
.sc ienced i rec t .com
Avai lab le a t www
INFORMATION PROCESSING IN AGRICULTURE 3 (2016) 235–243

journal homepage: www.elsev ier .com/ locate / inpa
Extending JASAG with data processing techniques
for speeding up agricultural simulation
applications: A case study with Simugan
http://dx.doi.org/10.1016/j.inpa.2016.09.001
2214-3173 � 2016 China Agricultural University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author at: Facultad de Ciencias Veterinarias –
UNICEN. Tandil (B7001BBO), Buenos Aires, Argentina.

E-mail address: marroqui@exa.unicen.edu.ar (M. Arroqui).
1 Fax: +54 (249) 4385681.

Peer review under responsibility of China Agricultural University.
Mathias Longo a,b,1, Mauricio Arroqui c,d,*, Juan Rodriguez c,b, Claudio Machado c,
Cristian Mateos a,b,1, Alejandro Zunino a,1

a ISISTAN – CONICET. Tandil (B7001BBO), Buenos Aires, Argentina
bConsejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina
c Facultad de Ciencias Veterinarias – UNICEN. Tandil (B7001BBO), Buenos Aires, Argentina
dAgencia Nacional de Promoción Cientı́fica y Tecnológica (ANPCyT), Argentina
A R T I C L E I N F O A B S T R A C T
Article history:

Received 20 May 2016

Received in revised form

8 August 2016

Accepted 13 September 2016

Available online 19 September 2016

Keywords:

Agricultural simulation applications

Grid Computing

Gridification

JASAG

Data processing

Simugan
Resource-intensive agricultural simulation applications have increased the need for gridifi-

cation tools –i.e., software to transform and scale up the applications using Grid infrastruc-

tures–. Previous research has proposed JASAG, a generic gridification tool for agricultural

applications, through which the performance of a whole-farm simulation application

called Simugan improved considerably. However, JASAG still lacks proper support for effi-

ciently exploiting Grid storage resources, causing significant delays for assembling and

summarizing the generated data. In this application note, two different data processing

techniques in the context of JASAG are presented to tackle this problem. Simugan was

again employed to validate the benefits of these techniques. Experiments using data pro-

cessing techniques show that the execution time of Simugan was accelerated by a factor

of up to 34.34.

� 2016 China Agricultural University. Publishing services by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Agricultural simulation applications (ASA) are tools to simu-

late diverse farming factors such as crop and livestock yields,

soil organic carbon content, greenhouse gas emissions [11]

and energy balance, among others. As pointed out in [6], to
date, several agricultural simulation applications –e.g.,

APSIM, CropSys, DSSAT, SUCROS– have been developed.

Agricultural simulations are inherently climate-driven and

subject to market uncertainties [19]. For example, the climate

might affect pasture growth rate, while certain market condi-

tions might lead to different economic outcomes. Taking into

account these potential variabilities, experimentation in this

context requires performing many simulation runs of the

models being tested so that confident results are obtained

[15]. In addition, the individual execution of such models

via ASAs is a big CPU time consumer [2], particularly in pres-

ence of complex models. For these reasons, dealing with

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inpa.2016.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.inpa.2016.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marroqui@exa.unicen.edu.ar
www.sciencedirect.com
http://www.elsevier.com/locate/inpa

236 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3
ASAs in practice requires lots of computational resources,

and thus parallel/distributed computing techniques must be

applied [26].

Grid Computing is a computing paradigm that arranges

multiple heterogeneous computational resources for the pur-

pose of solving resource-intensive problems [9]. Within a Grid

[8], resources such as processing power, storage and network

bandwidth are combined into a ‘‘virtual” and powerful super-

computer. Effectively exploiting the benefits of a Grid comes

however at the expense of programming applications so that

Grid resources are used. Thus, researchers have investigated

gridification tools to make Grid-enabling applications easier,

which automatically or semi-automatically transform

single-computer application source codes to Grid-aware

codes. Then, current ASAs are an example of applications

that might benefit from gridification. However, there is no

one-fits-all gridification tool capable of gridifying any kind

of software [16], and thus the need of providing specialized

gridification tools arises.

