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Abstract

We show that the action of the Lie algebra HH1(A) of outer derivations of an
associative algebra A on the Hochschild cohomology HH•(A) of A given by the
Gerstenhaber bracket can be computed in terms of an arbitrary projective resolution
of A as an A-bimodule, without having recourse to comparison maps between the
resolution and the bar resolution.

In his classic paper On the cohomology structure of an associative ring [5], Murray
Gerstenhaber introduced a Lie algebra structure on the Hochschild cohomology HH•(A)
of an associative algebra A. This structure played a role in the proof contained in that
paper of the commutativity of the cup product of HH•(A), he himself showed later in [6]
that it is related to the deformation theory of A, and it has ever since been regarded
as an important piece of the cohomological structure of the algebra. There has been a
significant amount of effort expended by many authors in order to study this structure,
specially in recent times.

This Lie algebra structure on HH•(A) is defined in terms of a particular realization
of Hochschild cohomology: the algebra A has a canonical bimodule bar resolution B(A)•,
the Hochschild cohomology HH•(A) is canonically isomorphic to the cohomology of the
complex homAe(B(A)•, A), and the Lie bracket of HH•(A) is constructed using certain
explicit formulas in terms of cochains in this complex. While this is convenient for many
purposes, it is quite inconvenient in one important respect: we never compute Hochschild
cohomology using the bar resolution. In practice, we pick a projective resolution P•
of A which is better adapted to the task and compute instead the cohomology of the
complex homAe(P•, A), which is —thanks to the yoga of homological algebra— canonically
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isomorphic to that of the complex homAe(B(A)•, A). In principle, we can transport the
Lie structure on the complex homAe(B(A)•, A) to homAe(P•, A) using those canonical
isomorphisms, but actually doing this depends crucially on having explicit comparison
morphisms B(A)• � P• between the two resolutions involved. The problem resides in
that making such morphisms explicit is notoriously difficult.

In what follows, we present an approach which allows us to compute in this situation
part of the Gerstenhaber Lie bracket on the cohomology of the complex homAe(P•, A)
without having recourse to comparison morphisms. More precisely, it gives a way to
compute the restriction of the Lie bracket to HH1(A)×HH•(A) or, in other words, the
Lie action of the Lie algebra HH1(A) of outer derivations of A on HH•(A). This requires
some amount of lifting of maps to resolutions, as it should be expected, but involving
only the resolution P•. Carrying this out in concrete examples seems to be quite feasible.

Let us explain the idea and, at the same time, describe the contents of the paper.
Suppose that δ : A→ A is a derivation of the algebra A and that M is a left A-module.
We say that a linear map f : M →M is a δ-operator on M if f(am) = af(m) + δ(a)m
for all a ∈ A and m ∈M . From such an f we construct in Section 1 a linear map

∇f : Ext•A(M,M)→ Ext•A(M,M)

as follows: we pick a projective resolution P• of M , show that there exists a mor-
phism of complexes of vector spaces f• : P• → P• lifting f : M → M such that each
component fi : Pi → Pi is a δ-operator, and then define a morphism of complexes
f ]• : homA(P•,M) → homA(P•,M) such that f ]i (φ)(p) = f(φ(p)) − φ(fi(p)) for each
φ ∈ homA(Pi,M) and each p ∈ Pi. The map ∇f is the one induced on homology by f ]•,
and the key point here is that it depends only on δ and f and not on the choices made.
We view this as exhibiting a little bit of ‘extra’ functoriality on the Ext functors, now
with respect to δ-operators, and find it somewhat surprising.

Next, in section 2 we specialize this to the following situation. We start with a
derivation δ : A → A, we consider the derivation δe = δ ⊗ 1 + 1 ⊗ δ : Ae → Ae on the
enveloping algebra Ae of A, and observe that the map δ : A→ A is then a δe-operator
on A viewed as a left Ae-module as usual. Recalling that the Hochschild cohomology
HH•(A) can often be identified with Ext•Ae(A,A), our construction then produces a map

∇δ : HH•(A)→ HH•(A)

which can be computed as described above from any Ae-projective resolution of A endowed
with a lifting of δ. In particular, we can use the bar resolution to do this: on it there
exists a certain canonical lifting of δ and it turns out that the explicit formulas associated
to it for the map ∇δ are precisely the same ones used by Gerstenhaber to define the map

[δ,−] : HH•(A)→ HH•(A).
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Of course, this means that ∇δ = [δ,−] and shows that we can compute the restriction of
the bracket to HH1(A)×HH•(A) using our favorite resolution, which is what we wanted.

In Section 3 we present this computation of the Gerstenhaber bracket in two “real
life” examples: truncated path algebras and crossed products of symmetric algebras S(V )
by a finite group G acting linearly. In the two cases —and after a certain amount of work
needed to be able to describe explicitly the cohomology itself— we are able to exhibit
formulas for the bracket. Finally, in the last section, Section 4, we rapidly explain how a
procedure similar to the one sketched above applies to Tor functors and, in particular, to
the action of the Lie algebra HH1(A) on the Hochschild homology HH•(A).

The very natural problem which we partially solve in this paper, that of finding
a way to compute the Gerstenhaber bracket on Hochschild cohomology in term of an
arbitrary projective resolution, was posed originally by Gerstenhaber and Samuel Schack
in their survey [7] in 1988. It is generally agreed that solving it will require a different
perspective on the construction of the bracket. Ten years later, Stefan Schwede gave
in [18] a beautiful interpretation of the bracket in terms of actual commutators of paths in
the geometric realization of the nerve of a category of Yoneda extensions first considered
by Vladimir Retakh in [14] — it does not appear, though, that this interpretation leads
to a computational device in practice. The first concrete step forward occurred very
recently: in their preprint [13], based on the thesis [12] of the first author, Cris Negron
and Sarah Witherspoon describe an alternate approach to the computation of the bracket
which, under certain conditions —satisfied, for example, if the algebra is Koszul— allows
for the computation of the bracket in terms of a projective resolution. This approach
gives a computation of the ‘whole’ bracket, but has the disadvantage of being very close
in practice to the construction of comparison morphisms, which we want to avoid.

In what follows we fix a commutative ring k to play the role of ring of scalars.
Throughout A will denote a projective k-algebra, unadorned ⊗ and hom will denote homk
and ⊗k, and linear will mean k-linear. In particular, the Hochschild cohomology HH•(A)
of A as a k-algebra can and will be identified canonically with the Yoneda algebra
Ext•Ae(A,A) of A viewed as a left Ae-module, and likewise for homology.

