Noname manuscript No.
(will be inserted by the editor)

Producing Just Enough Documentation: An Optimization
Approach applied to the Software Architecture Domain

J. Andres Diaz-Pace, Christian
Villavicencio, Silvia Schiaffino, Matias
Nicoletti, Hernan Vazquez

the date of receipt and acceptance should be inserted later

Abstract The Software Architecture is an important asset in a software de-
velopment process, which serves to share and discuss the main design con-
cerns among the project stakeholders. The architecture must be properly doc-
umented (e.g., via a Wiki environment) in order to be effectively used by these
stakeholders. However, the process of producing architecture documentation
often fails to deliver contents that address the stakeholders’ information needs.
To address the problem, we argue for a knowledge management strategy in
which: (i) architecture documentation is created incrementally; and (ii) its
contents are driven by a model of stakeholder preferences. In this work, we
present an information optimization approach applied to the architecture doc-
umentation domain, derived from an existing documentation method called
Views & Beyond. To do so, we define the Next SAD Version Problem (NSVP)
and then provide tool support to assist architects in producing cost-effective
documentation. Based on prior work, we perform a sensitivity analysis of the
optimization model and develop a robust formulation that takes into account
uncertainty in the parameter estimations for NSVP instances, thus improving
the outcomes of our documentation assistant.

KEYWORDS: architecture documentation model, stakeholders, information
needs, discrete optimization, sensitivity analysis, robustness.

1 Introduction

As software systems grow large and complex, their reliance on some form of
documentation becomes essential in order to avoid situations of knowledge
vaporization or stakeholders’ dissatisfaction, among others [38]. Furthermore,

ISISTAN Research Institute, CONICET-UNICEN, Campus Universitario, Paraje Arroyo
Seco (B7001BBO) Tandil, Argentina.

{andres.diazpace, christian.villavicencio, silvia.schiaffino, matias.nicoletti, her-
nan.vazquez} Qisistan.unicen.edu.ar

2 Diaz-Pace et al.

documentation serves to preserve knowledge within an organization. However,
since producing technical documentation does not come without cost, both
managers and software engineers must carefully consider the documentation
process (e.g., artifacts, techniques, supporting tools) as an integral part of
a development project, and furthermore, understand the information needs
of the project stakeholders. In particular, a useful model for describing the
high-level structure of a system (since early development stages) is the soft-
ware architecture [5], which is the information domain explored in this work.
The software architecture is also the container of the main design decisions
for satisfying the stakeholders’ concerns (e.g., performance, time-to-market,
reliability, modifiability, cost-of-ownership, usability, etc.). The architecture is
typically captured by the so-called Software Architecture Document (or SAD).
Conceptually, the SAD is an information repository that enables communica-
tion and knowledge sharing among the architecture stakeholders [13]. The
SAD is commonly structured into sections that contain text and design dia-
grams - known as architectural views, which permit to understand and reason
about the architectural solution from different perspectives.

Having a software system with multiple stakeholders poses challenges for
the production of quality documentation. In the case of the SAD, a first chal-
lenge is that the architectural contents should target multiple readers, which
might have different backgrounds and information needs [25]. For example,
project managers are mainly interested in high-level module views and alloca-
tion views, whereas developers need extensive information about module views
and behavioral views. Many times, the documenters' tend to load the SAD
with development-oriented contents that only consider a few (internal) stake-
holders. Studies [29, 45] have shown that individual stakeholder’s concerns are
addressed by a fraction (less than 25%) of the SAD, but for each stakeholder a
different (sometimes overlapping) SAD fraction is needed. A second challenge
is the effort for creating and updating the SAD, an expenditure that develop-
ers and managers do not wish to bear. This can be due to budget constraints,
tight schedules, or pressures on developing user-visible features.

In this context, we argue that the production of architecture documentation
should be planned. This is a compromise between documenting those aspects
that are useful to the stakeholders, and avoiding “too much” documentation,
because the resources available are often limited. A documentation strategy to
achieve this goal should: (i) produce architectural documents driven by the
stakeholders’ interests, and (ii) build the SAD in incremental versions con-
currently with the design work. In this article, we propose a semi-automated
approach called ProSAD for the generation of SAD contents, in which the
documents are explicitly linked to the needs of its consumers (i.e, the stake-
holders). To do so, we rely on the Views & Beyond (V&B) method [13], which
provides a semantic model for understanding the relationships between stake-
holders’ interests and possible architectural views to be included in the SAD.

1 This role is usually played by members of the architecture team

Producing Just Enough Documentation: An Optimization Approach 3

In previous work [36], the problem of choosing the most useful tasks for the
next SAD version was cast as a discrete optimization problem, in which the
objective was to maximize the SAD utility (or benefit) for the stakeholders
without exceeding a cost constraint. In this work, a number of improvements
to the basic approach are presented. First, we extend the optimization problem
to include dependencies among the sections of the SAD. Second, a limitation
of [36] was the assumption that the stakeholders had a fixed set of interests on
the SAD contents. Thus, we here discuss a model for incorporating variations
in the stakeholders’ interests based on user profiling techniques [35]. Third,
in [36] it was necessary to provide certain documentation costs and priorities
of stakeholders as input parameters to the optimization model. In both cases,
these parameters were based on estimates or proxies (e.g., number of words of
SAD sections), which were difficult to obtain due to the dynamic environment
in which the software documentation process occurs. To deal with this situa-
tion, we perform a here sensitivity analysis for identifying the most influential
parameters in the optimization output. Based on this analysis, we then pro-
pose a robust formulation of NSVP, which naturally sacrifices optimality in the
utility results in exchange for less variations due to uncertainty in parameter
estimates.

The extensions proposed above are evaluated with a real-life example of
a SAD. Although the proposed approach is exercised within the software ar-
chitecture domain, we believe that it also applies to other content generation
domains in which the contents to be delivered must be connected to the inter-
ests of their readers.

The rest of the article is organized into 6 sections. Section 2 presents the
main concepts behind ProSAD, based on the principles of the V&B method.
Section 3 covers the original formulation of the optimization problem called
NSVP and explains its extension with dependencies. Section 4 presents a global
sensitivity analysis, and then proposes a robust formulation of the optimiza-
tion. Section 5 provides details about the generation of stakeholders profiles,
which feed the SAD optimization performed by ProSAD. Section 6 discusses re-
lated work, and performs a comparative analysis of documentation approaches.
Finally, section 7 gives the conclusions and outlines future work.

2 On the architecture documentation process

The software architecture of a computing system is the set of structures needed
to reason about that system, which comprise software elements, relations
among them, and properties of both [5]. Design decisions are an essential
part of the architecture, because they record the rationale behind the solution
developed by the architects [26]. Examples of decisions are the use of certain
patterns, such as layers or client-server, to meet modifiability or performance
qualities. The architecture serves as a blueprint in which the main concerns of
the stakeholders can be discussed, at an abstraction level that is reasonably
manageable, even for non-technical stakeholders. By stakeholder [32], we mean

4 Diaz-Pace et al.

any person, group or organization that is interested in or affected by the archi-
tecture (e.g., managers, architects, developers, testers, end-users, contractors,
auditors). In order to share the architecture knowledge among the stakehold-
ers, it must be adequately documented and communicated. The Software Ar-
chitecture Document (SAD) is the usual artifact for capturing this knowledge.
The SAD should be clear in explaining: i) how the functional requirements
are fulfilled by the responsibilities assigned to the different software compo-
nents, ii) how the component structures satisfy the different quality attributes
requirements, and iii) how restrictions and business goals are met by the archi-
tectural solution. The SAD format can range from Word documents to UML
diagrams within a CASE tool, or a collection of Web pages hosted in a Wiki.
Over the last years, there has been an increasing interest in using Wikis to
host the SAD and facilitating the access to the architectural knowledge [2, 20].

The architecture documentation is generally structured around the concept
of architectural views, which represent the many structures that are present
simultaneously in software systems. A view presents an aspect or viewpoint
of the system (e.g., static aspects, runtime aspects, allocation of software el-
ements to hardware, etc.). Typical examples of views are: module views (the
units of implementation and their dependencies), component-and-connector
views (the elements that have runtime presence and their pathways of interac-
tion), or allocation views (the mappings of software elements to hardware). In
addition, architectural views are accompanied by textual sections that describe
the main design decisions related to the views. Therefore, the SAD consists
of a collection of documents with textual and graphical contents, structured
according to predefined templates. Figure 1 shows a snapshot of a Wiki-based
SAD, with the main page (SAD index) and module and deployment views.

