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Abstract. We give a description of the tropical Severi variety of univariate
polynomials of degree n having two double roots. We show that as a set, it

is given as the union of three explicit types of cones of maximal dimension

n − 1, where only cones of two of these types are cones of the secondary fan
of {0, . . . , n}. Through Kapranov’s theorem, this goal is achieved by a careful

study of the possible valuations of the elementary symmetric functions of the

roots of a polynomial with two double roots. Despite its apparent simplicity,
the computation of the tropical Severi variety has both combinatorial and

arithmetic ingredients.

1. Introduction

Moduli spaces of various objects are of primary interest in algebraic geometry.
Among them, Severi varieties are classical objects which give parameter spaces
for nodal hypersurfaces. Starting with [12], techniques from tropical geometry
have been interestingly applied to the study of classical enumerative problems.
Mikhalkin’s correspondence theorem allows to compute tropically the number of

planar curves of degree d and any number δ of nodes passing through (d+3)d
2 − δ

points in general position, that is, the degree of the Severi variety parametrizing
those curves or, more generally, the degree of the Severi varieties of nodal curves
with δ nodes defined by polynomials with support in (the lattice points of) a given
lattice polygon. For curves of degree d ≥ δ + 2, the degree of the Severi variety
coincides with the Gromov-Witten invariant Nd,(d−1

2 )−δ. We refer the reader to [2]

for an introduction to tropical geometry techniques for algebraic curve counting
problems.

Consider a (finite) lattice configuration A in any dimension (for instance, all
the lattice points in the d-th dilate of a unit simplex). Order the points in A and
denote by A the matrix having these points as columns. The secondary fan of
A (defined and studied in [9]) parametrizes the regular polyhedral subdivisions of
the configuration. In the case of a single node, the Severi variety corresponding to
polynomials with support in A is defined by the A-discriminant. It was proven in
[5] that the tropical A-discriminant coincides with the Minkowski sum of the row
span of A and the tropicalization of the kernel of A, and it is the union of some
cones in the secondary fan of A. Severi varieties of polynomials with support in A
and increasing number of nodes form a natural stratification of the A-discriminant.

As a consequence of the general position of the points, the tropical curves ap-
pearing in Mikhalkin’s correspondence theorem can be described by the associated
regular subdivision of the support. That is, the set of tropical curves with a spec-
ified combinatorial type counted in Mikhalkin’s formula correspond to polyhedral
cones in the associated secondary fan. However, these cones are a fraction of all
possible cones in the associated tropical Severi variety. E. Katz noted in [10] that
there are maximal cones that are not supported in cones of the secondary fan of
A. Thus, the combinatorial description of the curves is not enough in many cases
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to decide if a tropical curve given by a tropical polynomial is in the corresponding
Severi variety or not. This behavior was also observed by J. J. Yang, who gave
a partial description of the tropicalization of the Severi varieties in [17, 18]. We
explore this phenomenon and give a full characterization in the univariate setting
for the case of δ = 2 nodes. Besides the combinatorial constraints, we describe
arithmetic restrictions.

A recent interesting paper of Esterov [8] defines affine characteristic classes of
affine varieties, which govern equivariant enumerative problems. The computation
of the fundamental class of a hypersurface of the torus in the corresponding affine
cohomology ring, amounts to the computation of the Newton polytope of a defin-
ing equation. In general, for a subvariety of the torus of any codimension, the
computation of its fundamental class amounts to the computation of its tropical
fan. The codimension two strata of the A-discriminant are given by the closure
of the hypersurfaces with support in A with one triple root or those hypersurfaces
with two nodes, that is, the 2-Severi variety. Esterov gives affine Plücker formulas
relating these classes with the class of the A-discriminant.

Our setting is the following. We fix a natural number n ≥ 4. The Severi variety
Sev2

n is the Zariski closure of the set of univariate polynomials of degree n having
2 distinct double roots (over an algebraically closed field of characteristic zero).
Sev2

n is a rational variety (with a rational parametrization defined over Q) and
thus irreducible, of affine dimension n − 1. The tropical Severi variety T (Sev2

n) is
the tropicalization of Sev2

n. Despite its apparent simplicity, the computation of the
tropicalization T (Sev2

n) has both combinatorial and arithmetic ingredients.
We describe in Section 3 three types of cones with maximal dimension n− 1 =

n+ 1− 2, termed I, II and III. Cones of type I correspond to two double roots with
different valuations and arise from the transversal intersection of two maximal di-
mensional cones in the discriminant. Cones of types II and III correspond to roots
which are not tropically generic: both roots need to have the same valuation, and
the relative interior of these cones correspond to the tropicalization of polynomials
with two nodes whose initial coefficients satisfy explicit algebraic relations. More-
over, cones of type III intersect the interior of a maximal cone in the secondary
fan of our configuration {0, 1, . . . , n} of exponents. The existence of a second node
imposes a “hidden tie” with arithmetic constraints.
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Figure 1. Left: Type I, Center: Type II, Right: Type III

To explain Figure 1 featuring the three types of cones in T (Sev2
n), we need

to set some notations. Any vector w ∈ Rn+1 defines a marked subdivision Πw of
A = {0, . . . , n} as follows. Let Γ1, . . . ,Γs be the lower faces of the convex hull of the
set Γw = {(0, w0), . . . , (n,wn)}, known as the Newton diagram of w. Let σ1, . . . , σs
be the subsets of A obtained by projecting the points of Γw in each face Γ1, . . . ,Γs
onto the first coordinate. These subsets (or cells) determine a regular subdivision
Πw = {σ1, . . . , σs} of A. A point j is a marked point in the cell σi if (j, val(wj))
is a point in the relative interior of the face Γi. In that case, the cell σi is called
a marked cell. Figure 1 depicts for n = 5, the Newton diagrams corresponding
to weights w ∈ R6 in the interior of one sample cone of each type. Note that
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for points w in (the relative interior of) cones of type I, there are two different
marked segments (with one marking each) in Πw. For points w in (the relative
interior of) cones of type II, there is a single segment in Πw with two markings
(and the exceptional small configurations in Definition 3.5 should be excluded by
Proposition 4.6); these are also cones that arise from the intersection of two maximal
dimensional cones of the tropical discriminant. Regular subdivisions Πw associated
with points w in (the relative interior of) cones of type III, have a single marked
segment with a single marking, but there is also a tie between values that do not lie
in the Newton diagram, that is, which is not visible from the marked subdivision
(thus called a “hidden tie”). Moreover, we will see in Definition 3.8 that there
are arithmetic ingredients which control these values. These cones arise from two
nodes with the same valuation and with further algebraic relations on the initial
coefficients. They don’t have for the moment a purely tropical explanation. We
refer to Definitions 3.3, 3.6 and 3.8 for the precise conditions.

Our main result is the following:

Theorem 1.1. Let n ≥ 4. Then, T (Sev2
n) ⊂ Rn+1 equals as a set the union of all

cones of types I, II and III.

The proof of Theorem 1.1 follows from a series of results. On one side, Theo-
rem 4.8 shows that T (Sev2

n) is contained in the union of the cones of types I, II
and III. On the other side, Theorem 5.1 proves that cones of type I lie in T (Sev2

n),
Theorems 5.3 and 5.4 show that cones of type II lie in T (Sev2

n), and finally, The-
orem 5.5 gives the last inclusion of cones of type III in the tropicalization of the
Severi variety.

The article is structured as follows, In Section 2 we present some general results
concerning the tropicalization of homogeneous linear ideals over an infinite valuated
ring and we give a characterization using maximal minors of an associated matrix
in Theorem 2.6. In Section 3, some known results and notation are stated and a
detailed description of cones of type I, II and III is given. We prove in Section 4
that T (Sev2

n) is contained in the union of the cones of type I, II and III, while
Section 5 deals with the converse inclusion. Finally, we include three separated
appendices for the convenience to the reader. The first one contains a technical
result about linear spaces and circuits. The second one contains a set of results
about minors of the matrices that appear naturally when studying Sev2

n. The last
Appendix contains code that has been used to verify some claims along the text.

Note that our approach in Section 2 is very general (independent of n and δ) and
could be used to describe the case of any number δ of nodes. However, we restricted
our attention to the particular case δ = 2, which highlights the new phenomena
that occur in type III cones and that already requires many technical results. Our
approach is used in Example 2.7 to clarify the two dimensional case worked out
in [8].

2. Results on homogeneous linear ideals

In this section we present some basic results about the tropicalization of linear
homogeneous ideals over a valuated field. We refer the reader to the book [11] for
basic results on valuations and tropicalizations.

Along the paper, K will denote an algebraically closed field with a rank one
non-archimedean valuation

val : K∗ → R
such that both K and its residue field K are of characteristic zero. This is equiv-
alent to the fact that integers have valuation 0. The value group Γ is dense in R
and possibly multiplying val by a constant, we may assume that Γ contains the
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rationals. As K is algebraically closed, there exists a split of the valuation. That
is, a multiplicative subgroup {ta : a ∈ val(K∗)} ⊆ K∗ isomorphic to Γ.

If b ∈ K∗ with val(b) = v, we will usually write b = βtv + ∗ ∈ K, β ∈ K∗, to
distinguish the lowest term. The reader may assume for simplicity that K = C{{t}},
the field of Puiseux series with its usual valuation, and K = C.

Given a polynomial g =
∑
α∈Nn+1 gαx

α ∈ K[x0, . . . , xn] (or in the Laurent poly-

nomial ring K[x±1
0 , . . . , x±1

n ]), the tropicalization trop(g) of g is the piecewise linear
function on Rn+1 defined by:

trop(g)(w) = min{val(gα) + 〈w,α〉 : gα 6= 0},

and its zero set V (trop(g)) ⊂ Rn+1 is given by those w for which the minimum
in trop(g) is attained at least twice. The tropicalization T (I) of an ideal I in the
Laurent polynomial ring is defined as the intersection of the zero sets V (trop(g))
for any nonzero g ∈ I. The tropicalization T (X) of an algebraic subvariety X of
the torus is the tropicalization of its ideal. Given an affine or projective irreducible
variety, its tropicalization is defined as the tropicalization of its intersection with
the torus. In fact, for any ideal I, its tropicalization T (I) can be given as a finite
intersection, and any finite subset of polynomials in I which suffice to describe T (I)
is called a tropical basis of I ([3]).

Lemma 2.2 below tells us that any linear homogeneous ideal has a tropical basis
formed by circuits, as in the well known case of a trivial valuation. For the con-
venience of the reader, we include in the Appendix a Gröbner free proof, which is
adapted from Lemma 3.12 and Theorem 3.13 in [14].

We first recall the definition of circuits.

Definition 2.1. Let I be an homogeneous linear ideal in K[x0, . . . , xn]. A circuit
in I is a non-zero linear form ` ∈ I with minimal support. Let M be a matrix
in Kd×(n+1). A circuit in M is a non-zero element r ∈ rowspan(M) with minimal
support.

Note that there is a finite number of circuits in I (up to a multiplicative constant).
Clearly, if we interpret the rows of a matrix M as coefficients of linear forms in
variables x0, . . . , xn, the circuits of M coincide with the circuits of the ideal I(M)
generated by these d linear forms.

