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Introduction

Lactic acid bacteria (LAB) represent a heterogeneous

group of micro-organisms that are naturally present in a

wide range of ecological niches such as foods and in the

gastrointestinal and urogenital tract of animals, including

humans. In addition to their important technological

properties in food production, several studies have shown

that LAB can confer beneficial properties to their hosts,

in particular specific members of the genus Lactobacillus,

reason for which these bacteria are the most commonly

used probiotic micro-organisms. These latter can be

defined as ‘live microorganisms which when administered

in adequate amounts confer a health benefit on the host’

(FAO ⁄ WHO 2001). Some of the health benefits ascribed

to probiotics include promotion of a normal microbiota,

prevention of infectious diseases and food allergies, reduc-

tion of serum cholesterol, anticarcinogenic activity, stabil-

ization of the gut mucosal barrier, immune adjuvant

properties, alleviation of intestinal bowel disease symp-

toms and improvement of the digestion of lactose in

intolerant hosts (Ouwehand et al. 2002; Deshpande et al.

2011; Soccol et al. 2011). The probiotic and beneficial

aspects of LAB have been extensively reviewed elsewhere

and will not be the subject of this review.

Besides probiotic LAB, certain strains of LAB are able

to produce ⁄ release and ⁄ or increase specific beneficial

compounds in foods. These functional ingredients are

sometimes referred to as nutraceuticals a term that was

first given by Stephen DeFelice in 1989 to describe ‘a food

(or part of a food) that provides medical or health bene-

fits, including the prevention and ⁄ or treatment of a

disease.’ These ingredients can be macronutrients,

micronutrients (such as vitamins) or non-nutritive com-

pounds and can be naturally present in certain foods or

added during processing. The proper selection and
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Abstract

Although most vitamins are present in a variety of foods, human vitamin defi-

ciencies still occur in many countries, mainly because of malnutrition not only

as a result of insufficient food intake but also because of unbalanced diets.

Even though most lactic acid bacteria (LAB) are auxotrophic for several vita-

mins, it is now known that certain strains have the capability to synthesize

water-soluble vitamins such as those included in the B-group (folates, ribofla-

vin and vitamin B12 amongst others). This review article will show the current

knowledge of vitamin biosynthesis by LAB and show how the proper selection

of starter cultures and probiotic strains could be useful in preventing clinical

and subclinical vitamin deficiencies. Here, several examples will be presented

where vitamin-producing LAB led to the elaboration of novel fermented foods

with increased and bioavailable vitamins. In addition, the use of genetic engi-

neering strategies to increase vitamin production or to create novel vitamin-

producing strains will also be discussed. This review will show that the use of

vitamin-producing LAB could be a cost-effective alternative to current vitamin

fortification programmes and be useful in the elaboration of novel vitamin-

enriched products.
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exploitation of nutraceutical-producing micro-organisms

is an interesting strategy to produce novel foods with

increased nutritional and ⁄ or health-promoting properties

(Hugenholtz and Smid 2002).

Vitamins

Vitamins are micronutrients that are essential for the

metabolism of all living organisms. They are found as

precursors of intracellular coenzymes that are necessary to

regulate vital biochemical reactions in the cell. Humans

are incapable of synthesizing most vitamins, and they

consequently have to be obtained exogenously (i.e. from

their diet). Although most vitamins are present in a vari-

ety of foods, vitamin deficiencies still exist in many coun-

tries including highly industrialized nations mainly

because of malnutrition, not only as a result of insuffi-

cient food intake but also because of unbalanced diets.

The B-group (or B-complex) vitamins include thiamine

(B1), riboflavin (B2), niacin (B3), pyridoxine (B6), panto-

thenic acid (B5), biotin (B7 or H), folate (B11–B9 or M)

and cobalamin (B12). Each B-group vitamin is chemically

different and acts in synergy to maintain the body’s

homeostasis by playing major roles in metabolic processes

such as energy production and red blood cell formation.