2 A B w-
STRTy— o\ 24 A B w-

Adventure Builder system
Adventure Builder system| OPC MODULE DECOMPOSITION VIEW

Primary Presentation

c[@- oo 2% # B ®-

Adventure Builder system
DEPLOYMENT VIEW

s togc oftho Adventure Buidor i

Primary Presentation

5 EE
Uik ,_

BEEE E
B o I —
Element Catalog Module View
(Detailed)
Context Diagram
Deployment View 02 Variability Guide
(Overview) Toeo

Rationale

Fig. 1 Example of a Wiki-based SAD for a system called AdventureBuilder

Producing Just Enough Documentation: An Optimization Approach 5

The stakeholders are important actors in the documentation process, as
they are the main consumers of the SAD. Moreover, a SAD is useful as long
as its contents satisfy the stakeholders’ information needs. In a typical de-
velopment, the architecture is the result of an iterative design process [5], in
which the solution is designed (and assessed) incrementally until it is stable
enough to proceed downstream with the implementation efforts. Since this
process must be supported by appropriate documentation, the documentation
work must go hand in hand with the design work. Along this line, we argue
that the SAD should be delivered in incremental versions to the stakeholders.
This premise is followed by our ProSAD approach, based on the theoretical
underpinnings provided by the Views and Beyond method.

2.1 The Views & Beyond method

Views & Beyond (V&B) [13] is an architecture documentation method devel-
oped by the Software Engineering Institute. Like other documentation meth-
ods, V&B is view-centric. Normally, several views are required to fully describe
the architecture of a system. The basic V&B principle is that documenting a
software architecture involves documenting the relevant views, and then doc-
umenting the information that applies to more than one view (e.g., relations
between a module view and component-and-connector view, or mappings be-
tween architectural drivers and design decisions). Furthermore, V&B helps the
architect identify and record the necessary architectural information during
development, by providing a general SAD template and specific templates for
views. In fact, the Wiki excerpt from Figure 1 adheres to the V&B templates.

The choice of the relevant views for the SAD depends on its anticipated us-
age by the stakeholders. It is well-known that documentation should be written
from a readers’ perspective rather than from a writers’ perspective. In fact, it is
a recommended practice of current standards for architectural documentation,
such as the IEEE 1471-2000 [24] and the ISO/IEC/IEEE 42010 [25]. In order
to produce reader-oriented documentation, stakeholders’ interests with respect
to architectural documentation are assessed prior to the delivery of each SAD
version. To this end, V&B characterizes several types of stakeholders regard-
ing their use of architectural views, as depicted by the matrix of Figure 2. A
cell of the matrix indicates the information of view X (e.g., decomposition,
deployment) needed by stakeholder role Y (e.g., developer, maintainer, man-
ager). Each column can be seen as stakeholder preferences on the contents of
a particular SAD view.

We should note that not every stakeholder requires the same level of detail
of the architectural views (e.g., detailed information, some details, overview
information, anything). Furthermore, not every stakeholder generally has the
same relevance within a given project: some of them will naturally have a
higher level of importance than others. This aspect needs to be considered
when planning the SAD contents. Thus, V&B recommends to customize the
matrix based on specific characteristics of the target project (e.g., quality

6 Diaz-Pace et al.

attributes driving the system, project size, project criticality, community of
stakeholders to be served by the SAD, role of SAD within the development

process, etc.).

TYPES OF ARCHITECTURAL VIEWS

A
[\
: ca&c
Information Module Views Views Allocation Views Other Documentation
needs from the
Decomposition @
i £ g =
view for \> 2 H =
different - - | 5 2 5 g8 o g
stakeholders | g1 - H g = £ = £ <
| £ g - g = 52 22 ¢ 8 S
gl] 3 g g 318 £ 2 £ 2 2
1| & s B 2 2 E 8 _ 2|8 £ £ = € =
slg 5 § 2 £ 2 5 | £ &8 8 =z 8
12,8 2 = S |5 £ % 5 = 8 § 2
s 1 & 3 3 = E 2 2| 8 2 § & =2
Project managers s I s s d d o s
Members of development team I g ld d d d d s d | d d s
@ Testers and integrators | g J]d d d d s s d d d s
6' Designers of other systems 1 1 s d o
o Maintainers llajae ¢ ¢ ¢« d s s d d d d d
E Product-line application builders 1 d] d s o s s s s s s d s d s
6! - Customers 1 1 o o o s
E End users 1 1 S S o S
<¥(Analysts I| o Jd s d d s d s d d s d s
'J) Infrastructure support personnel || s s s s d d o s
New stakeholders | x 1 * x x x x x X x x x x x x
Current and future r! T a =—s = s .2 = 4 = o<
| Key: d = detailed information, s = some details, o = overview information, x = anything |
< v

“~

Fig. 2 V&B characterization of stakeholder preferences on architectural views [13]

The emphasis of V&B on planning for the SAD contents makes it suitable
to our work. Still, an adoption barrier is that practitioners often view V&B as
a heavy-duty method, due to the amount of documentation (or bureaucracy)
imposed on the documenter. We believe that a way of lowering this barrier is
via “intelligent” tools that operationalize the prescriptions of documentation
methods. The approach described next is an example of that position.

2.2 The ProSAD approach

ProSAD (PeRsonalization and Optimization approach to assist the production
of Software Architecture Documentation) is a documentation approach cen-
tered around the interactions between the software architecture (of a system)
and its stakeholders. The main objectives are: i) to capture the architectural
interests (or concerns) of the stakeholders, ii) assist the documenter in the
production of architectural documentation (i.e., the SAD), and iii) provide
tool support for the two previous goals. The general schema of ProSAD is
shown in Figure 3. The main actors are: the documenter (or SAD writer), the
stakeholders (or SAD readers), and an expert that manages the generation
of stakeholders’ profiles. The approach follows an iterative and incremental
cycle, which relies on a matrix called MSI (Matrix of Stakeholders Interests)

Producing Just Enough Documentation: An Optimization Approach 7

inspired in that of Figure 2. The information of the MSI can be derived from
multiple sources, e.g., literature guidance for predefined stakeholder types, or
user profiling techniques applied to stakeholders [34].

In an ideal setting, the documenter could take the MSI, analyze it (along
the guidelines of V&B), and then produce a version of the SAD in which its
contents address all the stakeholders’ concerns. Unfortunately, this is seldom
the case in practice, because the resources to invest in documentation are of-
ten scarce and because conflicts between the stakeholders’ interests may arise.
Therefore, for each incremental version of the SAD, the documenter must de-
cide which delta of architectural contents brings most satisfaction (or utility)
to the whole set of stakeholders. We refer to these decisions as a documenta-
tion strategy (or update plan). At the heart of ProSAD, we have an intelligent
assistant that takes the stakeholders’s profiles (from the MSI) and recom-
mends a documentation strategy to the documenter. This strategy consists of
set of documetation tasks for different SAD sections. The assistant is backed
up by a discrete optimization engine, as detailed in Section 3. The interests of
stakeholders can drift over time, depending on the type of project but also on
the natural learning of human beings. In order to account for this situation,
ProSAD relies on a profiling component, which monitors the activity of the
stakeholders on the SAD and constructs user profiles that periodically update
the MSI, as explained in Section 5.

Task costs
=Illl Matrix of Stakeholders - Stakeholder priorities
expert = Interests (MSI) - Satisfaction function
[
Generator of Documentation
Stakeholder Profiles As.5|§tar!t
(optimization
User profiles “M_‘w engine for NSVP
[instances)
(|
text of SAD Documentation
sections + strategy (tasks)

usage statistics

Wiki .
SAD (based on
. V&B templates)

[]
“ F | Documenter
— SAD updates

SAD stakeholders

Fig. 3 ProSAD: an architecture documentation driven by stakeholders’ concerns.

The assistant is able to process the Wiki-based SAD along with the MSI
and show a backlog of high-priority documentation tasks to the documenter.
This backlog is implemented with a to-do-list metaphor. When a specific task

8 Diaz-Pace et al.

is chosen, the tool opens the corresponding SAD section in the Wiki and pro-
vides writing guidelines to the documenter. Examples of these guidelines are:
expected contents of the section, or a brief description of the task effect on
the current stakeholders’ concerns. The execution of the suggested tasks on
the SAD is not mandatory. The documenter makes the final documentation
decisions based on her architecture expertise, domain knowledge, or past ex-
periences.

3 The Next SAD Version Problem

In [15], we defined the so-called Next SAD Version Problem (NSVP) as an op-
timization formulation that models the transition from one given SAD version
to the next one. We assume that the increment between the current SAD and
the next one is the result of applying what we call documentation tasks. A
documentation task takes a SAD section, which typically contains one architec-
tural view, and increases the level of detail (or completion) of that section. For
example, a task can take an empty section and add contents to it (e.g., adding
a “Primary presentation” according to the V&B view template). Another task
can take an overview section and make it more detailed (e.g., including an
“Element catalog” in V&B terminology). From the documenter’s perspective,
these tasks are units of work stored in some backlog, from which she can pick
and apply the most relevant ones to the current SAD. In the context of a
model of stakeholder preferences, like the one of Figure 2, updating a SAD
section through certain task(s) makes direct contributions to the stakeholders’
needs. This is a key point of our approach.