Lemma 2.2. Let I ⊂ K[x0, . . . , xn] be a homogeneous linear ideal. Then

T (I) =
⋂
`∈I

` circuit

V (trop(`)).

Remark 2.3. Lemma 2.2 holds under the weaker hypotheses that K is a valuated
field (not necessarily algebraically closed) with a rank one valuation such that the
residue field is infinite. In particular, Theorem 2.6 below holds in the positive
characteristic case and the p-adic case.

The hypothesis that the residue field is infinite cannot be avoided. Let F3 be
the field of three elements and consider K = F3(t) with the usual valuation. Let I
be the linear ideal generated by x1 − x4 + x6, x2 − x4 − x6, x3 + x4, x5 + x6. Then
(0, 0, 0, 0, 0, 0) ∈ trop(`), for every linear form ` ∈ I. However, there is no element
in V (I) with coefficients in F3(t) whose tropicalization is (0, 0, 0, 0, 0, 0). On the
other hand, in F3(t), we have that the point (2 + α, 1 + α, 2α, α, 2, 1) ∈ V (I), with
α2 + 1 = 0. Its tropicalization is the desired point (0, 0, 0, 0, 0, 0).

Now we want to characterize the circuits of a matrix M ∈ Kd×(n+1) in terms of
its minors.
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Notation 2.4. Let M be a matrix in Kd×(n+1). Let J = {i1, . . . , is} ⊆ {0, . . . , n}
with i1 < · · · < is. If we denote C0, . . . , Cn the ordered columns of the ma-
trix M , then MJ is defined as the matrix in Kd×s with columns Ci1 , . . . , Cis . If
s = d − 1, then rJ ∈ rowspan(M) is the vector in K(n+1) defined by rJ,k =

(−1)µ(k,J) det(MJ∪{k}), where µ(k, J) is the sign of the permutation of J ∪ {k}
which takes k followed by the ordered elements of J to the ordered elements of
J ∪ {k}, for all k ∈ {0, . . . , n}.

Without loss of generality, M can be assumed to be of maximal rank. The
following lemma is straightforward

Lemma 2.5. Let M ∈ Kd×(n+1) be a matrix of rank d and J ⊂ {0, . . . , n} such
that #J = d − 1 and rank(MJ) = d − 1. Then rJ ∈ K(n+1) is a circuit of M .
Moreover, up to multiplicative constant, these are all the circuits of M (possibly
repeated).

We can now describe precisely the tropicalization of the kernel of M .

Theorem 2.6. Let M ∈ Kd×(n+1) be a matrix of rank d and w ∈ Rn+1. Then
w ∈ T (ker(M)) if and only if, for every J ⊆ {0, . . . , n} with d − 1 elements such
that rank(MJ) = d− 1, the minimum of

(1)
{

val(det(MJ∪{k})) + wk | k ∈ {0, . . . , n}
}

is attained at least twice.

Proof. Given M , let I(M) be the homogeneous linear ideal generated by the linear
forms associated with the elements in rowspan(M). For every linear form `(x) =∑n
i=0 `ixi in I(M), w ∈ V (trop(`)) if and only if the initial form∑

val(`i)+wi

minimal

`ixi

is not a monomial, which is equivalent to min{val(`0) +w0, . . . , val(`n) +wn} being
attained at least twice.

Because of the Lemma 2.2, T (ker(M)) = T (I(M)) =
⋂
V (trop(`)) where the

intersection is over all circuits in I(M). Then, w ∈ T (ker(M)) if and only if for
every circuit r = (r0, . . . , rn) ∈ rowspan(M), there are at least two elements in the
set {i ∈ {0, . . . , n} : val(ri) + wi = min{val(r0) + w0, . . . , val(rn) + wn}}. The
result follows from Lemma 2.5 and the fact that val(−ri) = val(ri). �

As an example, we use Theorem 2.6 to present a new explanation of the cones
in the tropicalization of the set of bivariate polynomials with two nodes given in
Example 3.9 of [8].

Example 2.7. Consider the set A = {(0, 0), (1, 0), (1, 1), (0, 1), (−1, 0), (0,−1)} and
the variety Sev2

A, given as the (Zariski) closure of the set

{c ∈ (K∗)6 : f(x, y) = c1 + c2x+ c3xy+ c4y+ c5
1

x
+ c6

1

y
has two nodes in (K∗)2}.

Consider the subvariety S ⊂ Sev2
A given by the closure of those c = (c1, . . . , c6)

with a node at the fixed point (1, 1) plus another node that we call (b1, b2) ∈
(K∗)2 \ {(1, 1)}. Then, such a c satisfies c ∈ ker(M ′), where

M ′ =


1 1 1 1 1 1
0 1 1 0 −1 0
0 0 1 1 0 −1

b1b2 b21b2 b21b
2
2 b1b

2
2 b2 b1

0 b21 b21b2 0 −1 0
0 0 b1b

2
2 b22 0 −1

.
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As det(M ′) = b1b2(b1−1)2(b2−1)2(b1b2−1), M ′ has a non-trivial kernel if and only
if b1 = 1 or b2 = 1 or b2 = 1

b1
. In these cases, it can be checked that rank(M ′) = 5.

We will call M ∈ K5×6 the submatrix of M ′ of maximal rank obtained by
removing the 5-th row if (b1, b2) ∈ {(−1, 1), (−1,−1)}, the 6th row if (b1, b2) =
(1,−1), and the 4-th row for very other (b1, b2) where the determinant vanishes.
Applying Theorem 2.6 we have that w ∈ T (ker(M)) if and only if, for every
J ⊆ {1, . . . , 6} with 4 elements and rank(MJ) = 4, the minimum of

(2) {val(det(MJ∪{k})) + wk | k ∈ {1, . . . , 6} \ J}

is attained at least twice. Because of the size of this example, this can be trans-
lated into de fact that for both k1, k2 ∈ {1, . . . , 6} \ J , val(det(MJ∪{k1})) + wk1 =
val(det(MJ∪{k2})) + wk2 . Based on this theorem, we can easily discard b1 = 1 or
b2 = 1. For instance, if b2 = 1, taking J = {1, 2, 3, 4} we obtain that the minimum
in Equation (2) is only attained once at k = 6.

We now describe all the cones in T (Sev2
A) when b2 = 1

b1
. As before, the case

(b1, b2) = (−1,−1) can be discarded by taking the set J = {2, 3, 4, 5} for which we
obtain that the minimum in Equation (2) is only attained once at k = 1.

For every (b1, b2) ∈ (K∗)2−{(−1,−1), (1, 1)}, let Mi be the 5×5 matrix obtained
by removing the i-th column from M . Then, we can compute

det(M1) = −det(M3) =
(b1 − 1)2(b1 + 1)2

b21
, det(M4) = det(M5) = − (b1 − 1)2(b1 + 1)

b1

and det(M2) = −det(M6) = − (b1 − 1)2(b1 + 1)

b21
.

Since none of them vanishes at (b1, b2), every J ⊂ {1, 2, 3, 4, 5, 6} with 4 elements
satisfies that rank(MJ) = 4.

When val(b1) 6= 0, using Theorem 2.6 and considering the valuations of the
determinants of the matrices Mi, we obtain that w ∈ T (ker(M)) if and only if one
of the following sets of equations is verified

w1 = w2 = w3 = w6 < w4 = w5 if val(b1) > 0

w1 = w3 = w4 = w5 < w2 = w6 if val(b1) < 0.

These points induce the subdivision of the convex hull of A in Figure 2.

Figure 2. val(b1) 6= 0

When val(b1) = 0 and b1 = β+∗ where β 6= −1, we obtain points in 〈(1, 1, 1, 1, 1, 1)〉.
When val(b1) = 0 and b1 = −1 + ∗ (b1 6= −1), we obtain points w ∈ (K∗)6 that

induce the regular subdivision in Figure 3.

Figure 3. val(b1) = 0, β = −1
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This subdivision seems to be associated with the existence of one node, but the
existence of a second node imposes a “hidden tie” from the relations

w1 = w3 > w2 = w4 = w5 = w6.

Thus, we get the subdivision that Esterov represents with the dotted segment rep-
resenting the hidden tie depicted in Figure 4.

Figure 4. Hidden tie

Indeed, T (S) is a tropical linear space of dimension two. Now, we add the action
of the linear space rowspan(A), where A is the 2 × 6 matrix of exponents of our
configuration read in the second and third rows of M ′ to get T (Sev2

A) as the union
of the two cones giving the subdivisions and hidden tie presented in Example 3.9
of [8]. These cones are explicitly C�, with � equal to ≤ and to ≥:

C� = {w ∈ R6 : w1 − w3 = w5 − w4 = w6 − w2, 4w1 � w2 + w4 + w5 + w6}.

In fact, Sev2
A is in this case a toric variety, defined by the equations

c2c5 − c4c6 = 0, c1c4 − c3c5 = 0, c1c2 − c3c6 = 0.

3. Defining the cones

In this section, we describe the cones in T (Sev2
n).

3.1. Notation and basic facts. Let K be an algebraically closed field of charac-
teristic zero, n ∈ N≥4, and let U ⊂ Kn−1 be the open set defined by

U = {(a, b, a1, . . . , an−3) ∈ (K∗)n−1 : a, b, a1, . . . , an−4 are all different}.

The Severi variety Sev2
n(K) is the Zariski closure of the image of the map ϕK

defined by:

U −→ Kn+1

(a1, a2, a3, . . . , an−1) 7→ (c0, . . . , cn),

where c = (c0, . . . , cn) denotes the vector of coefficients of the polynomial

(3) f =

n∑
i=0

ci x
i = an−1(x− a1)2(x− a2)2

n−2∏
i=3

(x− ai).

Thus, I(Sev2
n(K)) is defined over Q.

Let K be an algebraically closed valuated extension of K, with residue field K.
For any c in the torus (K∗)n+1, we denote by val(c) = (val(c0), . . . , val(cn)) and
we will identify c with the univariate polynomial f with coefficients c. The image
val((K∗)n+1) ⊂ Rn+1 will be denoted by Imval. Also, for any w ∈ Imval we denote
by K[x]w the set of polynomials f with w = val(c).

By Theorems 3.2.2 and 3.2.4 in [11],

T (Sev2
n(K)) = T (Sev2

n(K)) = closure{val(c), c ∈ Im(ϕK) ∩ (K∗)n+1}.

As the field is not essential, we will denote in what follows the tropicalization of
our Severi varieties by T (Sev2

n).
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Definition 3.1. Let M ∈ (Z[x])4×(n+1) be the matrix

M =


1 1 1 . . . 1
0 1 2 . . . n
1 x x2 . . . xn

0 x 2x2 . . . nxn

 .

Let J = {i1, i2, i3, i4} be a subset of A with i1 < i2 < i3 < i4. Let MJ be the
submatrix of M as in Notation 2.4, and denote DJ = det(MJ) ∈ Z[x].

