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Abstract. Braces were introduced by Rump to study non-degenerate in-

volutive set-theoretic solutions of the Yang–Baxter equation. We generalize

Rump’s braces to the non-commutative setting and use this new structure to
study not necessarily involutive non-degenerate set-theoretical solutions of the

Yang–Baxter equation. Based on results of Bachiller and Catino and Rizzo, we

develop an algorithm to enumerate and construct classical and non-classical
braces of small size up to isomorphism. This algorithm is used to produce a

database of braces of small size. The paper contains several open problems,

questions and conjectures.

Introduction

The Yang–Baxter equation first appeared in theoretical physics and statistical
mechanics in the works of Yang [42] and Baxter [4, 5] and it has led to several
interesting applications in quantum groups and Hopf algebras, knot theory, ten-
sor categories and integrable systems, see for example [27], [30] and [39]. In [14],
Drinfeld posed the problem of studying this equation from the set-theoretical per-
spective.

Recall that a set-theoretical solution of the Yang–Baxter equation is a pair (X, r),
where X is a set and

r : X ×X → X ×X, r(x, y) = (σx(y), τy(x)), x, y ∈ X,

is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).

Such a map r is usually called a braiding.
A solution (X, r) is said to be non-degenerate if the maps σx and τx are bijective

for each x ∈ X, and (X, r) is said to be involutive if r2 = idX×X . The seminal works
of Etingof, Schedler and Soloviev [15], and Gateva-Ivanova and Van den Bergh [24],
discussed algebraic and geometrical interpretations and introduced several struc-
tures associated with the class of non-degenerate involutive solutions. Such solu-
tions have been intensively studied, see for example [17, 18, 19], [21, 22, 23], [25, 26],
[20], [32, 34], [6], [10], [11], [13], [28], and [40].

It was in studying involutive solutions that Rump introduced in [34] the brace
structure. In [12], Cedó, Jespers and Okniński, defined a left brace as an abelian
group (A,+) with another group structure, defined via (a, b) 7→ ab, such that the
compatibility condition

a(b+ c) + a = ab+ ac

holds for all a, b, c ∈ A. This definition is equivalent to that of Rump.
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Many of the problems related to involutive solutions can be restated in terms of
braces. Two prominent examples are the following:

• Is every finite solvable group an involutive Yang–Baxter group? Recall
that an involutive Yang–Baxter group is a group isomorphic to the group
generated by the set {σx : x ∈ X}, where

r : X ×X → X ×X, r(x, y) = (σx(y), τy(x)),

is a non-degenerate involutive solution of the Yang–Baxter equation. Based
on a sketch of proof of Rump [36], Bachiller [2] found a solvable finite group
that is not an involutive Yang–Baxter group.
• Are there good methods to contruct all finite non-degenerate involutive

solutions to the Yang–Baxter equation? Brute force seems not to be good
enough. In [3], Bachiller, Cedó and Jespers, give a method to construct all
finite solutions of a given size. For it to work, one needs the classification
of left braces.

Non-involutive solutions were studied by Soloviev [38] and Lu, Yan and Zhu [29].
Such solutions have applications in knot theory, since they produce powerful knot
and virtual knots invariants, see for example [31] and the references therein. The
following question naturally arises: Is there an algebraic structure similar to the
brace structure useful for studying non-involutive solutions? This paper introduces
the notion of skew brace and provides an affirmative answer to the above question.
Remarkably, this new structure provides the right algebraic framework to study
involutive and non-involutive braidings and allows us to restate the main results
of [29], [38] and [41].

As in the case of involutive solutions, the classification of finite skew braces is
one of the main steps needed for constructing finite solutions of the Yang–Baxter
equation. One of the main results of this paper is an explicit classification of classical
and skew braces of small size. An algorithm to construct all non-isomorphic classical
and skew braces of a given size is described. This heavily depends on results of
Bachiller [2] and Catino and Rizzo [9]. This algorithm was used to build a database
of classical and skew braces, a good source of examples that gives an explicit and
direct way to approach some of the problems related to the Yang–Baxter equation.
The database is available as a library for GAP [16] and Magma [8] immediately from
the authors on request.

The paper is organized as follows. In Section 1 we extend braces to the non-
commutative setting by defining skew braces, and state their main properties. We
prove in Proposition 1.11 that skew braces are equivalent to bijective 1-cocycles.
Section 2 is devoted to a study of quotients of skew braces. It is worth mentioning
that the proofs in Section 1 and 2 are basically the same as for classical braces.
In Section 3 the connection between skew braces and the Yang–Baxter equation is
explored. In Theorem 3.1 we generalize a result of Rump and produce a canonical
solution for each skew left brace. Some reconstruction theorems similar to those
of Etingof, Schedler and Soloviev [15], Lu, Yan and Zhu [29] and Soloviev [38]
are given at the end of this section. The method for constructing classical and
skew braces is given in Section 4. Section 5 discusses the algorithm that produces
and enumerates classical and skew left braces and some consequences. Problems,
questions and conjectures are discussed in Section 6.
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1. Skew left braces

Braces were introduced by Rump in [34] to study set-theoretical involutive solu-
tions of the Yang–Baxter equation. The following definition generalizes braces to
the non-commutative setting.