Motivated by this need, a gridification tool called Java Agri-

cultural Simulation Applications Gridifier (JASAG) was built

[2]. From a software design perspective, this tool produces

Grid-aware application source codes by exploiting the paral-

lelism implicitly present in the common application design/

structure ASAs have. This parallelism-friendly structure man-

ifests in the way the modeled entities (e.g., animal, soil, pas-

ture, and cash crop) and the tasks/computations processing

them via custom mathematical models (such as feeding ani-

mals, growing animals, moving animals, growing pasture,

growing crop) interact during a simulation [2]. Therefore,

JASAG focus on executing these tasks/computations in paral-

lel across the computers of a Grid.

The practical utility of JASAG was illustrated by Grid-

enabling the Simugan [14] agricultural simulation application.

Simugan enables users to model and exercise whole-farm

simulation scenarios. After gridification, experiments showed

that the performance of Simugan increased dramatically,

with speedup factors of up to 25 [2]. Therefore, with the

Grid-enabled Simugan it is possible, for example, to build lar-

ger simulation scenarios in terms of entities and years of sim-

ulation, or increase the number of concurrent simulations

running in the Grid from different users, thus accelerating

experimentation in the area.

On the downside, the current version of JASAG focus on

efficiently using available processing power to execute the

tasks in a simulation, but does not exploit techniques to prop-

erly manage the data produced through a simulation run. As

tasks can be processed by any computer of the Grid, partial

simulation results end up scattered in every computer

wherein simulation tasks are executed. For example, in an

experimental scenario with Simugan consisting of 200 con-

current small simulations, 14 GB of biophysical and farm

management results were generated, so the data collection

to build the final simulation output is very time-consuming.

The current implementation of JASAG queries all Grid com-

puters to request the associated partial data from a single

computer. As a result, when running the gridified Simugan

it took more time building output results than actually exe-

cuting simulation tasks.
Since JASAG aims at scaling up agricultural applications

exhibiting a particular (but very common) software design,

this drawback affects, in many agricultural experimental sit-

uations, the efficiency with which the results of a simulation

step are stored and collected from Grid computers to be pre-

sented to the final user [2]. For this reason, the goal of this

application note is to improve the data management module

of JASAG in order to further improve the overall performance

of targeted ASAs. For that purpose, wewill take as a basewell-

known data management approaches from the operating sys-

tems area such as caching or data grouping techniques.

2. Materials and methods

2.1. Simugan and JASAG

Simugan is a whole-farm simulator oriented to assist the

research, teaching and technology transfer of alternative beef

cattle production systems [14,1]. This simulator bases all its

simulation in scenarios, each containing initial values and

conditional rules to manage a farm. Users might create, mod-

ify, save, retrieve or delete their own scenarios. As output, the

simulator generates a spreadsheet containing all the informa-

tion for further analysis. Simugan is accessible from regular

Web browsers (http://simugan.vet.unicen.edu.ar/simfarm/)

and Android phones [1]. To date, Simugan has been used both

for educational (e.g., teaching courses) and research purposes

(e.g., [4]). Another notable Simugan user is the National Insti-

tute of Agricultural Technology (INTA) of Argentina, a govern-

mental agency in charge of promoting innovation and

research in agriculture.

In Simugan, a simulation comprises two main elements:

entities and tasks. Entities –such as an animal or pasture–

represent the biophysical system. Entities have particular

properties. For example, an animal might have the properties

pasture intake, live weight, live weight gain, among others. In

addition, some entities might be in container entities, such

as herds, which basically groups other entities and also have

their own properties. On the other hand, tasks describe the

operations (computations) that can be done on the entities

during a simulation. There are two types of tasks: property

update tasks, which just update certain properties of an

entity, and rule-driven tasks, which are able to move, delete

or add entities from/to container entities. This two-element

structure has been employed to guide the design and develop-

ment of many ASAs. Examples are the models proposed in

[14,20,10,13] as well as the frameworks in [21,12].