If f ∈ K[x] has double roots a1, a2 ∈ K∗ with val(a1) ≤ val(a2), then f(a1x) has
double roots 1, b = a2/a1 and val(b) ≥ 0. Hence, we can assume that f has nodes
at 1 and b, where b 6= 0, 1 and val(b) ≥ 0. Clearly, f has nodes at 1 and b if and
only if its vector of coefficients c lies in the kernel of the matrix M(b).

Expression (1) in Theorem 2.6 explains why it is not enough to consider the
combinatorial information given by w ∈ T (ker(M(b)), as the picture is completed
by the valuations of the maximal minors of M(b), which depend on arithmetic
conditions on the chosen columns J and algebraic conditions on b. Many technical
properties of these matrices and, particularly, of its 4 × 4 minors are studied in
Appendix B.

3.2. Cones of types I, II and III. We now give the precise definitions of cones
of type I, II and III. The tropical discriminant T (∆n), that is, the tropicalization
of the variety of polynomials f ∈ K[x] of degree n with a double root is known to
consist of maximal dimensional cones of the secondary fan of the configuration A.
Every cone of T (∆n) corresponds naturally with a marked subdivision of A. The
maximal cones of T (∆n) (which have dimension n) correspond to the subdivisions
of A that have exactly one marked cell with exactly one marked point. We refer to
[5], [9], [6] for basic results on tropical discriminants. On the other hand, we will
see that not every n− 1 dimensional cone given by the intersection of two maximal
cones in T (∆n) belongs to T (Sev2

n), as there are exceptional configurations (see
Proposition 4.6).

Remark 3.2. Let w ∈ T (Sev2
n). As w is in the discriminant variety, the subdivision

induced by w has at least one marked cell. Moreover, if w is a point in the interior
of a maximal cone of T (Sev2

n), the Newton diagram has at most two marked points
because the maximal cones have codimension 2 and every marked point in the
Newton diagram imposes a linear restriction that lowers the dimension.

Given a configuration J = {i1, . . . , ik} and s ∈ Z, we will use the notation J(+s)
for the set {i1 + s, . . . , ik + s} (called a translation) and J(×s) (when s ∈ N) for
the set {s i1, . . . , s ik}.

Definition 3.3. Consider a regular subdivision Π with exactly two different marked
cells (each with only one marked point). Let CΠ be the closure of the set of
w ∈ Rn+1 with Πw = Π. Then, CΠ is a cone and we say that it is a cone of type I.

Example 3.4. Let n = 5, K = C{{t}} with the usual valuation and

f = t(x− 1)2(x− t)2(x− t−1).

Them f ∈ K[x]w, where w = (2, 1, 0, 0, 0, 1). The Newton diagram of w is displayed
on the Left in Figure 1. Thus, w lies in the interior of the cone of type I induced
by the marked subdivision {{0, 1, 2}, {2, 3, 4}, {4, 5}}.

To introduce cones of type II, we need to specify what we understand by an
exceptional configuration.
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Definition 3.5. A marked cell {i1, i2, i3, i4} with two marked points is called an ex-
ceptional configuration if it is one of the following: {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 2, 3, 4},
{0, 3, 4, 6} and {0, 2, 3, 6}.

We now define type II cones:

Definition 3.6. Consider a regular subdivision Π with exactly one marked cell
{i1, i2, i3, i4} with two marked points, which is not the image under a translation
of an exceptional configuration. Let CΠ be the closure of the set of w ∈ Rn+1 with
Πw = Π. Then, CΠ is a cone and we say that it is a cone of type II.

Example 3.7. Let n = 5, K = C{{t}} with the usual valuation and

f = (x− 1)2(x+ 2 +
√

3 + t)2(x− t2).

Then f ∈ K[x]w, with w = (2, 0, 0, 1, 0, 0). The Newton Diagram of w is displayed
in the Center in Figure 1. Hence, w lies in the interior of the cone of type II
induced by the marked subdivision {{0, 1}, {1, 2, 4, 5}}.

Note that if the double root different from 1 has valuation 0 and independent
coefficient other than −2±

√
3 and -1, the vector of valuations of the coefficients of

the polynomial is in a cone of type II, but not in its interior. See Remark 5.2 for
an expanded explanation of the choice of −2±

√
3.

Type III cones are not cones of the secondary fan of A as they also show
additional arithmetic constraints:

Definition 3.8. Let σ = {i1, i2, i3} and τ = {j1, j2} with i1, i2, i3, j1, j2 different
points of A, which satisfy the following restrictions: g = gcd(i3 − i1, i2 − i1) > 1,
and there exists a divisor d > 1 of g which does not divide j1 − i1 nor j2 − i1.
Moreover, let Π be a regular subdivision of A with σ as the unique marked cell.
Let C = C(Π, τ) be the closure of the set of w ∈ Rn+1 which verify:

i) Πw = Π.
ii) Let η be the interior normal of the lower facet of Γw corresponding to the

marked cell. The minimum value of the scalar products 〈η, (j, wj)〉 over all
j with j − i1 6≡ 0 mod d, is attained at j1, j2.

Then, C is a cone and we say it is a cone of type III with a hidden tie in τ .

Remark 3.9. Note that it is not enough to ask d to be a prime number in Defi-
nition 3.8. Consider for instance the case σ = {0, 4, 8}, τ = {2, 5}, g = 4. As we
require that d does not divide 2− 0 and 5− 0, d = 4 is the only possible value of a
divisor d > 1 of g to get a cone of type III.

Example 3.10. Let n = 5, K = C{{t}} with the usual valuation and

f = (x− 1)2(x+ 1 + t)2(x− t2).

Then, f ∈ K[x]w, where w = (2, 0, 1, 0, 1, 0). We have displayed the Newton Dia-
gram of w and the hidden tie on the Right in Figure 1. Thus, w lies in the cone of
type III induced by the marked subdivision Π = {{0, 1}, {1, 3, 5}} and the hidden
tie in τ = {2, 4}.

4. Necessary conditions

In this section, we will show that T (Sev2
n) ⊂ Rn+1 is contained in the union of

all cones of types I, II and III, which proves one of the inclusions in the statement
of Theorem 1.1:

Given w ∈ Imval, we first state some results that relate the roots of a polynomial
g ∈ K[x]w, and roots of its associated residual polynomials in K[x]. For an element
a, we denote by mult(a, g) the multiplicity of a as a root of g.
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Definition 4.1. Given w ∈ Rn+1, let σ be a cell in Πw. For g =
∑n
i=0 dix

i ∈ K[x]w,
write di = δit

wi + ∗ (so all δi 6= 0). We say that gσ =
∑
i∈σ δix

i ∈ K[x] is the
residual polynomial of g with respect to σ.

The following proposition is a generalization of the classical Newton-Puiseux
theorem on the valuation of the roots of a polynomial when the polynomial has
multiple roots. It is a direct consequence of results in [15] and [4].

Proposition 4.2. Let g =
∑n
i=0 dix

i be a polynomial in K[x] with d0 6= 0 6= dn
and let a1, . . . , an be the roots of g (repeated according to their multiplicities). Let
w ∈ Rn+1 be the vector w = val(d). Using notation from Definition 4.1,

i) There exists σ a cell of Πw such that the lower facet in the Newton Diagram
of w that induces σ has lattice length ` and slope −v, if and only if the set
Jσ = {j ∈ {1, . . . , n} : val(aj) = v} has cardinal ` > 0.

ii) Denote aj = αjt
v + ∗ for all j ∈ Jσ. Then {αj : j ∈ Jσ} is the set of

nonzero roots of gσ and, for all j ∈ Jσ, mult(αj , gσ) =
∑

mult(ak, g) where
the sum is over all k ∈ Jσ such that αk = αj.

iii) For all j ∈ Jσ, both the multiplicity of aj as a root of g and the multiplicity
of αj as a root of gσ are strictly smaller than the cardinal of the cell σ.

Proof. Items i) and ii) were proved in Proposition 1.8 and Proposition 1.9 on [15]
respectively.

To see item iii), Theorem 5.6 in [4] states in the case of univariate polynomials
that, if we fix κ ∈ N, g has a root of multiplicity at least κ+ 1 if and only if there
exists w ∈ Rn+1 with the following property: for any J ⊂ A with #J ≤ κ, the
minimum of the scalar products 〈w, ·〉 is attained at least twice on A \ J . Using
this result and item ii), if there is a root aj of g of multiplicity τ , αj is a root of gσ
of multiplicity at least τ , and therefore removing any subset J ⊂ σ of τ elements,∑
i∈σ−J δix

i cannot be a monomial. It follows that the the cardinal of σ has to be
at least τ + 1. �

As a straightforward consequence of Proposition 4.2, we see that:

Corollary 4.3. Let w ∈ Rn+1 be a point such that the subdivision Πw has only one
marked cell of lattice length 3. Then, w does not lie in T (Sev2

n).

Another consequence of Proposition 4.2 is the following:

Corollary 4.4. Let f ∈ K[x]w, with w an element in the interior of a cone of type
I, II or III. Let a = αtval(a) + ∗, b = βtval(b) + ∗ be two different multiple roots of
f . If val(a) = val(b), then α 6= β.

Proof. Since val(a) = val(b), by item ii) of Proposition 4.2, both α and β are
multiple roots of the residual polynomial associated to the marked cell of slope
− val(a) in the Newton diagram of w. Moreover, if α = β, then by the same
item it is root of multiplicity at least four. By item iii), this means that the
corresponding marked cell needs to have at least five points (or equivalently, three
marked points). But then, w cannot be in the interior of a cone of type I, II, III,
which is a contradiction. Then, α 6= β. �

Remark 4.5. Given f ∈ K[x], we have already remarked that we assume that
one of its roots is equal to 1. Moreover, by item i) in Proposition 4.2, this means
we can assume a desired lower facet from the Newton Diagram to have slope 0.
Multiplying f by an appropriate constant in K∗, we can moreover assume without
loss of generality that val(ci) ≥ 0 for all coefficients of f and val(cj) = 0 for every
j ∈ A that lie in the cell associated to the lower facet of slope 0.
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In the definition of type II cones, we explicitly excluded subdivisions whose
marked cell is a translation of an exceptional configuration. We now show that
these subdivisions with exceptional configurations are not in T (Sev2

n).

Proposition 4.6. Let σ = {i1, i2, i3, i4} be the translation of an exceptional con-
figuration. Let w ∈ Imval be a point such that σ is the only marked cell from the
subdivision of A induced by w. Then w is not in T (Sev2

n).

Proof. As the lattice length of the marked cell has to be at least 4, any w such that
the induced subdivision has as the only marked cell a translation of {0, 1, 2, 3} is
not in T (Sev2

n).
As we will consider the nonzero roots of residual polynomials with support in

σ, without loss of generality we can assume σ an exceptional configuration. Also,
we can assume that the lower facet associated to σ has slope 0. Suppose there is a
polynomial f ∈ K[x]w ∩Sev2

n and 1, b are its double roots. As σ is the only marked
cell, val(b) = 0 and b = β + ∗ where, as in the proof of Corollary 4.4, β 6= 1.