B-group vitamins, normally present in many foods, are

easily removed or destroyed during cooking and food

processing, so insufficient intake are common in many

societies. For this reason, many countries have adopted

laws to enforce the fortification of certain foods with spe-

cific vitamins and minerals. For example, in Argentina

the food industry is obliged to fortify all wheat flour for

human consumption with iron, folic acid, thiamine, ribo-

flavin and niacin to reduce the incidence of anaemia and

neural tube deformation. However, recent reports high-

lighted a lack of official enforcement of the fortification

requirement and insufficient fortification levels, and it is

therefore not surprising that serum vitamin levels in the

general population have only slightly improved and sub-

clinical deficiencies still persist (ENNyS 2007).

Although the beneficial effects of generalized fortifica-

tion programmes have been demonstrated, such as the

decreased incidence of neural tube defects (NTD) and

neonatal mortality in countries such as Canada and the

USA where folate fortification is mandatory since 1998

(Blencowe et al. 2010), many countries have not adopted

a national fortification programme because of possible

unwanted side effects. The main concerns are based on

the fact that vitamins are added at concentrations that

allow persons with low vitamin intakes to reach their rec-

ommended daily allowance (RDA) so as to prevent

pathologies associated with deficiencies. At these levels of

fortification, however, those with normal or elevated lev-

els of vitamin ingestion would be subject to excessive

intakes. In the case of folic acid fortification, excess intake

may in turn mask the early haematological manifestations

of vitamin B12 deficiency. This is important as it has been

estimated that 10–30% of people over 50 years have a

reduced ability to naturally absorb vitamin B12, and con-

sequently, 20% of the general population in industrialized

countries are potentially deficient for this vitamin (Asrar

and O’Connor 2005). As folate fortification levels are

based on the requirements of the general population,

some groups could be exposed to extremely high levels of

folic acid such as children whose vitamin requirements

are lower than adults or in pregnant women who take

folic acid supplements. It has even been suggested that

the foetus may become exposed to excessive amounts of

folic acid because of prescribed supplementation of the

mother during pregnancy in combination with the con-

sumption of fortified foods, and this could favour the

selection of methylentetrahydrofolate polymorphism that

is associated with a group of debilitating diseases (Lucock

and Yates 2005). As natural folates’ such as 5-methyltetra-

hydrofolate (5-MTHF) that is normally found in foods

and sometimes produced by micro-organisms do not

mask B12 deficiency, this folate form would be a more

efficient and secure alternative than supplementation with

folic acid (Lamers et al. 2006).

The use of vitamin-producing micro-organisms is thus

a more natural and economically viable alternative than

fortification with chemically synthesized pseudo-vitamins,

and it would allow the production of foods with elevated

concentrations of vitamins that are less likely to cause

undesirable side effects.

Riboflavin

Riboflavin (vitamin B2) plays an essential role in cellular

metabolism, being the precursor of the coenzymes flavin

mononucleotide (FMN) and flavin adenine dinucleotide

(FAD) both acting as hydrogen carriers in biological redox

reactions involving enzymes such as nicotinamide adenine

dinucleotide (NADH) dehydrogenase. Here, the term

‘riboflavin’ is used to describe all biologically active forms

of vitamin B2 flavins, including riboflavin (7,8-dimethyl-

10-(1¢-d-ribityl) isoalloxazine), riboflavin-5¢-phosphate

(FMN) and riboflavin-5¢-adenosyldiphosphate (FAD). The

recommended riboflavin requirements for humans vary

with respect to sex, ageand physiological state (pregnancy

and lactation). Normal adults need to consume between

0Æ9 and 1Æ6 mg of this vitamin on a daily basis as the

human body cannot adequately store riboflavin (Institute

of Medicine 1998). Although present in a wide variety of

foods, such as dairy products, meat, eggs and certain

green vegetables, riboflavin deficiency (ariboflavinosis) still
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occurs in both developing and industrialized countries

(O’Brien et al. 2001; Blanck et al. 2002). Symptoms of ari-

boflavinosis in humans include sore throat, hyperaemia,

oedema of oral and mucous membranes, cheilosis and

glossitis (Wilson 1983). Severe cases of ariboflavinosis are

not common in most societies; however, subclinical mani-

festations are frequent amongst all subpopulation groups.

