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NON-STRONGLY ISOSPECTRAL SPHERICAL SPACE FORMS

E. A. LAURET, R. J. MIATELLO AND J. P. ROSSETTI

Abstract. In this paper we describe recent results on explicit construction of
lens spaces that are not strongly isospectral, yet they are isospectral on p-forms
for every p. Such examples cannot be obtained by the Sunada method. We
also discuss related results, emphasizing on significant classical work of Ikeda
on isospectral lens spaces, via a thorough study of the associated generating
functions.

1. Introduction

Two compact Riemannian manifolds are said to be isospectral if the spectra of
their Laplace operators on functions are the same. More generally, they are said to
be p-isospectral if the spectra of their Hodge-Laplace operators acting on p-forms
are the same.

Recently, in [LMR], we have found examples of pairs of lens spaces that are p-
isospectral for every p. Since lens spaces have cyclic fundamental group, they cannot
be strongly isospectral. To the best of our knowledge these are the first (connected)
examples of this kind. By showing a nice connection between isospectrality of lens
spaces and isospectrality of certain associated integral lattices with respect to the
one-norm, we were able to construct an infinite family of pairs of 5-dimensional lens
spaces that are p-isospectral for every p.

Before this, A. Ikeda found many interesting examples of isospectral lens spaces.
The main tool of his approach was the generating function associated to the spec-
trum. Our method does not use generating functions, but relies on the representa-
tion theory of compact Lie groups.

In view of our construction of new families and the opening connection with one-
norm isospectral integral lattices, we expect it will be useful to write this article
attempting to bring together in a more accessible way, our method, the foundational
work of Ikeda and the method of Sunada.

Historically, the first example of isospectral non-isometric manifolds was a pair
of tori constructed by using lattices of dimension n = 16 ([Mi64], [Wi41]). The
dimension was reduced from 16 to 4 in several articles (see [Schi90], [CS92] and the
references therein). Such lattices are isospectral with respect to the standard norm
‖ · ‖2, that is, for each length they have the same number of vectors of that length.

Besides these examples, many other contributions have been given, showing dif-
ferent connections between the spectra and the geometry of a Riemannian mani-
fold. In [Su85] T. Sunada gave a general method that produces strongly isospectral
manifolds, that is, manifolds isospectral for every natural strongly elliptic operator
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acting on sections of a natural vector bundle, in particular they are p-isospectral for
all p. Later, this method was extended and applied by many authors, in particular
by D. DeTurck-C. Gordon [DG89], P. Bérard [Be93] and H. Pesce [Pe96]. In the
context of spherical space forms, A. Ikeda [Ik83], P. Gilkey [Gi85], J. A. Wolf [Wo01]
produced Sunada isospectral forms with non-cyclic fundamental groups.

The construction of manifolds that are p-isospectral for some values of p only can-
not be attained by Sunada’s method. The first such pair was given by C. Gordon in
[Go86]. Among other known examples we mention those in [Gt00] for nilmanifolds
and those given in [MR01], [MR03], [DR04] for compact flat manifolds.

A. Ikeda studied the spectrum of spherical space forms in several interesting
articles (see [Ik80a], [Ik80b],[Ik80c], [Ik83], [Ik88]). He developed the theory of
generating functions associated to spectra, obtaining many isospectral examples
of Sunada and non-Sunada type. In particular, for each given p0, he constructed
families of lens spaces that are p-isospectral for every 0 ≤ p ≤ p0, but are not p0+1-
isospectral. None of Ikeda’s examples of isospectral lens spaces are p-isospectral for
all p and actually until very recently, no examples were known of compact Riemann-
ian manifolds that are p-isospectral for every p but are not strongly isospectral. This
question has been around for some time (see [Wo01, p. 323]). In [LMR] we find
a rather surprising two-parameter infinite family of pairs of lens spaces that are
p-isospectral for every p, but are not strongly isospectral. We also give many more
examples obtained with the help of the computer and also examples in arbitrarily
large dimensions.

The paper is organized as follows. Section 2 is devoted to describe summarily
Sunada’s method and its generalizations. In Section 3 we develop the necessary
tools of representation theory of compact Lie groups to be used in the proofs of our
main results in Section §5. Section 4 is devoted to Ikeda’s important work, that
is scattered in several papers that are sometimes hard to follow. We have tried to
make it more accessible, including the main ideas in most of the proofs. In Section
5 we describe our construction of isospectral lens spaces in dimension n = 2m− 1
by means of one-norm isospectral integral lattices in Zm. A detailed description of
the methods and the results is given at the beginning of the section. The paper
finishes with tables, obtained by computer methods, listing all existing examples
for n = 5, 7 and 9, where the order of the fundamental group q is less than 500,
300 and 150 respectively. We have left some open questions or problems, usually
at the end of the sections or subsections.
Acknowledgement. The authors wish to thank Peter Doyle for stimulating discus-
sions and for facilitating the use of fast computer programs to check the tables in
Section 5.

2. Sunada’s method

T. Sunada [Su85] gave a simple and effective method that allowed to produce a
great variety of examples of isospectral manifolds. It is based on a triple of finite
groups Γ1,Γ2, G, where Γ1,Γ2 are subgroups of G that are almost conjugate in G,
that is, there is a bijection from Γ1 to Γ2 that preserves G-conjugacy. The first
such triples were given by Gassmann [Ga26] who used them to give pairs of non-
isomorphic number fields having the same Dedekind zeta function. The Sunada
theorem can be stated as follows.
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Theorem 2.1. Let Γ1,Γ2 be almost conjugate subgroups of a finite group G. As-
sume that G acts by isometries on a Riemannian manifold M in such a way that
Γ1,Γ2 act freely. Then the manifolds Γ1\M and Γ2\M are strongly isospectral.

Given a Gassmann triple Γ1,Γ2, G, to place oneself in the conditions of Sunada’s
theorem it is sufficient to give a Riemannian manifold M0 such that there is a
surjective homomorphism φ : π1(M0) → G. Sunada gave many applications of
this theorem, in particular, he constructed large sets of pairwise isospectral non-
isometric Riemann surfaces for any genus g ≥ 5. Also, he showed that manifolds
Γ1\M and Γ2\M as in the theorem must have the same lengths of closed geodesics.
We note, however, that these lengths need not have the same multiplicities (see for
instance [Go85], [Gt94], [Gt96] and [MR03]).

Sunada’s result was intensely exploited and was followed by several generaliza-
tions. Still today, the method accounts for most of the known examples of isospec-
tral manifolds. We note that the condition of almost conjugacy in the finite group
G is equivalent to a condition in terms of group representations, namely, that the
right regular representations of G on the function spaces C(Γ1\G) and C(Γ2\G)
are equivalent representations. More generally, if G is a Lie group and Γ1,Γ2 are
discrete cocompact subgroups, then Γ1, Γ2 are said to be representation equiva-
lent in G, if the right regular representations of G on L2(Γ1\G) and L2(Γ2\G) are
equivalent representations.

The following generalization of Theorem 2.1, due to DeTurck-Gordon [DG89]
(see also [Be93]), is very useful.

Theorem 2.2. Let G be a Lie group acting by isometries on a Riemannian man-
ifold M and let Γ1,Γ2 be discrete subgroups of G such that Γ1\M and Γ2\M are
compact manifolds. If, furthermore, Γ1, Γ2 are representation equivalent in G, then
Γ1\M and Γ2\M are strongly isospectral.

One can give a convenient reformulation of the condition of representation equiv-
alence in the theorem. Namely, if g ∈ G denote by C(g,Γi), C(g,G) the central-
izers of g in Γi and G respectively. Under the conditions above, the quotient
C(g,Γi)\C(g,G) is compact for i = 1, 2. One has that Γ1, Γ2 are representation
equivalent in G if and only if, for each g ∈ G,

(2.1)
∑

[a]Γ1
⊂[g]G

vol(C(a,Γ1)\C(a,G)) =
∑

[b]Γ2
⊂[g]G

vol(C(b,Γ2)\C(b,G)).

Here [g]G, [a]Γ1
and [b]Γ2

denote respectively the conjugacy classes of g in G, of a in
Γ1 and of b in Γ2 and the volumes are computed with respect to suitable invariant
measures in C(g,G) and C(g,Γi).

As a consequence, one obtains the following (see [Wo01])

Corollary 2.3. If G is a compact Lie group and the Γi are finite, then Γ1 and Γ2

are representation equivalent in G if and only if Γ1, Γ2 are almost conjugate in G.

H. Pesce studied the relation between representation theory and isospectrality
in several papers ([Pe95], [Pe96], [Pe98]). In particular, in [Pe95] he proved that
the converse of the Sunada condition is satisfied for manifolds of curvature ±1.
That is, if X = Sn or X = Hn, G = I(X) and Γ1 and Γ2 are discrete cocompact
subgroups of G and if Γ1\X and Γ2\X are strongly isospectral, then Γ1 and Γ2

are representation equivalent in G. (In the case of X = Rn this result is proved in
[La14].)
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Also, in a subsequent paper ([Pe96]), he gives a generalization of the condition
of representation equivalence, by introducing the weaker notion of τ-representation
equivalence, where τ is a representation of the compact Lie group K that is the
generic stabilizer of the action. When τ is the trivial representation he calls the
discrete subgroupsK-equivalent. As an application, in the case of spaces of constant
curvature he shows that Γ1 and Γ2 are K-equivalent in G = I(X) if and only if
Γ1\X and Γ2\X are 0-isospectral. A generalization was given recently in [LMR15],
in the same context, for X = G/K of constant curvature when τ = τp is the p-
exterior representation of K = O(n). We showed that in the elliptic case, for each
fixed p, Γ1 and Γ2 are τp-equivalent in G = I(X) if and only if Γ1\X and Γ2\X are
p-isospectral. However, in the flat and hyperbolic cases, we prove that Γ1 and Γ2

are τq equivalent in G = I(X) for every 0 ≤ q ≤ p, if and only if Γ1\X and Γ2\X
are q-isospectral for every 0 ≤ q ≤ p. Also we gave examples showing that in the
flat case, p-isospectrality is far from implying τp-equivalence for each fixed p.