In an ideal setting, the documenter would analyze the stakeholder pro-
files and then perform all the tasks necessary for fulfilling their preferences,
which in turn would produce a new (satisfying) SAD. Unfortunately, this is
seldom the case, because the choice of tasks must consider factors such as:
documentation efforts allocated to the tasks (e.g., person-hours), priorities of
the stakeholders, or the need of incremental SAD versions to support people’s
work, among others. Furthermore, dependencies between certain sections must
be considered. For instance, if a section has a detailed level of a part of the
system, V&B recommends to include also a section with an overview of the
same part, so that the SAD readers can easily navigate from overview to de-
tail. This kind of relations imply dependencies between the tasks, and were not
covered in [15, 36]. Therefore, for each SAD increment, the documenter must
decide which tasks from the backlog will change SAD sections that best satisfy
the stakeholders’ needs. In this article, we deal with the NSVP B variant for
NSVP, which can be stated as follows:

maximize Benefit(A) (1)

subjectto Cost(A) < MaxCost (2)

Producing Just Enough Documentation: An Optimization Approach 9

Let us consider the SAD as an artifact that contains N sections (Wiki
pages), each one associated to a predefined view template (from V&B). Let
SAD; =< dt,...,d% > beaSAD version at time ¢, in which each position of the
vector corresponds to a section (or document). In this vector, d, (1 < k < N)
is its level of detail at time t. We assume a discretization of the possible
completion states of document k. In particular, a document can be in one of
4 possible states, namely DS = {empty, overview, someDetail, detailed},
as illustrated in Figure 4. These states should not be interpreted as a strict
order of documentation but rather as a guideline for the documenter, based
on the relative importance of the sub-sections of the view template [12]. For
instance, a documenter might begin adding “Rrationale information”, but it
is recommended that she works first on the “Primary presentation” of her
solution, and then describes its main elements, before providing a rationale of
the solution.

Given a partially-documented SAD;, the documenter must select an up-
date plan in order to produce a SAD;; with additional contents. Let us con-
sider an arbitrary next version SAD; 1 =< d’i“, - df{l >. We define an in-
crement vector A =< xq, ...,y >such that z; = df“ —d! (with z; > 0). Note
that we assume that increments are always additive, but not all sections d; will
be necessarily updated in the next version. Based on DS, we have a list with
all possible tasks applicable to SAD;. That is, L = {aj1,a21,...,aN1..., Q4N }
where aj; (1 < j < 4,1 < k < N) is a feasible task for document Dy,
that leads to a state change dy ~— dj. The feasible tasks (i.e., applicable)
depend on the current state of the SAD sections. For instance, a view can
be refined with information from the sections “Element catalog” and “Context
diagram”, which implies a transition from overview to someDetail by means
of addSomeDetail.. Note that we do not model “undo” tasks.

Let AT = {doOverview, addMoreDetail, complete} be a set of atomic
tasks. An atomic task, if applicable, increases the detail of a SAD section.
This effort is quantified as the cost of the (atomic) task. Furthermore, we map
these tasks to the parts of the view template provided by V&B, as depicted in
Figure 4. Task doOverview takes an empty section and asks (the documenter)
to fill in the “Primary presentation” part of the view. Task addMoreDetail
takes a section (having already an overview state) and tries to add information
in the “Element catalog” and “Context diagram” parts. At last, task complete
takes a section (having already some detail) and fills out the pending parts:
“Variability guide” and “Rationale”. Note that this framework can be extended
with other kinds of tasks, or support other templates with different parts.
Atomic tasks can be arranged in sequences to derive composite tasks. For
example, if a section is in overview, it can only go to states someDetail or
detailed by means of the task sequences < addMoreDetail > (atomic task) or
< addM oreDetail, complete > (composite task) respectively. Along this line,
the candidate tasks for a section dj are all the allowed task sequences deriv-
able from AT that follow the state chain doOverview — addMoreDetail —
complete. This chain models the meaningful order in which atomic tasks should
be performed on the V&B view template. With 4 atomic tasks and no undo,

10 Diaz-Pace et al.

we have a total of 6 possible tasks in L (not all of them are showed in Figure 4,
for the sake of clarity).

On one hand, the cost of a state change dy — d’y in a SAD section is as-
sumed to be a fixed quantity. Then, we have a cost vector Cp =< ¢1,...,cy >
with ¢, = cost(dg,d’r) and the total cost of an increment A, denoted by
Cost(A), is the sum of the individual costs of changing each section (or docu-
ment). If di, = d’k, a zero cost is assigned. Cost(A) represents the production
cost of the next SAD wversion. The cost for making the transition dy — d’j is
dependent on the costs of the atomic tasks being applied to the document. We
assume an “atomic” cost associated to each transition in the state sequence
of Figure 4). An atomic cost denotes the (documenter’s) effort of updating
document k with current detail 7 to its next consecutive level i+ 1. For a tran-
sition between not-consecutive states, we use a “composite” cost equal to the
sum of the atomic costs across the transition. Certainly, estimating the costs
of writing SAD sections is a subjective activity. One proxy for estimating such
costs is the number of words. For instance, if a document has 1000 words and
has a 100% of completeness, the atomic cost for the 3 tasks in AT can be
c=1

O3n the other hand, the benefit (or expected utility) of an increment A is a
function of the vectors SAD; and SAD, 1, but it also depends on the stake-
holders’ preferences on the SAD contents. Similarly to the cost fomulation, we
assume a benefit vector Bo =< by, ...,bx > with by, = benefit(dy, d'k, satisfactioni(S)),
in the range [0,1] (0 means no utility, and 1 means high utility). Given a set
of M stakeholders S = {S1, ..., Sar}, satisfactiony(S) captures the combined
preferences of all stakeholders on state change dj — d’k. In other words, by
is the “happiness” of the stakeholders (as a whole) with an increased detail in
section k of the SAD. Then, Benefit(A) is computed as a the sum of the ben-
efits through all the sections, and it gives a measure of the stakeholders “utility
with the next SAD version.

M M
Benefit(A) = Z by, = Z benefit(dy, 'y, satisfaction(S)) (3)
k=1 k=1

3.1 Dependencies among SAD sections

In order to model dependencies between SAD sections in NSVP B, we need
to consider both the different types of sections (i.e., architectural views) and
their completion states. In experiments with SAD versions, if we consider that
the required dependencies between sections are met in the next SAD version,
we can have drops of up to 20% in the (maximized) benefit, when compared to
optimizations without considering those dependencies. In Figure 4, the dotted
lines exemplify dependencies between sections (or views), which correspond to
dependencies between elements of the vector SAD;in the mathematical for-
mulation. For the case of N documents each one in 4 possible states, let us

Producing Just Enough Documentation: An Optimization Approach 11

Relations between

SAD . Views -
r== r==
r=> ATOMIC I v
= 1 r»D, TASKS I ¥
3 - [I
2 11 [1 v
L
]
o r':': >D, " doOverview VIEW TEMPLATE
2 L
E 1 : !_> D. | d @ '{ 1. Primary presentation
z1 k| Yk addMoreDetail +
wi 2. Element catalog
a1 1 some
e : o detail {_3. Context diagram
: L *~~~\C_‘C‘>‘mplete ‘ {'4_ Variability guide
T detailed) -
| I »D, | 5. Rationale

Fig. 4 Documentation tasks for a SAD section, based on the V&B view templates

consider N matrices of dimensions 4z4, and each cell of a matrix has a weight
wf] = 1 if the resulting SAD has the required dependency dj — d’, between

documents k and p with states d — d’', respectively. Otherwise w;-f ; =0,
in case of no required dependencies between documents, or alternatively, if
the documents involved in the dependency are empty. Along this line, we can
add a second objective Dependencies(A) grouping all the weights to in Equa-
tions 1 and 2. The closer Dependencies(A) is to 1 (considering a normalization
based on the number of documents of the SAD), the lesser the violations of

dependencies in the resulting SAD. Thus, we have the following;:

N 4
mazimize Dependencies(A) = (Z Z wr) /(4% n) (4)

i,J
k=1i=1,j=1

We refer to this new formulation to as NSVP_BD (“D” for Dependencies)
and the problem becomes a bi-objective optimization. To solve NSVP instances
(i.e., find an optimal SAD documentation strategy), discrete optimization tech-
niques can be applied [16], based either on exact or heuristic algorithms. In
our case, the number of SAD documents (N) is the main contributor to prob-
lem size, affecting the choice between exact or heuristic algorithms. Real-life
SAD sizes have typically 15-40 documents, depending on how critical the ar-
chitecture is for the system (and hence, its documentation). In previous work
[15], we explored an implementations based on SAT4J [6], and an heuristic
implementation based on the NSGA-IT algorithm [14] provided by the MOEA
framework?. In this article, we work with solutions generated with NSGA-II,
which is a well-known genetic algorithm for multi-objective optimization [14].
In short, NSGA-IT uses an evolutionary process with operators such as selec-
tion, genetic crossover and genetic mutation, applied to the document state
representation of NSVP. An initial population of vectors A is evolved through
several generations.