Definition 1.1. A skew left brace is a group A (written multiplicatively) with an
additional group structure given by (a, b) 7→ a ◦ b such that

(1.1) a ◦ (bc) = (a ◦ b)a−1(a ◦ c)
holds for all a, b, c ∈ A, where a−1 denotes the inverse of a with respect to the group
structure given by (a, b) 7→ ab.

Of course Rump’s left braces are examples of skew braces. These are braces
where the group (A, ·) is abelian.

Definition 1.2. A homomorphism between two skew left braces A and B is a map
f : A → B such that f(ab) = f(a)f(b) and f(a ◦ b) = f(a) ◦ f(b) for all a, b ∈ A.
The kernel of f is

ker f = {a ∈ A : f(a) = 1},
where 1 denotes the identity of the group (A, ·) with multiplication a · b = ab for all
a, b ∈ A.

Example 1.3. Let (A, ·) be a group. Then A is a skew left brace with a ◦ b = ab
for all a, b ∈ A. Similarly, a ? b = ba defines a skew left brace structure over A.
These braces are isomorphic if and only if (A, ·) is abelian.

Example 1.4. Let A and B be groups and let α : A → Aut(B) be a group homo-
morphism. Then A×B has a skew left brace structure given by

(a, b)(a′, b′) = (aa′, bb′),

(a, b) ◦ (a′, b′) = (aa′, bαa(b′)),

where a, a′ ∈ A and b, b′ ∈ B.

Example 1.5. Let A and B be groups and let α : A → Aut(B) be a group homo-
morphism. Assume that A is abelian. Then A × B has a skew left brace structure
given by

(a, b)(a′, b′) = (aa′, bαa(b′)),

(a, b) ◦ (a′, b′) = (aa′, bb′),

where a, a′ ∈ A and b, b′ ∈ B.

Example 1.6. This example is motivated by the paper of Weinstein and Xu on the
Yang–Baxter equation, see [41]. Let A be a group and A+, A− be subgroups of A
such that A admits a unique factorization as A = A+A−. Thus each a ∈ A can be
written in a unique way as a = a+a− for some a+ ∈ A+ and a− ∈ A−. The map

A+ ×A− → A, (a+, a−) 7→ a+(a−)−1,

is bijective. Using this map we transport the group structure of the direct product
A+ ×A− into the set A. For a = a+a− ∈ A and b = b+b− ∈ A let

a ◦ b = a+ba−.

Then (A, ◦) is a group. Furthermore, A is a skew left brace.



4 L. GUARNIERI AND L. VENDRAMIN

Lemma 1.7. Let A be a skew left brace. Then the following properties hold:

(1) 1 = 1◦, where 1◦ denotes the unit of the group (A, ◦).
(2) a ◦ (b−1c) = a(a ◦ b)−1(a ◦ c) for all a, b, c ∈ A.
(3) a ◦ (bc−1) = (a ◦ b)(a ◦ c)−1a for all a, b, c ∈ A.

Proof. The first claim follows from (1.1) with c = 1◦. To prove the second claim
let d = bc. Then (1.1) becomes a ◦ d = (a ◦ b)a−1(a ◦ b−1d) and the claim follows.
The third claim is proved similarly. �

Remark 1.8. Let A be a skew left brace. For each a ∈ A the map

λa : A→ A, b 7→ a−1(a ◦ b),

is bijective with inverse λ−1a : A→ A, b 7→ a ◦ (ab), where a is the inverse of a with
respect to ◦. It follows that

a ◦ b = aλa(b), ab = a ◦ λ−1a (b)

hold for all a, b ∈ A.

The following proposition extends results of Rump [34] and Gateva-Ivanova into
the non-commutative setting, see [17, Proposition 3.3].

Proposition 1.9. Let A be a set and assume that A has two operations such
that (A, ·) and (A, ◦) are groups. Assume that λ : A → SA, a 7→ λa, is given by
λa(b) = a−1(a ◦ b). The following are equivalent:

(1) A is a skew left brace.
(2) λa◦b(c) = λaλb(c) for all a, b, c ∈ A.
(3) λa(bc) = λa(b)λa(c) for all a, b, c ∈ A.

Proof. Let us first prove that (1) =⇒ (2). Let a, b, c ∈ A. Since A is a brace and
a ◦ b−1 = a(a ◦ b)−1a by Lemma 1.7,

λaλb(c) = a−1(a ◦ λb(c)) = a−1(a ◦ (b−1(b ◦ c)))
= a−1(a ◦ b−1)a−1(a ◦ b ◦ c) = (a ◦ b)−1(a ◦ b ◦ c) = λa◦b(c).

