501’) in Bi, with

e _
x)v o

(

1
supv® = — sup u° < (¢4 20C).
B 00 By, (o)

Therefore, by Theorem 2.3
Vuf (20)] = [Vo©(0)] < O,

with 6 = 6’(N7 Ll, L27 H/B“Looapminypmaxa La E)
(2) Suppose that € > ¢jp. By (2.10) we have

C
’LLE($0) <e+Ciog < (1 + ?1)8 < 2e,

if we choose ¢ big enough. By Lemma 2.1, we have |Vu®(z¢)| < C, with
C - C(Na L17 L27 ||5”L°°7pmin7pma>(7 L)
The result follows.

As a consequence of the previous results we obtain Theorem 2.1. In fact,

Proof of Theorem 2.1. Let 0 < 7 < 1 be such that Vz € Q) Ba,(x) C Q, and let ¢ < 7.
Let r1 be the constant in Proposition 2.1, corresponding to N, %, Lo, Pwmin, Pmax, L (1.e., 11 =

7"1<N7 %7L2apminapmaXaL))-
Let zg € V.

(1) If 6o = dist(zo, 0{u > €}) < 7r1, let yo € O{u® > €} such that |zg — yo| = do. Let
ve(x) = %us(yo + 1), pe(r) = pe(yo + 72), fé(x) = 7f°(yo + 72) and T = 2 then
|Z| < r1. There holds that |[v¥][zee(p,) < %, [Vpel|zee < L and || f2]| oo,y < Lo

As 0 € 0{v° > ¢/} and Ap ()0 = B, /7 (v°) + f¢ in By, we have by Proposition 2.1
\Vua(mo)\ = ’V'[)E(j)‘ < Cl(Na L17L27 HBHL‘X’,pmimpmaxaLaT)'

(2) If 6o = dist(xo, 0{u® > e}) > 7r1, there holds that
(a) Brp (zo) C {u® > €}, or
(b) Brri(zo) C {u® <e}.
In the first case, A, pyu® = f© in By (z9). Therefore, by Theorem 2.3

|VU€(1‘0)| < 02(N7 L17 L27pmin7pmaX) L7 T)‘
In the second case, we can apply Lemma 2.1 and we have,
|Vu€(x0)| < C3(N7 L17 L27 HﬁHLO" » Pmin, Pmax; L7 T)-

The result is proved.
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3. PASSAGE TO THE LIMIT

Since we have that |Vu®| is locally bounded by a constant independent of e, we have that there
exists a function u € Lipioc(£2) such that, for a subsequence €; — 0, u® — w. In this section we
will prove some properties of the function w.

Lemma 3.1. Let u® be a family of solutions to
(P€<f€7p€)) A;o,s(ac)uE :ﬁ€<ua) +f87 u® >0

in a domain Q C RN, Let us assume that [[uf]] oo ()
Ly > 0. Assume moreover that 1 < ppin < pe(z)
continuous with ||Vpg||p~ < L, for some L > 0.
Then, for any sequence €; — 0 there exist a subsequence 5;- — 0 and functions u € Lip,,.(£2),
f€L>®(Q) and p € Lip(R), with 1 < pmin < p(x) < pmax < 00 and ||Vp||re < L, such that
(1) Wi — uniformly on compact subsets of ),
f‘s;‘ — f x—weakly in L>°(Q),

Pel =P uniformly on compact subsets of €2,

< Ly and |[f¢]|p () < La for some Ly > 0,
< Pm

ax < 00 and that p.(x) are Lipschitz

(2)
(3)
(4) Apyu > f in the distributional sense in €,
(5) Apyu = f in {u>0}.

(6)

every ) CC Q.
(7) There holds

—/ |Vu|p(x)_2Vu-V<pd:U:/godu—l—/fcpdx
Q Q Q

for every ¢ € C§°(12).
(8) Vusi — Vu weakly in L{)O(;)(Q).

(9) If p(x) = po, with py a constant, then Vusi — Vu in LP

loc

(62).

Proof. (1) and (8) follow by Theorem 2.1. (2) and (3) are immediate.
In order to prove (5), take E CcC E' cC {u > 0}. Then, u > ¢ > 0 in E’. Therefore,
u¥i > ¢/2 in E' for e; small. If we take €} < c/2-as A, (:C)u‘g;' = f% in {u% > g}~ we have that

J
Apgg(w)uaj = f% in E'. Therefore, by Theorem 2.3, |[u%||c1.0(5) < C.
Thus, for a subsequence, we have

Vui — Vu  uniformly in E.

Therefore, A, yu = f in E.
In order to prove (6), let us take Q' CC Q, and ¢ € C§°(Q2), ¢ > 0, with p = 1 in ' as a test
function in P, (f*,p;). Since [VuSi|| < C in €, there holds that

(3.1) Ce) 2 [ Byhpds > [ G de
Q 0%
Therefore, ﬂE; (u":;' ) is bounded in L] .(£2), so that, there exists a locally finite measure y such that

55', (UE;) — W as measures.
J
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That is, for every ¢ € Cy(92),

/ﬁsf.(u€9)<ﬁdaf—>/<pdu-
o 7 Q

We will divide the reminder of the proof into several steps.
Let Q' cC Q. We will show that for every v € C§°(€') there holds that