1 A little bit of extra functoriality for Ext
1.1. Let us fix an algebra A and a derivation δ : A → A. If M is a left A-module, a
δ-operator on M is a linear map f : M →M such that for all a ∈ A and all m ∈M we
have

f(am) = δ(a)m+ af(m).

While δ-operators are in general not morphisms of A-modules, we have the following:
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Lemma. If M is a left A-module and f , f ′ : M → M are δ-operators on M , then
f − f ′ : M →M is a morphism of A-modules.
Proof. This follows at once from the definition.
1.2. If M is a left A-module, f : M → M a δ-operator and ε : P• → M a projective
resolution of M ,

· · · P2 P1 P0 M 0d2 d1 ε

a δ-lifting of f to P• is a sequence f• = (fi)i≥0 of δ-operators fi : Pi → Pi such that the
diagram

· · · P2 P1 P0 M 0

· · · P2 P1 P0 M 0

d2

f2

d1

f1

ε

f0 f

d2 d1 ε

is commutative.
1.3. As one can hope, δ-liftings exist and are unique up to reasonable equivalence. The
key point to establishing this is the following result:
Lemma. If ε : P →M is a surjective morphism of left A-modules with projective domain
and f : M →M is a δ-operator, then there exists a δ-operator f̃ : P → P such that the
diagram

P M

P M

ε

f̃ f

ε

is commutative, f̃(ker ε) ⊆ ker ε and the restriction f |ker ε : ker ε→ ker ε is a δ-operator.
Proof. Let (pi, φi)i∈I be a projective basis for P , so that pi ∈ P and φi ∈ homA(P,A)
for all i ∈ I, and for each p ∈ P the set {i ∈ I : φi(p) 6= 0} is finite and p =

∑
i∈I φi(p)pi,

and let (qi)i∈I be a family of elements of P such that ε(qi) = f(ε(pi)) for all i ∈ I. The
function f̃ : P → P such

f̃(p) =
∑
i∈I

(
φi(p)qi + δ(φi(p))pi

)
for all p ∈ P is easily seen to satisfy the conditions of the lemma.
1.4. We can now deduce in the usual way the existence and uniqueness of δ-liftings:
Lemma. Let M be a left A-module and let ε : P• →M be a projective resolution.
(i) There exists a δ-lifting f• : P• → P• of f to P•.
(ii) If f•, f ′• are δ-liftings of a δ-operator f : M → M to P•, then f• and f ′• are

A-linearly homotopic.
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Proof. The first part follows inductively using the result of Lemma 1.3 at each step. On
the other hand, in the situation of the second part the diagram

· · · P2 P1 P0 M 0

· · · P2 P1 P0 M 0

d2

f2−f ′2

d1

f1−f ′1

ε

f0−f ′0 0
d2 d1 ε

is commutative and the vertical arrows are morphisms of left A-modules, so the morphism
of complexes f• − f ′• : P• → P• is homotopic to the zero morphism, through an A-linear
homotopy.
1.5. Let now M be a left A-module, f : M →M a δ-operator, ε : P• →M a projective
resolution and f• : P• → P• a δ-lifting of f to P•. If i ≥ 0 and φ ∈ homA(Pi,M), then
the map f ]i (φ) : Pi →M given by

f ]i (φ)(p) = f(φ(p))− φ(fi(p))

for all p ∈ Pi is a morphism of A-modules, so we have a function

f ]i : homA(Pi,M)→ homA(Pi,M)

which is linear. A computation shows that, in fact, we obtain in this way a morphism of
complexes of vector spaces

f ]• : homA(P•,M)→ homA(P•,M).

1.6. To study the dependence of the morphism f ]• on the data used in its construction
we will need the following observation.
Lemma. Let M be a left A-module, f : M → M a δ-operator on M , ε : P• → M and
ε′ : P ′• → M projective resolutions and f• : P• → P• and f ′• : P ′• → P ′• δ-liftings of f
to P• and to P ′•, respectively. If α• : P ′• → P• is a morphism of complexes of A-modules
lifting idM : M →M , then the diagram

homA(P•,M) homA(P•,M)

homA(P ′•,M) homA(P ′•,M)

α∗•

f]
•

α∗•

f ′]•

commutes up to homotopy.
Proof. The difference h• = α•f

′
• − f•α• : P ′• → P• is, in principle, only a morphism of

complexes of vector spaces, but a computation shows that its components are in fact
A-linear. As h• : P ′• → P• is then a lifting of the zero map 0 : M →M , it is A-linearly
homotopic to zero and, therefore, the induced map

h∗• : homA(P•,M)→ homA(P ′•,M)

is also homotopic to zero. Since α∗• ◦ f
]
• − f ′]• ◦ α∗• = h∗•, the lemma follows from this.
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1.7. As a first consequence of this lemma, we see that ifM is a left A-module, δ : M →M

a δ-operator onM , ε : P• →M a projective resolution and f• : P• → P• and f ′• : P• → P•
δ-liftings of f to P•, then the maps of complexes f ]•, f ′]• : homA(P•,M)→ homA(P•,M)
are homotopic —this is the special case of the lemma in which P ′• = P•, ε′ = ε and
α• = idP•— and therefore they induce the same map on cohomology. We may therefore
denote this induced map, which depends only on f and not on the choice of the δ-lifting
used to compute it, simply by

∇•f,P• : H(homA(P•,M))→ H(homA(P•,M)).

Next, if ε′ : P ′• →M is another projective resolution, f ′• : P ′• → P ′• a δ-lifting of f to P ′•
and α• : P ′• → P• a lifting of idM : M →M , the diagram

H(homA(P•,M)) H(homA(P•,M))

H(homA(P ′•,M)) H(homA(P ′•,M))

H(α∗•)

∇•f,P•

H(α∗•)
∇•

f,P ′•

induced on cohomology by the one in the statement of the lemma commutes. Recalling
the way the Yoneda functor Ext•A(M,M) is identified with a derived functor, we see that
the end result of all we have done is the following:

Theorem A. If M is a left A-module and f : M →M is a δ-operator on M , there is a
canonical morphism of graded vector spaces

∇•f : Ext•A(M,M)→ Ext•A(M,M)

such that for each projective resolution ε : P• →M and each δ-lifting f• : P• → P• of f
to P• the diagram

H(homA(P•,M)) H(homA(P•,M))

Ext•A(M,M) Ext•A(M,M)

∼=

∇•f,P•

∼=
∇•f

in which the vertical arrows are the canonical isomorphisms, commutes.