Now we prove (2) =⇒ (3). Since ab = a ◦ λ−1a (b) for all a, b ∈ A,

λa(bc) = λa(b ◦ λ−1b (c)) = a−1(a ◦ b ◦ λ−1b (c))

= a−1(a ◦ b)(a ◦ b)−1(a ◦ b ◦ λ−1b (c))

= λa(b)λa◦bλ
−1
b (c) = λa(b)λaλbλ

−1
b (c) = λa(b)λa(c).

Finally we prove that (3) =⇒ (1). Let a, b, c ∈ A. Then

a−1(a ◦ (bc)) = λa(bc) = λa(b)λa(c) = a−1(a ◦ b)a−1(a ◦ c),

and hence a ◦ (bc) = (a ◦ b)a−1(a ◦ c). �

Corollary 1.10. Let A be a skew left brace and

λ : (A, ◦)→ Aut(A, ·), a 7→ λa(b) = a−1(a ◦ b).

Then λ is a group homomorphism.

Proof. It follows immediately from Proposition 1.9. �
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Let A and G be groups and assume that G×A→ A, (g, a) 7→ g ·a, is a left action
of G on A by automorphisms. A bijective 1-cocyle is a bijective map π : G → A
such that

(1.2) π(gh) = π(g)(g · π(h))

for all g, h ∈ G.

Proposition 1.11. Over any group (A, ·) the following data are equivalent:

(1) A group G and a bijective 1-cocycle π : G→ A.
(2) A skew left brace structure over A.

Proof. Consider on A a second group structure given by

a ◦ b = π(π−1(a)π−1(b))

for all a, b ∈ A. Since π is a 1-cocycle and G acts on A by automorphisms,

a ◦ (bc) = π(π−1(a)π−1(bc)) = a(π−1(a) · (bc))
= a((π−1(a) · b)(π−1(a) · c)) = (a ◦ b)a−1(a ◦ c)

holds for all a, b, c ∈ A.
Conversely, assume that A is a skew left brace. Set G = A with the multiplication

(a, b) 7→ a◦b and π = id. By Corollary 1.10, a 7→ λa, is a group homomorphism and
hence G acts on A by automorphisms. Then (1.2) holds and therefore π : G → A
is a bijective 1-cocycle. �

Remark 1.12. The construction of Proposition 1.11 is categorical.

2. Ideals and quotients

Definition 2.1. Let A be a skew left brace. A normal subgroup I of (A, ◦) is said
to be an ideal of A if Ia = aI and λa(I) ⊆ I for all a ∈ A.

Example 2.2. Let f : A → B be a skew brace homomorphism. Then ker f is an
ideal of A since

f(λa(x)) = λf(a)(f(x)) = 1

for all x ∈ ker f and a ∈ A.

Lemma 2.3. Let A be a skew left brace and I ⊆ A be an ideal. Then the following
properties hold:

(1) I is a normal subgroup of (A, ·).
(2) a ◦ I = aI for all a ∈ A.
(3) I and A/I are skew braces.

Proof. Let a, b ∈ I. Then a−1b = λa(a ◦ b) ∈ I and hence I is a subgroup of (A, ·).
Remark 1.8 implies

aI = a ◦ I = I ◦ a = Ia

for all a ∈ A. Thus I is a normal subgroup of (A, ·) and hence it follows that I is
a skew left brace. Since the quotient groups A/I for both operations are the same,
A/I is a skew left brace. �

Definition 2.4. Let A be a skew left brace. The socle of A is

Soc(A) = {a ∈ A : a ◦ b = ab, b(b ◦ a) = (b ◦ a)b for all b ∈ A}.
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Lemma 2.5. Let A be a skew left brace. Then Soc(A) is an ideal of A contained
in the center of (A, ·).

Proof. Let us first prove that Soc(A) is a subgroup of (A, ◦). Clearly 1 ∈ Soc(A).
Let a, a′ ∈ A and b ∈ A. Then a ◦ a′ ∈ Soc(A) since

(a ◦ a′) ◦ b = a ◦ (a′ ◦ b) = a ◦ (a′b) = a(a′b) = (aa′)b = (a ◦ a′)b.
Now since a = a−1 ∈ Soc(A) and b = (aa−1) ◦ b = a ◦ (a−1 ◦ b) = a(a−1 ◦ b), it
follows that ab = a−1b = a−1 ◦ b = a ◦ b. Hence Soc(A) is a subgroup of (A, ◦).

A direct calculation proves that

(2.1) λb(a) = b ◦ a ◦ b for all a ∈ Soc(A) and b ∈ A.