2 http://moeaframework.org/

12 Diaz-Pace et al.

3.2 Types of satisfaction functions

When it comes to the utility associated to tasks (either atomic or composite
ones) in L, we compute the utility indirectly on the basis of the stakeholders’ in-
terests over the SAD sections. The benefit obtained from a particular section is
given by by, = benefit(dy,d’r, satisfactiony(S)). More specifically, computing
each benefit requires the specification of i) a function satis factiony(S) and ii)
a procedure to aggregate individual satisfactions into a single value. For every
SAD section, a stakeholder can prefer any state in D.S = {empty, overview, someDetail, detailed}.
These preferences actually come from the MSI of ProSAD. Note here that
empty is interpreted as the stakeholder being ‘“not interested” in the docu-
ment. For estimating satis factiony(S), we depart from the assumption that a
stakeholder knows the “perfect” level of detail required for a section, based on
her own information needs and the expected information to be conveyed by
the architectural view of the section. This knowledge is modeled by functions
of the form satisfaction(S) : DSz DS — [0,1], which depend on both the
actual and preferred completion states of a document. Based on our experience
with architectural documentation projects, we propose three candidate func-
tions, as described in Figure 5. Like in [36], note that other types of satisfaction
functions are also possible.

A. exact-or-nothing B. more-is-fine (saturation) C. more-can-be-penalized
satisfaction satisfaction satisfaction complete
1 jevel of
1 datail
max]satisfaction max|satisfaction | maxlsatisfaction 1

>) ¥
lview detail level iew detail level view detail level

4
— |-

Fig. 5 Satisfaction functions based on stakeholders preferences over SAD sections

Function A (exact-or-nothing) gives maximal satisfaction (1.0) when the
current detail of the document matches exactly the stakeholder preference, and
0.0 satisfaction otherwise. Function B (more-is-fine) proportionally increases
the satisfaction value as the current detail of the document gets closer to the
stakeholder preference, and beyond that point the satisfaction gets the maxi-
mal value (1.0). This reflects the situation in which the stakeholder does not
care having more detail than required. Function C (more-can-be-penalized) is
a variant of Function B. It begins with a proportional increase until the doc-
ument detail matches the stakeholder preference, but for higher detail than
required the satisfaction value decreases slightly. This situation would hap-
pen when the stakeholder is overwhelmed by an excess of information. In all
functions, we set € = 0.1 as the “allowed difference” for a matching between

Producing Just Enough Documentation: An Optimization Approach 13

a preference and a document state dy, .Eliciting the right satisfaction function
of a stakeholder is not trivial, and it is out of the scope of this work.

After applying the satisfaction functions above, we obtain a vector satis faction(S) =<
$k(S1), -y S (Sar) > with sx(S;) € [0, 1]. Examples of satisfaction vectors com-
puted with functions A, B, and C for 5 stakeholders and a single document are
shown in Figure 6. Note that two (or more) stakeholders might have competing
preferences on the same document, which cannot be solved by means of the
satisfaction functions (except perhaps when Function B is used). This trade-
off situation means that selecting a detail level for a document might satisfy
some stakeholders but might just partially satisfy others. In our model, the
aggregation of the stakeholder satisfaction is computed with a weighted aver-
age based on stakeholders’ priorities. Specifically, we assign each stakeholder
S; a priority p;, in the range [0,10], where 0 is the lowest priority and 10 is
the highest one. This priority can be defined by the role that the stakeholder
plays in the project.

Document k (someDetail) S, S, S5 S, S
Preference overview detailed detailed = someDetail empty
function A > 0.00 0.00 0.00 1.00 0.00
function B > 1.00 0.75 0.75 1.00 1.00
functionC 2> 0.33 0.75 0.75 1.00 0.00

Fig. 6 Example of converting stakeholder preferences to satisfaction values

4 Towards a Robust Formulation of NSVP-BD

A limitation of the previous formulation is that both the costs (of atomic tasks)
and the priorities of the stakeholders (for the calculation of the aggregate
satisfaction function) need to be know in advance. Although these parameters
can be estimated by the documenter (or by an expert), the estimations are
subject to uncertainties. Furthermore, when solving NSVP instances using
optimization algorithms such SAT4J or NSGA-II, we observed that different
choices for costs and priorities often led to variations in the (maximal) benefit
of the SAD. For this reason, we were interested in applying robust optimization
techniques to NSVP. Robust optimization is an operational research framework
that identifies and quantifies uncertainty in optimization problems [7]. This
framework admits that some aspects (or parameters) are uncertain, and builds
up models which seek robust solutions, i.e., even in the presence of noisy
input data, the models can produce solutions with good quality. However, this
desired robustness generally comes with some loss in solution quality, which
is usually known as the “price of robustness” [8]. As a prerequisite for such

14 Diaz-Pace et al.

a robust formulation, it is necessary to know what parameters of the NSVP
optimization have the greatest influence on the maximal benefit. One way of
doing this study is via sensitivity analysis [41]. In particular, we used global
sensitivity analysis, as all parameters of interest can be varied simultaneously
over the entire parameter space.

4.1 Global sensitivity analysis

A well-known method is Sobol’s Sobol [44], which applies variance decom-
position techniques to provide a quantitative measure of the contribution of
the inputs to the output variance. The decomposition of the output variance
employs the principles of factorial design, but the analysis is not intended to
identify the causes of the input variability. It just indicates what impact and to
what extent each parameter will contribute to the model output. A nice feature
of Sobol’s method is that no assumptions are made about the model inputs
and output. The application of Sobol s sensitivity analysis is summarized in
Figure 7. First, a sample of parameter values is generated. Second, the param-
eters are run through the model. In our case, the model is an optimization
algorithm for NSVP. Third, the so-called Sobol indices are computed. There
are two types of indices of relevancy to our work: total-order and first-order
indices. First-order sensitivity indices reflect the “main effect”; and are used to
measure the fractional contribution of a single parameter to the output vari-
ance. Total-order indices, in turn, take into account the main, second-order
and also higher-order effects of the parameters on the output variance. The
interpretation of the analysis is that the higher the value of sensitivity in-
dices, the more influential the respective parameters for the model. Usually, a
threshold of 0.5 is used to distinguish important (i.e., most sensitive) param-
eters in complex models. In addition, the most sensitive parameters should
have a narrow confidence intervals in the calculation, normally less than 10%
of the indices values. For our work, we employed the implementtation of the
Sobol sensitivity analysis provided by the MOEA framework?.

Since the Sobol analysis can only be performed on a single objective,
we preferred to tackle the benefit objective, and cast the dependencies ob-
jective as a constraint. For the purposes of sensitivity analysis, we defined
MinDependency € [0,1] so that Equation 4 becomes Dependencies(A) >
MinDependency. BothMaxzCost and MinDependencies were treated as pa-
rameters in the analysis (see CostConstraint and DependencyConstraint in
Figure 7, respectively).

Figure 8 shows the results of the sensitivity analysis performed on a real-life
SAD, called Clemson Transit Assistance System* (CTAS). The study involved
an input set of 16 parameters and the usage of the 3 satisfaction functions
above. For simplicity, we assumed that each of 3 atomic tasks had the same

3 https://waterprogramming.wordpress.com/2012/08/13 /running-sobol-sensitivity-
analysis-using-moeaframework /

4 http://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/ Telematics.pdf

Producing Just Enough Documentation: An Optimization Approach 15

CostConstraint: [1.0, 70.0]

""""""""" > DependencyConstraint: [0.0, 1.0]
/ P1, P2, P3, P4, P5, P6, P7, P8, P9, P10: [0.0, 10.0]
DoOverviewAction: [1.0, 10.0]
AddMoreDetailAction: [1.0, 10.0]
CompleteAction: [1.0, 10.0]

(A) Define
parameters and

their range
for NSVP_BD

instance

‘L 1. Sample parameter sets (using Saltelli sequence,
- } and samples = 128000)

(B) Perform Sobol
sensitivity analysis

2. Runthe parameter sets through the optimization
algorithm (NSGA-I1) for SAD instance

3. Calculate Sobol indices, based on benefit values
produced by NSGA-II

\ 4

P
(C) Analyze total and first-order]

sensitivity indices for parameters

.