1.8. In keeping with a long standing tradition, the very first example we present is
a somewhat trivial one, reserving for the next section the one in which we are really
interested.
Lemma. Suppose that δ : A→ A is an inner derivation, so that there exists an r ∈ A with
δ(a) = [r, a] for all a ∈ A. If M is a left A-module and f : M →M is a δ-operator on M ,
then there exists a morphism of left A-modules f̄ : M →M such that f(m) = f̄(m) + rm

for all m ∈ M , and the map ∇•f : Ext•A(M,M) → Ext•A(M,M) is such that for all
φ ∈ Ext•A(M,M) we have ∇if (φ) = f̄∗(φ)− f̄∗(φ) = [f̄ , φ].
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Here f̄∗, f̄∗ : Ext•A(M,M) → Ext•A(M,M) are the maps induced by f̄ on the first
and on the second argument of Ext, respectively, and the commutator in the last formula
is the one obtained on Ext•A(M,M) from the Yoneda product.

Proof. Let λ : M →M be the map given by multiplication by r. A computation shows
that f̄ = f − λ : M → M is a morphism of left A-modules. Let now ε : P• → M be a
projective resolution, let f̄• : P• → P• be a lifting of f̄ to P• and let λ• : P• → P• be
the map given by multiplication by r. Then f• = f̄• + λ• : P• → P• is a δ-lifting of f
to P• and if i ≥ 0 and φ ∈ homA(Pi,M), we have f ]i (φ) = f̄∗(φ) − f̄∗i (φ). This proves
the lemma.

2 The Gerstenhaber bracket on Hochschild cohomology

2.1. As we did in the previous section, we fix an algebra A and a derivation δ : A→ A.
If M is a left A-module, there is a standard projective resolution ε : B(M)• → A, called
the bar resolution, with B(M)i = A⊗(i+1) ⊗M for each i ≥ 0, differentials given by

di(a0 ⊗ · · · ⊗ ai ⊗m) =
i−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ai ⊗m

+ (−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ aim

for all i ≥ 1 and augmentation map ε : B(M)0 → M such that ε(a0 ⊗ m) = a0m.
If f : M →M is a δ-operator on M , there is a canonical δ-lifting f• : B(M)• → B(M)•
of f to B(M)• given by

fi(a0 ⊗ · · · ⊗ ai ⊗m) =
i−1∑
i=0

a0 ⊗ · · · ⊗ ai−1 ⊗ δ(ai)⊗ ai+1 ⊗ · · · ⊗ ai ⊗m

+ a0 ⊗ · · · ⊗ ai ⊗ f(m),

as a computation will show. From this we obtain an explicit description of the morphism
f ]• : homA(B(M)•,M) → homA(B(M)•,M): if i ≥ 0 and φ : B(M)i → M is A-linear,
then

f ]i (φ)(a0 ⊗ · · · ⊗ ai ⊗m) = f(φ(a0 ⊗ · · · ⊗ ai ⊗m))

−
i−1∑
i=0

φ(a0 ⊗ · · · ⊗ ai−1 ⊗ δ(ai) ⊗ ai+1 ⊗ · · · ⊗ ai ⊗m)

− φ(a0 ⊗ · · · ⊗ ai ⊗ f(m))

2.2. Let now Ae = A⊗Aop be the enveloping algebra of A —so that we may identify A-
bimodules with left Ae-modules— and consider A as a left Ae-module as usual. From the
derivation δ : A→ A we can construct a new derivation δe = δ⊗ idA + idA⊗ δ : Ae → Ae,
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and it turns out that the map δ : A→ A is then a δe-operator on A. Recalling that in
our context we may identify Ext•Ae(A,A) with the Hochschild cohomology HH•(A), our
general construction from the previous section gives us a map

∇δ : HH•(A)→ HH•(A). (1)

We want to see what this map is.
If for each i ≥ 0 we turn the left A-module B(A)i into an A-bimodule with right

action given by

a0 ⊗ · · · ⊗ ai ⊗ a · b = a0 ⊗ · · · ⊗ ai ⊗ ab,

then the projective resolution ε : B(A)• → A of A as a left A-module constructed
in 2.1 becomes a projective resolution of A as an Ae-module. Moreover, the δ-lifting
δ• : B(A)• → B(A)• of the δ-operator δ : A → A constructed there is a δe-lifting, as
one can easily check, so that we may use it to compute the map (1) up to the canonical
identification of HH•(A) with H(homAe(B(A)•, A)).

Let now C•(A) be the standard complex which computes Hochschild cohomology,
which has Ci(A) = hom(A⊗i, A) for each i ≥ 0 and differentials di : Ci(A) → Ci+1(A)
given by

di(φ)(a1 ⊗ · · · ⊗ ai+1) = a1φ(a2 ⊗ · · · ⊗ ai+1)

+
i∑

j=1
(−1)j+1φ(a1a⊗ · · · ⊗ aj−1 ⊗ ajaj+1 ⊗ aj+2 ⊗ · · · ⊗ ai+1)

+ (−1)i+1φ(a1 ⊗ · · · ⊗ ai)ai+1.

Of course, there is an isomorphism of complexes τ• : homAe(B(A)•, A) → C•(A) such
that τi(φ)(a1⊗· · ·⊗ai⊗1) = φ(1⊗a1⊗· · ·⊗ai) for all i ≥ 0 and all φ ∈ homAe(B(A)i, A).
If now we let [−,−] be the Gerstenhaber bracket on C•(A), as constructed in [5], then
the diagram

homAe(B(A)•, A) C•(A)

homAe(B(A)•, A) C•(A)

τ•

δ]
• [δ,−]

τ•

commutes. This means that the map ∇δ of (1) is in fact simply [δ,−]. The point of all
this is that Theorem A from the previous section tells us that we can compute ∇δ using
any projective resolution of A as an A-bimodule, provided we are able to construct a
δe-lifting of δ.
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2.3. If in the situation of the previous paragraph the derivation δ with which we start
is inner, so that there is an r ∈ A with δ = [r,−], then δe is also inner, as δe = [re,−]
with re = r⊗ 1− 1⊗ r. Moreover, if ε : P• → A is any resolution of A as an A-bimodule,
then there is a δe-lifting δ• : P• → P• of δ : A→ A to P• such that for all i ≥ 0 and all
p ∈ Pi we have δi(p) = rp− pr. The associated map δ]• : homAe(P•, A)→ homAe(P•, A)
is identically zero, so we have that ∇δ : HH•(A)→ HH•(A) itself is zero, as it should.

3 Examples

Monomial algebras

3.1. Let Q = (Q0, Q1, s, t) be a finite quiver and let kQ be the corresponding path
algebra; if v ∈ Q0 is a vertex, we write ev the corresponding idempotent. Let R be a set
of paths in Q of length at least 2 such that no element of R divides another and consider
the monomial algebra A = kQ/(R). We write E the subalgebra of A spanned by the
vertices; whenever Z is a set of paths in Q, the vector space kZ which has Z as a basis
has a natural structure of E-bimodule.