Then it follows that Soc(A) ⊆ {a ∈ A : a ◦ b = ab, λb(a) ◦ b = b ◦ a for all b ∈ A}.
Let a ∈ Soc(A) and b, c ∈ A. Then

λcλb(a) = λc◦b(a) = (c ◦ b) ◦ a ◦ c ◦ c = c ◦ λb(a) ◦ c,
λb(a)c = b−1(b ◦ a)c = (b ◦ a)b−1c = b ◦ (a(b ◦ c)) = b ◦ a ◦ b ◦ c = λb(a) ◦ c.

Hence λb(Soc(A)) ⊆ Soc(A) for all b ∈ A and Soc(A) is a normal subgroup of (A, ◦)
by (2.1).

Now we prove that Soc(A) is central in (A, ·). Let a ∈ Soc(A), b ∈ A and c = b.
Since

c ◦ (ba) = (c ◦ b)c−1(c ◦ a) = c−1(c ◦ a) = (c ◦ a)c−1 = c ◦ (ab),

it follows that ba = ab. �

3. Braces and the Yang–Baxter equation

We turn our attention to the connection between skew left braces and set-
theoretic solutions of the Yang–Baxter equation. The following theorem generalizes
a result of Rump to the non-commutative setting, see [12, Lemma 2].

Theorem 3.1. Let A be a skew left brace. Then

(3.1) rA : A×A→ A×A, rA(a, b) = (λa(b), λ−1λa(b)
((a ◦ b)−1a(a ◦ b)),

is a non-degenerate solution of the Yang–Baxter equation. Furthermore, rA is in-
volutive if and only if ab = ba for all a, b ∈ A.

Remark 3.2. Recall from [29] that a braiding operator over a group (A, ◦) with
multiplication m : (a, b) 7→ a ◦ b is a bijective map r : A×A→ A×A such that

(1) r(a ◦ b, c) = (id×m)r12r23(a, b, c) for all a, b, c ∈ A,
(2) r(a, b ◦ c) = (m× id)r23r12(a, b, c) for all a, b, c ∈ A,
(3) r(a, 1) = (1, a) and r(1, a) = (a, 1) for all a ∈ A, and
(4) mr(a, b) = a ◦ b for all a, b ∈ A.

Braiding operators are equivalent to bijective 1-cocycles by [29, Theorem 2], and
bijective 1-cocycles are equivalent to skew left braces by Proposition 1.11. One can
prove that (3.1) is the braiding operator corresponding to the skew left brace A
under this equivalence.

Proof of Theorem 3.1. Every braiding operator is a non-degenerate solution of the
Yang–Baxter equation by [29, Corollary 3]. Thus it is enough to prove that rA is a
braiding operator on (A, ◦). Set r = rA. Since λ−1a (b) = a ◦ (ab) for all a, b ∈ A,

λ−1λa(b)
((a ◦ b)−1a(a ◦ b)) = λa(b) ◦ (λa(b)(a ◦ b)−1a(a ◦ b)) = λa(b) ◦ (a ◦ b)
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holds for all a, b ∈ A. Thus mr(a, b) = a ◦ b for all a, b ∈ A. Clearly r(a, 1) = (1, a)
and r(1, a) = (a, 1) for all a ∈ A. Let a, b, c ∈ A. By Corollary 1.10 one obtains

(id×m)r12r23(a, b, c) = (id×m)r12(a, λb(c), λb(c) ◦ b ◦ c)

= (id×m)(λaλb(c), λaλb(c) ◦ a ◦ λb(c), λb(c) ◦ b ◦ c)

= (λaλb(c), λaλb(c) ◦ a ◦ b ◦ c) = r(a ◦ b, c).
From Remark 1.8 and Proposition 1.9 one obtains that

λa(b ◦ c) = λa(b)λa◦b(c)

holds for all a, b, c ∈ A. From this formula one deduces that

λa(b) ◦ λ
λa(b)◦a◦b(c) = λa(b) ◦ λ−1λa(b)

λaλb(c) = λa(b)λa◦b(c) = λa(b ◦ c).

holds for all a, b, c ∈ A. Then

(m× id)r23r12(a, b, c) = (m× id)r23(λa(b), λa(b) ◦ a ◦ b, c)

= (m× id)(λa(b), λ
λa(b)◦a◦b(c), λλa(b)◦a◦b ◦ λa(b) ◦ a ◦ b ◦ c)

= (λa(b) ◦ λ
λa(b)◦a◦b(c), λλa(b)◦a◦b ◦ λa(b) ◦ a ◦ b ◦ c)

= (λa(b ◦ c), λa(b ◦ c) ◦ a ◦ b ◦ c) = r(a, b ◦ c).
for all a, b, c ∈ A. �

Corollary 3.3. Let A be a skew left brace and X ⊆ A be a subset of A. Assume
bλa(x)b−1 ∈ X for all x ∈ X and a, b ∈ A. Then rA|X×X is a non-degenerate
solution of the Yang–Baxter equation.