To conclude this section, we list a number of representative papers illustrating
the construction of strongly isospectral manifolds by means of the Sunada method
or its generalizations.

(i) Isospectral Riemann surfaces: [Vi80], [Su85], [BT87], [BGG98], [Br96],
[Bu92], [Bu86], [GMW05].

(ii) Isospectral spherical space forms: [Ik83], [Gi85], [Wo01].
(iii) Isospectral locally symmetric: [Vi80], [Sp89], [McR06].
(iv) Continuous isospectral families: [GW84], [GW97], [Schu95].
(v) Isospectral graphs: [Bu88], [Br96], [FK99].
(vi) Isospectral planar domains: [GWW92], [Bu88], [BCDS94].
(vii) Isospectral flat manifolds: [DM92], [DR04], [MR99], [MR03], [LMR13].
(viii) τ -representation equivalent manifolds: [Pe96], [Pe98], [Su02], [LMR15].

For a more complete discussion of the Sunada method we refer to the surveys
by C. Gordon [Go09], [Go00].

In the remaining sections we will discuss several isospectrality situations in the
case of spherical space forms, that are not of the strong type, thus they cannot be
obtained by the Sunada method.

3. Spectra of spherical space forms

In this section we will recall various facts on spectra of spherical space forms. We
refer to [IT78] for the main basic facts. We will describe the results in the language
of representation theory of orthogonal groups. The n-dimensional sphere Sn is a
symmetric space realized as G/K with G = SO(n+ 1), K = SO(n). If Γ is a finite
subset of SO(n+1) acting freely on Sn, then the manifold Γ\Sn is a spherical space
form. We restrict our attention to the odd-dimensional case n = 2m− 1, since the
only manifold covered (properly) by S2m is PR2m.

We consider the standard maximal torus T in SO(2m), with Lie algebra given
by

(3.1) h0 :=
{
H = diag

([
0 2πθ1

−2πθ1 0

]
, . . . ,

[
0 2πθm

−2πθm 0

])
: θ ∈ Rm

}
.

Its complexification is a Cartan subalgebra h of so(2m,C). As usual, define εj ∈ h∗

by εj(H) = −2πiθj for any 1 ≤ j ≤ m, H ∈ h. The weight lattice of G is thus
given by P (SO(2m)) =

⊕m
j=1 Zεj . We use the standard system of positive roots,

thus a weight
∑m

j=1 ajεj is dominant if and only if a1 ≥ · · · ≥ am−1 ≥ |am|.
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Let 〈·, ·〉 be the inner product on ih∗0 so that ε1, . . . , εm is an orthonormal basis.
This is the dual of the positive multiple of the Killing form that induces on S2m−1

the Riemannian metric with constant curvature equal to one.
In K = {g ∈ SO(2m) : ge2m = e2m} ⊂ SO(2m), we take the maximal torus

TK = T ∩ K, thus the associated Cartan subalgebra hK can be seen as included
in h in the usual way. Under this convention, the weight lattice of K can be

identified with P (SO(2m − 1)) =
⊕m−1

j=1 Zεj and
∑m−1

j=1 ajεj is dominant if and
only if a1 ≥ · · · ≥ am ≥ 0.

Let Ĝ and K̂ denote respectively the equivalence classes of unitary irreducible
representations of G and K respectively, endowed with invariant inner products.

By the highest weight theorem, the elements in Ĝ (resp. K̂) are in a bijective
correspondence with the dominant weights Λ of G (resp. µ of K). For each Λ,

we denote by πΛ ∈ Ĝ the irreducible representation with highest weight Λ. For

example, πkε1 ∈ Ĝ, with highest weight kε1, can be realized in the space of complex
homogeneous harmonic polynomials of degree k, in m variables.

For (τ,Wτ ) ∈ K̂, let Eτ denote the associated homogeneous vector bundle Eτ :=
G ×τ Wτ −→ S2m−1 of S2m−1 (see [Wa73, §5.2]). The space of L2-sections of Eτ

decomposes as L2(Eτ ) ≃
∑

π∈Ĝ Vπ ⊗ HomK(Vπ,Wτ ), where G acts in the first
variable in the right-hand side. If Γ is a finite subgroup of G, the space Γ\Eτ is a
vector bundle over Γ\S2m−1 with L2-sections given by the Γ-invariant elements of
L2(Eτ ); thus we have the decomposition

(3.2) L2(Γ\Eτ ) = L2(Eτ )
Γ ≃

∑

π∈Ĝ

V Γ
π ⊗HomK(Vπ,Wτ ).

The Laplace operator ∆τ,Γ acting on smooth sections Γ\Eτ can be identified
with the action of the Casimir element C ∈ U(so(2m,C)) (the universal enveloping
algebra of so(2m,C)). On each summand V Γ

π ⊗ HomK(Vπ ,Wτ ), C acts by the
scalar λ(C, π) = 〈Λ + ρ,Λ + ρ〉 − 〈ρ, ρ〉, where Λ is the highest weight of π and
ρ =

∑m
j=1(m − j)εj . In particular, the multiplicity dλ(τ,Γ) of λ ∈ R in the

spectrum of ∆τ,Γ equals

(3.3) dλ(τ,Γ) =
∑

π∈Ĝ:λ(C,π)=λ

dimV Γ
π [τ : π],

where [τ : π] = dim(HomK(Vπ,Wτ )) can be computed by the well known branching

law from G = SO(2m) to K = SO(2m − 1). That is, if τ ∈ K̂ has highest weight

µ =
∑m−1

j=1 bjεj and π ∈ Ĝ has highest weight Λ =
∑m

j=1 ajεj , then [τ : π] > 0 if
and only if

(3.4) a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ am−1 ≥ bm−1 ≥ |am|.

Moreover, the branching is multiplicity free. Hence, Ĝτ := {π ∈ Ĝ : [τ : π] = 1} is

the set of πΛ ∈ Ĝ (Λ =
∑m

j=1 ajεj) such that (3.4) holds.

We can now describe the τ -spectrum of any spherical space form Γ\S2m−1.

Theorem 3.1. Let Γ be a finite subgroup of G = SO(2m) and let τ be an irreducible
representation of K = SO(2m − 1). Then, λ ∈ R is an eigenvalue of ∆τ,Γ if and

only if λ = λ(C, π) for some π ∈ Ĝτ . In this case, its multiplicity is given by

dλ(τ,Γ) =
∑

dimV Γ
π ,
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the sum taken over π ∈ Ĝτ such that λ(C, π) = λ.

If τ is an irreducible representation ofK = SO(2m−1), then the spaces Γ\S2m−1

and Γ′\S2m−1 are said to be τ-isospectral if the Laplace type operators ∆τ,Γ and
∆τ,Γ′ have the same spectrum. If τp denotes the irreducible representation of
SO(2m − 1) with highest weight ε1 + · · · + εp for 0 ≤ p ≤ m − 1, then the as-
sociated Laplace operator ∆τp,Γ can be identified with the Hodge-Laplace operator

∆p acting on p-forms of Γ\S2m−1. As usual, we call p-spectrum the spectrum of
∆p and we write p-isospectral in place of τp-isospectral. Since Γ ⊂ SO(2m), then
Γ\S2m−1 is always orientable, hence the p-spectrum and the 2m− 1− p-spectrum
are the same.

We next restate Theorem 3.1 for τ = τp. We first introduce some more notation.
Let Λp = ε1 + · · ·+ εp for p < m and Λ±

m = ε1 + · · ·+ εm−1 ± εm. Denote by πk,p

(resp. π±
k,m) the irreducible representation with highest weight kε1 + Λp if p < m

(resp. kε1 + Λ±
m). It is easy to check that

(3.5) Ĝτp =





{1} ∪ {πk,1 : k ∈ N0} = {πkε1 : k ∈ N0} if p = 0,

{πk,p, πk,p+1 : k ∈ N0} if 1 ≤ p ≤ m− 2,

{πk,m−1, π
±
k,m : k ∈ N0} if p = m− 1.

Here 1 denotes the trivial representation π0 of SO(2m). We now set E0 = {0} and

(3.6) Ep = {λk := λ(C, πk,p) = k2 + k(2m− 2) + (p− 1)(2m− 1− p) : k ∈ N0}

for 1 ≤ p ≤ m.

Theorem 3.2. Let Γ be a finite subgroup of G = SO(2m) and let 0 ≤ p ≤ m− 1.
If λ ∈ R is an eigenvalue of ∆τp,Γ then λ ∈ Ep ∪ Ep+1. Its multiplicity is given by

dλ(τp,Γ) =

{
dimV Γ

πk,p
if λ = λk ∈ Ep,

dimV Γ
πk,p+1

if λ = λk ∈ Ep+1.