1 por ()2 ’
(3.2) / |Vusi |p51’( ) Vusi - Vode — [ |VuP® 2Ty - Voda.
Q/ QI

Let us denote, for n € RN, A% (z,1) = |n[’= "2y and A(z, n) = |n|P@) 2.
By Theorem 2.1, we have [Vu®/| < C in Q. Therefore for a subsequence ¢, we have that there
exists € € (L=(Q))" such that,

Vusi — Vu s« — weakly in (L>°(Q))N
(3.3) A% (2, VuSi) = € % —weakly in (L(Q))N
W > uniformly in €V

For simplicity we call €} = ¢, A% (z,n) = A%(n) and A(z,n) = A(n).
Step 1. Let us prove that for any v € C(€) N W1°°(€)) there holds that

(3.4) / (€~ A(Va)Vodz =0,

In fact, as A is monotone (i.e (A%(n) — A%(¢)) - (n — ¢) > 0 Vn, ¢ € RY) we have that, for any
w € Whee(QY),

(3.5) I = / (A°(Vu®) — A*(Vw))(Vu® — Vw)dz > 0.
Therefore, if ¢ € C§°(Y),
— [ Be(u)utdr— | A*(Vu')Vwdr — [ A (Vw)(Vu® — Vw)dx
Q Qf Qf

=— [ fe(u)udr— [ AS(Vu)VuSdx+1
Q’ Q'
=— | Be(uude — [ Be(u®)(w® —u)pdr — [ [e(u®)(u —u)(l—1)dx
(3.6) o v v
— | AS(Vu)Vudr + 1
Q/

— [ Be(u)udr+ [ A*(Vu®)V(u® —u)p de + / A% (Vu®)(u® —uw)Vy de
Q Q Q

A\

| B =) = ) dz — / A (V) de + |5 = u) da,
Q 9 Q'

where in the last inequality we are using (3.5) and equation P.(f¢,p.).
Now, take ¢ = 1; — xq a.e., with 0 <1p; < 1. If ' is smooth we can choose the functions so
that [ |V;|dz < CPer Q. Therefore,

‘ /, A% (Vu®) (u® — u) Vi, d:l:‘ < Cllu® = ul| oo (o /Q/ (Vipi| dz < Cllu® — ul| oo (-
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Also

[ 57 s de| < Ol ull e
and

| B~ ) da| < Cllu? — ull o).

So that, with this choice of ¢ = 1 in (3.6), we obtain

— [ B(u)utdr — | A*(Vu')Vwdr — [ A% (Vw)(Vu® — Vw)dz
Qf 194 Qf

>— | Be(wudr+ | AY(Vu)V(u® —u)dr — Cllu — ul| ooy — / A (Vu®)Vus de
Q/ Q/

Q/

=— | B:(u)udx— / A5 (Vu)Vudr — Cllu® — ul| gy
Q/

/

>— | B(u)utdr — | A*(Vu)Vudr — Cllu — ul| Lo (.
o o

Therefore, canceling [, 0:(u®)u® dz first, and then, letting ¢ — 0 we get by using (3.3) and (3)
that

— [ Vwdx — / A(Vw)(Vu — Vw)dz > — | {Vudx
Q/ ! Q/
and then,

(3.7) / (€~ A(Vw))(Vu— Vu) de > 0.

Take now w = u — \v with v € C(2) N WH*(€’) and A > 0. Dividing by A and taking A — 07 in
(3.7), we obtain

/ (& — A(Vu))Vovdz > 0.
o

Replacing v by —v we obtain (3.4). Then, (3.2) holds which implies (7) and (4).
In order to prove (9) let us now assume that p(z) = po, with py a constant. Then we now have

A(z,m) = A(n) = |n[Pro~?n.
Step 2. Let us prove that

(3.9) / AV — [ AT

By passing to the limit in the equation
(3.9) 0= o A% (Vu)Ve + /Q/ Be(u®) o + /Q/ ffodex,
we have, by Step 1, that for every ¢ € Co(€2') N WL (),
(3.10) 0= o A(Vu)Vo + /Q/ pdu+ /Q/ fodx.
On the other hand, taking ¢ = u®¢ in (3.9) with ¢ € C§°(©)') we have that

O:/ Aa(VuE)Vugwdx—i—/ A (VuS)u Vi dx + ﬁe(u‘s)ugwdw—i—/ feuy de.
/ Q/ Q/ Q/
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Using that A°(Vu®)u*Vy — A(Vu)uVy a.e. in Q' with |A%(Vuf)uVy| < Cin ', we get

A (Vu)u'Vypde — [ A(Vu)uVi dx
Q Qf

Be(u)up dx — uhdp.
9% 9%
Then we obtain

= lim (/,AE(VuE)Vuaw dl’) +//A(Vu)uvw diL‘—l-/Q, uwd,u—l—/gl fup dx.

e—0

Now taking, ¢ = ut) in (3.10) we have

0= AVu)Vupde + | A(Vu)uVy dx + / u dy + / futp dx.
94 Q/ Q/ Q

Therefore,

lim [ A*(Vu)Vutypdr = [ A(Vu)Vuy) de.
e—0 Jq Q!