Fig. 7 Steps of the Sobol sensitivity analysis applied to NSVP _BD

cost for all the SAD documents. Initially, the CTAS SAD had 20 documents
(many of them nearly empty) and a completion level of 14%. For this SAD, we
had a set of 10 stakeholders with varying priorities. In the analysis of first-order
effects, we noticed that the CostConstraint per SAD increment (MaxCost in
Equation 2) is the most important parameter (index > 10%) , and then a
moderate influence of the priorities of stakeholders (PI to P10). When it
comes to the analysis of total-order effects, the CostConstraint turned to be
the most important parameter as well (20% < index < 50%). An interesting
observation here was that the choice of the satisfaction function (either A, B
or C) somehow affects the contribution of CostConstraint. The remaining pa-
rameters, including the costs of tasks (CompleteAction, AddMoreDetail Action,
DoOverviewAction), showed a moderate influence from the perspective of to-
tal effects. Nonetheless, since their respective indices were always in the range
10 — 20%, they must be considered as a source of variations in the benefit.
We believe that the costs of tasks had a greater (and significant) index for
total effects than for first-order effects because these costs are dependent on
the maximum allowed cost (CostConstraint). In all the cases, we should also
notice a marginal influence of DependencyConstraint on the output.

A first conclusion of the previous analysis is that the value of MaxCost
chosen for a SAD increment affects the attainable benefit when maximiz-
ing Benefit(A). This relation makes sense if we recall that NSVP can be
seen as a variant of the so-called knapsack problems. However, a less obvious
conclusion is that, in order to reduce possible variations in Benefit(A) due
to adjustments of the (other) parameters of NSVP, we should try to control:
i) the priorities assigned to the stakeholders, and ii) the costs of the documen-
tation tasks. In the following, we extend the optimization model of Section 3
in order to incorporate different types of uncertainties.

16

Diaz-Pace et al.

Sensitivity Indices (function A)

Sensitivity Indices (function B)

I cut-off = 0,05
CompleteAction

cut-off = 0,05

CompleteAction
AddMoreDetailAction
DoOverviewAction
P10

P9
pg =
P7 BB

P6
s B
P4

P3

b B
P15
DependencyConstraint
CostConstraint

a
AddMoreDetailAction PR
DoOverviewAction [[EEEgEEEEHETa
OO
P)
P8)
P7 i)
P6 i
PS PR
pa TR
P3
Py S
p1]
DependencyConstraint R
CostConstraint =
0,2 0,3

B total-order Hfirst-order

M total-order first-order

Sensitivity Indices (function C)

CompleteAction
AddMoreDetailAction
DoOverviewAction
P10

P9

P8

P7

P6

]

P4

P3

P2

P1
DependencyConstraint
CostConstraint

I cut-off = 0,05

03 04 05

@ total-order first-order

Fig. 8 Sobol sensitivity indices computed for the CTAS SAD

4.2 Adding robustness to stakeholder priorities and costs

The first robustness strategy has to do with our measure of the stakeholders’
satisfaction. This measure can be uncertain, as it depends on the satisfaction
function chosen and also on the priorities assigned to the stakeholders. As
discussed in [37], this type of uncertainty can be quantified in a discrete and
probabilistic way, using the concept of scenarios [48]. In this context, a sce-
nario comprises a set of values that represent the occurrence of certain events.
In our case, these events have to do with varying priorities for the stakehold-
ers in satis factiony(S). More formally, let Scenarios = {eq, ea, ..., eq }where
each scenario is represented by e; = {p{’, p§’, ..., p5,} with p being an arbi-
trary stakeholder priority in scenario e;. Each e; leads to an aggregate value
satisfactionf,(S). In the assignment of possible values to the scenarios, we

Producing Just Enough Documentation: An Optimization Approach 17

need to consider the probability of those events actually taking place. For
each scenario e;, it is defined an occurrence probability r;, with 2?:1 re; = 1.
Thus, we can re-write Equation 3 and substitute the term satisfactiong(S)
by a set of scenarios:

Benefit(A) = Z(Z benefit(dy,d'y, satisfaction(S))) *re (5)
k

e=1

=

Note that Equation 5 can be seen as a generalization of Equation 3. If we
consider a single scenario e, then we obtain Equation 3.

The second robustness strategy refers to the documentation costs, which
have a kind of uncertainty that is different from that of stakeholder satisfac-
tion. Here, we quantify the uncertainty related to cost in a deterministic and
continuous way, as done in [Ref-paper-souzal. In addition to the cost ¢; of each
(atomic) task, we consider a value ¢§ that indicates the maximum expected
cost variation. In other words, a given cost can be in the range [¢; — 5, ¢; +¢5].
Along this line, we can write Cost(A) as:

N N
Cost(A) = Z ¢+ Z o (6)
k=1

k=1

The cost calculation above guarantees that, even when all the costs reach
their upper bounds c;, the cost restriction will be satisfied. This schema is the
most conservative one, because all the costs have worst-case values. A more
realistic schema is to consider only some worst-case costs. If p = ¢§/¢; is the
percentage of cost variation, we can define a function worstCases(d, p) that
sums up only the § worst cases for a given p. Equation 6 becomes:

N
Cost(A) = worstCases(d, 8) + Z c (7
k=1

Overall, the robust formulation of NSVP BD becomes a matter of sub-
stituting Equations 1 and 2 by Equations 5 and 7, respectively. Since the
parameter DependencyConstraint did not seem to be influential in our sen-
sitivity analysis, we did not consider a robustness strategy for the objective
Dependencies(A) .

Figure 9 shows the maximal benefit obtained in the robust and non-robust
(normal) formulations of NSVP_BD, for our two strategies: i) stakeholder
priorities, and ii) documentation costs. We ran our NSGA-II algorithm for
solving 200 samples of the CTAS SAD and then computed metrics such as:
average benefit, average benefit variance, percentage of robustness (gain), and
price of robustness (loss). The priorities and probabilities of the different sce-
narios were randomly generated. The percentage of robustness is the differ-
ence between the variance of the robust distribution (0%) and that of the
non-robust one (0?). That is, %robustness = 02 — 0% /0% x 100 . The “price

18 Diaz-Pace et al.

18 Benefit Robustness via Robustez via
17 priorities (a) costs (b)
“ a) Stakeholder priorities Robusteness 79,48 % 16,11 %
is (satisfaction) Cost of robustness 3535% 16,49 % ‘
14
13
10
12 b) Documentation costs

11 - 9 (tasks)
10 s

|
Z T ’ (
|+ T

Benefit - normal Benefit - robust Benefit - normal Benefit - robust

ql Emedian mqg3 ql W median mq3

Fig. 9 Benefit obtained with and without robustness for the two strategies (MaxzCost = 30)

of the robustness” is the difference between the average of the robust dis-
tribution (ug) and the non-robust one (u), divided by the former. That is,
priceO f Robustness = p— pugr/p* 100 . As it can be seen in Figure 9, the first
strategy (a) proved to be the most effective one, as it contributed to signifi-
cantly reduce the variance in the benefit by sacrificing a 35% of its quality. In
the second strategy (b), the variance was slightly reduced when compared to
the normal case, with a minimal cost of robustness.

Figure 10 shows the variations in the cost of robustness (loss) due to varia-
tions in function worstCases(d, p), being 6 the number of cost worst-cases for
the documentation tasks and p the percentage of cost variation in those tasks.
We again ran the NSGA-IT algorithm over 200 samples based on the CTAS
SAD. In the table, we departed from an initial price of robustness of 34% as
an optimistic value, which progressively gets worst (gray cells in Figure 10) as
we move along the axes and both d and g are increased. Thus, in more realistic
settings, the metrics show that the cost of robustness can go up to a 10% of
the initial value.

Despite more empirical work and involving different SADs is needed, we
can say that a reasonable guideline to make NSVP BD more robust is to
apply the strategy of scenarios for the stakeholders priorities, and also tune
the parameters § and o adequately, so as to obtain a good tradeoff between
the percentage of robustness and its associated cost.