In particular, when p = 0, the eigenvalues of the Laplace-Beltrami operator ∆τ0,Γ lie
in the set {k2+k(2m−2) : k ∈ N0} and dλ(τ0,Γ) = dimV Γ

πkε1
if λ = k2+k(2m−2).

From Theorem 3.2 and the fact that Ep ∩ Ep+1 = ∅ when p > 0, we obtain the
following characterizations.

Corollary 3.3. Let Γ and Γ′ be finite subgroups of SO(2m).

(i) Γ\S2m−1 and Γ′\S2m−1 are 0-isospectral if and only if dim V Γ
πkε1

= dimV Γ′

πkε1

for every k ∈ N.
(ii) If 1 ≤ p ≤ m− 1, Γ\S2m−1 and Γ′\S2m−1 are p-isospectral if and only if

dimV Γ
πk,p

= dimV Γ′

πk,p
and dimV Γ

πk,p+1
= dimV Γ′

πk,p+1

for every k ∈ N.
(iii) Γ\S2m−1 and Γ′\S2m−1 are p-isospectral for all p if and only if dimV Γ

πk,p
=

dim V Γ′

πk,p
for every k ∈ N and every 1 ≤ p ≤ m− 1.
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4. The work of Ikeda

In this section we will give a summary of Ikeda’s important work on isospectral
spherical space forms. Our notation will somewhat differ from Ikeda’s in that we
use the language of representation theory introduced in the previous section.

Generating functions are a main tool in Ikeda’s work. One can encode the 0-
spectrum of a space Γ\S2m−1 in the function

F 0
Γ(z) =

∑

k≥1

dim V Γ
πkε1

zk.

In light of Corollary 3.3 (i), Γ\S2m−1 and Γ′\S2m−1 are 0-isospectral if and only if
F 0
Γ(z) = F 0

Γ′(z). Ikeda proved in [Ik80b, Thm. 2.2] that F 0
Γ(z) converges for |z| < 1

to the rational function

(4.1) F 0
Γ(z) =

1

|Γ|

∑

γ∈Γ

1− z2

det(1 − zγ)
−

1

|Γ|
.

Here det(1 − zγ) stands for det(Id2m −zγ) =
∏

λ(1 − zλ), where λ runs over the
eigenvalues of γ. Note that det(1− zγ) = det(z − γ) for any γ ∈ SO(2m), since for
any λ an eigenvalue of γ one has |λ| = 1 and λ is also an eigenvalue.

He observed (see [Ik80b, Corollary 2.3]) that (4.1) implies that if Γ and Γ′

are almost conjugate subgroups of SO(2m) then Γ\S2m−1 and Γ′\S2m−1 are 0-
isospectral. This result can be viewed as a predecessor of Sunada’s method. In
[Ik83], Ikeda constructed explicitly non-isometric isospectral spherical space forms
by using this method. These pairs are always strongly isospectral and have non-
cyclic fundamental group. P. Gilkey [Gi85] independently found very similar ex-
amples. Later, J. A. Wolf [Wo01] made a step in the determination of all strongly
isospectral spherical space forms by using the classification in [Wo67]. In what
follows, we will focus our interest on isospectral spherical space forms that are not
strongly isospectral.

Ikeda in [Ik88] encoded, for any p ≥ 1, the p-spectrum of a spherical space form
Γ\S2m−1 by means of generating functions. He defined, as a generalization of F 0

Γ(z)
the function

(4.2) F p
Γ(z) =

∑

k≥0

dimV Γ
πk,p+1

zk.

Although F p
Γ(z) does not have information on all of the p-spectrum, by Theo-

rem 3.2, the p-spectrum is determined by F p
Γ(z) and F p−1

Γ (z) together. In particu-

lar, Γ\S2m−1 and Γ′\S2m−1 are p-isospectral if and only if F p−1
Γ (z) = F p−1

Γ′ (z) and
F p
Γ(z) = F p

Γ′(z) by Corollary 3.3 (ii).
He proved, by using a convenient realization of the representation Vπk,p

, the
following neat formula (see [Ik88, p. 394]):

(4.3) F p
Γ(z) = (−1)p+1z−p +

1

|Γ|

p∑

k=0

(−1)p−k(zk−p − zp−k+2)
∑

γ∈Γ

χk(γ)

det(z − γ)
.

Here, χk denotes the character of the k-exterior representation
∧k

(C2m) of SO(2m).

Set F̃ k
Γ (z) =

∑
γ∈Γ

χk(γ)
det(z−γ) for each 0 ≤ k ≤ m − 1. As a direct consequence of

(4.3) he obtains the following result ([Ik88, Prop. 2.4]).
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Proposition 4.1. Let p0 ∈ Z, 0 ≤ p0 ≤ m−1. Two spherical space forms Γ\S2m−1

and Γ′\S2m−1 are p-isospectral for all 0 ≤ p ≤ p0 if and only if F̃ p
Γ (z) = F̃ p

Γ′(z) for
every 0 ≤ p ≤ p0.

By using Proposition 4.1, Ikeda also was able to characterize spherical space
forms that are p-isospectral for all p. If w is an indeterminate, one can check that∑2m

k=0(−1)kχk(γ)wk = det(w − γ), thus

(4.4) QΓ(w, z) :=

2m∑

k=0

(−1)k F̃ k
Γ (z) w

k =
∑

γ∈Γ

det(w − γ)

det(z − γ)
.

Therefore one has the following characterization (see [Ik88, Thm. 2.5]).

Theorem 4.2. Two spherical space forms Γ\S2m−1 and Γ′\S2m−1 are p-isospectral
for all p if and only if QΓ(w, z) = QΓ′(w, z).

In a similar way as in our comment after (4.1), Theorem 4.2 implies that al-
most conjugate subgroups yield manifolds that are p-isospectral for all p (see [Ik88,
Thm. 2.7]).

The previous results are valid for generating functions of arbitrary spherical
space forms. As an application, Ikeda proved the existence of many families of
non-isometric 0-isospectral lens spaces. Since Pesce [Pe95] has proved that strongly
isospectral lens spaces are necessarily isometric (see also [LMR, Prop. 7.2]), it turns
out that these examples cannot be obtained by Sunada’s method.

From now on we will focus on lens spaces, that is, spherical space forms with
cyclic fundamental group. They can be described as follows. For each q ∈ N and
s1, . . . , sm ∈ Z coprime to q, denote

(4.5) L(q; s1, . . . , sm) = 〈γ〉\S2m−1

where

(4.6) γ = diag
([

cos(2πs1/q) sin(2πs1/q)
− sin(2πs1/q) cos(2πs1/q)

]
, . . . ,

[
cos(2πsm/q) sin(2πsm/q)
− sin(2πsm/q) cos(2πsm/q)

])

The element γ generates a cyclic group of order q in SO(2m) that acts freely on
S2m−1. The following fact is well known (see [Co70, Ch. V]).

Proposition 4.3. Let L = L(q; s1, . . . , sm) and L′ = L(q; s′1, . . . , s
′
m) be lens

spaces. Then the following assertions are equivalent.

(1) L is isometric to L′.
(2) L is diffeomorphic to L′.
(3) L is homeomorphic to L′.
(4) There exist t ∈ Z coprime to q and ǫ ∈ {±1}m such that (s1, . . . , sm) is a

permutation of (ǫ1ts
′
1, . . . , ǫmts′m) (mod q).

Furthermore, L and L′ are homotopically equivalent if and only if there exists t ∈ Z

such that s1 . . . sm ≡ ±tms′1 . . . s
′
m (mod q).

Let L = L(q; s1, . . . , sm) = Γ\S2m−1 be a lens space and let ξ = exp(2πi/q).
From (4.1), one has that

(4.7) F 0
Γ(z) =

1

q

q∑

l=1

1− z2∏m
j=1(z − ξsj l)(z − ξ−sj l)

− 1.

This formula was first pointed out in [IY79, Thm. 3.2].
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We now sketch Ikeda’s construction of families of 0-isospectral lens spaces. For
each q and m positive integers, he considered the subfamily of lens spaces

(4.8) L̃0(q;m) = {L(q; s1, . . . , sm) : si 6≡ ±sj (mod q) ∀ i 6= j}.

Denote by L0(q;m) the isometry classes in L̃0(q;m). By the definition, the pa-
rameters s1, . . . , sm of every lens space in an isometry class in L0(q;m) must be

all different. For L = L(q; s1, . . . , sm) ∈ L̃0(q;m), choose h integers s̄1, . . . , s̄h such
that

{±s1, . . . ,±sm,±s̄1, . . . ,±s̄h}

is a set of representatives of integers mod q, coprime to q. Therefore 2m+2h = φ(q),
where φ(q) denotes the Euler phi function. Denote by L̄ the 2h−1-dimensional lens
space L(q; s̄1, . . . , s̄h) and by γ̄ the generator of the group Γ̄ given by (4.6) with s̄i
in place of si, thus L̄ = Γ̄\S2h−1. It is easy to show that two lens spaces L and L′

in L0(q;m) are isometric if and only if L and L′ are isometric ([Ik88, Prop. 3.3]).
Furthermore, Ikeda proved the following important fact.

Proposition 4.4. Let q be an odd prime. Two lens spaces L,L′ ∈ L0(q;m) are
p-isospectral for all p if and only if L and L′ are p-isospectral for all p.