Then,

/ (A5 (V) Vil — A(V) Vi) dae

< /,(AE(VUE)VUE — A(Vu)Vu)p dz| +

/ (A5 (Vu)Vul) (1 = ) da

+ A(Vu)Vu(l — ) dx

Q/

< /(AE(VuE)VuE—A(Vu)Vu)wdx +c/ 1 — | da
! Q/

so that taking e — 0 and then ¢ — 1 a.e. with 0 <1 <1 we obtain (3.8). This is,
(3.11) |V [P= @) dg — / |VuPodzx.
% %
Step 3. Let us prove that
(3.12) V[P dz — / IVl da.
% o

We first observe that

(3.13) ‘/ | Vs |P=(@) d:c—/ Vs |Po dx‘ g/ 1Vus P — |Vus|Po| dz — 0.
Q Q Q

13

Here we have used that ||Vuf[P=@) — |Vus[Po| — 0 ae. in @ with ||Vuf[P-@) — |Vus[Po| < C in .

Thus, (3.12) follows from (3.11) and (3.13).
Step 4. End of the proof of (9).

; € : 1,po
Since u® — u weakly in W, -

() and [|w®| 100y = [ullwreo ), for every Q' CC Q, it follows

that u¢ — w in W,2"°(Q). In particular, Vu® — Vu in L (). This completes the proof of the

loc
lemma.

g
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Lemma 3.2. Let v be a continuous nonnegative function in a domain Q C RN, v € WLP(')(Q),
such that Apyv = g in {v > 0} with g € L*>(Q). Then Ay := Ap)v — gX{u>0} 5 a nonnegative
Radon measure with support on QN o{v > 0}.

Proof. The proof follows as in the case p(x) = 2, that was done in [18], Lemma 2.1. g

Corollary 3.1. Let u® be a family of solutions to P (f*,pe;) in a domain § C RN with 1 <
Pmin < Pe; (T) < Pmax < 00 and pe,(x) Lipschitz continuous with ||Vpe,||L~ < L, for some L > 0.
Assume that u® — u uniformly on compact subsets of Q, f& — f x—weakly in L>=(2), p;, — p
uniformly on compact subsets of 1 and €; — 0. Then,

Ap(x)u — fX{u>0} — )\u m Q,
with Ay, a nonnegative Radon measure supported on the free boundary T' = QN d{u > 0}.

Proof. 1t is an immediate consequence of Lemma 3.1 and Lemma 3.2. U

Lemma 3.3. Let u be a family of solutions to P.;(f*,pe;) in a domain Q C RY with 1 < pmin <
Pe; () < Pmax < 00 and pe,; (x) Lipschitz continuous with ||Vpe,||p~ < L, for some L > 0. Assume
that u® — w uniformly on compact subsets of Q, f — f x—weakly in L>(S2), p., — p uniformly
on compact subsets of () and £; — 0.

Let xp € Q and z,, € Q be such that u(zg) =0, u(z,) =0 and x, — x¢ as n — oco. Let A, — 0,
uy, (z) = ﬁu(wn + Apx) and (u®)y, () = %usﬂ'(xn + Apx). Assume that uy, — U as n — o0
uniformly on compact sets of RN. Then, there exists j(n) — 400 such that for every j, > j(n)
there holds that E)f—;‘ — 0 and

1) (ufin)y, — U uniformly on compact sets of RY,
2) V(ufin)y, — VU in L° (RN) with py = p(z0).

Proof. The result follows from Lemma 3.1 exactly as Lemma 3.2 in [5]. O

4. Basic LiMITs

In this section we analyze some limits that are crucial in the understanding of general limits.

We start with the following lemma

Lemma 4.1. Let u®, f, p.,, €;, u, f and p be as in Lemma 3.3.
Then there exists x € Li, () such that, for a subsequence, Be,(u¥) — x in Liy (Q), with x = M

in {u > 0} and x(z) € {0, M} a.e. in Q. If, in addition, f& — 0 in {u = 0}°, there holds that
X = M or x =0 on every connected component of {u = 0}°.

Proof. We first observe that, for every K CC €2, there holds

(4.1) /K VB, (u7)] = /K B., (u)| V| < Ce /K 8., (u),

where the last term is bounded by a constant C'- due to estimate (3.1).

Since 0 < B, (u) < M, then, there exists x € L] .(Q) such that, for a subsequence, B, (u%) —
x in L _(Q).

Proceeding as in the case p(z) = 2 (see [18], Lemma 3.1) we deduce that x = M in {u > 0} and
x(z) € {0, M} a.e. in Q.
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Finally, if f% — 0 in {u = 0}°, we take K CC {u = 0}° in (4.1) and we observe that the last
term there goes to zero since, by (6) and (7) in Lemma 3.1, 3, (u®) — p locally as measures, with
u=01in K. Thus the result follows. U

Proposition 4.1. Let u® be solutions to P.,(f*,pe;) in a domain Q C RY with 1 < puin <
Pe; (7) < pmax < 00 and pe,(x) Lipschitz continuous with ||Vpe,||L~ — 0. Let xo € Q and suppose
ufi converge to ug = a(x —mo);r uniformly on compact subsets of Q, with « € R, f& — 0 x—weakly
in L>(2), pe; — po uniformly on compact subsets of ), with py € R, and €; — 0. Then

i N Po 1/po
a=0 or a_<p0—1M) ,
with [ B(s)ds = M.

Proof. Assume, for simplicity, that g = 0. Since u% > 0, we have that @ > 0. If o = 0 there is
nothing to prove. So let us assume that o > 0.