5 Learning Stakeholders Preferences with respecto to Views

In our approach, we model the stakeholders’ preferences with a matrix called
MSI that stores the level of interest of the current SAD section (columns) for

Producing Just Enough Documentation: An Optimization Approach 19

5

P 0 0.1 0.3 0.5 0.7 1

0 34,11% >
0.1 34,15% 34,17% 34,11% 34,17% 34,18%
0.2 34,39% 35,02% 34,14% 35,02% 35,04%
0.3 34,37% 36,07% 36,06% 36,04% 36,07%
0.4 35,07% 37,39% 37,48% 37,47% 37,49%
0.5 ' 35,56% 38,79% 39,58% 39,58% 39,58%

Fig. 10 Variations in cost of robustness, depending on percentages of documentation costs
(MazCost = 30)

a given stakeholder (rows). In a way, we can think of these interests of each
stakeholder as its user profile [43]. Initially, the profiles for the different stake-
holder types are derived from the V&B matrix of Figure 2. However, these
profiles do not remain static, as stakeholders normally change their interests
(or preferences) on the views (SAD sections) over time. As shown in Figure 3,
ProSAD relies on a profiling component that monitors the access ot the stake-
holders to the Wiki-bsased SAD and generates user profiles. As stakeholders
browse the SAD, their profiles are enriched with information coming from
Wiki documents via Natural Language Processing (NLP) techniques [3] and
implicit interest indicators [11, 1].

Basically, the NLP processing extracts the key tokens of the text by means
of syntactic/semantic analyses of the Wiki pages. The interest indicators refer
to time spent on reading a page, number of visits, mouse scrolls, mouse clicks,
and the ratio between scrolls and time (which represents the frequency of
scrolls while reading of Web page), among others. With all this information,
the profiling component is able to establish links between a given profile and
the SAD sections that best match that profile, so as to update the MSI. A
general schema of the working of this component is shown in Figure 11. For
more details of the profile construction techniques, please refer to [35].

The design consists of a semi-automated pipeline that: i) generates user
profiles, ii) generates document representations, and iii) computes matching
relationships among users and SAD sections. We refer to these relationships
as relevance links. The relevance links are computed on the basis of the sim-
ilarity between the user profiles and the document representations. Both the
user profilers and the document representations are term-based vectors. The
pipeline computes a set of weighted links between users and sections, in which
the weights indicate the relevance of the sections for each stakeholder.

We should note that the V&B matrix (Figure 2) and the MSI matrix
(Figure 11) are slightly different in their contents. First, the V&B matrix
shows types of stakeholders (roles) and architectural view types, while the MSI
models individual stakeholders (i.e.,persons playing stakeholder roles of V&B)
and instances of architectural views (as prescribed by the V&B templates).
Second, the cells of the V&B matrix deal with detail level using an ordinal scale

20 Diaz-Pace et al.

lo
V&B Matrix
MSI
text of

SAD SECTIONS
documents 2l = 8] g
sl & & g| §| 2
s 3| 3| 8 g 8
smkenowers | o'l E| E W S| T
Generator of &l 2 4 & 3 &
Access, browsing, 8| 8 8| &
readin Stakeholder St roject
g . [manager 0.05)0.71 | 0.23 | 0.06 | 0.85 [0.23
usage Profiles
/ | \ statistics 52 (developer)| 033|085 | 023 | 0.33 | 0.06 |027
S3 (developer | 0.23/0.71 | 0.85 | 0.33 | 0.71 | 0.06
- 54 (architect) J0.06 |0.85 | 0.06 | 0.71 | 0.06 | 0.85
lS_S(cusmmer) 0.33]/0.06 | 0.06 | 0.06 | 0.33 [0.06

b y P) ./anna[at/ons of - >

SAD stakeholders i . concepts g&

User profiles
expert p

Fig. 11 Pipeline for constructing stakeholder profiles and updating the MSI

(detailed information, overview information, some details, anything), while
those of MSI refer to interest degree using a numerical scale ([0, 1]). For this
reason, we need to map the information provided by the relevance links to
the MSI. To do so, we simply assign a numeric value to each ordinal value
of V&B, namely: anything— 0, overview— 1/3, some details—2/3, and
detailed —1. As a result, the MSI is ready to be consumed by the optimizing
component (i.e., the documentation assistant).

6 Related work

Several architecture documentation methods exist in the literature [13, 22, 30,
40]. Common to all these methods is the prescription of a SAD structure (i.e.,
templates) and the use of views for different system viewpoints. These view-
points might be related to stakeholders’ concerns. Nonetheless, the methods do
not provide guidelines for creating the documentation package, except for the
steps suggested by V&B. Thus, the documenter is responsible for determining
how the SAD contents will be staged for delivery.

Lattanze [31] classifies architecture documentation strategies into horizon-
tal and vertical ones, emphasizing that both require SAD planning as well as
identification of stakeholders and their information needs. In a vertical strat-
egy, custom documents are created for specific stakeholders. These documents
might have duplication or require considerable efforts, but the SAD will cer-
tainly fulfill the stakeholders’ needs. V&B falls in this category, although it
helps documenters save some efforts, if the method is applied in a disciplined
way. In a horizontal strategy, on the contrary, the documenter creates small,
isolated documents and then tries to reuse them to form documentation suites
for specific stakeholders. Usually, some writing has to be added to link the

Producing Just Enough Documentation: An Optimization Approach 21

documents together. Thanks to the reuse, this strategy reduces the SAD pro-
duction efforts and its maintenance. Currently, our assistant implements a
vertical strategy but it can accommodate a horizontal one with some modifi-
cations.

As it regards the profiling of documentation readers, Su [45] proposed
an automated approach based on pieces of architectural information, called
chunks. These chunks are the result of specific exploration paths followed by
a user when reading a SAD. When a new user is about to navigate the SAD,
a tool recommends her candidate sections by reusing previous (similar) explo-
ration paths. This approach effectively assists readers to find information, but
unlike our approach, it does not support documentation strategies.

Different authors have reported experiences with Wikis applied to archi-
tecting tasks [2]. Bachmann and Merson [2]| discussed the role of a Wiki to
record technical documentation in a collaborative setting, and specifically,
how to use a Wiki with V&B documentation. Farenhorst et al. built JIT
AK Portal to capture architecture knowledge and share it among architects,
but not among other stakeholders. Another related tool is Knowledge Archi-
tect [27], which supports the retrieval of knowledge for multiple stakeholder
types, although only focused on the reader’s side. Neither JIT AK Portal nor
Knowledge Architect consider the process of producing architectural contents,
which is the cornerstone of our tool. Graaf et al. [20] conducted an empiri-
cal study on Wiki-based SADs. The SAD is built on top of a semantic Wiki
equipped with annotations, using an ontology of architecture concepts. We be-
lieve semantic Wikis are an interesting feature for boosting the “intelligence”
of our documentation assistant.

We have performed a comparative analysis of the different approaches we
have found in the literature according to different aspects we consider that an
efficient and stakeholder-centric documentation approach should met. These
requirements are based on several factors, which include the opinion of ex-
perts in the field [13, 40, 38, 21|, current standards on architectural docu-
mentation [25, 24] and the experience of several researchers (including ours)
with industrial projects [23, 47, 39, 4]. In our context, efficient means that the
documentation process should optimize the use of resources to achieve good
quality documentation. In addition, a documentation approach should pro-
duce documentation that satisfies its readers and that provides real value for
the project, while also it should help the readers to recover relevant contents
from large knowledge databases. To this end, it is advisable to follow a process
centered in the stakeholders’ interests and information needs. In summary, the
requirements for a documentation approach should be the following;:

— R#1: ensure the satisfaction of stakeholders’ interests. High-quality docu-
mentation should be produced from readers’ perspective rather than from
writers’ perspective. A documentation approach should capture and model
the stakeholders’ interests to produce useful documentation. This complies
with current standards for architectural documentation [25].

22

Diaz-Pace et al.

R#2: consider stakeholders’ priorities. Given that not every stakeholder
has the same level of importance within a software project, documenta-
tion efforts should be centered in satisfying the information needs of key
stakeholders. This strategy allows to produce useful documentation with a
limited amount of resources.

R#3: follow an efficient production process. An efficient documentation
process is essential when software projects have tight agendas and limited
resources for documentation activities [23]. To achieve an efficient process,
it should be planned [28]. A documentation approach should provide a
framework to plan the production of architectural documentation. In addi-
tion, since planning the process in an cost-effective manner is not a trivial
task, the approach should provide support mechanisms. Ideally, a good
documentation plan should provide a high-level of coverage of stakehold-
ers’ interests with a reduced documentation effort.

. The results of our analysis are summarized in Table 6, in which the approaches
are compared according to the following features:

Goal (G). The main goals of the approach, which could be: architecture
knowledge management and recovery, efficient documentation production,
produce high-value documentation.

Tool support (TS). Whether the work includes a tool to facilitate its adop-
tion.

Type of documentation (TD). The type of documentation targeted by the
work (e.g., architecture, rationale, requirements)

Target stakeholders (TS). The type of stakeholders that are benefited from
the research work.