We let ε : Br• → A be the projective resolution of A as an A-bimodule constructed
by Michael Bardzell in [1]; a useful companion to Bardzell’s paper is the work [19] of
Emil Sköldberg, where a contracting homotopy on Br• is exhibited. There is a sequence
(Ri)i≥0 of sets of paths in Q such that R0 = Q0 is the set of vertices, R1 = Q1 is the
set of arrows, R2 = R and Bri = A ⊗E kRi ⊗E A for all i ≥ 0. The augmentation
ε : Br0 = A ⊗E A → A is the map induced by the multiplication of A, and for each
i ≥ 1 the differential d : Bri → Bri−1 has the property that whenever u and w are paths
in Q which are not in the ideal (R) and v ∈ Ri, and we can form the concatenation
uvw, then di(u⊗ v ⊗ w) is a k-linear combination of elementary tensors u′ ⊗ v′ ⊗ w′ of
Bri−1 = A ⊗E Ri−1 ⊗E A with u′ and w′ paths in Q not in (R) and a path v′ in Ri−1
such that the concatenation u′v′w′ exists and coincides with the path uvw.

The differentials d : Br1 → Br0 and d : Br2 → Br1, in particular, are such that
d1(1⊗ α⊗ 1) = α⊗ 1− 1⊗ α whenever α is an arrow, and

d2(1⊗ r ⊗ 1) =
n∑
i=1

α1 · · ·αi−1 ⊗ αi ⊗ αi+1 · · ·αn

whenever r = α1 · · ·αn is an element of R of length n. It follows from this that we
can identify homAe(Br1, A) with the vector space homEe(kQ1, A), whose elements are
the linear functions δ : kQ1 → A which map each arrow α to a linear combination
of paths in Q which are parallel to α. Such a map is in the kernel of the differential
d∗2 : homAe(Br1, A)→ homAe(Br2, A) iff for each element r = α1 · · ·αn of R we have

n∑
i=1

α1 · · ·αi−1δ(αi)αi+1 · · ·αn = 0
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in the algebra A, and indeed this condition is satisfied iff the map δ can be extended to a
E-linear derivation A→ A.
3.2. If c : Q1 → k is an arbitrary function defined on the set of arrows of Q, we may
consider the extension c : Q∗ → k such that c(w) =

∑n
i=1 c(αi) for each path w = α1 · · ·αn

in Q, and then the Ee-linear map δc : A→ A such that δc(w) = c(w)w for all paths in Q.
One sees immediately that this is an Ee-linear derivation. We say that derivations of the
form δc for some c : Q1 → k are diagonal.

We consider the derivation δec = δc⊗1+1⊗δc : Ae → Ae on the enveloping algebra Ae,
as in 2.2, and view δc : A → A as a δec -operator on the left Ae-module A. There is a
δec -lifting (δc)• : Br• → Br• of δc to the resolution Br• such that for each i ≥ 0, each
u, w ∈ Q∗ and each v ∈ Ri such that the concatenation uvw exists, we have

(δc)i(u⊗ v ⊗ w) = c(uvw) · u⊗ v ⊗ w.

We may use this δec -lifting to compute the Gerstenhaber bracket [δc,−] on HH•(A), if
we identify it with the cohomology of the complex homAe(Br•, A). Indeed, the space
homAe(Bri, A) of i-cochains in this complex can be identified with homEe(kRi, A), and
clearly has as a basis the set of all Ee-linear maps φr,u : kRi → A with r ∈ Ri and u a
path in Q parallel to r and which is non-zero in A, given by φr,u(s) = 0 for all s ∈ Ri \{r}
and φr,u(r) = u, so it is sufficient to compute [δc, φr,u], and this is, according to what we
have done so far,

[δc, φr,u] = ∇δc(φr,u) = (δc)]i(φr,u) =
(
c(u)− c(r)

)
φr,u. (2)

If the set R satisfies the condition that
whenever α : i → j is an arrow of Q we have dim eiAej = 1, so that
there are no non-zero paths in A parallel to an arrow apart from the
arrow itself,

then it is easy to see that all elements of HH1(A) are represented by diagonal derivations
and in this situation Lucrecia Román has obtained the formula (2) in her thesis [15]
after fearlessly computing comparison morphisms Br• � B(A)• and then using the usual
formula for the Gerstenhaber bracket on the standard complex C•(A).
3.3. Let us suppose now that we have an integer N ≥ 2 and that R is the set QN of all
paths of length N in Q; the algebra A is then what is usually called a truncated algebra.
In this case the Bardzell resolution Br• admits a very simple description, which we now
recall. Let ζ : N0 → N0 be the function such that ζ(2k) = Nk and ζ(2k + 1) = Nk + 1
for all k ∈ N0. Then for all i ≥ 0 we have Ri = Qζ(i), the set of all paths of length ζ(i)
in the quiver Q, and the differential on Bri is such that for each w ∈ Qζ(i) we have

d(1⊗ w ⊗ 1) =
∑

aub=w
u∈QN(k−1)+1

a⊗ u⊗ b if i = 2k is even
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and
d(1⊗ w ⊗ 1) = a⊗ r ⊗ 1− 1⊗ l ⊗ b if i = 2k + 1 is odd,

where in this last case a, b ∈ Q1 and r, l ∈ QNk are such that w = ar = lb.
Lemma. An Ee-linear map δ : kQ1 → A is a 1-cocycle in the complex homAe(Br•, A) if
it takes values in radA, and if the quiver Q has more than one vertex and is connected
then this condition is also necessary.
Proof. The sufficiency is clear, so we deal only with the second part. Let δ : kQ1 → A

be a 1-cocycle and let d∗2 : homAe(Br1, A)→ homAe(Br2, A) be the differential. There
are Ee-linear maps δ0 : kQ1 → kE and δ+ : kQ1 → radA such that δ = δ0 + δ+. If
r = α1 · · ·αN ∈ R, then d∗2(δ+)(r) =

∑N
i=1 α1 · · · δ+(αi) · · ·αN is a linear combination

of paths of length at least N , so that in fact d∗2(δ+) = 0 and, in particular, we have
d∗2(δ0) = 0. On the other hand, if we write ΩQ the set of loops in Q, there is a function
λ : ΩQ→ k such that for all α ∈ Q1 we have

δ0(α) =
{
λ(α)s(α), if α ∈ ΩQ;
0, otherwise.