Subclinical riboflavin deficiencies are only detectable by

measuring the vitamin concentration in body fluids such

as blood plasma and serum. Vitamin B2 status in humans

has usually been assessed by measuring the erythrocyte

glutathione reductase activation coefficient (EGRAC),

which is the ratio between glutathione reductase activity

determined with and without the addition of the cofactor,

FAD (Glatzle et al. 1970). Glutathione reductase loses FAD

at an early stage in vitamin B2 deficiency, making EGRAC

a useful method for the diagnosis of vitamin B2 deficiency

(Bates 1993).

Although dairy products contain riboflavin, they are

not considered a good source of this essential vitamin.

Considering that milk contains c. 1Æ2 mg of riboflavin per

litre, an average adult person and a pregnant woman

would need to consume, respectively, 1 and 1Æ6 l of milk

per day to meet their daily requirement. This level of

milk consumption far exceeds that of residents of indus-

trialized countries such as USA where the daily per capita

consumption of fresh milk is c. 200 ml (Putman and Alls-

house 2003). Increasing the levels of riboflavin in milk

would thus be very important to prevent ariboflavinosis

in populations where milk consumption is low.

Riboflavin biosynthesis has been described both in gram-

positive and gram-negative bacteria, with detailed studies

performed for Bacillus subtilis (Perkins and Pero 2002) and

Escherichia coli (Bacher et al. 1996). Microbial biosynthesis

of riboflavin from the precursors guanosine triphosphate

(GTP) and d-ribulose 5-phosphate occurs through seven

enzymatic steps that have previously been reviewed in

detail (Bacher et al. 2000). The imidazole ring of GTP is

hydrolytically opened, yielding a 4,5-diaminopyrimidine,

which is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-

pyrimidinedione by a sequence of deamination, side-

chain reduction and dephosphorylation. Condensation of

5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with

3,4-dihydroxy-2-butanone 4-phosphate obtained from

ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine.

Dismutation of the lumazine derivative yields riboflavin

and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione,

which is recycled in the biosynthetic pathway.

Riboflavin concentrations can sometimes vary in cer-

tain dairy products (see Fig. 1) because of processing

technologies and through the action of micro-organisms

utilized during food processing(LeBlanc et al. 2010b).

This is the case for buttermilk and yogurt where ribofla-

vin levels increased significantly (1Æ7 and 2Æ0 mg l)1)

compared with unfermented milk (1Æ2 mg l)1). It has

been shown that most yogurt starter cultures decreased

riboflavin concentrations whereas others can increase the

levels of this essential vitamin up to 60% of the initial

concentration present in unfermented milk (Kneifel et al.

1992).

In a clinical trial, it was shown that daily consumption

of 200 g of both a probiotic or conventional yoghurt for

2 weeks can contribute to the total intake of vitamin B2,

as reflected by increased levels of plasma-free riboflavin in

healthy women (Fabian et al. 2008). However, as ribofla-

vin levels returned to normal when the intake of fer-

mented milks was stopped (no long-term effect), the

changes in plasma concentrations seem more likely the

result of regular yoghurt consumption as a fermented

dairy product, rather than of the specific intake of the

probiotic bacteria (Fabian et al. 2008). Previous results

from this group showed that unlike some yoghurt starter

cultures that are able to produce riboflavin, most probiot-

ic strains of lactobacilli consume this vitamin and thus

decrease their bioavailability in fermented products

(Elmadfa et al. 2001). Consequently, adequate selection

of strains is essential to increase the concentration and

bioavailability of this essential vitamin in fermented

foods.