Stakeholder-centric (SC). Whether the approach considers the stakehold-
ers’ interests and produces reader-oriented documentation.

Stakeholder priorities (SP). Whether the approach considers the stakehold-
ers’ priorities during the process.

Efficient process planning (EPP). Whether the proposal provides some sort
of assistance to plan the documentation process in an efficient manner.
Empirical evaluation (EE). The proposal has been empirically evaluated
to demonstrate its usefulness.

-
Author(s) G TS? TD TS SC? Sp? EPP? EE? é‘
Clements produce no architecture multiple yes (matrix no no (some basic no | =
et high-value static guidelines) 5
al. [12,13] documenta- model) 2
tion Ej
Rozanski et produce no architecture multiple yes (no no no (some basic no | &
al. [40] high-value explicit guidelines) ;
documenta- model) 8
tion 3
Kruchten [30] produce no architecture technical no no no no |
high-value stakehold- §
documenta- ers >
tion =
Hofmeister produce no architecture technical no no no no |9
et al. [22] high-value stakehold- g
documenta- ers B
tion §
Naeem et produce no architecture multiple yes no no yes (preZ
al. [33] high-value (through liminary§
documenta- the OSV) 8.

tion
Farenhorst AK man- yes architecture architect no no n/a yes (pre-
et agement liminary)

al. [18, 19] and

recovery

€C

Author(s)

G

TS?

TD TS SC? SP? EPP? EE7 2
Jansen et AK man- yes architecture multiple no no n/a yes
al. [27] agement
and
recovery
Boer y van AK man- no architecture auditor/evaluator no no n/a yes
Vliet [9] agement
and
recovery
Su et AK man- yes architecture multiple yes no n/a no
al. [45, 46] agement (dynamic
and preference
recovery model)
Castro- support re- no requirements multiple yes no n/a yes (pre-
Herrera et quirements (dynamic liminary)
al. [10] elicitation preference
model)
Falessi et efficient no architecture multiple no no no yes
al. [17] documenta- (rationale)
tion
production
Hadar et efficient yes architecture multiple no no no no
al. [21] documenta-
tion =
. &
production o
8
"]
N

Author(s) G TS? TD TS SC? SP? EPP? EE?
Savolainen efficient no architecture multiple yes (static no no (some basic no
et al. [42] documenta- model) guidelines)
tion
production

yoeoiddy uoryeziwiyd(uy :uoirejusUNIO(yInouy Isnp Supnppid

14

26 Diaz-Pace et al.

Table 6 shows that, currently, there is not an integral, empirically-evaluated
approach that meets all the above requirements. All works lack some important
features. On the one hand, there is a subset of works towards the stakeholder-
centric recovery of architectural knowledge, but they do not employ the ac-
quired information about preferences to produce high-value documentation or
to perform an automated recovery process. On the other hand, there is another
subset of works that focus on the reduction in the effort required to produce
architectural documentation by identifying low-value contents. However, this
sort, of works do not provide usually software tools to facilitate its adoption
and do not follow a stakeholder-centric strategy to select those contents, so
the satisfaction of the key stakeholders can not be guaranteed.

7 Conclusions and future work

In this work, we have proposed a robust and stakeholder-centric approach and
tool support for optimizing the information contents of software architecture
documents. In ProSAD, the strategy for managing the architecture knowledge
is driven by the needs of the stakeholders interested in the SAD, but it also
considers the document production efforts. The problem of generating a satis-
ficing SAD is seen as a discrete optimization problem and can be solved either
with exact or heuristic algorithm (e.g., NSGA-II). We have developed tool
support for ProSAD in the form of a documentation assistant to the architect.
In particular, we have leveraged on the concepts and guidelines of the V&B
documentation model and mapped this model to a formulation called NSVP,
which constitutes a novel aspect of the proposal.

In this article, we have improved the NSVP formulation in several ways,
namely: i) consideration of SAD dependencies, which trune out NSVP into a
bi-objective optimization problem; ii) sensitivity analysis of model parameters,
which led to a robust formulation of NSVP; and iii) integration of user pro-
files that capture the dynamics of the stakeholders with respect to the SAD.
We have performed some preliminary evaluations on specific SAD instances
with good results. This provides initial evidence that ProSAD is feasible and
practical for architects.

The contributions of our approach are two-fold. First, unnecessary infor-
mation is not documented, with the consequent effort savings. There is a well-
known relationship between the amount of software documentation and its
usefulness. Beyond a certain point, the usefulness of documentation decreases
when more information is added, because finding relevant information becomes
more and more difficult as the overall amount of documentation increases. Sec-
ond, the (stakeholder-centric) motivation for having architecture knowledge is
reinforced (i.e., made it concrete via specific tasks) in the development team.
. Nonetheless, more experiments with users and real-word case-studies are
needed in order to confirm our partial results. The current robust framework
can be improved regarding the usage of satisfaction functions. It seems possible
to “reuse” the same idea of starting with a basic MSI and periodically update

Producing Just Enough Documentation: An Optimization Approach 27

it via learning for the case of satisfaction functions. For instance, we could
depart from a predefined satisfation function and then make adjustments to it
based on (learning from) stakeholders’ feedback. As for the integration of user
profiling techniques in ProSAD, we argue that the component can have a dual
purpose, supporting the writers and the readers of the SAD. On the reader’s
side, a personalization tool could identify potentially-relevant SAD sections
for specific stakeholders, alleviating information overload problems [35]. As
future work, we would like to study measures for quantifying the internal
quality of a SAD, and possibly incorporate it as a third objective in our opti-
mization formulation. Another line of work is to apply our approach to process
a large information repository in order to extract small documentation suites
for particular goals. This scenario would need “undo” tasks in our optimization
framework.

Finally, as a long-term research goal, we want to investigate if our approach
can be customized to other information domains. Along this line, we speculate
that the production planning strategy can be applicable to other documenta-
tion artifacts or content-management systems, as long as some documentation
structure is available and the information items can be linked to user profiles.

Acknowledgments

This work was partially supported by ANPCyT (Argentina) through PICT
Project 2011 No. 0366, and also by CONICET (Argentina) through PIP
Project No. 112-201101-00078.

References

1. Al halabi WS, Kubat M, Tapia M (2007) Time spent on a web page is
sufficient to infer a user’s interest. In: TASTED European Conference on
Proceedings of the IASTED European Conference: internet and multime-
dia systems and applications, ACTA Press, Anaheim, CA, USA, pp 4146,
URL http://portal.acm.org/citation.cfm?7id=1295415.1295422

2. Bachmann F, Merson P (2005) Experience using the web-based tool wiki
for architecture documentation. Technical Note CMU/SEI-2005-TN-041,
SEI, Carnegie Mellon University, Pittsburgh, Pennsylvania

3. Baeza-Yates R, Ribeiro-Neto B (2011) Modern Information Retrieval: The
Concepts and Technology behind Search, 2nd edn. Addison-Wesley Pro-
fessional

4. Bass L, Kazman R, Ozkaya I (2011) Developing architectural documenta-
tion for the hadoop distributed file system. In: Hissam S, Russo B, de Men-
donijcea Neto M, Kon F (eds) Open Source Systems: Grounding Research,
IFIP Advances in Information and Communication Technology, vol 365,
Springer Boston, pp 50-61

5. Bass L, Clements P, Kazman R (2012) Software Architecture in Practice
(3rd Edition). Addison-Wesley Professional

28

Diaz-Pace et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Berre DL, Parrain A (2010) The sat4j library, release 2.2. JSAT 7(2-3):59—
6

Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35-53,
DOI 10.1287/0pre.1030.0065, URL http://dx.doi.org/10.1287/opre.
1030.0065

Beyer HG, Sendhoff B (2007) Robust optimization - a comprehensive sur-
vey. Computer Methods in Applied Mechanics and Engineering 196(33-
34):3190-3218

de Boer RC, van Vliet H (2008) Architectural knowledge discovery with
latent semantic analysis: Constructing a reading guide for software product
audits. Journal of Systems and Software 81(9):1456 — 1469
Castro-Herrera C, Cleland-Huang J, Mobasher B (2009) Enhancing stake-
holder profiles to improve recommendations in online requirements elicita-
tion. In: Requirements Engineering Conference, 2009. RE ’09. 17th IEEE
International, pp 37 —46

Claypool M, Le P, Wased M, Brown D (2001) Implicit interest indica-
tors. In: Proceedings of the 6th international conference on Intelligent
user interfaces, ACM, New York, NY, USA, IUI ’01, pp 33-40, DOI
10.1145/359784.359836

Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R,
Stafford J (2003) A practical method for documenting software architec-
tures. In: ICSE

Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Merson
P, Nord R, Stafford J (2010) Documenting Software Architectures: Views
and Beyond (2nd Edition). Addison-Wesley Professional

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-
objective genetic algorithm: Nsga-ii. Trans Evol Comp 6(2):182-197, DOI
10.1109/4235.996017, URL http://dx.doi.org/10.1109/4235.996017
Diaz-Pace JA, Nicoletti M, Schiaffino S, Vidal S (2014) Producing just
enough documentation: The next sad version problem. In: Le Goues C,
Yoo S (eds) Search-Based Software Engineering, Lecture Notes in Com-
puter Science, vol 8636, Springer International Publishing, pp 46-60,
DOI 10.1007/978-3-319-09940-8 4, URL http://dx.doi.org/10.1007/
978-3-319-09940-8_4

Diwekar U (2010) Introduction to Applied Optimization, 2nd edn. Springer
Publishing Company, Incorporated

Falessi D, Briand LC, Cantone G, Capilla R, Kruchten P (2013) The value
of design rationale information. ACM Transactions on Software Engineer-
ing and Methodology 22(3):21

Farenhorst R, Lago P, van Vliet H (2007) Eagle: Effective tool support
for sharing architectural knowledge. International Journal of Cooperative
Information Systems 16(3/4):413-437, DOI 10.1142/50218843007001706
Farenhorst R, Izaks R, Lago P, Vliet Hv (2008) A just-in-time architec-
tural knowledge sharing portal. In: Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), IEEE
Computer Society, Washington, DC, USA, WICSA 08, pp 125-134, DOI

Producing Just Enough Documentation: An Optimization Approach 29

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

http://dx.doi.org/10.1109/ WICSA.2008.20

de Graaf KA, Tang A, Liang P, van Vliet Hans van Vliet H (2012)
Ontology-based software architecture documentation. In: Proceedings
Joint Working Conference on Software Architecture & 6th European Con-
ference on Software Architecture (WICSA /ECSA), IEEE Computer Soci-
ety, WICSA 2012, pp 315-319

Hadar I, Sherman S, Hadar E, Harrison J (2013) Less is more: Architecture
documentation for agile development. In: Cooperative and Human Aspects
of Software Engineering (CHASE), 2013 6th International Workshop on,
pp 121-124, DOI 10.1109/CHASE.2013.6614746

Hofmeister C, Nord R, Soni D (2000) Applied Software Architecture, 1st
edn. Addison-Wesley Professional

Hoorn JF, Farenhorst R, Lago P, van Vliet H (2011) The lonesome
architect. Journal of Systems and Software 84(9):1424 — 1435, DOI
10.1016/;.jss.2010.11.909

IEEE (2000) Ieee std 1471-2000: Recommended practice for architectural
description of software-intensive systems

ISO/IEC/IEEE (2011) Iso/iec/ieee 42010: Systems and software engineer-
ing - architecture description

Jansen A, Bosch J (2005) Software architecture as a set of architectural
design decisions. In: Proceedings Working Conf. on Software Architecture,
IEEE Computer Society, pp 109-120

Jansen A, Avgeriou P, van der Ven JS (2009) Enriching soft-
ware architecture documentation. Journal of Systems and Software
82(8):1232 — 1248, DOI DOI:10.1016/j.jss.2009.04.052, URL http:
//www.sciencedirect.com/science/article/B6VON-4W7RY9F-1/2/
da3c655caf0f2edb9bc0725f2e2a9939

Keuler T, Knodel J, Naab M, Rost D (2012) Architecture engagement pur-
poses: Towards a framework for planning ’just enough’-architecting in soft-
ware engineering. In: Software Architecture (WICSA) and European Con-
ference on Software Architecture (ECSA), 2012 Joint Working IEEE /IFIP
Conference on, pp 234-238, DOT 10.1109/WICSA-ECSA.212.36

Koning H, Vliet HV (2006) Real-life it architecture design reports and their
relation to ieee std 1471 stakeholders and concerns. Automated Software
Eng 13:201-223, DOI 10.1007/s10515-006-7736-6

Kruchten P (1995) The 4+1 view model of architecture. IEEE Software
12(6):42 —50, DOT 10.1109/52.469759

Lattanze A (2008) Architecting Software Intensive Systems: A Practition-
ers Guide. Taylor & Francis, URL http://books.google. com.ar/books?
1d=24KCUu2kh0UC

Mitchell RK, Agle BR, Wood DJ (1997) Toward a theory of stakeholder
identification and salience: Defining the principle of who and what really
counts. Academy of Management Review 22:853

Naeem S, Imtiaz S (2014) Architecture coverage: Validating optimum set
of viewpoints. In: Proceedings of the 9th International Conference on Soft-
ware Engineering Advances (ICSEA)

30

Diaz-Pace et al.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Nicoletti M, Diaz-Pace JA, Schiaffino S (2012) Towards software archi-
tecture documents matching stakeholders interests. In: Cipolla-Ficarra F
(ed) Advances in New Technologies, Interactive Interfaces and Communi-
cability, LNCS, vol 7547, Springer Berlin Heidelberg, pp 176-185, DOI
10.1007/978-3-642-34010-9 17

Nicoletti M, Diaz-Pace J, Schiaffino S, Tommasel A, Godoy D (2014)
Personalized architectural documentation based on stakeholders informa-
tion needs. Journal of Software Engineering Research and Development
2(1):9, DOTI 10.1186/s40411-014-0009-3, URL http://dx.doi.org/10.
1186/s40411-014-0009-3

Pace JAD, Nicoletti M, Schiaffino SN, Villavicencio C, Sanchez LE (2013)
A stakeholder-centric optimization strategy for architectural documenta-
tion. In: Model and Data Engineering - Third International Conference,
MEDI 2013, Amantea, Italy, September 25-27, 2013. Proceedings, pp 104—
117, DOI 10.1007/978-3-642-41366-7 9, URL http://dx.doi.org/10.
1007/978-3-642-41366-7_9

Paixdo M, Souza J (2013) A scenario-based robust model for the next
release problem. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, ACM, New York, NY, USA, GECCO
’13, pp 1469-1476, DOI 10.1145/2463372.2463547, URL http://doi .acm.
org/10.1145/2463372.2463547

Parnas DL (2010) Precise documentation: The key to better software. In:
Nanz S (ed) The Future of Software Engineering, Springer, pp 125-148
Rost D, Naab M, Lima C, von Flach Garcia Chavez C (2013) Software
architecture documentation for developers: A survey. In: Proceedings of
7th ECSA, Springer-Verlag, Berlin, Heidelberg, pp 72-88, DOI 10.1007/
978-3-642-39031-9 7

Rozanski N, Woods E (2011) Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives, 2nd edn. Addison-
Wesley

Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity Anal-
ysis in Practice: A Guide to Assessing Scientific Models. Halsted Press,
New York, NY, USA

Savolainen J, Mannisto T (2010) Conflict-centric software architec-
tural views: Exposing trade-offs in quality requirements. IEEE Soft-
ware 27(6):33-37, DOI http://doi.ieeecomputersociety.org/10.1109/MS.
2010.139

Schiaffino S, Amandi A (2009) Intelligent user profiling. In: Bramer M
(ed) Artificial Intelligence: An International Perspective, Lecture Notes in
Computer Science, vol 5640, Springer Berlin / Heidelberg, pp 193-216
Sobol IM (2001) Global sensitivity indices for nonlinear mathematical
models and their monte carlo estimates. Math Comput Simul 55(1-3):271-
280, DOT 10.1016/S0378-4754(00)00270-6, URL http: //dx.doi.org/10.
1016/50378-4754(00)00270-6

Su MT (2010) Capturing exploration to improve software architecture
documentation. In: Proceedings 4th European Conf. on Software Archi-

Producing Just Enough Documentation: An Optimization Approach 31

tecture: Companion Volume, ACM, New York, NY, USA, ECSA ’10, pp
17-21, DOI http://doi.acm.org/10.1145/1842752.1842758

46. Su MT, Hosking J, Grundy J (2011) Capturing architecture documen-
tation navigation trails for content chunking and sharing. In: 2011 9th
Working IEEE/IFTP Conference on Software Architecture (WICSA), pp
256 259

47. Unphon H, Dittrich Y (2010) Software architecture awareness in long-term
software product evolution. Journal of Systems and Software 83(11):2211-
2226, DOI 10.1016/j.js5.2010.06.043

48. Yu G (1996) On the max-min 0-1 knapsack problem with robust op-
timization applications. Operations Research 44(2):407-415, DOI 10.
1287/opre.44.2.407, URL http://dx.doi.org/10.1287/opre.44.2.407,
http://dx.doi.org/10.1287/opre.44.2.407