If α ∈ ΩQ, then αN ∈ R and d∗2(δ0)(αN ) = Nλ(α)αN−1 = 0, so that Nλ(α) = 0. As Q
has more than one vertex and is connected, there is an arrow β ∈ Q1 \ΩQ such that one
of αN−1β or βαN−1 is in R, and then either d∗2(δ0)(αN−1β) = (N − 1)λ(α)αN−2β = 0
or d∗2(δ0)(βαN−1) = (N − 1)λ(α)βαN−2 = 0, and therefore (N − 1)λ(α) = 0. It follows
that λ(α) = 0 and we see that in fact δ0 = 0.

We now fix an Ee-linear map δ : kQ1 → radA and assume moreover that δ is
homogeneous, so that there is an l ∈ {1, . . . , N − 1} such that the image of δ is in kQl;
the degree of δ is then the number l − 1. We will write the Ee-linear derivation A→ A

which extends the 1-cocycle δ by the same letter. If n, m ≥ 0, there is a unique Ee-linear
map ∆m

n : kQ→ A⊗E kQm ⊗E A such that for each path w ∈ Q∗ we have ∆m
n (w) = 0 if

|w| < n+m and

∆m
n (w) = a⊗ u⊗ b,

with aub the unique factorization of w with |a| = n and |u| = m. A verification shows
that there is a δe-lifting δ• : Br• → Br• of δ to the complex Br• such that for each i ≥ 0
and each w = α1 · · ·αζ(i) ∈ Qζ(i) we have

δi(1⊗ w ⊗ 1) =


∆ζ(i)
l−1(δ(w)), if i is even;

∆ζ(i)
l−1(δ(w)) +

l−2∑
j=0

∆ζ(i)
j (α1 · · ·αζ(i)−1δ(αζ(i)), if i is odd.

To exemplify how we can use this, we propose to describe the Lie action of HH1(A) on
the cohomology HH•(A). To do this we need some information on this cohomology, of
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course. In low degrees, it was computed by Claude Cibils in [3] and this was extended to
all degrees by Ana Locateli in [10] when the ground field has characteristic zero and by
Yunge Xu, Yang Han and Wenfeng Jiang for the general case in [20]. What these authors
do, though, is to find the dimensions of the cohomology groups and for our purpose this
is not enough, as we need the actual cocycles. To keep things simple, we will content
ourselves with a special case and with obtaining information only on the even part of
cohomology.
Lemma. Suppose that Q has no sources and no sinks and that it is not an oriented
cycle. If k ≥ 1, then the subspace of 2k-cocycles in the complex homAe(Br•, A) is
homEe(kQNk, kQN−1).

Here the simplifying assumption is that there are no sources or sinks, while the
exclusion of the case of an oriented cycle is due to the fact that this is really an
exceptional case. Using this lemma we can easily obtain the promised result:
Corollary. A homogeneous derivation of nonzero degree acts by zero on the even part
HHeven(A) of the Hochschild cohomology.
Proof. It is enough to check that if l ∈ {2, . . . , N−} and δ : kQ1 → kQl is a homogeneous
cocycle of degree l− 1 and δ• is the lifting of δ to the complex Br• described above, then
δ]2k(φ) = 0 for all k ≥ 1 and all φ ∈ homEe(kQNk, kQN−1), since the lemma tells us that
these are all the 2k-cocycles. This is a trivial computation.

Proof of the lemma. If φ : kQNk → A is a 2k-cochain in that complex, there are Ee-linear
maps φi : kQNk → kQl for each i ∈ {0, . . . , N − 1} such that φ =

∑N−1
i=0 φi, and it is

clear, since the algebra is monomial, that φ is a cocycle if and only if all the φi are.
Now, an Ee-linear map kQNk → kQN−1 is automatically a cocycle, so the lemma will be
proved if we show that

if 0 ≤ l < N − 1 and φ : kQNk → kQl is an Ee-linear map which is a
2k-cocycle in the complex homAe(Br•, A), then φ = 0.

To do that, let us fix an integer l such that 0 ≤ l < N − 1 and an Ee-linear map
φ : kQNk → kQl which is a 2k-cocycle with values in kQl. This means, precisely, that
for each path α1 . . . αNk+1 ∈ QNk+1 we have

φ(α1 · · ·αNk)αNk+1 = α1φ(α2 · · ·αNk+1). (3)

Let r be an integer such that 0 ≤ 2r ≤ l and suppose that

for each w = α1 · · ·αNk ∈ QNk there exists a φ̄(w) ∈ kQl−2r which
is a linear combination of paths from s(αr+1) to t(αNk−r) such that
φ(w) = α1 · · ·αrφ̄(w)αNk−r+1 · · ·αNk.

(4)

Notice that this holds when r = 0. Let w = α1 · · ·αNk ∈ QNk. As there are no sinks in Q,
there is an arrow αNk+1 ∈ Q1 such that wαNk+1 is a path. If we put w′ = α2 · · ·αNk+1,
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then we have from (3) and the hypothesis (4) that

α1 · · ·αrφ̄(w)αNk−r+1 · · ·αNk+1 = α1 · · ·αr+1φ̄(w′)αNk−r+2 · · ·αNk+1,

so that in fact

φ̄(w)αNk−r+1 = αr+1φ̄(w′). (5)

If l − 2r ≥ 2, this implies that all the paths appearing in φ̄(w) start with αr+1 and,
by symmetry, they also end in αNk−r. In other words, there exists a ¯̄φ(w) ∈ kQl−2r−2

which is a sum of paths from s(αr+2) to t(αNk−r−1) such that φ̄(w) = αr+1
¯̄φ(w)αNk−r.

In this case we have that the condition (4) holds with r replaced with r + 1, and we may
therefore proceed inductively.

If instead l − 2r = 1, then the equation (5) tells us there exists a scalar λ(w) ∈ k
which is zero if αr+1 6= αNk−r such that φ̄(w) = λ(w)αr+1, so in this case we have
φ(w) = λ(w)α1 · · ·αrαr+1αNk−r+1 · · ·αNk. Finally, if l − 2r = 0, then the equation (5)
implies that there is a scalar λ(w) ∈ k which is zero if αr+1 6= αNk−r+1 and such that
φ̄(w) = λ(w)es(αr+1), and therefore φ(w) = λ(w)α1 · · ·αrαNk−r+1 · · ·αNk.

In this way we conclude that there is a function λ : QNk → k such that for each
w = α1 · · ·αNk ∈ QNk we have

φ(w) =
{
λ(w)α1 · · ·αrαNk−r+1 · · ·αNk, if l = 2r is even;
λ(w)α1 · · ·αrαr+1αNk−r+1 · · ·αNk, if l = 2r + 1 is odd;

with
λ(w) = 0 if αr+1 6= αNk−r+1 and l = 2r is even, or if αr+1 6= αNk−r
and l = 2r + 1 is odd.