Ikeda restricted his attention to lens spaces in L0(q;m) for q an odd prime.
In this case, each term

∏m
j=1(z − ξsj l)(z − ξ−sj l) in (4.7) divides the q-th cyclo-

tomic polynomial Φq(z) :=
∏q−1

l=1 (z − ξl) for any 1 ≤ l ≤ q − 1. Hence, for
L = L(q; s1, . . . , sm) = Γ\S2m−1 ∈ L0(q;m), (4.7) implies that

(4.9) F 0
Γ(z) = −1 +

1

q

1− z2

(1 − z)2m
+

1− z2

qΦq(z)

q−1∑

l=1

h∏

j=1

(z − ξs̄j l)(z − ξ−s̄j l).

Set

(4.10) ΨΓ(z) =

q−1∑

l=1

h∏

j=1

(z − ξs̄j l)(z − ξ−s̄j l).

This is a polynomial of degree 2h with coefficients in the cyclotomic field Q(ξ).
Now, (4.9) gives a finite condition for 0-isospectrality, namely, L,L′ ∈ L0(q;m) are
0-isospectral if and only if ΨΓ(z) = ΨΓ′(z).

In this way, Ikeda found families of 0-isospectral lens spaces by showing that, in
some cases, the (well defined) map

L = Γ\S2m−1 ∈ L0(q;m) 7−→ ΨΓ(z) ∈ Q(ξ)[z]

is not one to one (see [Ik80a, Thm. 3.1]). To find such examples, he first com-
pute some coefficients of ΨΓ(z) (see [Ik80a, Prop. 1.2]). Indeed, let q be an odd
prime and q − 1 = 2m + 2h. For L = Γ\S2m−1 ∈ L0(q;m), if we write ΨΓ(z) =∑2h

k=0(−1)kak z
2h−k, then he shows that a0 = q−1, a1 = −2m, a2 = m(q−2m+1)

and ak = a2h−k for all 0 ≤ k ≤ 2h. Note that, a0, a1, a2, a2h−2, a2h−1 and a2h
do not depend on L, thus, if h = 2, ΨΓ(z) is the same for all lens spaces. As a
consequence he obtained the following result ([Ik80a, Thm. 3.1]).

Theorem 4.5. Let q be an odd prime and let m be such that 2m + 4 = q − 1
(i.e. m = (q − 5)/2). Then, any two lens spaces in L0(q,m) are 0-isospectral.
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The previous theorem gives a way to obtain increasing families of pairwise 0-
isospectral lens spaces of dimension n ≥ 5, where q runs over the odd prime

numbers. Indeed, |L0(q,m)| ≥ 1
(q−1)/2

(
(q−1)/2

m

)
= q−3

4 under the hypotheses in

Theorem 4.5. The simplest case is q = 11, thus m = 3 and dimension n = 5. Then
one can check that L0(q; 3) has two isometry classes represented by L(11; 1, 2, 3)
and L(11; 1, 2, 4). One can also check that they are homotopically equivalent to
each other by Proposition 4.3. However, if one takes q = 13, then m = 4, n = 7
and L0(q; 4) contains L(13; 1, 2, 3, 4), L(13; 1, 2, 3, 5) and L(13; 1, 2, 3, 6), which are
not homotopically equivalent to each other.

Ikeda proved that two non-isometric lens spaces in L0(q;m) as in Theorem 4.5
cannot be p-isospectral for all p (see [Ik88, Thm. 3.9]). The argument is as follows.
Suppose that L,L′ ∈ L0(q;m) are p-isospectral for all p, with q an odd prime and
q − 1 = 2m + 4. By Proposition 4.4, L and L′ are p-isospectral for all p and of
dimension 2h−1 = 3. However, two 3-dimensional 0-isospectral lens spaces must be
isometric (see [IY79], [Ya80]), thus L and L′, and therefore L and L′, are isometric.

However, by using the same family as in Theorem 4.5, Ikeda in [Ik88] found
for each p0 ≥ 0, examples of pairs of lens spaces that are p-isospectral for every
0 ≤ p ≤ p0 but are not p0 + 1-isospectral. We conclude this section by giving
the main ideas used in his proof. We will use the condition of p-isospectrality for
0 ≤ p ≤ p0 in Proposition 4.1. Let L = L(q; s1, . . . , sm) = Γ\S2m−1 ∈ L0(q;m),
where q is an odd prime number and q−1 = 2m+4. Similarly as in (4.9) we obtain
that

F̃ p
Γ (z) =

(
2m
p

)

(z − 1)2m
+

q−1∑

l=1

χp(gl)∏m
j=1(z − ξsj l)(z − ξ−sj l)

(4.11)

=

(
2m
p

)

(z − 1)2m
− Φq(z)

−1(z − 1)4

+Φq(z)
−1

q∑

l=1

χp(gl)
2∏

j=1

(z − ξs̄j l)(z − ξ−s̄j l).

Hence, the polynomial

Ψp
Γ(z) :=

q∑

l=1

χp(gl)

2∏

j=1

(z − ξs̄j l)(z − ξ−s̄j l),

which has degree four, determines F̃ p
Γ (z), thus the five coefficients of Ψp

Γ(z) =∑4
t=0(−1)tb

(t)
L,p z

t play an important role. One can check that (see [Ik88, p. 404])

b
(0)
L,p = b

(4)
L,p = −1 + q

[p/2]∑
d=0

(
m
d

)
A

(p−2d)
L (0),

b
(1)
L,p = b

(3)
L,p = −1 + 2q

[p/2]∑
d=0

(
m
d

) (
A

(p−2d)
L (s̄1) +A

(p−2d)
L (s̄2)

)
,

b
(2)
L,p = −1 + 2b

(0)
L,p + 2q

[p/2]∑
d=0

(
m
d

) (
A

(p−2d)
L (s̄1 + s̄2) +A

(p−2d)
L (s̄1 − s̄2)

)
,

where

(4.12) A
(k)
L (s) := #

{
A ⊂ S :

a 6≡ −a′ (mod q) ∀a 6= a′ ∈ A,
|A| = k,

∑
a∈A a ≡ s (mod q)

}
.
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and S = {±s1, . . . ,±sm}. Now, Proposition 4.1 can be rewritten in the particular
case of lens spaces in L0(q;m) as follows (see [Ik88, Prop. 4.2]).

Proposition 4.6. Let q be an odd prime, m = (q − 5)/2 and 0 ≤ p0 ≤ m − 1.
Then, two lens spaces L = L(q; s1, . . . , sm) and L′ = L(q; s′1, . . . , s

′
m) in L0(q;m)

are p-isospectral for all 0 ≤ p ≤ p0 if and only if

(4.13)





A
(p)
L (0) = A

(p)
L′ (0),

A
(p)
L (s̄1) + A

(p)
L (s̄2) = A

(p)
L′ (s̄′1) +A

(p)
L′ (s̄′2),

A
(p)
L (s̄1 + s̄2) +A

(p)
L (s̄1 − s̄2) = A

(p)
L′ (s̄′1 + s̄′2) +A

(p)
L′ (s̄′1 − s̄′2),

for all 0 ≤ p ≤ p0.

Ikeda found subfamilies in L0(q;m) such that satisfy (4.13). Set

(4.14) Lp(q;m) =

{
L(q; s) ∈ L0(q;m) :

a1s̄1 + a2s̄2 6≡ 0 (mod q),
∀ 1 ≤ |a1|+ |a2| ≤ p+ 2

}
,

thus one has the filtration

(4.15) L0(q;m) ⊃ L1(q;m) ⊃ L2(q;m) ⊃ . . . .

For example, for q ≥ 11 an odd prime, if L = L(q; 1, 2) then L ∈ L0(q;m)rL1(q;m)
and if L = L(q; 1, 3) then L ∈ L1(q;m)r L2(q;m).

By making several computations with the numbers in (4.12), he showed that two
lens spaces at the same level p0 of the filtration satisfy (4.13) for all 0 ≤ p ≤ p0.
Moreover, if only one of them lies in the next level p0 +1, then they cannot satisfy
(4.13) for p = p0 + 1. More precisely, we can now state [Ik88, Thm. 4.1].

Theorem 4.7. Let q be an odd prime, m = (q − 5)/2 and 0 ≤ p0 ≤ m − 1 and
let L and L′ be lens spaces in Lp0

(q;m). Then L and L′ are p-isospectral for all
0 ≤ p ≤ p0. If furthermore L ∈ Lp0+1(q;m) and L′ /∈ Lp0+1(q;m), then L and L′

are not p0 + 1-isospectral.

Now we fix p0 ≥ 0. Let q be a prime number greater than (p0 + 2)(p0 + 3) + 1
and set m = (q − 5)/2. If L and L′ are the lens space in L0(q;m) such that
L = L(q; 1, p0 + 2), L′ = L(q; 1, p0 + 3) ∈ L0(q; 2), then one can check that L ∈
Lp0

(q;m) r Lp0+1(q;m) and L′ ∈ Lp0+1(q;m). As a consequence one obtains the
following corollary ([Ik88, Thm. 4.10]).

Corollary 4.8. For each p0 ≥ 0 there are lens spaces that are p-isospectral for all
0 ≤ p ≤ p0 but are not p0 + 1-isospectral.