Tempeh, a traditional Indonesian fermented soybean

food, was shown to contain elevated concentrations of B-

group vitamins (such as riboflavin) because of microbial

biosynthesis (Keuth and Bisping 1993). The latter article

also reported on the isolation of LAB from tempeh,

which were shown to belong to the Streptococcus and

Enterococcus genera and able to significantly increase ribo-

flavin concentrations in this fermented product.
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Figure 1 Vitamin concentrations in dairy products (modified from

Alm (1982) and LeBlanc et al. 2010b). Concentrations of thiamine

(B1, ), riboflavin (B2, h), niacin (B3, ), pyridoxine (B6, ) and panto-

thenic acid (B5, ) are in mg l)1, whereas biotin (B7, ), folate

(B9 ⁄ B11, ) and cobalamin (B12, ) are in lg l)1.
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Recently, a publication has described the screening of

riboflavin-producing strains from different fermented

milk products obtained in the Vellore region of India (Ja-

yashree et al. 2010). Half of the 48 isolates were able to

grow in a chemically defined medium (CDM) without

riboflavin although just a single strain was identified as

being an efficient riboflavin-producing strain: Lactobacil-

lus fermentum MTCC 8711 produced 2Æ29 mg l)1 of ribo-

flavin after 24 h of growth in the CDM (Jayashree et al.

2010). These authors conclude that this strain could be

further exploited for the enhanced production of ribofla-

vin using various strain improvement strategies to

develop a better starter culture for the fermented food

industry. They also propose that it could be used to

replace the conventional strains that are being employed

in these LAB-based fermented products.

The selection of spontaneous roseoflavin-resistant

mutants was found to be a reliable method to obtain nat-

ural riboflavin-overproducing strains of a number of spe-

cies commonly used in the food industry (Burgess et al.

2006). The toxic riboflavin analogue roseoflavin was used

to isolate natural riboflavin-overproducing variants of the

food-grade micro-organisms Lactococcus lactis (Burgess

et al. 2004), Lactobacillus plantarum, Leuconosctoc mesen-

teroides and Propionibacterium freudenreichii (Burgess

et al. 2006). In these studies, it was demonstrated that

spontaneous resistance to the toxic riboflavin analogue

roseoflavin frequently coincides with a riboflavin-overpro-

ducing phenotype because of mutations in the regulatory

region of the rib operon.

Recently, LAB were obtained from durum wheat flour

samples and screened for roseoflavin-resistant variants to

isolate natural riboflavin-overproducing strains (Capozzi

et al. 2011). Two riboflavin-overproducing strains of

Lact. plantarum were isolated and used for the prepara-

tion of bread (by means of sourdough fermentation) and

pasta (using a prefermentation step) to enhance their

vitamin B2 content. The applied approaches resulted in a

considerable increase in vitamin B2 content (about a two

and threefold increase in pasta and bread, respectively),

thus representing a convenient and efficient food-grade

biotechnological application for the production of vita-

min B2-enriched bread and pasta.

The roseoflavin-resistant, riboflavin-producing strain

L. lactis CB010 was able to eliminate most physiological

manifestations of ariboflavinosis such as stunted growth,

elevated EGRAC values and hepatomegalia that were

observed using a riboflavin depletion–repletion animal

model (LeBlanc et al. 2005a). The bioavailability of the

riboflavin produced by this strain was similar to that of

pure riboflavin demonstrating the usefulness of this strain

for the development of riboflavin-enriched fermented

foods.

In another study, it was shown that the administration

of a fermented milk that was produced with the roseofla-

vin-resistant and spontaneous riboflavin-overproducing

strain P. freudenreichii B2336 was beneficial to riboflavin-

depleted animals (LeBlanc et al. 2006). The fermented

product containing P. freudenreichii B2336, with increased

concentrations of riboflavin, eliminated most physiologi-

cal manifestations of ariboflavinosis, whereas a product

fermented with a non–riboflavin-producing strain of

P. freudenreichii did not show this beneficial effect (Le-

Blanc et al. 2006).

Another method to obtain riboflavin-producing strains

or to increase their production capacities is to use meta-

bolic engineering strategies. A Corynebacterium ammoni-

agenes strain harbouring a plasmid containing all of its

riboflavin biosynthetic genes was constructed through

metabolic engineering using recombinant DNA tech-

niques. This recombinant strain was shown to produce

and accumulate riboflavin to levels that were 17-fold

higher as compared to the plasmid-free parent strain

(Koizumi et al. 2000).