Let ¢ € C5°(€2). We claim that there holds that

‘V’U/Ej‘psj Py ps-_2 Y €5 ci Ej
— | ————— gy, dx+ [ VU7V - Vug, de+ | fYug i de =
(4 2) Q p&‘j Q Q
: |vuaj |Ps]-
Pz,
In fact, let Q' cC Q be smooth and let v,, be such that

(Vs P y .
- IOg |Vu ! |(p6j)$1¢ dzx — (pEj)Iﬁb dx + BEj (u ])1/}961 da.
Q  Pe Q

pe(x

{diw; Vo) E V) = Bo(u) + = gf i Y

— € /
Up = U on 0,

(4.3)

were for simplicity we have denoted €; = €. By the results in [12] and [8], v,, € C1@ @)n Wli’f(Q’ )s
with HU”HCM(Q’) < C, with C independent of n, and therefore, there exists vg such that, for a

subsequence,
v, — vg uniformly in
Vv, — Vvg uniformly in Q.

We get Ap_(zyv0 = Ap_(oyu° = ¢° in @, with vg = u® in 9Q' and therefore, vy = u°.
In order to get (4.2) we take as test function in the weak formulation of (4.3) the function vy, ,
with ¢ € C§° (). It follows that

pe—2
(4.4) @

pe—2

1
/ (* + ]anfz) : V’Un . VdJ Unocl dx + / gevnxlw dzx.
Q\n @

On the other hand,
Pe
2

/ Cha\LA VR dm:/ G+ Vo) 1
Q De o Q Pe 2

/ (L + Vo, )%
Q

p?

1
tog (= +[Voul?) ()., v da

pe—2

1
ol det [ (54 1T0P) T T Vo, v
o \n

(4.5)
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Then, recalling that ¢ = B:(u®) + f¢, we obtain from (4.4) and (4.5)
1 2\ & pe—2
o + v n 2 1
_ / w g, dx + / (— + |an|2) * Yo, - V) vy, dx +/ feong, Yde =
Q Pe Q \n Q
Pe
2

/ (% + ‘an‘Q)
Q

Pe

(L4 |V, 25

1 N
log (— + |Vuy| ) Py, dx — 5
n Q 2=

paxlwdﬂf—/ﬂﬂg(ug)vmlwdm.

Passing to the limit as n — oo and integrating by parts in the last term, we get (4.2).
Now, by Lemma 4.1, we have that there exists x € L{ (Q) such that, for a subsequence,

loc

Be,(u%) — x in L (). This, together with the strong convergence result in Lemma 3.1 and

the fact that ||Vpe, | L= — 0 gives, when passing to the limit in (4.2),

‘VU0|pO p0_2
(4‘6) - ¢a:1 dx + \Vuof vUO : VQ;Z) (UO)m dr = Xw:m de.
Q Po Q Q

Now let Bs(0) C Q. Using that, by Lemma 4.1, x = M in By(0) N {z; > 0} and x = M in
Bs(0) N {z1 < 0}, for a constant M, with M = 0 or M = M, and the fact that Vug = ax s, >0y€1,
we obtain for ¢ € C°(Bs(0))

PO _
—/ — )y, dx + / aPO1),, de =M Ve, + M Yy, -

{1‘1>0} Pbo {LE1>0} {:E1>0} {1‘1<0}
Then, integrating by parts, we get

o _
(—+ap0)/ it = M dr' — M W da’.
Po {z1=0} {z1=0} {z1=0}

Thus, (—% +aP?) = M — M. Since we have assumed that o > 0, it follows that M = 0 and

1/
therefore, a = ( 2o M) po.
Po

O

5. ASYMPTOTIC BEHAVIOR OF LIMIT FUNCTIONS

In this section we analyze the behavior of limit functions near the free boundary.
For the next result we will need the following definition

Definition 5.1. Let u be a continuous nonnegative function in a domain Q C RN. Let zg €
QNof{u > 0}. We say that x¢ is a regular point from the positive side if there is a ball B C {u > 0}
with zg € 0B.

Theorem 5.1. Let u®, %, p.,, €;, u, f and p be as in Lemma 3.3.
Let zg € QN O{u > 0}. Assume one of the following conditions holds:

(D) There existy >0 and 0 < ¢ < 1 such that, for every x € By(xq)NO{u > 0} which is reqular
from the positive side and r < 7y, there holds that |[{u = 0} N B,.(z)| > ¢|B,(z)|.

(L) There exist v >0, § > 0 and sg > 0 such that for every point y € By (x) N O{u > 0} which
is reqular from the positive side, and for every ball B,(z) C {u > 0} with y € dB,(z) and
r < v, there exists a unit vector &y, with (éy,z —y) > 0||z — y||, such that u(y — sé,) =0
for 0 < s < sg.
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Then,
limsup [Vu(x)| =0 or limsup [Vu(x)| = \*(zo),

T—x() T—x()

u(z)>0 u(z)>0

)1/17(90

where \*(z) = ( p@) _ pp : and [ B(s)ds = M.

p(x)—1
Remark 5.1. In [20] we prove that if u®, f/, p., €;, u, f and p are as in Theorem 5.1, with u®
local minimizers of an energy functional then, u satisfies condition (D) in Theorem 5.1 at every
point in QN d{u > 0}.

Proof of Theorem 5.1. Let
a = limsup |Vu(z)|.

()50
Since u € Lipioc(2), a < co. If, @ = 0 there is nothing to prove. So, suppose that o > 0. By the
definition of « there exists a sequence zp — g such that

u(zx) > 0, |Vu(zg)| — a.