If σ = {0, 1, 2, 4} and fσ(x) = γ4(x − 1)2(x − β)2 =
∑
i∈σ

γix
i, then γ3 = γ1

β and

moreover, γ3 = 0 and γ1 6= 0, which is a contradiction.
If σ = {0, 2, 3, 6} and fσ(x) = γ6(x − 1)2(x − β)2(x2 + δx + ε) =

∑
i∈σ

γix
i, as

βγ2γ3 is a linear combination with coefficients in Q[β, δ, ε] of the coefficients of the
monomials x, x4, x5 (see Computation C.1), βγ2γ3 = 0 which is also a contradiction.

Having ruled out these two configurations and considering the polynomial g ∈
K[x] ∩ Sev2

n define as g(x) = xnf(x−1), we discard the remaining exceptional con-
figurations because {0, 2, 3, 4} = {4− i : i ∈ {0, 1, 2, 4}} and {0, 3, 4, 6} = {6− i :
i ∈ {0, 2, 3, 6}}. �

We now provide another technical result related to cones of type III.

Proposition 4.7. Let n ≥ 4 and w ∈ T (Sev2
n) such that the subdivision induced

by w has only one marked cell σ = {i1, i2, i3}. Let f ∈ Sev2
n ∩ K[x]w and a =

αtv + ∗, b = βtv + ∗ ∈ K∗ be multiple roots of f . Then β
α 6= 1 is a root of unity of

order that divides gcd(i2 − i1, i3 − i1).

Proof. We can assume as before that a = 1, and i1 = 0. Let fσ = γ0 + γi2x
i2 +

γi3x
i3 be the residual polynomial of f associated to the marked cell σ. Then by

Proposition 4.2, 1, β are double roots of fσ and β 6= 1. By evaluating we obtain
the following equalities:

i) γ0 + γi2 + γi3 = 0. iii) γ0 + γi2β
i2 + γi3β

i3 = 0.
ii) i2γi2 + i3γi3 = 0. iv) i2γi2β

i2 + i3γi3β
i3 = 0.

By equalities i) and ii) we have γ0 = ( i3i2 − 1)γi3 and γi2 = − i3i2 γi3 . Replacing in

equality iv) and simplifying we obtain βi2 = βi3 . Finally, using equality iii) we
obtain βi3 = 1. It follows that β is an d-th primitive root of unity where d 6= 1 and
d divides gcd(i2, i3). �

Finally we can prove that, for w ∈ Rn+1 to be a point in T (Sev2
n), is a necessary

condition that w be a point in the union of all cones of type I, II or III. We start
by defining an open dense subset V of Sev2

n(K). Consider the open dense subset
U ′ of U given by those (a, b, a1, . . . , an−3) such that DJ(a/b) 6= 0, for any J ⊂ A
of cardinal 4. Note that DJ(a/b) 6= 0 if and only if DJ(b/a) 6= 0 by Lemma B.1.
Moreover, U ′ 6= ∅ by Lemma B.2. We call V = ϕK(U ′), where the map ϕK has been
defined in Section 3.1.

Theorem 4.8. Let n ≥ 4 and w ∈ Rn+1 be in a maximal cone of T (Sev2
n). Then

w is in a cone of type I, II or III.
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Proof. Without loss of generality, we assume that w ∈ Imval and that there are
one or two marked points in the subdivision induced by the Newton Diagram of
w. If there are two marked points in different cells of the subdivision, then w is
in a cone of type I. In the same way, if there are two marked points in only one
marked cell of the subdivision, by Proposition 4.6, we know the marked cell is not
the translation of an exceptional configuration, hence w is in a cone of type II.

Let us consider now the remaining case of only one marked cell σ = {i1, i2, i3}
with one marked point. There is a polynomial f ∈ Sev2

n ∩ K[x]w with a, b ∈ K∗
double roots. Then, because of item iii) in Proposition 4.2, val(a) = val(b). To see
that w is in a cone of type III, we assume without loss of generality that a = 1
and b = β + htv + ∗, with v > 0. Using Proposition 4.7 we know that β is a root of
unity of order d, where d > 1 divides gcd(i2− i1, i3− i1). Also, we assume without
loss of generality that w ∈ val(V). For any index k /∈ σ, we have by Lemma B.4
that Dσ∪{k}(β) = 0. Since we assume that Dσ∪{k}(b) 6= 0, it follows that h 6= 0.

As a = 1, we can assume wi1 = wi2 = wi3 = 0. We want to prove that
minj∈J{wj} is attained at least twice, where J = {j ∈ A : d - j − i1} . Suppose
that the minimum is only attained once at i4 ∈ J , (with wi4 > 0), and let S = {j ∈
A : d | j − i1}. Because of Lemma B.5 val(Dσ∪{j}(b)) = v for all j ∈ J , hence
minj∈J{val(Dσ∪{j}(b))+wj} is also only attained once at i4. Then, by Theorem 2.6
there exists at least one s0 ∈ S such that, for all k ∈ A, val(Dσ∪{s0}(b)) + ws0 ≤
val(Dσ∪{k}(b)) + wk.

Consider the set I = {i1, i2, s0}. Again by Theorem 2.6 the minimum in
the set {val(DI∪{k}(b)) + wk : k ∈ A} is attained at least twice. However,
again by Lemma B.5, val(DI∪{s}(b)) = 4v = val(Dσ∪{s0}(b)) when s ∈ S \I and
val(DI∪{j}(b)) = v = val(Dσ∪{j}(b)) when j ∈ J . Then

val(DI∪{k}(b))+wk =


val(Dσ∪{s0}(b)) + wi3 = val(Dσ∪{s0}(b)) =: Di3 if k = i3

val(Dσ∪{s0}(b)) + wk > Di3 if k ∈ S\(I∪{i3})
val(Dσ∪{k}(b)) + wk ≥ val(Dσ∪{s0}(b)) + ws0 > Di3 if k ∈ J

∞ > Di3 if k ∈ I

so the minimum would only be attained at k = i3, which is a contradiction. �

5. Sufficient conditions

In this section we prove that each of the cones of type I, II and III belongs to the
tropical Severi variety. Our proof is constructive, that is, it is done showing that,
for every w in one of the cones, we can compute a polynomial f ∈ K[x]w ∩ Sev2

n.
The key is to choose an appropriate configuration J = {i1, i2, i3, i4} and study

the matrix MJ(x) as well as the valuation of its determinant DJ = det(MJ), where
the matrix M is as in Definition 3.1. We will need many technical lemmas, that
are collected in Appendix B. In particular, we have that DJ ∈ Z[x] − {0} for all
4-index set J , by Lemma B.2.

We want to prove that there exists c = (c0, . . . , cn) with val(c) = w and b different
from 1 that solve the system M(b) cT = 0, and therefore w is a point on T (Sev2

n).
Moreover, we are going to find f ∈ K[x]w with multiple roots 1 and b such that
ci = twi for all i 6∈ J . Then, we are looking for an appropriate b and (ci1 , ci2 , ci3 , ci4)
with each of its coordinates of the correct valuation that solve the equation system:

(4) MJ(b) · (ci1 , ci2 , ci3 , ci4)T = −(
∑
i6∈J

twi ,
∑
i6∈J

itwi ,
∑
i 6∈J

bitwi ,
∑
i 6∈J

ibitwi)T

The easiest case are cones of type I.
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5.1. Type I. Consider w ∈ Imval a point in the interior of a cone of type I. That
is, the subdivision induced by w has two different marked cells with one marked
point each. Without loss of generality, we can assume that the slopes of the lower
facets from the Newton diagram corresponding to those marked cells are 0 and −v
where v > 0. Then, the Newton diagram is as in Figure 5.

∗

∗

w0

wi1

wj1
wk1

wi2 wj2 wk2

wn

Figure 5. Two marked cells with different slopes

That is, there are two marked cells, {i1, j1, k1} and {i2, j2, k2} where k1 ≤ i2,
in the corresponding subdivision. We can assume wi2 = wj2 = wk2 = 0. Let

−v =
wk1
−wi1

k1−i1 be the slope of the non-horizontal marked segment.

Theorem 5.1. Let n ≥ 4 and w ∈ Imval be a point in a cone of type I. Then w is
an element of T (Sev2

n).

Proof. Using the same notation and assumptions as before, we are going to present
a polynomial f complying with the request. In particular, we can assume w is a
point in the interior of the cone. It is worth mentioning that this is only one choice
but there are infinite polynomials that satisfy the theorem (see [13]). Moreover, if
w ∈ Zn+1, then our proposed solution f lies in C(t)[x].

We will build a polynomial f =
n∑
i=0

cix
i ∈ Sev2

n such that f ∈ K[x]w and its

double roots are a = 1 and b = tv. Let J = {i1, j1, j2, k2} and take cl = twl for all
index l 6∈ J .

We want to see that there are cj2 , ck2 of valuation 0 and ci1 , cj1 of valuations wi1
and wj1 respectively that are solutions of the system in Equation (4). Let us see
that there exist γi1 , γi2 such that ci1 = γi1t

wi1 + ∗, cj1 = γj1t
wj1 + ∗ and γj2 , γk2

with cj2 = γj2 + ∗ and ck2 = γj1 + ∗. Replacing this notation in Equation (4), we
get the system

twi1 twj1 1 1
i1t

wi1 j1t
wj1 j2 k2

twi1+vi1 twj1+vj1 tvj2 tvk2

i1t
wi1+vi1 j1t

wj1+vj1 j2t
vj2 k2t

vk2



γi1
γj1
γj2
γk2

 =


−1 + ∗
−i2 + ∗

−twk1
+vk1 + ∗

−k1t
wk1

+vk1 + ∗


Dividing the third and fourth rows of the 4 × 4 matrix by tvk1+wk1 we obtain

a system where every term has nonnegative valuation because i1, j1, k1 are the
indices where the minimum is attained in the segment with slope −v. Moreover,
the valuation of the entries in those rows associated to j2 and k2 is positive because
of the convexity of the Newton Diagram.

Setting t = 0 we obtain the 4× 4 invertible system over K (in matrix form):
0 0 1 1
0 0 j2 k2

1 1 0 0
i1 j1 0 0



γi1
γj1
γj2
γk2

 =


−1
−i2
−1
−k1

 .
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Hence, system (4) has also a unique solution, which equals:

(ci1 , cj1 , cj2 , ck2) =

(
−j1 − k1

j1 − i1
twi1 + ∗,−k1 − i1

j1 − i1
twj1 + ∗,−k2 − i2

k2 − j2
+ ∗,− i2 − j2

k2 − j2
+ ∗
)
,

and has the correct valuations. �

5.2. Type II. Type II cones are the most difficult case to prove completely. We
follow the same approach as for type I cones, but we have to separate the case where
the marked cell is an affine image of an exceptional configuration. The choice of
the node b is more complicated and subtle than in the case of nodes of type I.