In Simugan, tasks are executed within a simulation step, or

a fixed unit of time (minute, day, week or month). The default

simulation step unit is a day. In each simulation step, entities

might flow from one task to another until all modeled tasks

are executed. For example, an animal entity is first updated

by the Intake task and then it is updated by the Growth task,

because an animal can grow only after it was fed. This also

shows that there are dependencies between tasks, meaning

that certain tasks can be executed provided other tasks have

finished. In the previous example, the Growth task depends on

the Intake task, and as such they are called property update

dependent tasks.

http://simugan.vet.unicen.edu.ar/simfarm/

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3 237
Moreover, taking into account this two-element structure,

JASAG considers all the dependencies between the tasks of an

ASA, and tries to execute as many independent tasks as pos-

sible in parallel in a Grid. Following the previous example, to

exploit parallelization in that case, a producer–consumer

scheme is adopted, where the dependent task (Growth in the

example) waits to consume the entity that is processing the

independent task (Intake in the example). This is done for

every independent task-dependent task relationship in the

system. Furthermore, JASAG comes with three different par-

allel execution strategies [2] depending on the grade at which

parallelism is exploited: (a) simulation-level parallelization,

where entire simulations run concurrently as black boxes,

(b) task flow parallelization, where simulations and indepen-

dent tasks inside simulations run concurrently, (c) and data

flow parallelization, where simulations, independent tasks

inside simulations, and property update dependent tasks

run concurrently. This is, the data flow strategy extends the

task flow strategy with the possibility of running property

update dependent tasks using the parallel strategy under

the producer–consumer entity scheme.

When a simulation finishes, the generation of the output

variable values begins (e.g., the predicted weight of animals),

and for that purpose JASAG has a separate module called Out-

put Generator. This module looks for the simulation data dis-

persed in the different Grid computers, and then

summarizes all the data into a file. Particularly, Simugan for-

mats the summarized data as a spreadsheet that the user can

download. The spreadsheet has statistics not only about the

different entities, but also about economic, productivity and

environmental results. For example, Table 1 depicts an extract

of the output generated by Simugan for a simulation. The

table shows four days of the simulation, and four statistics

about one of the paddocks belonging to the farm. The first col-

umn shows the simulation step. The second column

describes the pasture mass per hectare. The third column

shows the number of animals eating in the paddock that

day. In the fourth column the sum of all the animal’s weights

is shown. The fifth column shows the rate at which pasture

grows.

To store simulation data, JASAG uses a key-value NoSQL

database [22], where the key is a unique identifier assigned

to each entity in the simulation and for each simulation step.

The value is the entity itself with all its attribute values. Thus,

each entity is ‘‘replicated” in each simulation step, storing all

the historic attribute values of that entity across the simula-

tion. For example, attribute values of a Cow entity instance

are first stored in the simulation step 1, then they are stored
Table 1 – Simugan: sample output.

Day Pasture mass [kg MS/ha] Total number of animals

7/1/2015 4,275.792 1030
7/2/2015 4,242.972 1030
7/3/2015 4,210.161 1030
7/4/2015 4,177.649 1030
.
again in a different entry for step 2, and so on. Fig. 1 depicts

an overview of how simulations are handled in JASAG, where

a Grid infrastructure with a database distributed among two

computers can be seen. Upon a new simulation submitted

by a user arrives, the associated entities and tasks are pro-

cessed and executed in the Grid computers. After that, the

Output Generator collects the information of a specific entity

by searching the distributed storage for the values of that

entity across all simulation steps, which implies network

communication.

For each of the columns in Table 1, the Output Generator

has to query the Grid computers to collect the data. For exam-

ple, to calculate the total number of animals grazing in a

given paddock, the Output Generator looks for entities whose

type is ‘‘animal” and belongs to the respective paddock and

simulation in the whole database. The same process is done

for every paddock and every simulation. In order to do that,

the Output Generator makes a query with the required infor-

mation (in this case, the paddock and simulation identifiers)

to retrieve the respective entities. Then, this query is broad-

casted to all the computers in the Grid. Finally, each computer

returns a list with all the matching entities and the returned

lists are merged. As a result, a list with all the entities, from

all the simulation steps, belonging to the respective paddock

and simulation is obtained. This process takes a long time to

run not only because of network latencies, but also because

many entities are queried more than once since they are

needed for producing more than one output value.

In the single-computer version of Simugan [14] (the one

not gridified), this process was rather quick as the database

and the data summarization process run in the same com-

puter. After gridification using the current version of JASAG,

this turned out inefficient since queries are broadcasted to

every computer in the Grid several times due to the lack of

support for data caching. The following subsections detail

the data techniques considered in this paper to improve the

mechanics of the Output Generator module in JASAG.