Let yx be the nearest point from zx to @ N O{u > 0} and let dy, = |z — yk|-

Consider the blow up sequence ug, with respect to By, (y). This is, ug, (z) = iu(yk + dpx).
Since u is locally Lipschitz, and ug4, (0) = 0 for every k, there exists ug € Lip(RY), such that (for a
subsequence) ug4, — uo uniformly on compact sets of RN,

Since Apyu = f in {u > 0}, by interior Holder gradient estimates (see, for instance, [12]), we
have that Ap up = 0 in {ug > 0} with py = p(zo).

Now, set zx, = (zx — yx)/dx, € OB1. We may assume that z;, — z € 9B;. Take

Vug, (Zk) Vu(zg)

Vi ‘= =

[ Vug (GR)l - [Vula)]

For a subsequence, and after a rotation, we can assume that vy — e;. Observe that By /3(2) C
By (Z) for k large, and therefore Ap ug = 0 there. By interior Holder gradient estimates, we have
Vug, — Vug uniformly in By /3(z), and therefore Vu(zy,) — Vug(2). Thus, Vug(z) = ae; and, in
particular, 0, up(2) = a.

Next, we claim that |Vug| < o in RV, In fact, let R > 1 and § > 0. Then, there exists 7o > 0
such that |Vu(z)| < a+ 0 for any @ € By r(xo). For |z — zo| < 10R/2 and dj, < 79/2 we have
B, r(z1) C Bryr(zo) and therefore, |Vug, (z)] < o+ § in Bg for k large. Passing to the limit, we
obtain |Vug| < o+ 0 in Bpg, and since § and R were arbitrary, the claim holds.

Since Vug is Holder continuous in Bj/3(2), there holds that Vug # 0 in a neighborhood of Z.
Thus, ug € W22 in a ball B,(2) for some r > 0 (see, for instance, [25] or [8]) and, since

/ |Vug|P°~2Vug - Viodz =0 for every p € C3°(B,(2)),

taking ¢ € C§°(B,(z)) and ¢ = 1., , and integrating by parts we see that, for w = ‘3—;2 and suitable
coefficients a;;(Vuo),
N

Z / aij (Vo () ) e,z dz = 0.

i,j=1 BT(Z)
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This is, w is a solution to a uniformly elliptic equation

N
Tw := Z (fm(alj (Vuo(x))wxj) =0.
ij=1 """

Now, since w < a in B,(2), w(zZ) = @ and Tw = 0 in B,(Z), by the strong maximum principle
we conclude that w = « in B,(Z).

Now, since we can repeat this argument around any point where w = «, by a continuation
argument, we have that w = a in B1(Z2).

Therefore, Vug = aej in Bi(2) and we have, for some y € RN, ug(z) = a(z1 — y1) in Bi(2).
Since up(0) = 0, there holds that y; = 0 and up(z) = oz in By(Z). Finally, since A,yug = 0 in
{up > 0} by a continuation argument we have that ug(z) = azy in {z; > 0}.

On the other hand, as ug > 0, Apyug = 0 in {ugp > 0} and up = 0 in {z; = 0} we have, by
Lemma A.1, that

uo(x) = —axy +o(|z])  in {z1 < 0}
for some a > 0.

Now, define for A > 0, (ug)x(z) = suo(Az). There exist a sequence A, — 0 and ugy € Lip(RY)
such that (ug)y, — woo uniformly on compact sets of RY. We have ug (z) = oza:]tr +axy .

We will show that a = 0.

In fact, first assume condition (D) holds. We observe that, for any R, there holds for large k,
that

{u =0} 0 By, r(yk)| = c|Ba,r(yr)],
implying that
{ua, = 0} N Br(0)| = ¢[Br(0)],
and therefore
[{uo = 0} N Br(0)| = ¢[Br(0)],  and  [{ugo =0} N B1(0)| = ¢[B1(0)].
This shows that a = 0.
Now assume condition (L) holds. Then, for every k there exists a unit vector é such that
(& “k — Yk
) dk

) >0 and u(y, —sdiép) =0 for 0<s<sp.

So that
ug, (—sér) =0 for 0 < s < sp.

For a subsequence we have ¢, — ¢, and — z, with (€, z) > 0, implying that ug(—sé) =0
for 0 < s < sp and thus, ugy(—€) = 0.

We now observe that, since we have seen that Bi(z) C {uo(z) = az1} = {z1 > 0} and 0 €
0B (%), it follows that Z = e;. Therefore 0 = ugo(—€) = a(é, e1) > ab.

So that & = 0 under condition (L) as well.

Now, by Lemma 3.3 we see that there exists a sequence d,, — 0 and solutions u to Pj, (f°,ps, )
such that u® — wug uniformly on compact sets of RV, with fo — 0 x—weakly in L on compact
sets of RV, ps — p(xg) uniformly on compact sets of RY and ||Vps, ||r~ — 0 on compact sets of
RV,

Applying a second time Lemma 3.3 we find a sequence 8,, — 0 and solutions u’" to PSn( fon, psn)

2k —Yk
d

such that udr — ugo uniformly on compact sets of R, with fS" — 0 x—weakly in L* on compact
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sets of RV, p5, — p(xg) uniformly on compact sets of RV and ||Vp5n ||Lee — 0 on compact sets of
RY. Now we can apply Proposition 4.1 and we conclude that o = A\*(z). O

Definition 5.2. Let v be a continuous nonnegative function in a domain @ C RY. We say that
v is nondegenerate at a point xg € QN {v = 0} if there exist ¢ > 0, r9 > 0 such that one of the
following conditions holds:

(5.1) ][ vdr > cr  for 0 <r <rp,
By (o)
(5.2) ][ vdx >cr  for 0 <r <rg,
OBr(x0)
(5.3) sup v>cr for 0 <r <ryg.
By (x0)

We say that v is uniformly nondegenerate on a set I' C Q N {v = 0} in the sense of (5.1) (resp.
(5.2), (5.3)) if the constants ¢ and 7o in (5.1) (resp. (5.2), (5.3)) can be taken independent of the
point zg € I'.