5. Isospectral lens spaces and ‖·‖1-isospectral lattices

In this section we will explain the remarkable relation between isospectrality
of lens spaces and isospectrality of integral lattices with respect to the one-norm,
introduced in [LMR]. Using this connection we were able to find examples of lens
spaces p-isospectral for all p which are not coming from Sunada’s method, and are
far from being strongly isospectral. Indeed, we present an infinite family of pairs
of 5-dimensional lens spaces with these properties, and as a byproduct, an infinite
family of such pairs in increasing dimensions. Finally, by means of a finite-implies-
infinite principle (see [LMR, §4]), we find —with the help of the computer— many
more such pairs in low dimensions.
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We first present the main ideas and the results without proofs, so that the reader
can get to them quickly, and after this we develop the mathematical arguments sup-
porting these results. We naturally associate to a lens space L = L(q; s1, s2, . . . , sm)
of dimension 2m − 1 the integral lattice L = L(q; s1, . . . , sm) of rank m given by
the congruence equation

(5.1) (a1, . . . , am) ∈ L ⇐⇒ a1s1 + · · ·+ amsm ≡ 0 (mod q).

We call a lattice of this kind a congruence lattice. We consider the one norm, i.e.
‖(a1, . . . , am)‖1 := |a1| + · · · + |am|. By using Proposition 4.3 it is easy to prove
that two lens spaces are isometric if and only if their associated congruence lattices
are ‖·‖1-isometric (see [LMR, Prop. 3.3]). It was surprising to discover that the
isospectrality of two lens spaces is directly connected with the isospectrality in
one-norm of the associated lattices (see [LMR, Thm. 3.9(i)]).

Theorem 5.1. Two lens spaces are 0-isospectral if and only if the associated con-
gruence lattices are ‖·‖1-isospectral.

If one considers one individual p only, p-isospectrality for two lens spaces, does
not correspond to a clean and neat condition on the associated lattices, as in the
previous theorem for p = 0. However, the condition of being p-isospectral for all
p simultaneously turns out to correspond —again as a happy surprise— to a nice
geometric condition on the associated lattices, which we call ‖·‖∗1-isospectrality: for
each k and ℓ, both lattices must have the same number of vectors with one-norm
equal to k and ℓ zero coordinates.

Theorem 5.2. Two lens spaces are p-isospectral for all p if and only if the asso-
ciated congruence lattices are ‖·‖∗1-isospectral.

The proofs of these theorems use representation theory of compact Lie groups
and properties of the weight lattice. The ideas are given in the next subsection.

The basic example of ‖·‖∗1-isospectral congruence lattices is the pair

(5.2) L(49; 1, 6, 15) and L(49; 1, 6, 20).

These 3-dimensional lattices produce two 5-dimensional non-isometric lens spaces
which in light of the previous theorem are p-isospectral for every p. This example
is the first one of the following infinite family of pairs

(5.3) L(r2t; 1, rt− 1, 2rt+ 1) and L(r2t; 1, rt− 1, 3rt− 1),

for r, t ∈ N with r not divisible by 3 (see [LMR, Thm. 6.3]). For some purposes, it
will be convenient to write this in the following equivalent way

(5.4) L(r2t; 1, 1 + rt, 1 + 3rt) and L(r2t; 1, 1− rt, 1− 3rt),

Fraom these examples, it is possible to construct examples in arbitrarily high
dimensions by using Proposition 5.3. In this way, we obtain for each pair of (2m−1)-
dimensional lens spaces in our family, another pair of (2h − 1)-dimensional lens
spaces with 2h+ 2m = φ(q), q = r2t, that are again p-isospectral for every p. For
example when t = 1 and r is prime, the dimension increases from 5 to 2h − 1 =
r2 − r − 7. For the basic pair when r = 7 one has that h = 18 and 2h− 1 = 35.

These examples are not the only existing ones, as one can guess. We proved in
[LMR, Thm. 4.2] that to check ‖·‖∗1-isospectrality, it suffices to check it in a finite
cube, which means that only finitely many computations are enough to ensure p-
isospectrality for all p of the lens spaces. By using this, with the help of a computer,
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we found many more examples. Moreover, one can find all the existing examples
for given fixed m and q (see Tables 1, 2 and 3). However, the computing time grows
rapidly with m.

5.1. Characterization theorems. In this subsection we give the ideas leading to
Theorems 5.1 and 5.2 and sketch their proofs. The approach is based on represen-
tation theory of compact Lie groups.

From Section 3, G = SO(2m), K = SO(2m − 1), T is the standard maximal
torus of G, and P (G) =

⊕m
j=1 Zεj ≃ Zm is the weight lattice of G. As we have

seen in Theorem 3.1, the τ -spectrum of Γ\S2m−1 is determined by the numbers

dimV Γ
π for every π ∈ Ĝ such that [τ : π] = 1. Any π ∈ Ĝ decomposes as a sum of

weight spaces under the action of T as

Vπ =
∑

η∈P (G)

Vπ(η).

The multiplicity of a weight η ∈ P (G) in π is mπ(η) := dimVπ(η). If Γ ⊂ T , it
follows that

(5.5) dim V Γ
π =

∑

η∈P (G)

dimVπ(η)
Γ =

∑

η∈LΓ

mπ(η)

where LΓ = {η ∈ P (G) : γη = 1 ∀ γ ∈ Γ}, which is a sublattice of P (G) ≃ Zm

depending only on Γ but not on π. Here γη denotes the scalar for which γ acts on
Vπ(η).

A lens space L(q; s1, . . . , sm) = Γ\S2m−1 satisfies that Γ ⊂ T since it is generated

by γ ∈ T as in (4.6). Since γη = e2πi
a1s1+···+amsm

q for η =
∑

j ajεj ∈ P (G), we have

that LΓ = L(q; s1, . . . , sm) defined in (5.1).

Sketch of proof of Theorem 5.1. One can show that (see [LMR, Lemma 3.6]), when
π = πkε1 is the irreducible representation of SO(2m) with highest weight kε1, the
multiplicity of η ∈ Zm in π is

(5.6) mπkε1
(η) =

{(
r+m−2
m−2

)
if ‖η‖1 = k − 2r with r ∈ N0,

0 otherwise.

In particular, mπkε1
(η) depends only on ‖η‖1. From (5.5) and (5.6) it follows that

dim V Γ
πkε1

=

[k/2]∑

r=0

∑

η∈L:

‖η‖1=k−2r

(
r+m−2
m−2

)
(5.7)

=

[k/2]∑

r=0

(
r+m−2
m−2

)
#{η ∈ LΓ : ‖η‖1 = k − 2r}.

Moreover, by Theorem 3.2, this number is exactly the multiplicity of the eigenvalue
λk = k2 + k(2m − 2) of the Laplace-Beltrami operator ∆τ0,Γ on Γ\S2m−1. This
clearly shows that two lens spaces are 0-isospectral if their associated lattices are
‖·‖1-isospectral, thus proving the converse assertion in Theorem 5.1. The remaining
implication is proved by induction on k (see [LMR, Thm. 3.9(i)]). �

Sketch of proof of Theorem 5.2. We proceed as in the previous theorem but in
this case there are more difficulties. By Corollary 3.3 (iii), we have to show

that dim V Γ
πk,p

= dimV Γ′

πk,p
for all k and p, where πk,p is as in Section 3. Now,
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dimV Γ
πk,p

=
∑

η∈L mπk,p
(η), but in this case we do not know an explicit formula

like (5.6) for mπk,p
(η) for arbitrary k and p. Fortunately, this difficulty could be

overcome thanks to the following cute regularity property of the multiplicities:

two weights with the same one-norm and the same number of zero
coordinates have the same multiplicity.

This was proved in [LMR, Lem. 3.7] with techniques of representation theory of
compact Lie groups.

Analogously to (5.6), by using the above property we obtain that (see [LMR,
Thm. 3.8])

(5.8) dimV Γ
πk,p

=

[(k+p)/2]∑

r=0

m∑

ℓ=0

mπk,p
(µr,ℓ) NL(k + p− 2r, ℓ),

where µr,ℓ is any weight in L with ‖µr,ℓ‖1 = k+p−2r and having ℓ zero coordinates,
and NL(r, ℓ) denotes the number of weights with ℓ zero coordinates and one-norm
equal to r. Now, clearly, the converse of Theorem 5.2 follows. The other assertion
can again be proved by induction on k (see [LMR, Thm. 3.9(ii)]). �

5.2. Construction of ‖·‖∗1-isospectral lattices. The characterization of lens
spaces p-isospectral for all p given in Theorem 5.2, motivated us to look for ex-
amples of ‖·‖∗1-isospectral congruence lattices. It seems interesting that one can
work on the construction of such examples by just working on lattices, without any
use of differential geometry.

For r, t ∈ N, r > 1 not divisible by 3, we set q = r2t and consider the lattices in
(5.4), L = L(q; 1, 1+ rt, 3rt+1) and L′ = L(q; 1, 1− rt, 1− 3rt). This is an infinite
two-parameter family of pairs of ‖·‖∗1-isospectral lattices in Zm for m = 3 ([LMR,
Thm. 6.3]). For r ≥ 7 they are not ‖·‖1-isometric (see [LMR, Lemma 5.4]). We note
that the dimension m = 3 of these examples is minimal, since Ikeda and Yamamoto
showed that such pairs cannot exist in dimension m = 2 ([IY79], [Ya80]).