Proof. Clearly λa(x) ∈ X and bxb−1 ∈ X for all a, b ∈ A and x ∈ X. Then it
follows that λ−1λx(y)

((x ◦ y)−1x(x ◦ y)) ∈ X for all x, y ∈ X. Now Theorem 3.1

implies the claim. �

Example 3.4. Let A and B be groups and α : A→ Aut(B) be a group homomor-
phism. The skew left brace of Example 1.4 yields the following solution:

r : (A×B)× (A×B)→ (A×B)× (A×B),

r((a1, b1)(a2, b2)) = ((a2, αa1(b2)), (a−12 a1a2, b
−1
2 αa−1

2
(b1αa1(b2)))).

Example 3.5. Let A be an abelian group, B be a group and α : A → Aut(B) be
a group homomorphism. The skew left brace of Example 1.5 yields the following
solution:

r : (A×B)× (A×B)→ (A×B)× (A×B),

r((a1, b1)(a2, b2)) = ((a2, αa−1
1

(b2)), (a1, αa−1
1

(b−12 )b1b2)).

Example 3.6. Let A be the skew left brace constructed in Example 1.6. The solu-
tion of Theorem 3.1 is similar to the solution constructed by Weinstein and Xu in
terms of factorizable Poisson groups [41, Theorem 9.2]. The latter is τrAτ , where
rA is the solution of Theorem 3.1 and τ(x, y) = (y, x) for all x, y.

Based on [29], for each skew left brace A we relate the solution r given by
Theorem 3.1 to the so-called Venkov solution, i.e.

s(a, b) = (b, b−1ab), a, b ∈ A.
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Proposition 3.7. Let A be a skew left brace. For each n ∈ N the map Tn given by

Tn(a1, . . . , an−1, an) = (a1, λa1(a2), λa1◦a2(a3), . . . , λa1◦···◦an−1
(an))

is invertible and satisfies

(3.2) Tnri,i+1 = si,i+1Tn

for all n ≥ 2 and i ∈ {1, . . . , n−1}, where ri,i+1 and si,i+1 denote the actions of the
braid group Bn on An = A× · · · ×A (n-times) induced from r and s respectively.

Proof. A direct calculation shows that Tn is invertible with inverse

T−1n (a1, . . . , an) = (a1, λ
−1
a1 (a2), λ−1a1a2(a3), . . . , λ−1a1...an−1

(an)).

To prove (3.2) we proceed by induction on n. The case n = 2 follows from a
direct calculation since

T2r12(a, b) = T2(λa(b), λ−1λa(b)
((a ◦ b)−1a(a ◦ b))) = (λa(b), (a ◦ b)−1a(a ◦ b)),

= (λa(b), λa(b)−1aλa(b)) = s12(a, λa(b)) = s12T2(a, b)

holds for all a, b ∈ A. So assume that the claim holds for n−1. Since Tnr1,2 = s1,2Tn
is the same as T2r = sT2, we need to prove (3.2) for all i ∈ {2, . . . , n− 1}. Write

Tn = Un(id× Tn−1),

where
Un(a1, . . . , an−1, an) = (a1, λa1(a2), . . . , λa1(an−1), λa1(an)).

Since each λa is an automorphism of (A, ·), it follows that Unsi,i+1 = si,i+1Un for
i ≥ 2 and hence (3.2) holds for all i ≥ 2. �

Remark 3.8. Proposition 3.7 also follows from [28, Proposition 6.2]. The map Tn
is the so-called guitar map, see for example [28, §6].

The universal construction of Lu, Yan and Zhu, given in [29, Theorem 9] can be
restated in the language of skew left braces. This was done by Rump in the case of
involutive solutions, see [34]. Recall that the enveloping (or structure) group of a
solution (X, r) is the group G(X, r) generated by the elements of X with relations

x ◦ y = σx(y) ◦ τy(x), x, y ∈ X.
Let ι : X → G(X, r) be the canonical map.

Theorem 3.9. Let X be a set, r : X ×X → X ×X, r(x, y) = (σx(y), τy(x)) be a
non-degenerate solution of the Yang–Baxter equation. Then there exists a unique
skew left brace structure over G(X, r) such that its associated solution rG satisfies

rG(ι× ι) = (ι× ι)r.
Furthermore, if B is a skew left brace and f : X → B is a map such that (f×f)r =
rB(f × f), then there exists a unique group homomorphism φ : G(X, r) → B such
that f = φι and (φ× φ)rG = rB(φ× φ).

Proof. The claim follows from the universal construction of [29, Theorem 9] and
the equivalence between braiding operators and skew braces, see Remark 3.2. �

The following corollary is essentially [38, Theorem 2.6].