(6)

We define a relation ∼ on the set QNk so that for each w, w′ ∈ QNk we have w ∼ w′
iff there exist arrows α, β ∈ Q1 such that wα = βw′, and let ≈ be the least equivalence
relation on QNk coarser that ∼. Now, if w, w′ ∈ QNk are such that w ∼ w′, there is
a path α1 · · ·αNk+1 ∈ QNk+1 such that w = α1 · · ·αNk and w′ = α2 · · ·αNk+1. From
equation (3) we have

λ(w)α1 · · ·αrαNk−r+1 · · ·αNk+1 = λ(w′)α1 · · ·αr+1αNk−r+2 · · ·αNk+1

if l = 2r is even, and

λ(w)α1 · · ·αrαr+1αNk−r+1 · · ·αNk+1 = λ(w′)α1 · · ·αr+1αr+2αNk−r+2 · · ·αNk+1

if l = 2r + 1 is odd. In any of the two cases we find that λ(w) = λ(w′), and it follows
from this that λ is constant on the equivalence classes of the relation ≈.

We claim that in fact

there is only one equivalence class for the relation ≈. (7)
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There is a preorder � on the set of vertices Q0 such that whenever i, j ∈ Q0 we have
i � j iff there is a path in Q from j to i, and associated to � there is an equivalence
relation � on Q0 such that i � j iff i � j and j � i. The equivalence classes of �
are the strongly connected components of the quiver and the preorder � induces an
actual order on the quotient Q0/�; in particular, we may speak of maximal and minimal
strongly connected components. Our claim (7) now follows easily from the following two
facts:
• If w ∈ QNk, there is a path w′ ∈ QNk which is totally contained in a maximal
strongly connected component of Q and such that w ≈ w′, and the same is true
replacing ‘maximal’ by ‘minimal’.
• If w and w′ are elements of QNk totally contained in possibly different maximal
strongly connected components of Q, then w ≈ w′.

Let us prove the first one, leaving the other for the reader. Let w ∈ QNk. Let i ∈ Q0
be a vertex in a strongly connected component C of Q0 which is maximal among those
elements in Q0/� greater than the one containing s(w). As i is not a source, there exists
an arrow α with t(α) = i; since the component C is maximal, there is a path u from i to
s(α) which never leaves C and, since αu is a closed path starting at i, we see that there
exists a path w′ ∈ QNk contained in C and ending in i. On the other hand, the choice
of i implies that there exists a path w1 in Q going from i to s(w). Considering all the
factors of length Nk of the path w′w1w, we see at once that w′ ≈ w, as we wanted.

It follows now from (7) that the function λ : QNk → k is constant. As Q is not an
oriented cycle, there exists a vertex i ∈ Q0 and two different arrows α and α′ such that
either s(α) = s(α′) = i or t(α) = t(α′) = i. Suppose, for example, that we are in the first
case; the other can be handled in the same way. Since there are no sources and sinks
in Q, if l = 2r is even, there are paths u ∈ QNk−r, and v, v′ ∈ Qr−1, and if l = 2r + 1 is
odd, there are paths u ∈ QNk−r−1 and v, v′ ∈ Qr such that, in either case, w = uαv and
w′ = uα′v′ are paths of length Nk. In view of our observation (6), at least one of the
scalars λ(w) and λ(w′) is zero. With this we can therefore conclude that φ = 0.
3.4. In the presence of sinks and sources, the homogeneous derivations of positive degree
of a truncated algebra may well act non-trivially, as the following simple example shows.
Fix N ≥ 3 and k ≥ 4, consider the quiver Q

α

β γ

u

in which α, β and γ are arrows and u is a path of length ζ(k), and let A be the quotient
of the path algebra kQ by the ideal generated by QN . Identifying HH•(A) with the
cohomology of the complex homAe(Br•, A), we see at once that HH0(A) ∼= k, that
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HH1(A) is the vector space spanned by two linearly independent diagonal derivations
and the Ee-linear derivation δ : A→ A, homogeneous of degree 1, such that δ(α) = βγ

and δ(ω) = 0 for all arrows ω different from α, that HHk(A) is 2-dimensional, spanned by
the Ee-linear maps φ1, φ2 : kQζ(k) → A such that φ1(u) = α and φ2(u) = βγ, and that
all other cohomology groups are zero. Moreover, computing the Lie action of HH1(A)
of HHk(A) using the liftings constructed above for truncated algebras shows immediately
that [δ2, φ0] = −φ1. In particular, the derivation δ acts non-trivially on HHk(A).

Crossed products

3.5. Let A be an algebra and let G be a finite group acting on A; we will suppose
throughout that our ground field ring is a field in which the order of G is invertible and
which splits G. We may construct the cross product algebra AoG which as a vector
space is A⊗ kG, with kG the group algebra of G, and where multiplication is such that
a⊗ g · b⊗ g = ag(b)⊗ gh.

The group acts diagonally on the enveloping algebra Ae, so we can consider also
the crossed product Ae o G. An Ae o G-module structure on a vector space M may
be described as an Ae-module structure on which G acts in a compatible way, in the
sense that g(amb) = g(a)g(m)g(b) for all g ∈ G, a, b ∈ A and m ∈M . If M is such an
Ae oG-module, we denote M oG the (AoG)e-module with underlying vector space
M ⊗ kG and left and right actions by AoG given by

a⊗ g ·m⊗ h = ag(m)⊗ gh, m⊗ h · a⊗ g = mh(a)⊗ hg,

respectively, whenever a⊗ g ∈ AoG and m⊗ h ∈M oG. On the other hand, if M is
an (AoG)e-module, we denote Mad the Ae oG-module which coincides with M as an
Ae-module and on which G acts so that

g ·m = gmg−1

for all g ∈ G and all m ∈M . These two constructions are related in the following way:
Lemma. If M is an AeoG-module and N is an (AoG)e-module, there are isomorphisms

hom(AoG)e(M oG,N) homAe(M,Nad)G
Φ

Ψ

natural in M and N .
On the right we are taking invariants with respect to the action of G on homAe(M,Nad)
given by (g · f)(m) = g · f(g−1 ·m) for each g ∈ G and each Ae-linear map f : M → Nad.

Proof. We may put Φ(f)(m) = f(m⊗1) for all f ∈ hom(AoG)e(MoG,N) and allm ∈M ,
and Ψ(f)(m⊗ g) = f(m)g for all f ∈ homAe(M,Nad) and all m⊗ g ∈M oG.

The following result is an immediate consequence of the lemma, since the functor (−)G
which computes invariants is exact.
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Corollary. If P is an Ae oG-module which is projective as an Ae-module, then P oG

is a projective (AoG)e-module.