2.1.1. Last recently used (LRU) cache
The temporal locality principle [5] is present in most operat-

ing systems (OS) and helps to deal with situations where it

is needed to access the same piece of information several

times within a given time period. In OSs, this principle is

exploited to build caches [23], i.e., data structures for faster

access to memory data in RAM or disk whichmight be needed

shortly after. Based on this, we implemented an LRU (Least

Recently Used) cache or in other words a data structure that

temporarily stores some entities, and each new entity to be
Total animal weight [kg] Pasture growing rate [kg MS/ha]

458,786.086 7.792
459,503.568 7.534
460,224.489 7.276
460,948.456 7.019
.

Fig. 1 – Running Simugan simulations via JASAG: overview.

238 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3
stored replaces the least recently used in the cache. The LRU

cache is implemented as an in-memory associative data

structure located in the front-end computer.

Under this scheme, the Output Generator is again con-

nected to the distributed database to which queries are made.

But, uponmaking a query, the Output Generator first looks for

the information in the cache, and if the information is not

there, then it queries the database as it originally did. The

results of the query are not only used in the calculations,

but also temporarily stored in the LRU cache. As mentioned

before, many entities are queried more than once, so when

using the LRU cache those entities are temporarily cached

and many queries through the network are avoided. There-

fore, this approach should reduce the amount of queries

made to the remote computers. As a result, the overall simu-

lation time should be lowered.

2.1.2. LRU cache + Grouping
As pointed out, the NoSQL database used by JASAG is a

key-value database, where the key is unique for each entity

created for each simulation. However, when the Output

Generator analyses a group of entities, it has to retrieve each

entity integrating that group separately. That involves a con-

siderable number of remote queries, which is time consum-

ing. Furthermore, the most used statistics in the

spreadsheet are those involving group analyses (such as the

total animal weight where all animal entities should be

retrieved). In addition, this also leads to duplicated queries

since an entity might be queried for performing different

group analyses. In the previous example, all the statistics

showed information about the group of animals or the pas-

ture mass belonging to a paddock, in a particular simulation.

Therefore, a possible improvement would be to group entities

in the database by a certain pattern (container entity), and

hence to make queries to retrieve groups of entities instead

of separate, more granular entities. With this new improve-

ment, less distributed queries might be needed.

Several criteria could be considered for grouping entities

depending on the root selected for the ‘‘entity tree” to return,

such as group by simulation or group by a certain container
entity, such as a Paddock. Based on Table 1, grouping by simu-

lation means that the entire entity tree associated to a simu-

lation is an entry in the distributed database mentioned in

Section 2.1. If entities were instead grouped based on a

lower-level container entity, all the entities corresponding to

the paddock would be placed in an entry of the database,

while the other paddocks would be in a separate group.

Fig. 2 graphically shows the database using the mentioned

grouping strategies. Fig. 2a shows entries grouped by pad-

docks whereas Fig. 2b shows entries grouped by simulation.

Using either grouping alternatives, in the example, just one

query would be needed to retrieve the entities associated to

a specific paddock. In our implementation, the entities were

grouped by simulation and as a consequence the key is the

simulation identifier, because most of the analyses were

made considering all the entities of a single simulation. This

means that all the entities corresponding to a specific simula-

tion were stored together in one entry of the distributed data-

base. In JASAG, the grouping strategy can be nevertheless

configured by the user.

So far, the described approach might however result in a

trade off since there are cases in which it is not necessary

to retrieve a whole group for a query. For example, if an eco-

nomics major wants to analyze the results of a simulation,

he/she only needs economic information, i.e., profits and

expenses. Thus, grouping the entities requires retrieving

information about animals as well as information about other

paddocks that are not needed. In such cases, applying the

grouping approach can make the output generation process

slower than necessary.

Because of this trade off, this approach should be applied

once the LRU strategy is implemented. Specifically, if the

LRU strategy were not implemented, this approach would

need to retrieve a whole group of entities each time a calcula-

tion is carried out. Considering Table 1, all the entities of the

paddock would be queried for each column. Therefore, since

the information is grouped in the database, each entity group

that is queried is then temporarily stored in the LRU cache,

thus there is no need to make queries to the database while

the information is in the cache.