5.2.1. The general case. For points w in cones of type II and III we will assume
that the marked cell has slope 0 and we will build a polynomial f ∈ K[x]w with
double roots 1 and b of valuation 0. We need that b = β + ∗ and DJ(b) 6= 0, but
this is possible since DJ 6= 0 (see Lemma B.2). Note that, as val(b) = 0, β 6= 0.
Also, by Corollary 4.4 we can assume β 6= 1. Multiplying by the adjoint matrix
adj(MJ(b)) of MJ(b), the solutions for all 1 ≤ j ≤ 4 of Equation (4) are

(5) cij = −
∑
i 6∈J

±
D(J∪{i})−{ij}(b)

DJ(b)
twi ,

where the signs depend on the number of permutations necessary to reorder from
lowest to highest the ordered set J as we replace ij by i (see Notation 2.4). As
val(b) = 0, the entries of the matrix adj(MI(b)) are of valuation at least 0. Also,
if val(wi) > 0 for every i 6∈ J , then every coordinate in the right hand part of
the system has positive valuation. Therefore, if the solution (ci1 , ci2 , ci3 , ci4) fulfills
val(cij ) = 0 for some 1 ≤ j ≤ 4, the valuation of DJ(b) has to be positive. Hence,
DJ(β) = 0.

Consider now a point w in the interior of a cone of type II. Then there is one
marked cell J = {i1, i2, i3, i4} with two marked points. We can assume wi1 = wi2 =
wi3 = wi4 = 0, and wj > 0 for all j 6∈ J , so we are in the situation stated above.

Remark 5.2. Let f = (x − 1)2(x − b)2(x − a) ∈ K[x] where b = β + ∗ with
β ∈ K \ {0, 1} and val(a) 6= 0. From item i) in Proposition 4.2, the subdivision
induced by the vector of valuations of the coefficients of f has two cells, one of
lattice length 1 and another one of lattice length 4. Then, for w to be a point in the
interior of a cone of type II, the cell of lattice length 4 has to be either {0, 1, 3, 4}
or {1, 2, 4, 5} by Proposition 4.6. It is easy to see that the only zeros in K \ {0, 1}
of either D{0,1,3,4} or D{1,2,4,5} are −2±

√
3, as used in Example 3.7.

In what follows, the expression that a value is “repeated at most once” means
that it can occur 1 or 2 times (but not more).

Theorem 5.3. Let w ∈ Rn+1 be a point a cone of type II with marked cell J =
{i1, i2, i3, i4}. If there is a β ∈ K \ {0, 1} root of DJ such that each of the powers
{βi1 , βi2 , βi3 , βi4} is repeated at most once, then w is in T (Sev2

n).

Proof. Without loss of generality, we can assume w ∈ Imval is a generic point in
the interior of the cone, and wij = 0 for all 1 ≤ j ≤ 4. By Lemma B.9 the set
S = {i ∈ A − J : D(J∪{i})−{i1}(β) 6= 0} 6= ∅. As w is a generic point, we can
assume that there exists i5 ∈ S such that 0 < wi5 < wi for all i ∈ S − {i5}. Since
DJ(β) = 0, by Lemma B.6, D(J∪{i5})−{ij}(β) 6= 0 for all 1 ≤ j ≤ 4. Note that,

since {βij}4j=1 are not all equal, by Lemma B.7 the multiplicity of β as a root of
DJ is at most two. Then, by Lemma B.8 the multiplicity m of β as a root of DJ is
lower or equal to the multiplicity mej of β as a root of D(J∪{e})−{ij} for all e 6∈ S∪J

and 1 ≤ j ≤ 4. Let b = β + ht
wi5
m ∈ K such that DJ(b) 6= 0 and f =

n∑
i=0

cix
i such
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that ci = twi for all i 6∈ J . We are going to see that the coefficients {cij}4j=1 such
that 1, b are multiple roots of f fulfill val(cij ) = 0 for all 1 ≤ j ≤ 4 and therefore w

is in T (Sev2
n). Note that val(DJ(b)) = wi5 and, for all e 6∈ S ∪ J and 1 ≤ j ≤ 4,

val(D(J∪{e})−{ij}(b)) = mej
wi5

m ≥ wi5 . We saw in Equation (5) that the solutions

(ci1 , ci2 , ci3 , ci4) are of the form cij = −
∑
i 6∈J
±
D(J∪{i})−{ij}(b)

DJ(b)
twi for all 1 ≤ j ≤ 4.

If we analyze the valuation for every term of that sum, we can see that:

• If i = i5, then val

(
D(J∪{i5})−{ij}(b)

DJ(b)
ci5

)
= 0− wi5 + wi5 = 0.

• If i 6∈ S ∪ J , then val

(
D(J∪{i})−{ij}(b)

DJ(b)
ci

)
≥ wi5 − wi5 + wi > 0 because

wi > 0.

• If i ∈ S, then val

(
D(J∪{i})−{ij}(b)

DJ(b)
ci

)
= 0−wi5 +wi > 0 because wi > wi5 .

Then,

cij = ±
D(J∪{i5})−{ij}(b)

DJ(b)
twi5 + ∗

and has valuation 0 for all 1 ≤ j ≤ 4. �

5.2.2. Exceptional Configurations. In Theorem B.11 we proved that the sets σ =
{i1, i2, i3, i4} such that every root β ∈ K \ {0, 1} of Dσ(x) satisfies that there are
at least three of the powers {βi1 , βi2 , βi3 , βi4} equal, are precisely those of the form
σ = (J(×s))(+r) = {sj1 + r, sj2 + r, sj3 + r, sj4 + r} where s ∈ N, r ∈ Z≥0 and
J = {j1, j2, j3, j4} is an exceptional configuration (see Definition 3.5).

In Proposition 4.6 we already proved that if w is a point such that the subdivi-
sion induced by w has only one marked cell J and this cell is a translation of an
exceptional configuration, then w is not in T (Sev2

n). In the next theorem we will
see that if the marked cell σ is a image under an affine map (J(×s))(+r) of an
exceptional configuration such that s = gcd(i4− i1, i3− i1, i2− i1) > 1, then w is in
fact in T (Sev2

n). With this result we complete the proof that all w in the interior
of a type II cone is in T (Sev2

n).

Theorem 5.4. Let J = {j1, j2, j3, j4} be an exceptional configuration. Let Π be
a subdivision of A such that the only marked cell is I = {i1, i2, i3, i4} where I =
(J(×s))(+r) for s ∈ N and r ∈ Z≥0. Let w ∈ Imval ⊆ Rn+1 be a point in the
cone CΠ defined by the closure of the set of points in Rn+1 whose Newton diagram
induces the subdivision Π. If s > 1, then w is a point in T (Sev2

n).

Proof. We can assume that w ∈ Imval is a generic point in the interior of the
cone and that wi1 = wi2 = wi3 = wi4 = 0. We may also assume without loss of
generality that i5 is the only index where min{wi : i 6∈ I and s - i} is attained.

Let β ∈ K \ {0, 1} be a primitive s-th root of unity and f =
n∑
i=0

cix
i ∈ K[x] such

that ci = twi for all i 6∈ I. We want to find {ci}i∈I ⊆ K such that val(ci) = 0 for
all i ∈ I and f has two multiple roots 1 and b = β + ∗. Take b = β + htv, such
that h ∈ K∗, v =

wi5

3 and DI(b) 6= 0. Then the system in Equation 4 has a unique

solution in K4 (presented in Equation (5)).
By Lemma B.5 we know that val(DI(b)) = 4v, and that for every i 6∈ I

val(DI∪{i}−{ij}(b)) = v if s | i and val(DI∪{i}−{ij}(b)) = 4v if s - i. Then,

• val(
D(I∪{i})−{ij}(b)

DI(b) twi) = v − 4v + wi = wi − 3v if s - i.

• val(
D(I∪{i})−{ij}(b)

DI(b) twi) = 4v − 4v + wi = wi if s | i.
Since v =

wi5

3 , we have that:



16 A. DICKENSTEIN, M.I. HERRERO, L.F. TABERA

• val(
D(I∪{i5})−{ij}(b)

DI(b) twi5 ) = wi5 − 3v = wi5 − 3
wi5

3 = 0.

• val(
D(I∪{i})−{ij}(b)

DI(b) twi) = wi − 3v = wi − wi5 > 0 if s - i because of the

choice of i5.

• val(
D(I∪{i})−{ij}(b)

DI(b) twi) = wi > 0 if s | i.

Therefore, we have that mini 6∈I{val(
D(I∪{i})−{ij}(b)

DI(b) twi)} is attained only at i5 where

is zero, hence val(cij ) = 0 for all 1 ≤ j ≤ 4. �

5.3. Type III. Finally, consider w ∈ Rn+1 a point in the interior of a cone of
type III. That is, w is such that the induced subdivision has only one marked
cell {i1, i2, i3} with one marked point i2, and a hidden tie {i4, i5}. Assume also,
without loss of generality, that wij = 0 for all 1 ≤ j ≤ 3 and wk > 0 for all k 6∈ I.
Then:

• gcd(i2 − i1, i3 − i1) > 1.
• There is an integer d > 1, which divides of gcd(i2−i1, i3−i1), such that the

set {wj : j ∈ A and j 6≡ i1 mod d} attains its minimum twice at {i4, i5}.

Theorem 5.5. Let w ∈ Rn+1 be a point in a cone of type III. Then w is an
element of T (Sev2

n).

Proof. Without loss of generality, we assume w ∈ Imval a generic point in the
interior of the cone and wi1 = wi2 = wi3 = 0 where {i1, . . . , i5, d} are as in the
notation above. Let β be a primitive root of unity of order d and b = β + twi4 .
Note that we can write bdn = 1 + dnβ−1twi4 + ∗ for all n ∈ N.

Let J = {i1, i2, i3, i4}. Using Lemma B.5, val(DJ(b)) = wi4 .

To prove that there exists f =
n∑
i=0

cix
i with double roots 1 and b in Sev2

n∩K[x]w,

we need to see that there exist a vector of coefficients (ci)i∈A that satisfies Equation
(4). As the minor DJ(b) is not zero, there exists a unique vector of solutions
c = (ci1 , ci2 , ci3 , ci4) ∈ K4 obtained by taking ci = twi for all i 6∈ J . It only remains
to be seen that val(cij ) = 0 for all 1 ≤ j ≤ 3 and val(ci4) = wi4 .

Let S be the set of all s ∈ A such that s ≡ i1 mod d and 0 < val(ws) ≤ wi4 .
In particular, because of the second defining condition on S we have i1, i2, i3 6∈ S.
As w is generic, we can assume that either S = ∅ or {s ∈ S : ws ≤ wk for all k ∈
S} = {s0}. We re-write the system of Equation (4) as

(6) MJ(b) · cT = −MS(b) · (tws)Ts∈S −MA−(S∪J)(b)(t
wj )Tj 6∈S∪I ,

we are going to find the valuation of the solutions c(1) = (c
(1)
ij

)4
j=1 and c(2) =

(c
(2)
ij

)4
j=1 for the following associate systems:

(7) MJ(b) · (c(1))T = −MS(b) · (tws)Ts∈S = −(tws0 , s0t
ws0 , bs0tws0 , s0b

s0tws0 )T ,

MJ(b) · (c(2))T = −MA−(S∪J)(b) · (twj )Tj 6∈S∪I

= −(twi5 + ∗, i5twi5 + ∗, bi5twi5 + ∗, i5bi5twi5 + ∗)T .
(8)

We denote by det(MJ′(b)|C) the determinant of the matrix in K4×4 where the first
columns are given by the matrix MJ′(b) (for some set J ′ of cardinal 3) and the last
one is a fixed column C. In a similar way det(C |MJ′(b)) is the determinant of the
matrix MJ′(b) extended with a first column C.