We view A as an AeoG-module in the obvious way and let P• → A be a resolution of A
as an Ae oG-module by modules which are projective as Ae-modules; such a resolution
exists: for example, as Ae oG is projective as a left Ae-module, it suffices to take P• to
be an Ae oG-projective resolution of A, but one can often be much more economical.
The corollary implies then that P•oG→ AoG is a projective resolution of AoG as an
(AoG)e-module. In particular the cohomology of the complex hom(AoG)e(P•oG,AoG)
can be identified to the Hochschild cohomology HH•(AoG) of AoG. As this complex
is, according to the lemma, naturally isomorphic to homAe(P•, A o G)G and since G
acts semisimply, taking homology in this second complex we see that HH•(A o G) is
isomorphic to H•(A,AoG)G; this result is usually obtained using the spectral sequence
constructed by Dragoş Ştefan in [17], but for our purposes we need the isomorphism to
come out of an actual resolution.

Let δ : AoG→ AoG be a derivation of AoG. The restriction δ|kG : kG→ AoG

is a derivation of the group algebra kG with values in the kG-bimodule A o G and
therefore, since kG is a separable algebra, this restriction is inner: there exists an
element u ∈ AoG such that δ(g) = [u, g] for all g ∈ G. It follows that the derivation
δ−[u,−] : AoG→ AoG, which is cohomologous to δ, is normalized, that is, it vanishes
on G and we conclude that, up to inner derivations, we can assume that derivations
of AoG are normalized.
3.6. We specialize now the discussion to the following situation. Let G be a finite group,
let ρ : G → GL(V ) be a representation of G on a finite dimensional vector space V ,
and consider the corresponding action of G on the symmetric algebra S(V ) and the
associated crossed product S(V ) o G. We then have available the bimodule Koszul
resolution K• = S(V )⊗ Λ•V ⊗ S(V )→ S(V ) of S(V ) as an S(V )e-module, and it turns
out, when we endow K• with its natural action of G, that the resolution is a complex of
S(V )e oG-modules.

As explained above, the complex hom(S(V )oG)e(K• oG,S(V ) oG), which computes
the Hochschild cohomology HH•(S(V )oG), is isomorphic to homS(V )e(K•, S(V )oG)G
which, in turn, can be identified with the complex hom(Λ•(V ), S(V ) oG)G. There is,
moreover, a decomposition

hom(Λ•(V ), S(V ) oG) =
⊕
g∈G

hom(Λ•(V ), S(V ) o g) (8)

If g ∈ G, we let V g be the fixed subspace of g in V , Vg the subspace of V spanned by
eigenvectors of g corresponding to eigenvalues different from 1, and d(g) = dimVg. As
V = V g ⊕ Vg and this decomposition is preserved by g, we have S(V ) = S(V g)⊗ S(Vg),
Λ•(V ) = Λ•(V g)⊗ Λ•(Vg), and there is an obvious map of complexes,

∨ : hom(Λ•(V g), S(V g))⊗ hom(Λ•(Vg), S(Vg) o g)→ hom(Λ•(V ), S(V ) o g),
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which can be seen to be a quasi-isomorphism; this is part of the content of Theorem XI.3.1
in [2], for example. The complex hom(Λ•(V g), S(V g)) has zero differential; on the other
hand, the cohomology of the complex hom(Λ•(Vg), S(Vg)og) is zero except in degree d(g),
where it is one dimensional and spanned by the cohomology class of any non-zero linear
map ωg : Λd(g)(Vg)→ kg, as shown in Lemma 3.4 of [4]; we fix one such map once and
for all. All this means that the inclusion of complexes

hom(Λ•(V g), S(V g)) ∨ ωg ↪→ hom(Λ•(V ), S(V ) o g)

is a quasi-isomorphism, with the subcomplex having zero differential. Since everything in
sight is G-equivariant, and taking into account the decomposition (8), the same is true
of the inclusion⊕

g∈G
hom(Λ•(V g), S(V g)) ∨ ωg

G ↪→ hom(Λ•(V ), S(V ) oG)G.

If g, h are inG, then h·ωg and ωhgh−1 are two non-zero elements of the 1-dimensional vector
space hom(Λd(hgh−1)(Vhgh−1), khgh−1), so there exists a scalar λ(h, g) ∈ k× such that
h ·ω = λ(h, g)ωhgh−1 . In this way we find a function λ : G×G→ k× and the associativity
of the action of G implies that λ(gh, k) = λ(h, k)λ(g, hkh−1) for all g, h, k ∈ G.

If g ∈ G, we let Gg be the centralizer of g in G. The map χg : h ∈ Gg 7→ λ(h, g) ∈ C×

is a group morphism. The group G acts on hom(Λ•(V g), S(V g)), so we may restrict that
action to Gc and consider the subspace of semi-invariants hom(Λ•(V g), S(V g))Gg

χg ,
that is, of the elements f ∈ hom(Λ•(V g), S(V g)) such that h · f = χg(h)f for all h ∈ Cg.
Let now 〈G〉 be the set of conjugacy classes of G and for each c ∈ 〈G〉 let gc be a fixed
element of c. Then we have an isomorphism Φc

Φc : hom(Λ•(V gc), S(V gc))Ggc
χgc

[−d(g)]→

⊕
g∈c

hom(Λ•(V g), S(V g)) ∨ ωg

G

such that for each f ∈ hom(Λ•(V gc), S(V gc))Ggc
χgc

we have

Φc(f) =
∑
g∈G

λ(g, gc)g(f) ∨ ωggcg−1 .

It follows now that we have an isomorphism

⊕
c∈〈G〉

Φc :
⊕
c∈〈G〉

hom(Λ•(V gc), S(V gc))Ggc
χgc

[−d(g)]→

⊕
g∈G

hom(Λ•(V g), S(V g)) ∨ ωg

G ,
and in this way we arrive at a well-known and very explicit description of the Hochschild
cohomology of the crossed product algebra S(V ) oG,

HH•(S(V ) oG) =
⊕
c∈〈G〉

hom(Λ•(V gc), S(V gc))Ggc
χgc

[−d(gc)]
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originally obtained by Marco Farinati in [4] and Victor Ginzburg and Dmitry Kaledin
in [8]; the paper [16] is a good reference for this, too. In particular, if we let 〈G〉1 be the
set of conjugacy classes c ∈ 〈G〉 such that d(gc) = 1, we have

HH1(S(V ) oG) = hom(V, S(V ))G ⊕
⊕

c∈〈G〉1

S(V gc)Ggc
χgc

and something nice happens: if c ∈ 〈G〉1, then χgc(gc) = det ρ(gc) 6= 1 and therefore
S(V gc)Ggc

χgc
= 0, since gc ∈ Ggc . We thus see that, in fact,

HH1(S(V ) oG) = hom(V, S(V ))G.