(a) Key-value database when grouping by paddock

(b) Key-value database when by simulation

Fig. 2 – Key-value database using grouping strategies.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3 239
2.2. Experiments

We used Simugan to evaluate the introduced data process-

ing approaches into JASAG. Three versions of Simugan were

considered: the gridified one as is (called Original), the LRU

version, and the LRU cache + Grouping version. The simula-

tion scenario was the same for all versions, and it consisted

in a two-year simulation with more than 20 entities and 30

tasks. For comparison purposes, although most of the set-

tings are the same used in [2], the time of simulation in

this case is two years instead of 6 months, to produce more

representative CPU usage and generated output data.

Regarding the simulation load, i.e., the amount of simula-

tions processed concurrently, initially we considered a 50-

simulation load for the two implemented versions, while
a 10-simulation load was considered for the Original ver-

sion. This was done since the execution of the Original ver-

sion took too much time to finish and the gains were

enough for the analysis. Lastly, for this evaluation we used

the data flow parallelization strategy (see Section 2.1), since

it is the one which achieves the best speedups according to

[2] for most scenarios.

After this, the application versions were run in an infras-

tructure with 48 cores distributed in eight computers, and a

total RAM memory of 88 GB. Table 2 depicts the technical

details of each computer. All computers run GridGain 6.5.6

(http://atlassian.gridgain.com/wiki/display/GG656/Home), a

mature Java middleware that is currently used in conjunc-

tion with JASAG to provide connectivity between computers

and data storage/access within the Grid. Additionally, the

http://atlassian.gridgain.com/wiki/display/GG656/Home

Table 2 – Technical details of the execution environment.

Computer identifiers CPU Network controller RAM # of cores

1. . .5 AMD Phenom(tm) II X6
1055T (2.8 GHz)

Realtek Semiconductor Co.,
Ltd. RTL8111/8168B PCI
Express Gigabit

8 GB 6

6. . .8 AMD FX(tm)-6100,
Six-Core (3.6 GHz)

Qualcomm Atheros AR2417
Wireless Network Adapter

16 GB 6

240 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3
Grid is configured so that the simulation data is uniformly

distributed between all the computers during executions.

The metrics used for assessing Simugan performance

included output generation time, overall execution time,

speedup, memory usage, CPU usage, and the number of net-

work packets transferred between computers. The overall

execution time metric takes into account both the simulation

time and the output generation time. The speedup metric

measures how faster the version applying either of the pre-

sented data approaches (Ta) is versus the Original version

(To): S = To/Ta. The CPU average usage metric was calculated

from each computer core usage within 1-min periods, and

then, these values were averaged. In the same way, the aver-

age memory load was calculated from each computer within

1-min period. Finally, the number of network packets is all the

packets sent between computers exclusively during the out-

put generation process.

3. Results

Table 3 shows all the metrics previously described. The first

column contains the different versions of Simugan, i.e., Orig-

inal, the one which uses the LRU cache, and the one using

both the LRU cache and the entity grouping approach. Fig. 3

shows the time-related charts. Fig. 3a shows the execution

time and the relation between the simulation time and the

output generation time: the Original version took more than

200 min, whereas the LRU and LRU + Grouping versions took

less than 30 min. Additionally, it can be seen that the relation

between the simulation time and the output generation time

decreases for the LRU and LRU + Grouping versions. Fig. 3b

shows a speedup factor of 8 and 34 for the LRU and LRU

+ Grouping versions, respectively.

Fig. 4 shows the performance-related metrics. Fig. 4a

shows the CPU usage of each version, where the Original ver-

sion used nearly a 50% of the CPU, the LRU version used

nearly a 40% of the CPU and the LRU + Grouping version used

less than 25%. Fig. 4b shows the memory load, in which the

Original and LRU versions had almost a 30% memory load,

while the LRU + Grouping version had less than a 15% of mem-

ory load. Finally, Fig. 4c shows the amount of network packets
Table 3 – Metrics summary.

Simugan
version

Output
time (min)

Execution
time (min)

S
f

Original 216.71 223.13 1
LRU 18.70 26.10 8
LRU + Grouping 0.26 6.39 3
transferred in the output generation process. The Original

version sent more than 7500 packets during the simulation,

while both the LRU and LRU + Grouping versions sent less than

2000 packets.