First, if S 6= 0, we solve Equation (7). Consider the case of c
(1)
i1

(as s0 ≡ i1 mod d
we can use Lemma B.5 and we have, for C = (tws0 , s0t

ws0 , bs0tws0 , s0b
s0tws0 ), that

det(C |M{i2,i3,i4}(b)) = tws0 det(M{s0,i2,i3,i4}(b))
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has valuation ws0 + wi4 . Therefore, by Cramer’s rule

val(c
(1)
i1

) = ws0 + wi4 − wi4 = ws0 > 0.

As i1 ≡ i2 ≡ i3 mod d, we can prove equivalently that val(c
(1)
i2

) = ws0 > 0 and

val(c
(1)
i3

) = ws0 > 0. The case of ci4 is slightly different because we are replacing
the fourth column and s0 ≡ ij mod d for all 1 ≤ j ≤ 3. Using again Lemma B.5
and C = (tws0 , s0t

ws0 , bs0tws0 , s0b
s0tws0 ), the valuation val(det(M{i1,i2,i3}(b)|C)) =

ws0 + 4wi4 , and therefore val(c
(1)
i4

) ≥ ws0 + 4wi4 − wi4 > wi4 .

Consider now the case of c
(2)
i1

, we have to take into account that i5 6≡ i1 mod d.

Then, considering the vector C = (twi5 + ∗, i5twi5 + ∗, bi5twi5 + ∗, i5bi5twi5 + ∗),

det(C |M{i2,i3,i4}(b)) = twi5βi5+i2(i3 − i2)(i5 − i4)(βi2−i5 − 1)(βi4−i2 − 1) + ∗

has valuation wi5 = wi4 , and hence val(c
(2)
i1

) = 0. Again, as i1 ≡ i2 ≡ i3 mod d we

have val(c
(2)
i2

) = 0 and val(c
(2)
i3

) = 0. For the case of c
(2)
i4

, we can find the valuation

similarly to Lemma B.5. Taking C = (twi5 + ∗, i5twi5 + ∗, bi5twi5 + ∗, i5bi5twi5 + ∗),
we obtain

det(M{i1,i2,i3}(b)|C) = −twi5+wi4β2i1−1(i3 − i2)(i3 − i1)(i2 − i1)(βi5−i1 − 1) + ∗.

Hence val(c
(2)
i4

) = wi5 + wi4 − wi4 = wi4 .

Taking c = (ci1 , ci2 , ci3 , ci4) = (c
(1)
i1

+ c
(2)
i1
, . . . , c

(1)
i4

+ c
(2)
i4

), this is the solution for

Equation (6). As val(c
(1)
ij

) > 0 and val(c
(2)
ij

) = 0 for all 1 ≤ j ≤ 3, val(c
(1)
i4

) > wi4

and val(c
(2)
i4

) = wi4 , then every coordinate of c satisfies val(cij ) = wij for all 1 ≤
j ≤ 4 as wanted. �

Appendix A. Proof of Lemma 2.2

We give here the proof of Lemma 2.2, that asserts that the tropicalization of
a linear homogeneous ideal I over a valuated field K with infinite residue field is
determined by the circuits.

Proof. We denote by L(I) the intersection
⋂
`∈I:` linear form V (trop(`)). Let us first

prove the equality T (I) = L(I). Clearly, T (I) ⊆ L(I). We will see the other
inclusion by induction on the codimension of V = V (I) ∩ (K∗)n.

Note that V = ∅ if and only if V (I) is contained in a hyperplane xi = 0 and so
xi ∈ I and T (I) = L(I) = ∅. Hence, we can assume that V 6= ∅.

If codim(V ) = 1, then V is a hyperplane and there exists a linear form ` such
that V = V (`)∩ (K∗)n. In this case is clear that T (I) = V (trop(`)). If the result is
true for every codimension less than or equal to r, let us take V of codimension r+1.
Let p ∈ L(I). If there exists ei in the canonical basis such that ei ∈ V (I) for some
i ∈ {1, . . . , n}, then for all ` ∈ I linear form, `(x) =

∑n
j=1 `jxj with `i = 0. Let

πi : Kn −→ Kn−1 be the projection πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).
Then, p ∈ T (I) if and only if πi(p) ∈ T (πi(V )) and the result follows by induction
in the codimension.

If ei 6∈ V (I) for all 1 ≤ i ≤ n, V (I) ( V (I) ⊕ 〈ei〉 for all i. By our inductive
hypothesis, T (V (I)⊕〈ei〉) equals the intersection of V (trop(`)), for all linear forms
` with V (I) ⊕ 〈ei〉 ⊆ {` = 0}. Therefore, p ∈

⋂n
i=1 T (V (I) ⊕ 〈ei〉). Without

loss of generality we can assume p = (0, . . . , 0). Hence, for each 1 ≤ i ≤ n there
is a point ui = (ui1, . . . , uin) ∈ V (I) such that for all i 6= j, val(uij) = 0. As
codim(V ) > 1, the matrix U with Uij = uij for all 1 ≤ i, j ≤ n has rank at most
n − 2. Then, det(U) = 0, and so there exist i ∈ {1, . . . , n} such that val(uii) ≥ 0.
Since the minor obtained from the matrix U deleting the i-th row and column is
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also singular, there must be another element j ∈ {0, . . . , n}−{i} with val(ujj) ≥ 0.
Without loss of generality, let {i, j} = {1, 2}. If val(u11) = 0 or val(u22) = 0, then
p = val(u1) ∈ T (I) or p = val(u2) ∈ T (I). If not, we can take a generic λ ∈ K∗ of
valuation zero such that trop(u1 +λu2) = p and therefore p ∈ T (I). In fact, let λ be
generic so val(u1 + λu2)i = 0 for all 3 ≤ i ≤ n. As val(u11) > 0 and val(λu21) = 0,
then val(u11 + λu21) = 0. Similarly val(u12 + λu22) = 0.

To see that it is enough to consider the circuits in I to describe T (I), recall
that, for each minimal support, there is only (up to multiplication by a constant)
one linear form in I. Let us call {`′1, . . . , `′r} linear forms generating I. Clearly,
T (I) ⊆ ∩ri=1V (trop(`′i)). Given p 6∈ T (I), there is a linear form ` ∈ I such that
p 6∈ V (trop(`)). It suffices to check that we can take ` with minimal support. Let
`1 := `. If `1 does not have minimal support, then there exists a linear form g1 ∈ I
whose support is contained in the support of `1. If p 6∈ V (trop(g1)), we are done.
If p ∈ V (trop(g1)), let xm1 and xm2 be different variables such that the associated
linear forms in trop(`1) and trop(g1) attain respectively the minimum at p. We
can take `2 a linear combination of `1 and g1 to make zero the monomial xm2

in `2
without modifying where trop(`2) attains its minimum, and proceed recursively. �

Appendix B. The matrix M and its minors

In this section, we prove all the claims about the matrix M in Definition 3.1,
its roots, rank etc. used in the paper. First of all, by the following lemma we can
assume (when needed, to simplify the notation) that i1 = 0.

Lemma B.1. With the previous notation, the minor DJ is invariant by translations
of i1, i2, i3 and i4 (up to a monomial factor). More specifically, for s ∈ N

x2sDJ(x) = DJ(+s)(x) and DJ(×s)(x) = s2 ·DJ(xs)

Also, given positive i < j < k,

D{0,i,j,k}(x) = ik xi(xk−i − 1)(xj − 1)− ij xi(xj−i − 1)(xk − 1)− jk xj(xk−j − 1)(xi − 1),

and we have the equality

D{0,i,j,k}(x) = xi+j+kD{0,i,j,k}(x
−1).

Proof. It is a straightforward computation from the properties of the determinant.
�

Lemma B.2. Let J = {i1, i2, i3, i4} be a subset of A with i1 < i2 < i3 < i4. Then
DJ is not the zero polynomial, its degree (as a polynomial in x) is i3 + i4 and its
order at the origin equals i1 + i2. Moreover, the matrix M(x) has rank 4 if x 6= 0, 1
and n ≥ 3.

Proof. By Lemma B.1,

DJ(x) = x2i1 D{0,i2−i1,i3−i1,i4−i1} = (i2 − i1)(i4 − i3)
(
xi3+i4 + · · ·+ xi1+i2

)
.

If we consider the submatrix MJ ∈ (Z[x])4×4 given by J = {0, 1, 2, 3}, it holds that
DJ = x(x− 1)4, and hence rank(M(x)) = 4 for all x 6= 0, 1. �

Lemma B.3. Let J = {i1, i2, i3, i4} be a subset of A such that i1 < i2 < i3 < i4.
Let β ∈ K. Then, the matrix MJ(β) has rank 2 if and only if βi1 = βi2 = βi3 = βi4 .

Proof. We can assume β 6= 0 since the result is trivial otherwise. It is clear that
βi1 = βi2 = βi3 = βi4 is a sufficient condition for rank(MJ(β)) = 2. To see that
it is necessary, using Lemma B.1 we can assume i1 = 0. Let us note that if the
matrix MJ(β) has rank 2, then all the 3×3 minors are zero including det(M(4, 4)) =
i2(βi3−1)−i3(βi2−1),det(M(3, 4)) = i2i3(βi3−βi2) and det(M(3, 3))i2i4(βi4−βi2),
where M(i, j) is the submatrix obtained by removing the row i and column j from
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MJ(β). From the last two, βi3 = βi2 = βi4 and using this in the the first minor we
have βi2 = 1 = βi1 . �

Lemma B.4. Let J = {i1, i2, i3, i4} be a subset of A such that i1 < i2 < i3 < i4
and β ∈ K a root of unity. Consider the powers βi1 , . . . , βi4 of β. If all four are
equal (e.g. β = 1), then β is a root of DJ of multiplicity 4. If exactly three of the
powers are equal and the remaining one is different, then the multiplicity of β is 1.

Proof. For the multiplicity of β when all the powers of β are equal, assuming
without loss of generality that i1 > 3, the first 4 derivatives of DJ can be cal-

culated to see that DJ(β) = D′J(β) = D
(2)
J (β) = D

(3)
J (β) = 0 while D

(4)
J (β) =

2(i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4)β2i1−4 6= 0.
When only three of the powers of β are equal, we can assume βi1 6= βi2 = βi3 =

βi4 . Then it is clear that DJ(β) = 0, but D′J(β) = βi2−1(βi1 − βi2)(i4 − i3)(i4 −
i2)(i3 − i2) 6= 0. �

Lemma B.5. Let J = {i1, i2, i3, i4} ⊂ A such that g = gcd(i3 − i1, i2 − i1) > 1
and #J = 4. Let β ∈ K \ {1} be a root of unity such that βg = 1. Consider
b = β + htv + ∗ ∈ K, where h ∈ K \ {0} and v > 0. Then, the valuation of DJ(b)
is 4v if βi4−i1 = 1, and v otherwise.