The first step in the proof is to reduce the problem to show that the lattices are
just ‖·‖1-isospectral, since one can verify that, for 1 ≤ ℓ ≤ 3, the number of elements
in L and L′ with ℓ zero coordinates and a fixed one-norm coincide (see [LMR,
Lemma 6.1]). This implies, for the family of pairs L = L(r2t; 1, 1+ rt, 1+3rt), L′ =
L(r2t; 1, 1− rt, 1 − 3rt), the pleasant fact in spectral geometry that: L and L′ are
p-isospectral for all p if and only if L and L′ are 0-isospectral.

According to the previous paragraph, it is sufficient to check that L and L′ are
‖·‖1-isospectral. More precisely, NL(k, ℓ) = NL′(k, ℓ), where NL(k, ℓ) denotes the
number of η ∈ L with ‖η‖1 = k and ℓ zero coordinates. By a careful calculation of
these numbers, we check they coincide.

5.3. Examples in arbitrarily large dimensions. We will show that the infinite
family of pairs in dimension 5 given in the previous section allows to produce
an infinite family of pairs in arbitrarily large dimensions. For this, we prove an
extension of Proposition 4.4 for q = r2, r prime.

We recall from (4.8) that L0(q,m) stands for the set of lens spaces of dimension
2m− 1, fundamental group of order q and different parameters. For L = Γ\S2m−1,
the function QL(w, z) := QΓ(w, z) given in (4.4) characterizes all p-spectrum. If

L = L(q; s1, . . . , sm) ∈ L0(q,m) then QL(w, z) =
∑q−1

k=0
det(w−γk)
det(z−γk) since Γ = {γk :

0 ≤ k ≤ q − 1}.
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Proposition 5.3. Let q = r2 with r prime and let L = L(q; s1, . . . , sm) and L′ =
(q; s1, . . . , sm) be lens spaces in L0(q,m) such that sj ≡ ±1 (mod r) and s′j ≡ ±1

(mod r) for all j. Then, L and L′ are p-isospectral for all p if and only if L and
L′ are p-isospectral for all p.

Proof. We will obtain in (5.10) a useful relation connecting QL(w, z) and QL̄(w, z)
for L = L(q; s1, . . . , sm) ∈ L0(q,m) such that sj ≡ ±1 (mod r) for all j. Here γ̄
and s̄1, . . . , s̄h are as in §4, the paragraph before Prop. 4.4. We have

(5.9) QL(w, z) =

r−1∑

l=0

det
(
w − (γr)

l)

det
(
z − (γr)

l) +
∑

gcd(k,r)=1

det(w − γk)

det(z − γk)
.

The eigenvalues of γr are e±2πirsj/r
2

= e±2πi/r for 1 ≤ j ≤ m since rj ≡ ±1

(mod r), thus
∑r−1

l=0
det(w−γlr)
det(z−γlr)

= QL0
(w, z) where L0 stands for 〈γr〉\S2m−1. One

can check that L0 is isometric to L(r; 1, . . . , 1), hence QL0
(w, z) does not depend

on L.
Since r is prime, det(z − γk) det(z − γ̄k) is equal to Φq(z) if gcd(k, q) = 1, to

Φr(z)
r if gcd(k, q) = r, and to (z − 1)r

2−r if gcd(k, q) = r2. Hence,

(5.10) QL(w, z) = QL0
(w, z) +

Φq(w)

Φq(z)

∑

gcd(k,r)=1

det(z − γ̄k)

det(w − γ̄k)
=

= QL0
(w, z) +

Φq(w)

Φq(z)

(
QL(z, w)−

(z − 1)2h

(w − 1)2h
−

r−1∑

l=1

det
(
z − (γ̄r)l

)

det
(
w − (γ̄r)

l
)
)
)

=

=QL0
(w, z)+

Φq(w)

Φq(z)

(
QL(z, w)−

(z − 1)2h

(w − 1)2h
−

Φr(z)
r

Φr(w)r

(
QL0

(w, z)−
(w − 1)2m

(z − 1)2m

))
.

Thus, the last expression for QL(w, z) involves QL̄(z, w) and other functions which
do not depend on L. This clearly shows that QL(w, z) and QL(w, z) determine each
other in this case. In particular, QL(w, z) = QL′(w, z) if and only if QL(w, z) =
QL′(w, z), thus the assertion follows from Theorem 4.2. �

As a corollary we can now state ([LMR, Thm. 7.3])

Theorem 5.4. For any n0 ≥ 5, there exist pairs of non-isometric lens spaces of
dimension n, with n ≥ n0, that are p-isospectral for all p.

Proof. For each odd prime r ≥ 7 set t = 1 and q = r2. The corresponding 5-
dimensional lens spaces L,L′ ∈ L0(q; 3) from (5.4) are p-isospectral for all p, by
Theorem 5.2. By Proposition 5.3, L and L′ are p-isospectral for all p and have
dimension 2h− 1 = φ(r2)− 7 = r2 − r − 7. This quantity tends to infinity when r
does, thus the assertion in the theorem follows. �

We recall from [LMR, Thm. 7.3] that, by using our 5-dimensional examples,
one can construct, in every dimension n ≥ 5, pairs of n-dimensional Riemannian
manifolds that are p-isospectral for all p and are not strongly isospectral.

Remark 5.5. We are interested in the question whether one can extend the duality
property in Proposition 5.3 for more general values of q. (We have checked that all
the pairs dual to the pairs in the tables remain p-isospectral for all p.)
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Table 1. Pairs of lens spaces p-isospectral for all p of dimension
n = 5 and fundamental group of order q ≤ 500.

q r t d0,d1,d2
49 7 1 0, 1, 3
64 8 1 0, 1, 3
98 7 2 0, 1, 3
100 10 1 0, 1, 3
100 10 1 0, 1, 4
121 11 1 0, 1, 3
121 11 1 0, 1, 4
121 11 1 0, 1, 5
121 11 1 0, 2, 5
121 11 1 0, 2, 6
128 8 2 0, 1, 3
147 7 3 0, 1, 3
169 13 1 0, 1, 3
169 13 1 0, 1, 4
169 13 1 0, 1, 5
169 13 1 0, 1, 6
169 13 1 0, 2, 5
169 13 1 0, 2, 6
169 13 1 0, 2, 7
169 13 1 0, 3, 7
192 8 3 0, 1, 3
196 14 1 0, 1, 3
196 14 1 0, 1, 4
196 14 1 0, 1, 5
196 14 1 0, 1, 6
196 14 1 0, 2, 5
196 14 1 0, 2, 6
196 7 4† 0, 1, 3
196 14 1 0, 3, 8
200 10 2 0, 1, 3
200 10 2 0, 1, 4
242 11 2 0, 1, 3
242 11 2 0, 1, 4
242 11 2 0, 1, 5
242 11 2 0, 2, 5
242 11 2 0, 2, 6
245 7 5 0, 1, 3
256 16 1 0, 1, 3
256 16 1 0, 1, 6
256 16 1 0, 1, 7
256 16 1 0, 2, 5
256 16 1 0, 2, 6
256 8 4† 0, 1, 3
256 16 1 0, 2, 7
256 16 1 0, 3, 9
289 17 1 0, 1, 3
289 17 1 0, 1, 4
289 17 1 0, 1, 5
289 17 1 0, 1, 6
289 17 1 0, 1, 7
289 17 1 0, 1, 8
289 17 1 0, 2, 5
289 17 1 0, 2, 6

q r t d0,d1,d2
289 17 1 0, 2, 7
289 17 1 0, 2, 8
289 17 1 0, 2, 9
289 17 1 0, 3, 7
289 17 1 0, 3, 8
289 17 1 0, 3, 9
289 17 1 0, 4, 9
289 17 1 0, 4,10
294 7 6 0, 1, 3
300 10 3 0, 1, 3
300 10 3 0, 1, 4
320 8 5 0, 1, 3
324 18 1 0, 1, 5
324 18 1 0, 1, 8
324 18 1 0, 2, 7
338 13 2 0, 1, 3
338 13 2 0, 1, 4
338 13 2 0, 1, 5
338 13 2 0, 1, 6
338 13 2 0, 2, 5
338 13 2 0, 2, 6
338 13 2 0, 2, 7
338 13 2 0, 3, 7
343 7 7 0, 1, 3
361 19 1 0, 1, 3
361 19 1 0, 1, 4
361 19 1 0, 1, 5
361 19 1 0, 1, 6
361 19 1 0, 1, 7
361 19 1 0, 1, 8
361 19 1 0, 1, 9
361 19 1 0, 2, 5
361 19 1 0, 2, 6
361 19 1 0, 2, 7
361 19 1 0, 2, 8
361 19 1 0, 2, 9
361 19 1 0, 2,10
361 19 1 0, 3, 7
361 19 1 0, 3, 8
361 19 1 0, 3, 9
361 19 1 0, 3,10
361 19 1 0, 4, 9
361 19 1 0, 4,10
361 19 1 0, 4,11
361 19 1 0, 5,11
363 11 3 0, 1, 3
363 11 3 0, 1, 4
363 11 3 0, 1, 5
363 11 3 0, 2, 5
363 11 3 0, 2, 6
384 8 6 0, 1, 3
392 14 2 0, 1, 3
392 14 2 0, 1, 4