Remark 5.2. Assume v > 0 is locally Lipschitz continuous in a domain Q@ ¢ RY, v € W»()(Q)
with Ay v > fX{u>0y, Where f € L>®(Q), 1 < pmin < p(z) < pmax < o0 and p(x) is Lipschitz
continuous. Then the three concepts of nondegeneracy in Definition 5.2 are equivalent (for the idea
of the proof, see Remark 3.1 in [16], where the case p(z) =2 and f = 0 is treated).

Remark 5.3. In [20] we prove that if v/, f%, pc, €j, u, f and p are as in Lemma 3.3, with u®
local minimizers of an energy functional then, w is locally uniformly nondegenerate on QNd{u > 0}.

Theorem 5.2. Let u®, %, p,, €;, u, f and p be as in Lemma 3.3.
Let zg € QN d{u > 0} and suppose that u is uniformly nondegenerate on QN d{u > 0} in a
neighborhood of xy. Assume there is a ball B contained in {u = 0} touching xq, then

: u(z) N
.4 1 —_— =
G NP G, B) 70
u(x)>0
1/p(x
where \*(x) = (pg;()xll M) 7 and [ B(s)ds = M.

Proof. Let £ be the finite limit on the left hand side of (5.4) and let yi, — o with u(yx) > 0 be
such that

u(yr)

dp. ’

Consider the blow up sequence uy, with respect to By, (z), where z3, € 0B are points with |z, —yy| =

dy, = dist(yg, B).

dp, this is, ug(z) = u(zkditd’“x). Choose a subsequence with blow up limit ug, such that there exists

k—o0 dk

As in Theorem 5.1, we see that Ap ug = 0 in {ug > 0} with py = p(zo).
By construction, ug(e) = £ = (e, e), up(x) < {x,e) for (x,e) > 0, up(x) = 0 for (x,e) <O0.
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Let us see that £ > 0. In fact, if £ = 0, then ug = 0. Since u(yg) > 0 and u(z) = 0, there exists
2 € 0{u > 0} in the segment between y; and xi. By the nondegeneracy assumption,

sup u>cr forO<r<ryg c>0
BT(zk)
and, in particular,
sup u > cdp for k> k.
B, (zk)

Ak —Tk

Then, there exists ax such that |ap — zx| < dj, and u(ay) > cdy. Then, letting T, = , we get
that ug(zx) > ¢, with |z| < 2. It follows that there exists Z with |Z| < 2 such that ug(z) > ¢ > 0,
which is a contradiction.

We now observe that Vug(e) = Le, and thus, |Vug(e)| = ¢ > 0. Using that Vug is continuous
in {up > 0} we deduce, from the fact that A,jug = 0 in {ug > 0}, that uy € T/Vlif in {ug >
0} N {|Vug| > 0}. Then, ug is a solution of Lv = 0 in {ug > 0} N {|Vug| > 0} where

N
Lv:= Z bij(Vuo)ve,z;
i,j=1

is the uniformly elliptic operator given by
(po —2)

|22

Since w(x) = ¢{x,e) also satisfies Lw = 0 we have, from the strong maximum principle, that ug
and w must coincide in a neighborhood of the point e.

By continuation we have that ug(z) = ¢(x,e)™. Thus, applying Lemma 3.3 as we did in Theorem
5.1 and using Proposition 4.1, we get that £ = A*(x). O

bij(z) = 5z‘j + 2iZj.

Definition 5.3. We say that v is the inward unit normal to the free boundary 9{u > 0} at a point
xo € 0{u > 0} in the measure theoretic sense, if v € RV, |v| = 1 and

(55) lim — / ‘X{u>0} - X{z/ (:1:7:1:0,1/)>0}| dz = 0.
By (zo)

Theorem 5.3. Let u®, %, p.., €;, u, f and p be as in Lemma 3.3.

Let xg € QN o{u > 0} be such that 0{u > 0} has at xy an inward unit normal v in the
measure theoretic sense and suppose that u is mondegenerate at xg. Assume, in addition, that
either condition (D) or condition (L) in Theorem 5.1 holds at zo. Then,

u(x) = A (zo)(x — mo, )" + 0|z — z0)),

)1/p($

where \*(z) = ( p@) _pr ) and [ B(s)ds = M.

p(z)—1
Proof. Assume that o = 0, and v = e;. Take uy(z) = %u()\x) Let p > 0 such that B, CC .
Since uy € Lip(B,/,) uniformly in A, uy(0) = 0, there exist A; — 0 and U € Lip(R") such that
uy, — U uniformly on compact sets of RV. From Lemma 3.1, Ajyuy = Af(Az) in {uy > 0}.
Using the fact that e; is the inward normal in the measure theoretic sense, we have, for fixed k,

Huyx >0} N{z1 <0}NBx —0 as—0.
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Hence, U = 0 in {z; < 0}. Moreover, U is nonnegative in {z; > 0}, A, U = 0 in {U > 0} with
po = p(xg) and U vanishes in {z7 < 0}. Then, by Lemma A.1 we have that there exists o > 0 such
that

U(x) = az{ +o(|z]).