Proof. To compute DJ(b) (up to a sign) we can assume i1 < i2 < i3 and use the
i4-th column of M as the last one of DJ . By Lemma B.1 and the facts that b 6= 0
and val(b2i1) = 0 we can assume i1 = 0. Also, by the formulation of DJ in the
same Lemma (where now i4 is possibly a negative number),

DJ(b) = i2i4 b
i2(bi4−i2−1)(bi3−1)−i2i3 bi2(bi3−i2−1)(bi4−1)−i3i4 bi3(bi4−i3−1)(bi2−1),

Let d > 1 be the order of β as a root of unity. If d - l, bl−1 = βl−1+∗ of valuation
0, while if d | l, bl = 1 + ∗ of valuation 0 and bl − 1 = lβ−1htv + ∗ of valuation v.
If d - i4, DJ(b) = −β−1h i2 i3 (i3 − i2)(βi4 − 1)tv + ∗ which has valuation v.

In case that d | i4, let d′ := gcd(i4, i3, i2). Note that d | d′. Using the notation

i′j =
ij
d′ and J ′ = {0, i′2, i′3, i′4}, we have by Lemma B.1

DJ(b) = DJ′(b
d′) = DJ′(1 + d′β−1htv + ∗).

By Lemma B.4, the multiplicity of 1 as a root of DJ′ is 4, that is there exists
a polynomial p ∈ Z[x] such that p(1) 6= 0 and DJ′(x) = (x − 1)4p(x). Then,
DJ(b) = (d′β−1htv + ∗)4p(1 + d′β−1htv + ∗), which has valuation 4v. �

Lemma B.6. Let β ∈ K \ {0} and J = {i1, i2, i3, i4, i5} be a subset of A of
cardinal 5 such that DJ−{i5}(β) = 0 and the set {βi1 , βi2 , βi3 , βi4} does not have
three elements equal and the remaining one different. Then, either DJ−{ij}(β) = 0
for all 1 ≤ j ≤ 5, or DJ−{ij}(β) 6= 0 for all 1 ≤ j ≤ 4.

Proof. Since we are not assuming that the indices {ij}4i=1 are ordered, it is enough
to prove that if DJ−{i1}(β) = 0 then DJ−{ij}(β) = 0 for all 2 ≤ j ≤ 4. This result
follows from the direct computation below.

Let y1, y2, y3, y4, y5, x1, x2, x3, x4, x5 be variables over K and J1 the ideal gener-
ated by the 4× 4 minors of the matrix

M =


1 1 1 1 1
y1 y2 y3 y4 y5
x1 x2 x3 x4 x5

y1x1 y2x2 y3x3 y4x4 y5x5

 .

Let f be the polynomial f(y2, y3, y4) = (y4 − y3)(y4 − y2)(y3 − y2) and I2, I3 be
the ideals I2 = 〈det(M{1,2,3,4}),det(M{2,3,4,5})〉, I3 = 〈x2 − x3, x2 − x4〉. Then, by
direct computation (see Computation C.2) we can check that the ideals (I2 : f)
and I1 ∩ I3 are equal.
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If DJ−{i5}(β) = DJ−{i1}(β) = 0, then (i1, . . . , i5, β
i1 , . . . , βi5) is in the variety

defined by I2 and is not a root of f . Then is in the variety defined by (I2 : f) and
therefore gives us two choices:

• If the point (i1, . . . , i5, β
i1 , . . . , βi5) is in the variety defined by I1, then

DJ−{ij}(β) = 0 for all 1 ≤ j ≤ 5.

• If the point (i1, . . . , i5, β
i1 , . . . , βi5) is in the variety defined by I3, then

βi2 = βi3 = βi4 . By the hypothesis of the lemma, these three powers have
to be equal to βi1 and hence rank(MJ−{i5}(i1, . . . , i5, β

i1 , . . . , βi5)) = 2.
Thus it is also true that DJ−{ij}(β) = 0 for all 1 ≤ j ≤ 5.

�

Lemma B.7. Let J = {i1, i2, i3, i4} be a subset of A and β ∈ K \ {0} a root of DJ

of multiplicity at least 3. Then β is a root of unity and βi1 = βi2 = βi3 = βi4 .

Proof. Let y1, y2, y3, y4, x1, x2, x3, x4 be variables over K and I the ideal generated
by det(M),det(M1) and det(M21) + det(M22), where

M =


1 1 1 1
y1 y2 y3 y4
x1 x2 x3 x4

y1x1 y2x2 y3x3 y4x4

 ,M1 =


1 1 1 1
y1 y2 y3 y4
x1 x2 x3 x4

y2
1x1 y2

2x2 y2
3x3 y2

4x4

 ,

M21 =


1 1 1 1
y1 y2 y3 y4
x1 x2 x3 x4

y2
1(y1 − 1)x1 y2

2(y2 − 1)x2 y2
3(y3 − 1)x3 y2

4(y4 − 1)x4

 and

M22 =


1 1 1 1
y1 y2 y3 y4

y1x1 y2x2 y3x3 y4x4

y2
1x1 y2

2x2 y2
3x3 y2

4x4

 .

Note that when we evaluate the matrices in yj = ij , xj = xij , then det(M1)(x) =
∂
∂x det(M)(x) and det(M21)(x) + det(M22)(x) = ∂2

∂x2 det(M)(x), so I is the ideal
where DJ and its two derivatives vanish.

Let f, g be the polynomials f(y1, y2, y3, y4) =
∏

1≤j<k≤4

(yk−yj), g(x1, x2, x3, x4) =

x1x2x3x4 and I1 = (I : f∞). Then, by direct computation (See Computation C.3)
we can check that the ideal I2 = (

√
I1 : g) is exactly 〈x4 − x3, x3 − x2, x2 − x1〉. If

β is at least a triple root of DJ , as (i1, i2, i3, i4, β
i1 , βi2 , βi3 , βi4) is not a root of f

and β 6= 0, then is in the variety defined by I2 and hence β is a root of unity with
βi1 = βi2 = βi3 = βi4 . �

Lemma B.8. Let J = {i1, i2, i3, i4, i5} be a subset of A of cardinal 5 and β ∈
K \ {0} a common root of DJ−{ij} for all 1 ≤ j ≤ 5 such that the elements in

{βij}4j=1 are repeated at most once. If β is a multiple root of DJ−{i5}, then it is a
multiple root of DJ−{ij} for all 1 ≤ j ≤ 4.

Proof. Without loss of generality we can assume βi1 6= βi2 and βi1 6= βi3 .
Let y1, y2, y3, y4, y5, x1, x2, x3, x4, x5 be variables over K and I the ideal gener-

ated by the 4× 4 minors of the matrix M and det((M1){1,2,3,4}) where

M =


1 1 1 1 1
y1 y2 y3 y4 y5
x1 x2 x3 x4 x5

y1x1 y2x2 y3x3 y4x4 y5x5

 ,M1 =


1 1 1 1 1
y1 y2 y3 y4 y5
x1 x2 x3 x4 x5

y2
1x1 y2

2x2 y2
3x3 y2

4x4 y2
5x5

 .

Let f be the polynomial f(y1, y2, y3, y4) =
∏

1≤j<k≤4

(yk−yj), I1 = 〈x1−x2, x1−x3〉

and I2 = (I : I1). Then, by direct computation (see Computation C.4) we can



TROPICAL SEVERI VARIETIES OF UNIVARIATE POLYNOMIALS 21

check that the 4×4 minors of the matrixM1 are elements of the ideal I3 = (I2 : f∞).
If β is a common root of DJ−{ij} for all 1 ≤ j ≤ 4 and a multiple root of DJ−{i5},

then (i1, i2, i3, i4, i5, β
i1 , βi2 , βi3 , βi4 , βi5) is in the variety defined by I3 and hence

β is a multiple root of DJ−{ij} for all 1 ≤ j ≤ 4. �

Lemma B.9. Let J = {i1, i2, i3, i4} be a subset of A and β ∈ K \ {0, 1} a root of
DJ such that the powers in {βij}4j=1 are repeated at most once. Then there exists
i5 ∈ A− J such that D(J∪{i5})−{ij} does not vanish at β for all 1 ≤ j ≤ 4.

Proof. Note that if β is a root of D(J∪{i5})−{i1}, then by Lemma B.6 β it is a root
of every D(J∪{i5})−{ij} for all 1 ≤ j ≤ 4. We now see this can not happen for every
i5 ∈ {i1, i1 + 1, i1 + 2, i1 + 3}.

Let y1, y2, y3, y4, x1, x2, x3, x4, x be variables over K and I the ideal generated
by the 4× 4 minors of the matrices Mi for all 0 ≤ i ≤ 3 where

Mi =


1 1 1 1 1
y1 y2 y3 y4 y1 + i
x1 x2 x3 x4 x1x

i

y1x1 y2x2 y3x3 y4x4 (y1 + i)x1x
i

 .

Let f be the polynomial f(y1, y2, y3, y4) =
∏

1≤j<k≤4

(yk−yj). By direct computation

(see Computation C.5) we can check the equality of ideals (I : x1x4x(x− 1)4f) =
〈x1 − x4, x2 − x4, x3 − x4〉. If D(J∪{i1+i})−{ij}(β) = 0 for all 1 ≤ j ≤ 4 and

0 ≤ i ≤ 3, then (i1, . . . , i4, β
i1 , . . . , βi4 , β) is in the variety defined by I but is

not a zero of x1x4x(x − 1)4f(y1, . . . , y4). Hence βi1 = βi2 = βi3 = βi4 which
contradicts the statement. Then, there exists i ∈ {0, 1, 2, 3} such that i5 = i1 + i
fulfills D(J∪{i5})−{ij}(β) 6= 0 for all 1 ≤ j ≤ 4. �

We present now two technical results which are needed in Section 5.2.2:

Lemma B.10. Let (n,m) ∈ N2 with n > 1 such that n is multiple of m and m+ 1
is multiple of n− 1. Then (n,m) ∈ {(2, 1), (3, 1), (2, 2), (4, 2), (3, 3)}.

Proof. As n is multiple of m and m+ 1 is multiple of n− 1, then m ≤ n ≤ m+ 2.
For m ≥ 3, this inequality implies n = m. Thus, if m ≥ 4, then (m+1)/(m−1) < 2
and this leads to a contradiction because m+ 1 is a multiple of m− 1. Analyzing
the possible cases for m = 1, 2 we obtain the ordered pairs from the statement. �

Theorem B.11. Let J = {i1, i2, i3, i4} be a subset of A. For every root β ∈
K \ {0, 1} of DJ(x) there are at least three powers {βi1 , βi2 , βi3 , βi4} equal, if and
only if J is the affine image (J ′(×s))(+r) of an exceptional configuration J ′.