By means of classical mutagenesis and gene technology,

the gram-positive bacterium B. subtilis was modified to

become a suitable host for the commercial production of

riboflavin (Perkins et al. 1999). A sequential optimization

strategy, based on statistical experimental designs, was

used to enhance the production of riboflavin by recombi-

nant B. subtilis RH44 (Wu et al. 2007). Recently,

enhanced riboflavin production was obtained by express-

ing heterologous riboflavin operon from Bacillus cereus

ATCC14579 in B. subtilis (Yunxia et al. 2010).

Previously, we described the genetic analysis of the ribo-

flavin biosynthetic (rib) operon in the lactic acid bacterium

L. lactis ssp. cremoris strain NZ9000 (Burgess et al. 2004).

This strain was converted from a riboflavin consumer into

a vitamin B2 ‘factory’ by overexpressing its riboflavin bio-

synthesis genes (Burgess et al. 2004). Substantial riboflavin

overproduction (24 mg l)1) was described when all four

biosynthetic genes (ribG, ribH, ribB and ribA) were overex-

pressed simultaneously (in L. lactis NZ9000 containing

pNZGBAH). It was demonstrated that milk fermented by

this genetically modified riboflavin-producing strain was

effective in reversing ariboflavinosis in a riboflavin-defi-

ciency rat model (LeBlanc et al. 2005b). The manufacture

of a product of this nature would decrease the costs com-

pared with current vitamin fortification programmes.

A great advantage of genetic engineering strategies is

that more than one functional property can be conferred

to the host micro-organisms. By directed mutagenesis fol-

lowed by selection and metabolic engineering, folate and

riboflavin biosynthetic pathways were modified in L. lactis

resulting in simultaneous overproduction of both folate

and riboflavin (Sybesma et al. 2004). According to these
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authors, novel foods, enriched through fermentation

using these multivitamin-producing starters, could com-

pensate the B-vitamin-deficiencies that are common even

in highly developed countries.

Folates

Because folate is involved in essential functions of cell

metabolism such as DNA replication, repair and methyla-

tion and synthesis of nucleotides, vitamins and some

amino acids, human life could not exist without it. Folate

deficiency has been implicated in a wide variety of disor-

ders from Alzheimer’s to coronary heart diseases: osteo-

porosis, increased risk of breast and colorectal cancer,

poor cognitive performance, hearing loss and NTDs (Le-

Blanc et al. 2007, 2010b; Laiño et al. 2011). In this review,

the generic term folate will include the complete group of

all natural folate derivatives, including 5-methyltetrahy-

drofolate (5-MTHF) and folylglutamates that are naturally

present in foods, but not folic acid, that is the synthetic

form of folate commonly used for food fortification and

nutritional supplements.

Considering that milk contains between 20 and

50 lg l)1 of folate, an average adult person or a pregnant

woman would need to consume 6–12 l of milk per day to

meet their daily requirement, and as this level of con-

sumption is unrealistic, it may be helpful to increase

folate intake using vitamin-producing micro-organisms to

prevent the occurrence of folate deficiency.

Many industrially important LAB such as L. lactis and

Streptococcus thermophilus have the ability to synthesize

folate (Friend et al. 1983; Lin and Young 2000; Huge-

nholtz and Smid 2002; Crittenden et al. 2003; Sybesma

et al. 2003c; Papastoyiannidis et al. 2006). This explains

why some fermented dairy products, including yogurt,

contain higher amounts of folate compared with nonfer-

mented milks (see Fig. 1). It was shown that folate con-

centration in yogurt may be increased to values above

200 lg l)1 (Wouters et al. 2002). However, the ability of

microbial cultures to produce or utilize folate varies con-

siderably being a strain-dependent trait. Most authors

claim that Strep. thermophilus normally produce folates

whereas Lactobacillus delbrueckii subsp. bulgaricus is a

folate consumer, so the selection of adequate combination

of strains is essential to develop fermented foods with

increased vitamin concentrations.