By Lemma 3.3 we see that there exist a sequence &, — 0 and solutions u’» to P, (f",ps, ) such
that u’» — U uniformly on compact sets of RV, with fo — 0 s—weakly in L on compact sets of
RV, ps. — p(x0) uniformly on compact sets of R and ||Vps, ||z — 0 on compact sets of RY.

Define Uy (z) = %U()\m), then Uy — ax] uniformly on compact sets of RY. Applying a second

time Lemma 3.3 we find a sequence 6n — 0 and solutions udn to PSn( fS”, pgn) such that v’ — axf

uniformly on compact sets of R, with fgn — 0 x—weakly in L> on compact sets of RV, p;, — p(z0)

uniformly on compact sets of R and IVp;s [|Lee — 0 on compact sets of RV,
By the nondegeneracy assumption on u, we have

! dx >
TW U)\j T = Cr

and then
1

T’N/ U,\j dxz > cr.

Therefore o > 0. Now, by Proposition 4.1, a = \*(x).
We have shown that

Ulx) = X (zo)z1 + o(|z]) x1 >0
N 0 I S 0.

Then, using that A,z)ux = Af(Az) in {uy > 0}, by interior Holder gradient estimates we have
Vuy; — VU uniformly on compact subsets of {U > 0}. Then, by Theorem 5.1, [VU| < A*(x) in
RN. As U =0 on {z; = 0} we have, U < \*(z¢)z; in {21 > 0}.

We claim that either U = \*(z¢)z1 in {1 > 0} or else U < A*(xg)z1 in {z1 > 0}.

In fact, if there exists T with Z; > 0 such that the equality holds at Z, then we proceed exactly as
we did in the proof of Theorem 5.2 and deduce, from the strong maximum principle, that equality
holds in a neighborhood of z. Then, by continuation, we get U = \*(zg)z1 in {z; > 0}.

So let us now assume that U < A*(xg)z; in {x; > 0}. Let § > 0 be such that U(de;) > 0. Let
w be such that

Ap,w =0 in By
w=0 on {z; =0}
w=U on 0Bs N{x; > 0}.

Since A, U > 0 (this follows, for instance, from the application of Lemma 3.2 with ¢ = 0 and
p(x) = po), we have that w > U in Bj. Therefore w > A\*(z)z1 + o(|z|) in B .

We also have w < A*(xp)x; in Bgr. Moreover, w < A*(zp)x; in B;, because this holds on
0Bs N {z1 > 0}, and with the same argument employed above we can see that, if equality holds at
a point in B;r, then it must hold everywhere on B;r.

On the other hand, we know that w € C%®(BZ) for any o < §, and since w > A\*(zq)z1 + o(|z)
in B, then |[Vw(0)| > 0, implying that [Vw| > 0 in BY for some vy > 0.

Since, in Bﬂy’ , both w and A*(xg)x; are solutions to Lv = 0, with L a linear uniformly elliptic
operator in nondivergence form, with w < A*(xg)z1 in B;L , from the Hopf’s boundary principle we
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get that w < (X\*(20) — p)z1 + o(|z|) for some p > 0 in BF. This is in contradiction with the fact
that w > A\*(z)z1 + o(|z]) in By.
This shows that U = \*(zg)z1 in {x; > 0}. The proof is complete. O

6. WEAK SOLUTIONS TO THE FREE BOUNDARY PROBLEM P(f,p, \*)

In this section we give a notion of weak solution to the free boundary problem P(f,p, \*) and we

show that, under suitable assumptions, limit functions to problems P.(f¢, p.) are weak solutions, in

1/p(z)
this sense, to the free boundary problem with \*(z) = (pg;()xll m)” ,p=limp. and f = lim f€.

As a consequence, we are able to apply to limit functions the result on the regularity of the free
boundary we prove in [19] (see Theorem 6.2 below).

Definition 6.1. Let Q C RY be a domain. Let p be a measurable function in Q with 1 < pmin <
p(2) < Pmax < 00, A* continuous in Q with 0 < Apin < A (2) < Apax < 00 and f € L®(Q). We
call u a weak solution of P(f,p, \*) in  if
(1) u is continuous and nonnegative in 2, v € WH()(Q) and Apyu = fin QN {u > 0}.
(2) For D CC Q there are constants 0 < ¢min < Cpax and 79 > 0 such that for balls B,(z) C D
with z € 9{u >0} and 0 <7 <y

1
Cmin < — sup u < Crax-
T B.(z)

(3) For HN=1 ae. z9 € Oreq{u > 0} (this is, for HY~1-almost every point zo such that
O{u > 0} has an exterior unit normal v(zy) in the measure theoretic sense) u has the
asymptotic development

(6.1) u(z) = X (xo){x — xo,v(x0))” + 0|z — x0]).
(4) For every zp € QN o{u > 0},
lim sup [Vu(z)| < X*(zo).

u?;)g;oo
If there is a ball B C {u = 0} touching QN d{u > 0} at z, then
lim sup _ulm) > A (xo).

z—x( dlSt(l’, B)
u(x)>0

From the definition of weak solution above, and the results in the previous sections we obtain:
Theorem 6.1. Let u®, [, p.., €;, u, f and p be as in Lemma 3.3.
Assume that u is locally uniformly nondegenerate on Q N d{u > 0} and that at every point

xo € QN O{u > 0} either condition (D) or condition (L) in Theorem 5.1 holds. Then, u is a weak
solution to the free boundary problem: u > 0 and

(P(f:p, 7)) {u =0, |Vu| =X (x) ond{u>0}
with X*(z) = (pg’x()”fjl M)l/ " nd M = [ B(s) ds.