4. Discussion

The results obtained using the proposed data processing

approaches show that the amount of packets sent through

the network during the execution is considerably lower: the

Original version sent nearly four times the amount of packets

sent by the LRU version, and eleven times the amount sent by

the LRU + Grouping version. This means that the initial

hypothesis, by which few queries would be made by using

either of the presented approaches, holds because there are

less packets transferred. Therefore, the output generation is

faster in both versions mainly due to this improvement,

achieving very significant speedups: 8.41 and 34.34 respec-

tively. This means that the Original version takes 8.41 times

and 34.34 times the time needed to execute the LRU and

LRU + Grouping versions, respectively. Additionally, such

improvements did not result in more intensive use of CPU

or memory. Furthermore, both metrics have similar and, in

fact, lower values compared to the Original version. Since

there are fewer queries due to the use of caching, there are

fewer searches for entities into a large group of data in each

computer. As a consequence, the CPU is used less than it orig-

inally was, and the memory is not as much loaded either. For

the LRU + Grouping version, the entities are grouped, so it is no

longer necessary to look for a specific entity as the search is

for just one group.

Despite the fact that an execution with a 50-simulation

load and an execution with 10-simulation load are not com-

parable, the goal of this work is not to strictly compare the

execution times but to show that applying distributed data

processing approaches the overall execution time would be

improved. In that sense, a 10-simulation load was enough to

prove it, and it is worth noting that if the Original version were

executed with a 50-simulation load, the speedup would be

substantially higher. Also, applying the presented strategies

allows Simugan to run several simulations in the same time
peedup
actor

CPU
usage (%)

Memory
load (%)

Packets
(qty)

.00 49 32 7925

.41 41 29 1668
4.34 24 14 680

(b) Speedup chart for the two enhanced
Simugan versions

(a) Logarithmic execution time
chart for each version

Fig. 3 – Execution time related charts.

(a) CPU usage (b) Memory load (c) Transferred packets

Fig. 4 – Performance related charts.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3 241
it took to run just 10 in the Original version, enabling the user

to do a better domain analysis in less time. For example, if the

user wants to find a scenario for a specific situation in the

future, these improvements allow that user to try several sce-

narios with different configurations in less time it took before

to test only one scenario.

To the best of our knowledge, there are no previous works

applying data processing approaches to lower the overall exe-

cution time of agricultural simulation applications. However,

there are works regarding gridification tools where similar

approaches are used to lower the execution time of general-

purpose distributed applications. In particular, these studies

focus on replicating the data stored in distributed environ-

ments, so that the different computers do not have to query

several times for the data. For instance, in [24] an LFU (Least

Frequently Used) data cache was used for this purpose,
decreasing execution times up to a 30%. A shared characteris-

tic of these approaches is that they focus on file-system level

data caching and replication, whereas we focus on in-memory

data processing techniques. Both views, nevertheless, are

complementary.

Moreover, in a previous work [26] another related whole-

farm simulation tool –APSIM [13]– was gridified. APSIM is a

well-known modular farm modeling framework, developed

to simulate biophysical process in farming environments.

The gridification approach in [26] is based on distributing

tasks across a Grid as JASAG does. The gridification process

was achieved by using the HTCondor [25] workload manage-

ment platform. However, APSIM does not prescribe data pro-

cessing approaches explicitly and, besides, HTCondor also

focuses on managing data at the file-system level. That

means that HTCondor uses the hard-disk drives in computers

242 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3
to store simulation data, while in our approach the data is

cached in main memory whenever possible, which speedups

data access.
5. Conclusions

By borrowing and applying two memory administration tech-

niques from the OS area to the problem at hand, we improved

JASAGwith data processing techniques, and the overall execu-

tion time of Simugan was lowered. The first technique is the

LRU caching approach, where an auxiliary in-memory data

structure was used to store the last recently used data entry

(i.e., entities). With this structure, many network queries were

avoided in the Output Generator module of JASAG and, as a

result, the amount of time needed for the output generation

phase when running simulations is lower. The second

approachwas the LRU + Grouping approach, where in addition

to the LRU cache, the entities are grouped by certain domain-

dependent composition patterns. In addition, as many of the

statistics carried out during the output generation are done

in groups, the amount of queries made to the Grid computers

decreased and so did the output generation time.