Corollary 3.10. Let (X, r) be a finite non-degenerate solution of the Yang–Baxter
equation. Then G(X, r)/Soc(G(X, r)) is a finite skew left brace.
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Proof. It follows from Theorem 3.9 and Lemma 2.5. �

4. Constructing skew braces

Let A be a group. The holomorph of A is the group Hol(A) = Aut(A)nA, where
the product is given by

(f, a)(g, b) = (fg, af(b))

for all a, b ∈ A and f, g ∈ Aut(A). Any subgroup H of Hol(A) acts on A

(4.1) (f, x) · a = π2((f, x)(id, a)) = xf(a), a, x ∈ A, f ∈ Aut(A),

where π2 : Hol(A)→ A, (f, a) 7→ a. In particular Hol(A) acts transitively on A and
the stabilizer of any a ∈ A is isomorphic to Aut(A).

Recall that a subgroup H of Hol(A) is regular if for each a ∈ A there exists a
unique (f, x) ∈ H such that xf(a) = 1. The following result is well-known.

Lemma 4.1. Let A be a group and H be a regular subgroup of Hol(A). Then
π2|H : H → A, (f, a) 7→ a, is bijective.

Proof. We first prove that π2|H is injective. Let (f, a), (g, b) ∈ H be such that
π2(f, a) = π2(g, b). Then a = b. Since H is a subgroup,

(f, a)−1 = (f−1, f−1(a−1)) ∈ H, (g, a)−1 = (g−1, g−1(a−1)) ∈ H,

and hence f = g since f−1(a)f−1(a−1) = g−1(a)g−1(a−1) = 1 and H is a regular
subgroup.

Now we prove that π2|H is surjective. Let a ∈ A. The regularlity of H implies
the existence of an automorphism f ∈ Aut(A) such that (f, f(a−1)) ∈ H. Then
(f−1, a) ∈ H and the claim follows. �

The following theorem goes back to Bachiller [2]. The proof in our case is the
same as for braces. It is a generalization of a result of Catino and Rizzo [9].

Theorem 4.2. Let A be skew left brace. Then {(λa, a) : a ∈ A} is a regular
subgroup of Hol(A, ·). Conversely, if (A, ·) is a group and H is a regular subgroup
of Hol(A, ·), then A is a skew left brace with (A, ◦) ' H, where

a ◦ b = af(b)

and (π2|H)−1(a) = (f, a) ∈ H.

Proof. Since λ is a group homomorphism and aλa(b) = a ◦ b for all a, b ∈ A, it
follows that {(λa, a) : a ∈ A} is a subgroup of Hol(A, ·). Since (A, ◦) is a group,
the regularlity also follows.

Assume now that H is a regular subgroup. By Lemma 4.1, π2|H is bijective.
Use the bijection π2|H to transport the product of H into A:

a ◦ b = π2|H
(
(π2|H)−1(a)(π2|H)−1(b)

)
= af(b),

where a, b ∈ A and (π2|H)−1(a) = (f, a) ∈ H. Then (A, ◦) is a group and A is a
skew left brace since

a ◦ (bc) = af(bc) = af(b)f(c) = af(b)a−1af(c) = (a ◦ b)a−1(a ◦ c)

holds for all a, b, c ∈ A. �
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Proposition 4.3. Let A be a group. There exists a bijective correspondence between
skew left brace structures over A and regular subgroups of Hol(A). Moreover, iso-
morphic skew braces structures over A correspond to conjugate subgroups of Hol(A)
by elements of Aut(A).

Proof. Assume that the group A has two skew left brace structures given by (a, b) 7→
a ◦ b and (a, b) 7→ a × b and that φ ∈ Aut(A, ·) satisfies φ(a ◦ b) = φ(a) × φ(b) for
all a, b ∈ A. We claim that {(λa, a) : a ∈ A} and {(µa, a) : a ∈ A}, where
λa(b) = a−1(a ◦ b) and µa(b) = a−1(a× b), are conjugate by φ. Since

φλaφ
−1(b) = φ(a−1(a ◦ φ−1(b)) = φ(a)−1(φ(a)× b) = µφ(a)(b),

one obtains that φ(λa, a)φ−1 = (µφ(a), φ(a)) and hence the claim follows.
Conversely, let H and K be regular subgroups of Hol(A) and asssume that

there exists φ ∈ Aut(A, ·) such that φ−1Hφ = K. Let (f, a) = (π2|H)−1(a) ∈ H,
(g, a) = (π2|K)−1(a) ∈ K and write a ◦ b = af(b) and a × b = ag(b). Since
φ(f, a)φ−1 = (φfφ−1, φ(a)) ∈ K, it follows that (π2|K)−1(φ(a)) = (φfφ−1, φ(a)).
Then, since φ ∈ Aut(A, ·),

φ(a)× φ(b) = φ(a)(φfφ−1)(φ(b)) = φ(a)φ(f(b)) = φ(af(b)) = φ(a ◦ b)

and hence the skew left braces corresponding to H and K are isomorphic. �

5. Computational results

We first present the algorithm used to enumerate skew left brace structures over
a given group A. The algorithm uses Theorem 4.2.