Not only Strep. thermophilus and L. lactis have the abil-

ity to produce folates, but also other LAB like Lactobacil-

lus acidophilus and Lact. plantarum have been reported to

produce folate in CDM (LeBlanc et al. 2010b) as have

Leuconostoc lactis and Bifidobacterium longum. Also, Lacto-

bacillus reuteri JCM1112, a well-known producer of vita-

min B12, can produce high quantities of folates, so this

LAB could potentially increase folate levels in milk (San-

tos et al. 2008b).

Another example of LAB producing folates is the com-

bination of Strep. thermophilus and Bifidobacterium ani-

malis that increased the levels of this vitamin sixfold

(Crittenden et al. 2003). It is well established that

Strep. thermophilus strains are dominant producers of

folates in milk, principally producing 5-MTHF, what

leads to yogurts with more than six times the 5-MTHF

content as compared to the control after 12 h of fermen-

tation (Holasova et al. 2004). Also it was found that some

strains of B. longum were moderate producers with a

maximum increase of 73% in 5-MTHF after this fermen-

tation time. On the other hand, Propionibacterium

freundenreichii ssp. shermanii strains did not modify folate

levels. The maximum concentration of 5-MTHF was

highest between 6 and 12 h of fermentation, then a

decrease was observed (Holasova et al. 2004).

Micro-organisms are also able to increase folate content

in a wide variety of other foods. For example, fermentation

of rye dough to produce bread is frequently accompanied

by increases in folate concentrations (Kariluoto et al.

2006), but the increase in this vitamin during fermentation

was shown to be mainly because of folate synthesis by

yeasts, whereas LAB did not produce folate, they consumed

it. So replacing folate consumers for folate-producing LAB

could significantly increase folate content in these breads.

It has also been reported that it is possible to select

starter cultures of LAB that produce significant amounts

of 5-MTHF (to almost twice the basal level) during vege-

table fermentation (Jägerstad et al. 2004). It is important

to carefully check the folate concentration in raw vegeta-

bles to optimize the entire process. Folate losses during

processing must be limited as much as possible, and opti-

mizing the conditions to favour the microbiological bio-

synthesis of folates is essential to increase folate levels in

the final product.

Another example of the use of LAB to improve folate

content in fermented products is in the fermentation of

corn flour where an increase in folate level of almost

threefold after 4 days of fermentation at 30�C was

achieved (Murdock and Fields 1984).

Some studies performed with the aim to determine

whether the exogenous vitamin can affect folate synthesis

by bacteria have shown that production is strain depen-

dent; some bifidobacteria did not produce folate when

this vitamin was already present, whereas others produced

it regardless of the vitamin concentration. This suggests

that in some strains folate biosynthesis might not be reg-

ulated; this was confirmed by the finding that the final

concentration of this vitamin was at least 50-fold higher

than the requirement after bacterial growth of the folate-

producing strains (Pompei et al. 2007).
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Different forms of folates are produced by LAB; some

even produce folates with more than three glutamyl resi-

dues. In L. lactis, up to 90% of the total produced folate

remains in the cell as 5,10-methenyl-THF and presumably

10-formyl-THF, both with four, five or six glutamate resi-

dues (Sybesma et al. 2003c). In Strep. thermophilus, much

less was shown to remain in the cell, with this folate

being present as 5-formyl-THF and 5,10-methenyl-THF,

both with three glutamate residues. The differences in dis-

tribution can probably be explained by the different

length of the polyglutamyl tail in the two micro-organ-

isms. One of the main functions of the polyglutamyl tail

is thought to be the retention of folate within the cell.

The cell retention of folate can be a result of the negative

charge of the carboxyl groups of (polyglutamyl) folate

(pKa of 4Æ6). Moreover, in Strep. thermophilus, the intra-

and extracellular folate distribution was influenced by the

pH. Cells that grew at low pH had a larger extracellular

folate fraction than cells that were cultured at high pH.

The explanation can be that at low intracellular pH, folate

is protonated and so became electrically neutral, enhanc-

ing transport across the membrane. In the case of L. lac-

tis, pH did not seem to affect intra- and extracellular

folate distribution (Sybesma et al. 2003c).