Combining those approaches with ASAs led to not only a

lower execution time, but also a lower CPU, memory and net-

work usage. By applying the LRU cache, and thus exploiting

the temporal locality principle, a speedup greater than 8

was achieved, and with both the LRU approach and the

Grouping approach, we achieved speedup greater than 30. It

is worth noting that these overall run time improvements

offer users a better testbed to study a new spectrum of

resource-intensive whole-farm scenarios, particularly those

considering sustainability and climate change contexts. In

these scenarios, the user of the agricultural simulation appli-

cation should run at least 25 years of simulation and many

experimental repetitions in order to obtain confident results

[17,7]. Thus, the significant improvements achieved in this

work for enabling this kind of experimentation in Simugan

could open the door to other ASAs gridified with JASAG to

do so.

As a corollary, when an agricultural simulation application

is gridified, not only the execution time inherent to executing

the model should be taken into account, but also the way the

produced information is stored/retrieved to/from the infras-

tructure. Therefore, it is advisable to consider appropriate

data processing techniques to improve the overall execution

performance, and hence in this application note we have

shown the benefits of in-memory data techniques in the con-

text of JASAG in general and Simugan in particular. In this

line, the performance and application-independence of

JASAG makes it feasible to cast JASAG/Simugan as a generic

fast whole-farm simulation ‘‘service” to be offered to external

agricultural systems apart from users. In fact, there is cur-

rently a need to facilitate and automate agricultural systems

integration [1,3], for which newer ICT technologies can be

used. The Cloud Computing paradigm [18], which can be

viewed as an evolution of the Grid Computing paradigm and

comes with several service provisioning models (e.g., Soft-

ware as a Service – SaaS), seems to be the right path to drive

this research [3].
R E F E R E N C E S
[1] Arroqui M, Mateos C, Machado C, Zunino A. Restful web
services improve the efficiency of data transfer of a whole-
farm simulator accessed by android smartphones. Comput
Electron Agric 2012;87:14–8.

[2] Arroqui M, Rodriguez Alvarez J, Vazquez H, Machado C,
Mateos C, Zunino A. Jasag: a gridification tool for agricultural
simulation applications. Concurrency Comput: Pract Exp
2015;27(17):4716–40.

[3] Barmpounakis S, Kaloxylos A, Groumas A, Katsikas L, Sarris
V, Dimtsa K, Fournier F, Antoniou E, Alonistioti N, Wolfert S.
Management and control applications in agriculture domain
via a future internet business-to-business platform. Inf
Process Agric 2015;2(1):51–63.

[4] Berger H. Modelling the effect of maize silage and oat winter
forage crop on cow-calf systems in Argentina. In:
International grassland conference; 2013. p. 15–19.

[5] Denning P. The locality principle. Commun ACM 2005;48
(7):19–24.

[6] Emmi L, Paredes-Madrid L, Ribeiro A, Pajares G, Gonzalez-de
Santos P. Fleets of robots for precision agriculture: a
simulation environment. Ind Robot: Int J 2013;40(1):41–58.

[7] Finger R, Lazzarotto P, Calanca P. Bio-economic assessment of
climate change impacts on managed grassland production.
Agric Syst 2010;103(9):666–74.

[8] Foster I, Kesselman C. The Grid 2: blueprint for a new
computing infrastructure. In: The Elsevier series in grid
computing; 2003.

[9] Foster I, Kesselman C, Tuecke S. The anatomy of the grid:
enabling scalable virtual organizations. Int J High
Performance Comput Appl 2001;15(3):200–22.

[10] Good J, Bright J. An object-oriented software framework for
the farm-scale simulation of nitrate leaching from
agricultural land uses–IRAP FarmSim. In: International
congress on modelling and simulation. Australia and New
Zealand: Modelling and simulation society; 2005.

[11] Henderson B, Gerber P, Hilinski T, Falcucci A, Ojima D,
Salvatore M, Conant R. Greenhouse gas mitigation potential
of the world’s grazing lands: modeling soil carbon and
nitrogen fluxes of mitigation practices. Agric Ecosyst Environ
2015;207:91–100.