Proof. Consider β 6= 0, 1. The set {βi1 , βi2 , βi3 , βi4} has three elements equal if β
is a sj-th root of unity for some j ∈ {1, 2, 3, 4}, where s1 = gcd(i3 − i2, i4 − i2),
s2 = gcd(i4 − i1, i3 − i1), s3 = gcd(i4 − i1, i2 − i1), s4 = gcd(i3 − i1, i2 − i1).
Note that, if all the powers of β are equal, β is a s-th root of unity where s =
gcd(s1, s2, s3, s4) = gcd(i4 − i1, i3 − i1, i2 − i1). Moreover, note that if β is a sj-th
root of unity for j ∈ {1, 2, 3, 4}, then either βi4−i3 = 1 or βi2−i1 = 1, and both
equalities hold if and only if βs = 1.

By Lemma B.4, since every β 6= 0, 1 root of DJ satisfy βsj = 1 for some j ∈
{1, 2, 3, 4}, β has multiplicity 4 if βs = 1 and multiplicity 1 otherwise. Then, the
set of roots of DJ (counted with multiplicity) that make at least three βij equal are
at most 4s+ (i4− i3− s) + (i2− i1− s) = i4− i3 + i2− i1 + 2s. Also by Lemma B.2,
DJ has i4 + i3 − i2 − i1 nonzero roots. As every root of DJ makes three powers of
β equal,

i4 + i3 − i2 − i1 ≤ i4 − i3 + i2 − i1 + 2s,
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or equivalently i3 − i2 ≤ s. But as s divides i3 − i2, s = i3 − i2 and therefore
s1 = s4 = s. Thus, the only way to have three powers equal and one different is if β
is a s2-th or s3-th root of unity, and therefore i4+i3−i2−i1 ≤ 4s+(s2−s)+(s3−s).
As s2 ≤ i4 − i3, s3 ≤ i2 − i1 and 2s = 2i3 − 2i2, so

4s+ (s2 − s) + (s3 − s) ≤ i4 − i3 + i2 − i1 + 2s = i4 + i3 − i2 − i1.
Hence, all inequalities are, in fact, equalities.

Finally, we analyze the cases when this is possible, that is when s2 = i4− i3 and
s3 = i2− i1. As s2 = gcd(i4− i3, i3− i1) and s3 = gcd(i4− i2, i2− i1), this happens
if and only if i3 − i1 is a multiple of i4 − i3 and i4 − i2 is a multiple of i2 − i1.
Considering the integers n = i3−i1

s , m = i4−i3
s , then n is a multiple of m and (as

i3 − i2 = s) m + 1 = i4−i2
s is a multiple of n − 1 = i2−i1

s . By Lemma B.10, the
possible values for (n,m) are:

• (n,m) = (2, 1) in which case (i1, i2, i3, i4) = ((0, 1, 2, 3)(×s))(+i1).
• (n,m) = (3, 1) in which case (i1, i2, i3, i4) = ((0, 2, 3, 4)(×s))(+i1).
• (n,m) = (2, 2) in which case (i1, i2, i3, i4) = ((0, 1, 2, 4)(×s))(+i1).
• (n,m) = (4, 2) in which case (i1, i2, i3, i4) = ((0, 3, 4, 6)(×s))(+i1).
• (n,m) = (3, 3) in which case (i1, i2, i3, i4) = ((0, 2, 3, 6)(×s))(+i1).

As these are exactly the exceptional configurations under affine maps, this com-
pletes the proof. �

Appendix C. Computations

We presented several lemmas that require symbolic computations which can be
done using mathematical software. We have implemented these computations in
Sage [16] and we reproduce here the codes that we have used to check that the
claims are correct.

Computation C.1 (For Proposition 4.6).

sage: K.<c6,beta,delta,epsilon,x> = QQ[]

sage: f = c6*(x-1)**2*(x-beta)**2*(x^2+delta*x+epsilon)

sage: c1 = f.coefficient({x:1})

sage: c2 = f.coefficient({x:2})

sage: c3 = f.coefficient({x:3})

sage: c4 = f.coefficient({x:4})

sage: c5 = f.coefficient({x:5})

sage: I = Ideal(c1,c4,c5)

sage: beta*c2*c3 in I

True

Computation C.2 (For Lemma B.6).

sage: K.<y1,y2,y3,y4,y5,x1,x2,x3,x4,x5>=QQ[]

sage: M=matrix(4,5,[1,1,1,1,1,y1,y2,y3,y4,y5,x1,x2,x3,x4,x5,\

y1*x1,y2*x2,y3*x3,y4*x4,y5*x5])

sage: N = M.minors(4)

sage: I1 = Ideal(N); I2 = Ideal(N[0],N[-1]); I3 = Ideal(x2-x3,x2-x4)

sage: I2.quotient(Ideal((y4-y3)*(y4-y2)*(y3-y2))) == \

I1.intersection(I3)

True

Computation C.3 (For Lemma B.7).

sage: K.<y1,y2,y3,y4,x1,x2,x3,x4>=QQ[]

sage: M=matrix([[1,1,1,1],[y1,y2,y3,y4],[x1,x2,x3,x4],\

[y1*x1,y2*x2,y3*x3,y4*x4]])
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sage: M1=matrix([[1,1,1,1],[y1,y2,y3,y4],[x1,x2,x3,x4],\

[y1*y1*x1,y2*y2*x2,y3*y3*x3,y4*y4*x4]])

sage: M21=matrix([[1,1,1,1],[y1,y2,y3,y4],[x1,x2,x3,x4],\

[y1*y1*(y1-1)*x1,y2*y2*(y2-1)*x2,y3*y3*(y3-1)*x3,\

y4*y4*(y4-1)*x4]])

sage: M22=matrix([[1,1,1,1],[y1,y2,y3,y4],[y1*x1,y2*x2,y3*x3,\

y4*x4],[y1*y1*x1,y2*y2*x2,y3*y3*x3,y4*y4*x4]])

sage: I=Ideal(M.det(),M1.det(),M21.det()+M22.det())

sage: vandermonde=matrix([[1,1,1,1],[y1,y2,y3,y4],

[y1**2,y2**2,y3**2,y4**2],[y1**3,y2**3,y3**3,y4**3]]).det()*K

sage: I1=I.quotient(vandermonde)

sage: while I != I1:

I=I1

I1=I1.quotient(vandermonde)

sage: I.radical().quotient(Ideal(x1*x2*x3*x4))

Ideal (x4 - x3, x4 - x2, x4 - x1) of Multivariate Polynomial Ring

in y1, y2, y3, y4, x1, x2, x3, x4 over Rational Field

Computation C.4 (For Lemma B.8).

sage: K.<y1,y2,y3,y4,y5,x1,x2,x3,x4,x5>=QQ[]

sage: M=matrix([[1,1,1,1,1],[y1,y2,y3,y4,y5],[x1,x2,x3,x4,x5],

[y1*x1,y2*x2,y3*x3,y4*x4,y5*x5]])

sage: M1=matrix([[1,1,1,1],[y1,y2,y3,y4],[x1,x2,x3,x4],

[y1*y1*x1,y2*y2*x2,y3*y3*x3,y4*y4*x4]])

sage: I=Ideal(M.minors(4))+Ideal(M1.det())

sage: vandermonde=matrix([[1,1,1,1],[y1,y2,y3,y4],

[y1**2,y2**2,y3**2,y4**2],[y1**3,y2**3,y3**3, y4**3]]).det()*K

sage: I=I.quotient(Ideal(x1-x2,x1-x3))

sage: I2=I.quotient(vandermonde)

sage: while I != I2:

I=I2

I2=I2.quotient(vandermonde)

sage: M1(y1=y5,x1=x5).det() in I

True

sage: M1(y2=y5,x2=x5).det() in I

True

sage: M1(y3=y5,x3=x5).det() in I

True

sage: M1(y4=y5,x4=x5).det() in I

True

Computation C.5 (For Lemma B.9).

sage: K.<y1,y2,y3,y4,y5,x1,x2,x3,x4,x5,x>=QQ[]

sage: M0=matrix([[1,1,1,1],[y1,y2,y3,y4],[x1,x2,x3,x4],

[y1*x1,y2*x2,y3*x3,y4*x4]])

sage: M=matrix([[1,1,1,1,1],[y1,y2,y3,y4,y5],[x1,x2,x3,x4,x5],

[y1*x1,y2*x2,y3*x3,y4*x4,y5*x5]])

sage: I=Ideal(M0.det())

sage: I=I+Ideal(M(y5=y1,x5=x1).minors(4))

sage: I=I+Ideal(M(y5=y1+1,x5=x1*x).minors(4))

sage: I=I+Ideal(M(y5=y1+2,x5=x1*x**2).minors(4))

sage: I=I+Ideal(M(y5=y1+3,x5=x1*x**3).minors(4))

sage: I.quotient(Ideal((y1-y2)*(y1-y3)*(y1-y4)*(y2-y3)*(y2-y4)
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*(y3-y4)*x1*x4*x*(x-1)**4))

Ideal (x3 - x4, x2 - x4, x1 - x4) of Multivariate Polynomial Ring

in y1, y2, y3, y4, y5, x1, x2, x3, x4, x5, x over Rational Field

Acknowledgments

AD is supported by UBACYT 20020100100242, CONICET PIP 11220110100580
and ANPCyT 2013-1110, Argentina. MIH is supported by UBACyT 20020120100133,
CONICET PIP 0099/11 and ANPCyT 2013-1110. She is grateful to the Simons In-
stitute for the Theory of Computing, Berkeley, USA, where this work was developed.
LFT is supported by the Spanish Ministerio de Economı́a y Competitividad and by
the European Regional Development Fund (ERDF), under the project MTM2014-
54141-P. We would like to thank Alexander Esterov for useful comments. We are
also grateful to Florian Block for his enthusiasm to start this project and for his
participation at the early stages of this work.

References

[1] R. Bieri and J.R.J. Groves. The geometry of the set of characters induced by valuations. J.

Reine Angew. Math. 347 (1984), 168–195.

[2] F. Block. Counting algebraic curves with tropical geometry. Tropical geometry and integrable
systems, Contemp. Math. 580 (2012), 41–54.

[3] T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, R. R. Thomas. Computing tropical varieties.

J. Symbolic Comput. 42 (2007), no. 1–2, 54–73.
[4] A. Dickenstein, S. di Rocco, and R. Piene. Higher order duality and toric embeddings. Annales

de l’institut Fourier, 64 (2014), no. 1, 375–400.

[5] A. Dickenstein, M. Feichtner, and B. Sturmfels. Tropical discriminants. J. Amer. Math. Soc.
20 (2007), 1111–1133.

[6] A. Dickenstein, L. Tabera. Singular tropical hypersurfaces. Discrete Comput. Geom. 47

(2012), no. 2, 430–453.
[7] M. Einsiedler, M. Kapranov, and D. Lind. Non-Archimedean amoebas and tropical varieties.

J. Reine Angew. Math. 601 (2006), 139–157.
[8] A. Esterov. Characteristic classes of affine varieties and Plucker formulas for affine mor-

phisms. To appear: Journal of the European Mathematical Society, 2016.

[9] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants, and Multi-
dimensional Determinants. Birkhäuser Boston, Boston, MA (1994).
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