Tracing back the isomorphisms involved, we can describe this identification explicitly
as follows. If r : V → S(V ) is a G-equivariant linear map, then one of the universal
properties of the symmetric algebra S(V ) implies that there is a unique derivation
r̄ : S(V )→ S(V ) which extends r and it turns out to be G-equivariant. There is then
a normalized derivation δr : S(V ) o G → S(V ) o G such that δr(fg) = r̄(f)g for all
f ∈ S(V ) and g ∈ G. The class of this δr is the element of HH1(S(V )oG) corresponding
to the map r.
3.7. We are finally in position to describe the Lie module structure ofHH•(S(V )oG) over
the Lie algebra HH1(S(V ) oG) using our results from Section 2. We fix a G-equivariant
map r : V → S(V ) and let δ = δr : S(V )oG→ S(V )oG be the corresponding derivation
described above. Let T (V ) be the tensor algebra on V and denote π : T (V ) → S(V )
the natural surjection. Since π is G-equivariant, it admits a G-equivariant section
σ : S(V )→ T (V ). On the other hand, and using now a universal property of the tensor
algebra, there exists a unique linear derivation D : T (V ) → S(V ) ⊗ V ⊗ S(V ) of the
algebra T (V ) with values in S(V )⊗ V ⊗ S(V ) endowed with it obvious T (V )-bimodule
structure such that D(v) = 1⊗ v ⊗ 1 for all v ∈ V , and it is G-equivariant. If v ∈ V , we
will write the element D(σ(r(v))) of S(V )⊗ V ⊗ S(V ) in the form v(1) ⊗ v(2) ⊗ v(3) with
an implicit sum, à la Sweedler. There is a δe-lifting δ• : K• oG→ K• oG of δ to the
resolution K• oG of S(V ) oG such that

δp(1⊗ v1 ∧ · · · ∧ vp ⊗ 1 o 1) =
p∑
i=1

vi(1) ⊗ v1 ∧ · · · ∧ vi(2) ∧ · · · ∧ vp ⊗ vi(3) o 1,

as one can check by direct computation. From this lifting we can construct the map of
complexes

δ]• : hom(S(V )oG)e(K• oG,S(V ) oG)→ hom(S(V )oG)e(K• oG,S(V ) oG)

which up to natural isomorphisms in the lemma is identified with the map

δ]• : hom(Λ•(V ), S(V ) oG)G → hom(Λ•(V ), S(V ) oG)G
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given in each degree p ≥ 0 by

(δ]pφ)(v1 ∧ · · · ∧ vp) = δ(φ(v1 ∧ · · · ∧ vp))−
p∑
i=1

vi(1)φ(v1 ∧ · · · ∧ vi(2) ∧ · · · ∧ vp)vi(3)

for all φ ∈ hom(Λp(V ), S(V ) o G)G. The right hand side in this equation therefore a
representative for the Gerstenhaber bracket [δ, φ].

4 Tensor products, Tor and Hochschild homology

4.1. Let A be an algebra and δ : A → A a derivation, as before. Let M and N be
a right and a left A-module, respectively, and let f : M → M and g : N → N be
δ-operators on M and N . There is a linear map f � g : M ⊗A N →M ⊗A N such that
(f � g)(m ⊗ n) = f(m) ⊗ n + m ⊗ g(n) for all m ∈ M and all n ∈ N , and this map
depends naturally on the data used to construct it in the obvious sense.

If η : Q• → N is a projective resolution of N as a left A-module and g• : Q• → Q• is
a δ-lifting of g to Q•, then we may consider the complex M ⊗A Q• and the morphism
f � g• : M ⊗A Q• →M ⊗A Q• which in each homological degree i ≥ 0 is given by f � gi
and which induces upon passing to homology a map

H(f � g•) : H(M ⊗A Q•)→ H(M ⊗A Q•).

There is an analogue of Lemma 1.6 and therefore proceeding as we did to prove Theorem A
we obtain:

Theorem B. If M and N are a right and a left A-module, respectively, and f : M →M

and g : N → N are δ-operators, then there is a canonical morphism of graded vector
spaces

∇f,g• : TorA• (M,N)→ TorA• (M,N)

such that for each projective resolution η : Q• → N and each δ-lifting g• : Q• → Q• of g
to Q• the diagram

H(M ⊗A Q•) H(M ⊗A Q•)

TorA• (M,N) TorA• (M,N)

∇f,g,Q•
•

∼= ∼=

∇f,g
•

commutes.

If in the situation of the theorem we also have a projective resolution ε : P• → M

of M and a δ-lifting f• : P• → P• of f to P•, we may consider the (total complex of
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the) tensor product P• ⊗A Q• and on it the linear map f• � g• : P• ⊗A Q• → P• ⊗A Q•
constructed in the obvious way. As the diagram

P• ⊗A Q• P• ⊗A Q•

M ⊗A Q• M ⊗A Q•

f•�g•

ε⊗idQ• ε⊗idQ•

f�g•

commutes, taking homology and observing that the morphism ε ⊗ idQ• induces the
canonical isomorphism H(P• ⊗A Q•) ∼= H(M ⊗A Q•), we find that the diagram

H(P• ⊗A Q•) H(P• ⊗A Q•)

TorA• (M,N) TorA• (M,N)

H(f•�g•)

∼= ∼=

∇f,g
•

with vertical arrows the canonical isomorphisms, commutes and, proceeding symmetrically,
that the same happens with

H(P• ⊗A N) H(P• ⊗A N)

TorA• (M,N) TorA• (M,N)

H(f•�g)

∼= ∼=

∇f,g
•

This means that the computation of the map ∇f,g• is as “balanced” as that of Tor itself.
4.2. If δe = δ ⊗ 1 + 1⊗ δ : Ae → Ae is the derivation of the enveloping algebra induced
by δ and if we view δ : A→ A as a δe-operator both on the left Ae-module A, as in 2.2,
and on the right Ae-module A, and recalling that in our situation we can identify the
Hochschild homology HH•(A) with TorAe

• (A,A), the construction of Theorem B gives
us a map

∇δ,δ• : HH•(A)→ HH•(A)

which we can compute in terms of any projective resolution of A as an Ae-bimodule,
provided we can δe-lift δ to it. If we write what this amounts to when we use the
Ae-projective resolution ε : B(A)• → A and the δe-lifting described in 2.2, we find
immediately that the map ∇δ,δ• induced on Hochschild homology by δ coincides with the
one considered by Tom Goodwillie in [9] or Jean-Louis Loday in Section 4.1 of [11].
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