The genes for folate biosynthesis have been identified

in L. lactis (Sybesma et al. 2003a), in Lact. plantarum

(Kleerebezem et al. 2003) and in Lact. delbrueckii ssp. bul-

garicus (van de Guchte et al. 2006), but in the last one,

some of them are missing. Not every Lactobacillus is able

to produce folate because the genes involved in folate bio-

synthesis are lacking in the genome; this is the case for

Lactobacillus gasseri (Wegkamp et al. 2004), Lactobacillus

salivarius (Claesson et al. 2006), Lact. acidophilus and Lac-

tobacillus johnsonii (van de Guchte et al. 2006).

In cells, the polyglutamyl form is the main form as

folate-dependent enzymes have increased affinity for poly-

glutamyl folates compared with the monoglutamyl forms.

The enzyme responsible for polyglutamyl folate synthesis

and the corresponding elongation of the chain is poly-

glutamyl synthetase, encoded by the folC gen in L. lactis.

All sequenced microbial genomes (even those of strains

not able to produce folate) possess folC or a homologous

gene (Sybesma et al. 2003b).

Through metabolic engineering, it is possible to

increase folate levels in L. lactis (Sybesma et al. 2003b;

Wegkamp et al. 2007), Lact. gasseri (Wegkamp et al.

2004) and Lact. reuteri (Santos et al. 2008b). By control-

ling the overexpression of folKE genes in L. lactis that

encode 6-hydroxymethil-dihydropterinpyrophosphokinase

(folK) and GTP cyclohydrolase (folE) results in a tenfold

increased production of extracellular folate and a three-

fold increased production of total folates; meanwhile,

overexpression of folA that encode dihydrofolate reduc-

tase decreased (by 50%) the production of total folates.

In addition, it was observed that the combined overex-

pression of folKE and folC favoured the accumulation of

intracellular folate (Sybesma et al. 2003b). Furthermore,

the overexpression of GTP cyclohydrolase I showed a very

promising potential to increase the flux through the folate

biosynthesis pathway. In consequence, the appropriate

combination of the overexpression of folKE with the

increased or decreased expression of other folate biosyn-

thesis genes can significantly increase folate production

(Sybesma et al. 2003b).

An example of that is the significantly improved folate

status in deficient rats that was shown upon supplementa-

tion with L. lactis overexpressing the folC, folKE or

folC + folKE genes (LeBlanc et al. 2010a). The biosafety

assessment of these genetically modified LAB (GM-LAB)

was performed and demonstrated that there were as safe

as the native strains from which they were derived (Le-

Blanc et al. 2010c).

Increases in folate production can be performed not

only by overexpressing the genes involved in the biosyn-

thesis, but also by overexpressing other genes involved in

the biosynthesis pathway of related metabolites. For

example, the overproduction of pABA did not lead to ele-

vated folate pools on its own (Wegkamp et al. 2007).

However, simultaneous overexpression of the pABA and

the folate biosynthesis gene clusters reached high folate

levels (Wegkamp et al. 2007), which did not depend of

pABA supplementation. The overproduction of pABA led

to relatively low intracellular folate pools and a relatively

high secretion of folate. There exists a very tight correla-

tion between folate and pABA biosynthesis that was

shown through deletion of the pABA genes in L. lactis

where in consequence its ability to synthesize folate was

eliminated, causing a complete inability to grow in the

absence of purine nucleobases ⁄ nucleosides.

In other trials, Lact. gasseri ATCC 33323 was converted

from being a folate consumer into a highly efficient

folate-producing strain (Wegkamp et al. 2004). In this

strain, the folate biosynthesis genes are not present,

except for folA and folC, which are involved in the regen-

eration and retention of reduced folates absorbed from

the medium. When a plasmid containing the complete

folate gene cluster (folA, folB, folKE, folP, ylgG and folC)

from L. lactis MG1363 was introduced into Lact. gasseri

ATCC 33323, the resulting recombinant strain was con-

verted into a folate-producing bacterium (Wegkamp et al.