Algorithm 5.1. Let A be a finite group. To construct all skew left brace structures
over A we proceed as follows:

(1) Compute the holomorph Hol(A) of A.
(2) Compute the list of regular subgroups of Hol(A) of order |A| up to conjuga-

tion by elements of Aut(A).
(3) For each representative H of regular subgroups of Hol(A) construct the map

p : A → H given by a 7→ (f, f(a)−1), where (f, f(a)−1) ∈ H. The triple
(H,A, p : A→ H) yields a skew left brace structure over A with multiplica-
tion given by a ◦ b = p−1(p(a)p(b)) for all a, b ∈ A.

Remark 5.2. To enumerate all skew left brace structures over A the third step of
Algorithm 5.1 is not needed.

Remark 5.3. Recall that a left brace is an abelian group (A,+) with another group
structure, defined via the multiplication (a, b) 7→ ab such that a(b+ c)+a = ab+ac
holds for all a, b, c ∈ A. Left braces with additive group isomorphic to a given
group A can be constructed applying Algorithm 5.1 to the abelian group A. In the
second step of Algorithm 5.1 it is enough to compute the list of regular solvable
subgroups of Hol(A), since the multiplicative group of a left brace is solvable by [15,
Proposition 2.5].

Algorithm 5.1 was implemented both in GAP and Magma with different perfor-
mances and were run on a Intel(R) Core(TM) i5-4440 CPU @3.10GHz with 16gb
of RAM, under Linux.



SKEW BRACES AND THE YANG–BAXTER EQUATION 11

5.1. Skew left braces. For n ∈ N let c(n) be the number of non-isomorphic skew
left braces of size n.

The number of skew left braces of size n ≤ 30 has been determined using Algo-
rithm 5.1. Table 5.1 shows some values of c(n). The calculation took about twenty
minutes.

Table 5.1. The number of non-isomorphic skew left braces.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
c(n) 1 1 1 4 1 6 1 47 4 6 1 38 1 6 1
n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
c(n) 1605 1 49 1 43 8 6 1 855 4 6 101 29 1 36

5.2. Left braces. For n ∈ N let b(n) be the number of non-isomorphic left braces
of size n.

The number of left braces (up to isomorphism) of size n ≤ 120 has been deter-
mined using Algorithm 5.1. Table 5.3 shows some values of b(n) and Table 5.2 gives
runtimes for our Magma implementation for some examples. The construction of
left braces requires considerably more CPU time, see Table 5.4 for some examples.

Table 5.2. Some runtimes for enumerating left braces of size n.

n CPU time b(n)
16 1 hour 357
48 18 hours 1708
54 5 minutes 80
72 1 hour 489
80 17 hours 1985

100 15 secs 51
108 28 hours 494
112 12 hours 1671

With current computational resources, we were not able to compute the number
of non-isomorphic left braces of orders 32, 64, 81 and 96.

5.3. Two-sided left braces (radical rings). Recall that a brace B is a two-sided
brace if (a + b)c + c = ac + bc holds for all a, b, c ∈ B. Two-sided braces are in
bijective correspondence with radical rings [33]. Recall that a non-zero radical ring
is a ring R without identity such that for each x ∈ R there is y ∈ R such that
x+ y + xy = 0. Assume that R is a radical ring. Then the circle operation,

a ◦ b = ab+ a+ b, a, b ∈ R,
makes (R,+, ◦) into a two-sided brace. Conversely, if A is a two-sided brace, the
operation a ∗ b = ab− a− b, a, b ∈ A makes (A,+, ∗), into a radical ring.

To test whether a left brace is a two-sided brace one has the following lemma of
Gateva-Ivanova, see [17, Corollary 3.5].

Lemma 5.4 (Gateva-Ivanova). Let A be a left brace. Then A is a two-sided brace
if and only if

bcλ−1abc(c) = cλ−1ac (λa(b)c)
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Table 5.3. The number of non-isomorphic left braces.

n 1 2 3 4 5 6 7 8 9 10 11 12
b(n) 1 1 1 4 1 2 1 27 4 2 1 10
n 13 14 15 16 17 18 19 20 21 22 23 24
b(n) 1 2 1 357 1 8 1 11 2 2 1 96
n 25 26 27 28 29 30 31 32 33 34 35 36
b(n) 4 2 37 9 1 4 1 ? 1 2 1 46
n 37 38 39 40 41 42 43 44 45 46 47 48
b(n) 1 2 2 106 1 6 1 9 4 2 1 1708
n 49 50 51 52 53 54 55 56 57 58 59 60
b(n) 4 8 1 11 1 80 2 91 2 2 1 28
n 61 62 63 64 65 66 67 68 69 70 71 72
b(n) 1 2 11 ? 1 4 1 11 1 4 1 489
n 73 74 75 76 77 78 79 80 81 82 83 84
b(n) 1 2 5 9 1 6 1 1985 ? 2 1 34
n 85 86 87 88 89 90 91 92 93 94 95 96
b(n) 1 2 1 90 1 16 1 9 2 2 1 ?
n 97 98 99 100 101 102 103 104 105 106 107 108
b(n) 1 8 4 51 1 4 1 106 2 2 1 494
n 109 110 111 112 113 114 115 116 117 118 119 120
b(n) 1 6 2 1671 1 6 1 11 11 2 1 395

Table 5.4. Some runtimes for constructing left braces of size n.

n CPU time b(n)
16 3 hours 357
54 40 minutes 80
72 24 hours 489

112 5 days 1671

for all a, b, c ∈ A.