q r t d0,d1,d2
392 14 2 0, 1, 5
392 14 2 0, 1, 6
392 14 2 0, 2, 5
392 14 2 0, 2, 6
392 7 8† 0, 1, 3
392 14 2 0, 3, 8
400 20 1 0, 1, 3
400 20 1 0, 1, 7
400 20 1 0, 2, 6
400 10 4† 0, 1, 3
400 20 1 0, 2, 8
400 10 4† 0, 1, 4
400 20 1 0, 2, 9
400 20 1 0, 3, 9
441 21 1 0, 1, 5
441 21 1 0, 2,10
441 21 1 0, 3, 9
441 7 9† 0, 1, 3
448 8 7 0, 1, 3
484 22 1 0, 1, 3
484 22 1 0, 1, 4
484 22 1 0, 1, 5
484 22 1 0, 1, 6
484 22 1 0, 1, 7
484 22 1 0, 1, 8
484 22 1 0, 1, 9
484 22 1 0, 1,10
484 22 1 0, 2, 5
484 22 1 0, 2, 6
484 11 4† 0, 1, 3
484 22 1 0, 2, 7
484 22 1 0, 2, 8
484 11 4† 0, 1, 4
484 22 1 0, 2, 9
484 22 1 0, 2,10
484 11 4† 0, 1, 5
484 22 1 0, 3, 7
484 22 1 0, 3, 8
484 22 1 0, 3, 9
484 22 1 0, 3,10
484 22 1 0, 3,12
484 22 1 0, 4, 9
484 22 1 0, 4,10
484 11 4† 0, 2, 5
484 22 1 0, 4,12
484 11 4† 0, 2, 6
484 22 1 0, 5,12
484 22 1 0, 5,13
484 22 1 0, 6,13
490 7 10 0, 1, 3
500 10 5 0, 1, 3
500 10 5 0, 1, 4
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Table 2. Pairs of lens spaces p-isospectral for all p of dimension
n = 7 and fundamental group of order q ≤ 300.

q r t d0,d1,d2,d3
49 7 1 0, 1, 2, 4
81 9 1 0, 1, 2, 4
81 9 1 0, 1, 2, 5
81 9 1 0, 1, 3, 5
98 7 2 0, 1, 2, 4
100 10 1 0, 1, 2, 4
100 10 1 0, 2, 3, 6
121 11 1 0, 1, 2, 4
121 11 1 0, 1, 2, 5
121 11 1 0, 1, 2, 6
121 11 1 0, 1, 3, 5
121 11 1 0, 1, 3, 6
121 11 1 0, 1, 3, 7
121 11 1 0, 1, 4, 6
121 11 1 0, 1, 4, 7
121 11 1 0, 2, 3, 6
121 11 1 0, 2, 4, 7
144 12 1 0, 1, 2, 5
144 12 1 0, 2, 3, 7
147 7 3 0, 1, 2, 4
162 9 2 0, 1, 2, 4
162 9 2 0, 1, 2, 5
162 9 2 0, 1, 3, 5
169 13 1 0, 1, 2, 4
169 13 1 0, 1, 2, 5
169 13 1 0, 1, 2, 6
169 13 1 0, 1, 2, 7
169 13 1 0, 1, 3, 5
169 13 1 0, 1, 3, 6
169 13 1 0, 1, 3, 7
169 13 1 0, 1, 4, 6
169 13 1 0, 1, 4, 7
169 13 1 0, 1, 4, 8
169 13 1 0, 1, 5, 7
169 13 1 0, 1, 5, 8
169 13 1 0, 2, 3, 6
169 13 1 0, 2, 3, 7
169 13 1 0, 2, 3, 8
169 13 1 0, 2, 4, 7
169 13 1 0, 2, 4, 8
169 13 1 0, 2, 5, 9
169 13 1 0, 2, 5, 8
169 13 1 0, 3, 4, 8
196 14 1 0, 1, 2, 4
196 14 1 0, 1, 2, 5
196 14 1 0, 1, 2, 6
196 14 1 0, 1, 3, 5
196 14 1 0, 1, 3, 6
196 14 1 0, 1, 4, 6
196 14 1 0, 1, 4, 9
196 14 1 0, 1, 5, 9
196 14 1 0, 2, 3, 6

q r t d0,d1,d2,d3
196 14 1 0, 2, 3, 8
196 14 1 0, 2, 4, 8
196 7 4† 0, 1, 2, 4
196 14 1 0, 2, 5, 8
196 14 1 0, 3, 4, 8
196 14 1 0, 3, 5, 9
200 10 2 0, 1, 2, 4
200 10 2 0, 2, 3, 6
225 15 1 0, 1, 2, 4
225 15 1 0, 1, 2, 6
225 15 1 0, 1, 2, 8
225 15 1 0, 1, 3, 7
225 15 1 0, 1, 3, 8
225 15 1 0, 1, 4, 8
225 15 1 0, 1, 5, 9
225 15 1 0, 2, 4, 7
225 15 1 0, 2, 4, 8
242 11 2 0, 1, 2, 4
242 11 2 0, 1, 2, 5
242 11 2 0, 1, 2, 6
242 11 2 0, 1, 3, 5
242 11 2 0, 1, 3, 6
242 11 2 0, 1, 3, 7
242 11 2 0, 1, 4, 6
242 11 2 0, 1, 4, 7
242 11 2 0, 2, 3, 6
242 11 2 0, 2, 4, 7
243 9 3 0, 1, 2, 4
243 9 3 0, 1, 2, 5
243 9 3 0, 1, 3, 5
245 7 5 0, 1, 2, 4
256 16 1 0, 1, 2, 5
256 16 1 0, 1, 2, 7
256 16 1 0, 1, 3, 6
256 16 1 0, 1, 4, 7
256 16 1 0, 1, 5,10
256 16 1 0, 2, 3, 7
256 16 1 0, 2, 3, 9
256 16 1 0, 2, 5, 9
256 16 1 0, 3, 4, 9
256 16 1 0, 3, 5,10
288 12 2 0, 1, 2, 5
288 12 2 0, 2, 3, 7
289 17 1 0, 1, 2, 4
289 17 1 0, 1, 2, 5
289 17 1 0, 1, 2, 6
289 17 1 0, 1, 2, 7
289 17 1 0, 1, 2, 8
289 17 1 0, 1, 2, 9
289 17 1 0, 1, 3, 5
289 17 1 0, 1, 3, 6

q r t d0,d1,d2,d3
289 17 1 0, 1, 3, 7
289 17 1 0, 1, 3, 8
289 17 1 0, 1, 3, 9
289 17 1 0, 1, 3,10
289 17 1 0, 1, 4, 6
289 17 1 0, 1, 4, 7
289 17 1 0, 1, 4, 8
289 17 1 0, 1, 4, 9
289 17 1 0, 1, 4,10
289 17 1 0, 1, 5, 7
289 17 1 0, 1, 5, 8
289 17 1 0, 1, 5, 9
289 17 1 0, 1, 5,10
289 17 1 0, 1, 5,11
289 17 1 0, 1, 6, 8
289 17 1 0, 1, 6, 9
289 17 1 0, 1, 6,10
289 17 1 0, 1, 6,11
289 17 1 0, 1, 7, 9
289 17 1 0, 1, 7,10
289 17 1 0, 2, 3, 6
289 17 1 0, 2, 3, 7
289 17 1 0, 2, 3, 8
289 17 1 0, 2, 3, 9
289 17 1 0, 2, 4, 7
289 17 1 0, 2, 4, 8
289 17 1 0, 2, 4, 9
289 17 1 0, 2, 4,10
289 17 1 0, 2, 5, 8
289 17 1 0, 2, 5, 9
289 17 1 0, 2, 5,10
289 17 1 0, 2, 5,11
289 17 1 0, 2, 6, 9
289 17 1 0, 2, 6,10
289 17 1 0, 2, 6,11
289 17 1 0, 2, 7,10
289 17 1 0, 2, 7,11
289 17 1 0, 3, 4, 8
289 17 1 0, 3, 4, 9
289 17 1 0, 3, 4,10
289 17 1 0, 3, 5, 9
289 17 1 0, 3, 5,10
289 17 1 0, 3, 6,10
289 17 1 0, 3, 6,11
289 17 1 0, 3, 7,11
289 17 1 0, 3, 7,12
289 17 1 0, 4, 5,10
289 17 1 0, 4, 6,11
294 7 6 0, 1, 2, 4
300 10 3 0, 1, 2, 4
300 10 3 0, 2, 3, 6
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Table 3. Pairs of lens spaces p-isospectral for all p of dimension
n = 9 and fundamental group of order q ≤ 150.

q r t d0,d1,d2,d3,d4
64 8 1 0, 1, 2, 3, 5
72 ? ?
81 9 1 0, 1, 2, 3, 5
81 9 1 0, 1, 2, 4, 5
81 9 1 0, 1, 2, 4, 6
121 11 1 0, 1, 2, 3, 5
121 11 1 0, 1, 2, 3, 6
121 11 1 0, 1, 2, 4, 5
121 11 1 0, 1, 2, 4, 6
121 11 1 0, 1, 2, 4, 7
121 11 1 0, 1, 2, 5, 6
121 11 1 0, 1, 2, 5, 7
121 11 1 0, 1, 3, 4, 6

q r t d0,d1,d2,d3,d4
121 11 1 0, 1, 3, 4, 7
121 11 1 0, 1, 3, 5, 7
121 11 1 0, 1, 3, 5, 8
121 11 1 0, 1, 3, 6, 7
121 11 1 0, 1, 3, 6, 8
121 11 1 0, 1, 4, 5, 7
121 11 1 0, 2, 3, 5, 7
121 11 1 0, 2, 3, 4, 7
128 8 2 0, 1, 2, 3, 5
144 12 1 0, 1, 2, 3, 5
144 12 1 0, 1, 2, 4, 7
144 12 1 0, 2, 3, 5, 7

5.4. Computations and tables. We will show tables with many examples of
pairs of lens spaces p-isospectral for all p in low dimensions n = 5, 7 and 9.