[12] Hillyer C, Bolte J, van Evert F, Lamaker A. The modcom
modular simulation system. Eur J Agron 2003;18(3–4):333–43.

[13] Keating B, Carberry P, Hammer G, Probert M, Robertson M,
Holzworth D, Huth N, Hargreaves J, Meinke H, Hochman Z,
et al. An overview of apsim, a model designed for farming
systems simulation. Eur J Agron 2003;18(3):267–88.

[14] Machado C, Morris S, Hodgson J, Arroqui M, Mangudo P. A
web-based model for simulating whole-farm beef cattle
systems. Comput Electron Agric 2010;74(1):129–36.

[15] Martin G, Magne MA. Agricultural diversity to increase
adaptive capacity and reduce vulnerability of livestock
systems against weather variability – a farm-scale simulation
study. Agric Ecosyst Environ 2015;199:301–11.

[16] Mateos C, Zunino A, Campo M. A survey on approaches to
gridification. Software: Pract Exp 2008;38(5):523–56.

[17] Moore A, Eckard R, Thorburn P, Grace P, Wang E, Chen D.
Mathematical modeling for improved greenhouse gas
balances, agro-ecosystems, and policy development: lessons
from the Australian experience. Wiley Interdisciplinary Rev:
Clim Change 2014;5(6):735–52.

[18] Moreno-Vozmediano R, Montero RS, Llorente IM. Key
challenges in cloud computing: enabling the future internet
of services. IEEE Internet Comput 2013;17(4):18–25.

[19] Pannell D. On the estimation of on-farm benefits of
agricultural research. Agric Syst 1999;61:123–34.

http://refhub.elsevier.com/S2214-3173(16)30041-5/h0005
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0005
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0005
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0005
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0010
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0010
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0010
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0010
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0015
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0015
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0015
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0015
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0015
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0025
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0025
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0030
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0030
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0030
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0035
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0035
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0035
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0045
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0045
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0045
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0055
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0055
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0055
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0055
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0055
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0060
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0060
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0065
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0065
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0065
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0065
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0070
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0070
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0070
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0075
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0075
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0075
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0075
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0080
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0080
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0085
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0085
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0085
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0085
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0085
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0090
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0090
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0090
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0095
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0095

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 (2 0 1 6) 2 3 5 –2 4 3 243
[20] Romera A, Morris S, Hodgson J, Stirling D, Woodward S. A
model for simulating rule-based management of cow-calf
systems. Comput Electron Agric 2004;42(2):67–86.

[21] Sherlock R, Bright K. An object-oriented framework for farm
system simulation. In: MODSIM99-international conference
on modelling and simulation. Modelling and Simulation
Society of Australia and New Zealand; 1999. p. 783–8.

[22] Corbellini A, Mateos C, Zunino A, Godoy D, Schiaffino S.
Persisting big data: the NoSQL landscape. Inf Syst
2016;63:1–23.

[23] Tanenbaum A. Modern operating systems. Pearson
Education; 2009.
[24] Tang M, Lee BS, Tang X, Yeo CK. The impact of data
replication on job scheduling performance in the data grid.
Future Gener Comput Syst 2006;22(3):254–68.

[25] Thain D, Tannenbaum T, Livny M. Distributed computing in
practice: the condor experience. Concurrency Comput: Pract
Exp 2005;17(2–4):323–56.

[26] Zhao G, Bryan B, King D, Luo Z, Wang E, Bende-Michl U, Song
X, Yu Q. Large-scale, high-resolution agricultural systems
modeling using a hybrid approach combining grid computing
and parallel processing. Environ Modell Software
2013;41:231–8.

http://refhub.elsevier.com/S2214-3173(16)30041-5/h0100
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0100
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0100
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0110
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0110
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0110
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0115
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0115
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0120
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0120
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0120
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0125
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0125
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0125
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0130
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0130
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0130
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0130
http://refhub.elsevier.com/S2214-3173(16)30041-5/h0130

	Extending JASAG with data processing techniques for speeding up agricultural simulation applications: A case study with Simugan
	1 Introduction
	2 Materials and methods
	2.1 Simugan and JASAG
	2.1.1 Last recently used (LRU) cache
	2.1.2 LRU cache+Grouping

	2.2 Experiments

	3 Results
	4 Discussion
	5 Conclusions
	References