For n ∈ N let t(n) be the number of non-isomorphic two-sided braces of size n.
Using the database of left braces constructed with Algorithm 5.1 and Lemma 5.4
one computes t(n). Table 5.5 shows the value of t(n) for n ≤ 24.

Table 5.5. The number of non-isomorphic two-sided braces.

n 1 2 3 4 5 6 7 8 9 10 11 12
t(n) 1 1 1 4 1 1 1 22 4 1 1 4
n 13 14 15 16 17 18 19 20 21 22 23 24
t(n) 1 1 1 221 1 4 1 4 1 1 1 22

Remark 5.5. For information on square-free two-sided braces, see [12]. These braces
are defined by nilpotent groups of class ≤ 2.
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6. Further questions

In this section we collect some questions and conjectures that appear naturally
after inspecting Table 5.3.

6.1. Left braces. We first collect some problems and conjectures related to the
number of left braces.

Problem 6.1. Compute b(32), b(64), b(81) and b(96).

Table 5.3 suggests the following conjectures.

Conjecture 6.2. Let p > 3 be a prime number. Then

b(4p) =

{
11 if m ≡ 1 mod 4,

9 if m ≡ 3 mod 4.

Conjecture 6.3. Let p > 3 be a prime. Then

b(9p) =


14 if p ≡ 1 mod 9,

4 if p ≡ 2, 5 mod 9,

11 if p ≡ 4, 7 mod 9.

Conjecture 6.4. Let p, q be prime numbers such that p < q and q 6≡ 1 mod p.
Then b(p2q) = 4.

We have used [7] and computer calculations to show that Conjectures 6.2 and 6.3
are true up to p = 997. In [37], Agata Smoktunowicz proved that Conjecture 6.4 is
true.

6.2. Quaternionic braces. We now consider an important family of braces. Re-
call that for m ∈ N the generalized quaternion group is the group

Q4m = 〈a, b : am = b2, a2m = 1, b−1ab = a−1〉.
Definition 6.5. A brace is a quaternion brace if its multiplicative group is iso-
morphic to some quaternion group.

Conjecture 6.6. For m ∈ N let q(4m) be the number of isomorphism classes of
quaternion braces of size 4m. Then for m > 2

q(4m) =


2 if m is odd,

7 if m ≡ 0 mod 8,

9 if m ≡ 4 mod 8,

6 if m ≡ 2 mod 8 or m ≡ 6 mod 8.

We have checked Conjecture 6.6 for all m ≤ 512. It seems natural to ask the
following questions.

Question 6.7. Which finite abelian groups appear as the additive group of a quater-
nion brace?

For m ∈ {2, . . . , 512} the additive group of a quaternion brace of size m is
isomorphic to one of the following groups:

Z4m, Z2m × Z2, Zm × Z2 × Z2, Zm × Z4, Zm/2 × Z2 × Z2 × Z2.

By inspection, one sees that the groups Zm×Z2
2 appear whenever m ≡ 2, 4, 6 mod 8

and the groups Zm × Z4 and Zm/2 × Z3
2 appear whenever m ≡ 4 mod 8.
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Question 6.8. For m > 2 let A be a finite abelian group size 4m. Compute the
number of isomorphism classes of quaternion braces of size 4m with additive group
isomorphic to A.

In [3, §5] quaternion braces of size 2k are mentioned as an important class of
braces which could be useful to classify a certain family of involutive non-degenerate
solutions of the Yang–Baxter equation. Conjecture 6.6 implies the following:

Conjecture 6.9. There are seven classes of isomorphism of quaternion braces of
size 2k for k > 4.

Conjecture 6.9 was verified for all k ∈ {5, 6, 7, 8, 9}. Table 6.1 sums up our
findings related to this important subclass of braces.

Table 6.1. Number of braces with multiplicative group isomor-
phic to the quaternion group Q2k with k > 4.

Additive Group Number of Braces
Z2k 1

Z2k−1 × Z2 6

Remark 6.10. The classification of left braces over cyclic groups was done by Rump
in [35]. He proved that if a left brace A has additive group isomorphic to Z/pk,
where p > 2 is a prime number, then (A, ·) ' Z/pk. According to [3], the converse
holds for all p. In [1], Bachiller classified left braces of size p2 and p3, where p is a
prime number. The techniques used in these papers might prove useful to address
the questions, problems and conjectures in this section.
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