The finite-implies-infinite principle mentioned above allowed us to give an algo-
rithm —implemented in Sage [Sa]— that can find, for each m and q, all pairs of
lens spaces of dimension n = 2m − 1 and fundamental group of order q that are
p-isospectral for all p. This is shown in the tables for n = 5 and q ≤ 500, n = 7
and q ≤ 300, and n = 9 and q ≤ 150.

On the other hand, Peter Doyle has implemented a clever computer program us-
ing the function QL(w, z) in Theorem 4.2 that can distinguish very quickly whether
two lens spaces are p-isospectral for all p. We thank Peter for verifying with his
method that all of our examples are correct.

For positive integers r and t, and q = r2t (see [LMR, §5]) we introduce the
element θ := rt+ 1. Clearly θk ≡ krt+ 1 (mod q), thus θr ≡ 1 (mod q). Since the
parameters in most of the lens spaces occurring in the low dimensional examples
are congruent to ±1 (mod rt), they can be written as powers of θ. In this way, the
basic example can be written as

(5.11)
L(49; 1, 6, 15) = L(49; θ0,−θ1, θ−2) ∼= L(q; θ0, θ−1, θ−3),
L(49; 1, 6, 20) = L(49; θ0,−θ1,−θ3) ∼= L(q; θ0, θ1, θ3).

Here ∼= means isometry between lens spaces. Each entry q, r, t, (d0, . . . , dm) in the
tables, represents the pair of lens spaces

(5.12) L(q; θd0 , θd1 , . . . , θdm−1) and L(q; θ−d0 , θ−d1 , . . . , θ−dm−1),

which are p-isospectral for all p. When an entry has a dag †, it means that the pair
corresponding to this line is isometric to the pair of the previous line. This only
happens when t is not square-free, thus it is possible to write q as r2t in more than
one way.

Question 5.1 in [LMR] asked for conditions on d = (d0, . . . , dm−1), r and t, so
that the pair of lens spaces in (5.12) are p-isospectral for every p. Peter Doyle
worked on this question in collaboration with D. DeFord (see [DD14]) and found
sufficient conditions by using in a clever way similar techniques as Ikeda.
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To state their condition, in their terminology, d = (d0, . . . , dm−1) is said to be:

• univalent mod r if its entries are distinct mod r,
• reversible mod r if the pair of lens spaces in (5.12) are isometric,
• good mod r if it is univalent or reversible mod r,
• hereditarily good mod r if it is good mod c for all c dividing r.

Then, Theorem 1 in [DD14]) says that

if d is hereditarily good mod r and not reversible mod r, then the lens
spaces in (5.12) are p-isospectral for all p and are not isometric.

By using this condition it is remarkably simple to produce examples. Indeed,
the family in (5.4) satisfies the conditions of this theorem. The pairs in (5.4) has
d = (0, 1, 3) from (5.11). Now, d is clearly univalent mod r for r ≥ 4, reversible
mod r for r = 1, 2, 4, 5, thus d is good mod r for any r 6= 3. Consequently, d is
hereditarily good mod r for any r not divisible by 3, and not reversible for r ≥ 7.

We believe that this theorem is an important step in the determination of all the
lens spaces that are p-isospectral for all p. Though many such examples do come
from the theorem, there are exceptions like the ones we next describe.

Example 5.6. To each lens space L(q; θd0 , θd1 , . . . , θdm−1) with 0 = d0 < d1 <
· · · < dm−1 < r one can associate the ordered partition

r = (d1 − d0) + · · ·+ (dm−1 − dm−2) + (r − dm−1).

One can check that two lens spaces are isometric if their partitions differ by a cyclic
reordering.

Not all the known examples of p-isospectral lens spaces for all p can be written
as in (5.12). For instance, this is the case for the pair L,L′, dual to the basic
pair (5.2), since their parameters are not necessarily congruent to ±1 (mod rt).
Moreover, this phenomenon already occurs in the case of the curious example
L(72; 1, 5, 7, 17, 35), L(72; 1, 5, 7, 19, 35), since neither these lens spaces nor their du-
als (namely L(72; 1, 5, 7, 11, 19, 25, 35) and L(72; 1, 5, 7, 11, 23, 29, 31)) can be writ-
ten as in (5.12).

Problem 5.7. Determine all pairs of n-dimensional lens spaces p-isospectral for
all p with fundamental group of order q (or at least all such pairs for infinite values
of n).

Question 5.8. Are there families of non-isometric lens spaces p-isospectral for all
p having more than two elements?

5.5. Final remarks. We end this paper with the following comments.

Remark 5.9. It is shown in [LMR, Lemma 7.6] that the lens spaces in the fam-
ily constructed above are homotopically equivalent to each other. However, they
cannot be simply homotopically equivalent (see [Co70, §31]) since in this case they
would be isometric.

Remark 5.10. Despite being p-isospectral for every p, the 5-dimensional lens
spaces L and L′ in our family are ‘very far’ from being strongly isospectral. Strongly
isospectral spherical space forms are necessarily τ -isospectral for every representa-
tion τ of SO(5). However, in the case at hand, one can explicitly show many
representations τ of SO(5) such that lens spaces L,L′ are not τ -isospectral.

If we look at the basic case L = L(49; 1, 6, 15) and L′ = L(49; 1, 6, 20), in [LMR,
§8] we show that if π0 is the unitary irreducible representation of SO(6) with highest



20 E. A. LAURET, R. J. MIATELLO AND J. P. ROSSETTI

weight Λ0 = 4ε1+3ε2, then the lens spaces L and L′ are not τ -isospectral for every
irreducible representation τ of SO(5) with highest weight of the form b1ε1 + b2ε2
for 4 ≥ b1 ≥ 3 ≥ b2 ≥ 0.

By computer methods, by using Sage [Sa], we checked that there are many
choices π0 with this property, thus providing many other K-types τ such that the
lens spaces L and L′ are not τ -isospectral. In this connection, in [LMR] we make
the following conjecture:

There are only finitely many irreducible representations τ of K =
SO(5) such that L and L′ are τ-isospectral.

Remark 5.11. Recently, Sebastian Boldt and the first named author in [BL14]
extended the methods in this paper to the Dirac operator on lens spaces admitting
a spin structure. As it can be expected, the Dirac case involves more technical
difficulties. In this case, one associates to a lens space L = L(q; s1, . . . , sm) with
a fixed spin structure, an affine congruence lattice L. When q and m are odd, L
admits exactly one spin structure and the associated L is given by

(5.13) L = {(a1, . . . , am) ∈ (12 + Z)m : 2(a1s1 + · · ·+ amsm) ≡ 0 (mod q)}.

The case q even is a bit more involved since L admits two spin structures.
In analogy with Theorem 5.1, the authors show that two lens spaces are Dirac

isospectral if and only if their associated affine congruence lattices are ‖·‖1-isospectral.
Furthermore, they are able to construct the following examples:

• an increasing family of lens spaces mutually Dirac isospectral with increas-
ing dimension;

• an infinite sequence of 7-dimensional lens spaces, each of them with two
Dirac isospectral spin structures;

• an infinite sequence of pairs of non-isometric 7-dimensional lens spaces ad-
mitting exactly one spin structure that are Dirac isospectral.

Remark 5.12. All examples in the literature of pairs of isospectral spherical space
forms with non-cyclic fundamental group (i.e. lens spaces are not allowed) are ob-
tained by Sunada’s method, hence they are strongly isospectral and correspond to
almost conjugate subgroups of SO(2m) ([Ik83], [Gi85], [Wo01]).

Question 5.13. Can one construct 0-isospectral spherical space forms with non-
cyclic fundamental groups that are not strongly isospectral?

Note that two 3-dimensional isospectral spherical space forms are isometric
([IY79], [Ya80], [Ik80a]), so the answer is negative in dimension 3. Furthermore,
Wolf in [Wo01, Cor. 7.3] showed the non-existence of such examples for any dimen-
sion 2m− 1 with m prime (see also [Ik80c, Thm. 3.1 and Thm. 3.9]).
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trale. Rend. Mat. Appl., 18 (1998), 1–63.
[Sa] Stein, W.A. et al. Sage Mathematics Software (Version 4.3). The Sage Development

Team, 2009, http://www.sagemath.org.
[Schi90] Schiemann, A. Ein Beispiel positiv definiter quadratischer Formen der Dimension 4

mit gleichen Darstellungszahlen. Arch. Math. (Basel) 54:4 (1990), 372–375.
[Schu95] Schueth, D. Continuous families of quasi-regular representations of solvable Lie

groups. J. Funct. Anal. 134 (1995), 247–259.
[Sp89] Spatzier, R.J. On isospectral locally symmetric spaces and a theorem of Von Neu-

mann. Duke Math. J. 59:1 (1989), 289–294.
[Su85] Sunada, T. Riemannian coverings and isospectral manifolds. Ann. of Math. (2) 121:1

(1985), 169–186.
[Su02] Sutton, C.. Isospectral simply-connected homogeneous spaces and the spectral rigidity

of group actions. Comment. Math. Helv. 77 (2002), 701–717.
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