Proof. The result follows from Theorem 2.1, Lemma 3.1, Remark 5.2 and Theorems 5.1, 5.2 and
5.3. O
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Remark 6.1. In [20] we prove that if u, f%, p.., €;, u, f and p are as in Lemma 3.3, with u®
local minimizers of an energy functional, u is under the assumptions of Theorem 6.1.

In [19] we prove the following result for weak solutions that applies, in particular, to limit
functions u as those in Theorem 6.1, at every point in £ N Oyeq{u > 0}.

Theorem 6.2. Let p € Lip(Q) and \* Hdélder continuous in 2. Let u be a weak solution of
P(f,p,\*) in Q. Let xg € QN Orea{u > 0} be such that u has the asymptotic development (6.1).
There exists rg > 0 such that By,(xo) N d{u > 0} is a CY* surface for some 0 < o < 1. It
follows that, in By,(z0), u is C' up to d{u > 0} and the free boundary condition is satisfied in the
classical sense. In addition, there is a neighborhood U of xo such that Vu # 0 in U N {u > 0},
u € VV%’?(UH{U > 0}) and the equation is satisfied in a pointwise sense in UN{w > 0}. If moreover
Vp and f are Hélder continuous in €, then u € C*(U N {u > 0}) and the equation is satisfied in
the classical sense in U N {u > 0}.

APPENDIX A

In this appendix we collect some result on Lebesgue and Sobolev spaces with variable exponent
as well as some other results that are used in the paper.

Let p: Q — [1,00) be a measurable bounded function, called a variable exponent on €2 and denote
Pmax = esssup p(x) and pin = essinf p(z). We define the variable exponent Lebesgue space LP() ()
to consist of all measurable functions u : © — R for which the modular g,.(u) = [, Ju(x)[P®) da
is finite. We define the Luxemburg norm on this space by

HuHLp(‘)(Q) = |lullpy = inf{\>0: op((u/A) < 1}.

This norm makes LP()(Q) a Banach space.
One central property of these spaces (since p is bounded) is that g,.)(u;) — 0 if and only if
|i][p.y — O, so that the norm and modular topologies coincide. In fact, we have

Proposition A.1. There holds

win { ([ jup@ )" ([ ) dz) " < oo
Smax{(/Q‘Mp(x) da:)l/pmin, (/Q|u’p(x) dx)l/pmax}‘

Let W1P()(Q) denote the space of measurable functions u such that u and the distributional
derivative Vu are in LP0)(Q). The norm

ullip0) = lullpey + 1Vulllpe
makes W1P() a Banach space.

The space Wol’p(')(Q) is defined as the closure of the C$°(2) in WP (Q).
In some occasions, it is necessary to assume extra hypotheses on the regularity of p(z). We say
that p is log-Hdélder continuous if there exists a constant C' such that

p(@) — ()] < o
| log |z — |
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if |z —y| < 1/2.
If one assumes that p is log-Holder continuous then, there holds that C°°(Q) is dense in W10) ().
Some important results for these spaces are

Theorem A.1l. Let p/(x) such that

plx) ~ plz)
Then LP'()(Q) is the dual of LPO)(Q). Moreover, if pmin > 1, LPO(Q) and WP (Q) are reflexive.
Theorem A.2. Let ¢(z) < p(z), then LPO)(Q) — LIO(Q) continuously.
We also have the following Holder’s inequality
Theorem A.3. Let p'(x) be as in Theorem A.1. Then there holds

/Q Fllgl dz < 20 oo 9l -

for all f € LPO(Q) and g € LP'O)(Q).
The following version of Poincare’s inequality holds

Theorem A.4. Let Q be bounded. Assume that p(zx) is log-Hélder continuous in Q. For every
u € Wol’p(')(Q), the inequality
[ull ooy ) < CHVUHLP(')(Q)’

holds with a constant C depending on N, diam(Q2) and the log-Hélder modulus of continuity of p(x).

For the proof of these results and more about these spaces, see [11, 14] and the references therein.

Remark A.1l. For any z € Q, &, € RY fixed we have the following inequalities
[ — €P < C(nP 2y — P26 (5 — €) if p(z) > 2,

(z)—
=P (Inl +16))"" " < OO ~2n — P 26)(n — €) if p(r) < 2.

These inequalities imply that the function A(x,&) = |€[P®)=2¢ is strictly monotone. Then, the
comparison principle for the p(z)-Laplacian holds since it follows from the monotonicity of A(z,§).

We will also need

Lemma A.1. Let 1 < py < +oo. Let u be Lipschitz continuous in Ff, u >0 in Bfr, Apou =0 in
{u >0} and w=0 on {xy = 0}. Then, in Bf u has the asymptotic development

u(x) = axy + o(|x]),
with o > 0.

Proof. See [5] for pg =2, [10] for 1 < py < +o00 and [21] for a more general operator. O
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