2004).

Although it is useful during technological applications

to increase folate production, a recent study has been

shown that folate overproduction in Lact. plantarum

WCFS1 significantly reduced the growth rate of this

micro-organism (Wegkamp et al. 2010). Even when folate
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overproduction led to very little change in metabolite

levels or overall transcript profile, the growth rate in

Lact. plantarum was reduced drastically, most likely

because the growth-related transcripts and proteins are

diluted by the enormous amount of gratuitously produced

folate-related transcripts and proteins (Wegkamp et al.

2010). The results obtained in this study will be helpful in

designing future genetic engineering strategies taking into

account that transcript numbers can affect growth.

In animal studies, it was shown that low-folate diets

are associated with an elevated risk of colorectal cancer

and that folic acid would suppress the growth of the can-

cer (Giovannucci 2002). The use of folate-producing pro-

biotics have recently been proposed to efficiently confer

protection against inflammation and cancer, both exerting

the beneficial effects of probiotics and preventing the

folate deficiency that is associated with premalignant

changes in the colonic epithelia (Rossi et al. 2011). How-

ever, large discrepancies exist between folate supplementa-

tion and cancer prevention: some researchers have

demonstrated a clear reduction in the risk of recurrence

of adenomas with increased folate intakes, whereas others

observe the complete opposite (Carroll et al. 2010). It is

all these conflicting results that have raised concerns the

implementation of new fortification policies of many

countries (Ulrich 2008). It is thus very important to

establish the risk-benefit relationship of folate and folic

acid supplementation before proposing their use as a

chemopreventive agent.

Vitamin B12

The term vitamin B12 is generally used to describe a type

of cobalt corrinoid, particularly of the cobalamin (cbl)

group. In strict terms, vitamin B12 is the form of the vita-

min obtained during industrial production and which does

not exist naturally (Rucker et al. 2001). Cyanide stabilizes

the molecule during the extraction procedure from micro-

bial cultures, forming cyanocobalamin. In its natural form,

the vitamin is present principally as desoxyadenosilcobal-

amin (coenzyme B12), methylcobalamin or pseudocobal-

amin, amongst other forms. Animals, plants and fungi are

incapable of producing cobalamin; it is the only vitamin

that is exclusively produced by micro-organisms, particu-

larly by anaerobes (Roth et al. 1996; Martens et al. 2002;

Smith et al. 2007). Furthermore, biochemical and genomic

data indicate that only a few bacteria and archaea possess

the ability to produce this vitamin (Roth et al. 1996; Ro-

dionov et al. 2003). Adult ruminant animals and strict veg-

etarians can obtain the vitamin in specialized bacteria

present in the rumen. Humans, however, do not harbour

such microbes in their small intestine and must absorb the

coenzyme from natural sources such as animal meats

(especially liver and kidney), fish and eggs, or pharmaceu-

tical products. Vitamin B12 deficiency can cause different

pathological manifestations that affect the haematopoietic,

neurological and cardiovascular system, amongst others.

One of the most extreme forms of B12 deficiency is known

as pernicious anaemia that is not normally associated with

diet but rather with problems in the gastric system caused

by a lack of production of a gastric glycoprotein called

intrinsic factor that facilitates the absorption of the vita-

min in the small intestine (Beck 2001).

As indicated previously, only bacteria and archaea are

able to synthesize vitamin B12, although relatively few can

synthesize it de novo. One of the first model organisms used

for the study of B12 biosynthesis was P. freudenreichii that

is used in the industrial production of the vitamin. To cir-

cumvent the instability of the biosynthetic intermediates,

the aerobic B12-producing bacterium Pseudomonas denitrif-

icans has been used for the isolation of various intermedi-

ates and the characterization of the majority of the genes

and corresponding products involved in the biosynthesis of

this vitamin (Battersby 1994; Thibaut et al. 1998).These

studies concluded that the biosynthesis of cobalamin could

be performed under either aerobic (oxygen dependent) or

anaerobic (oxygen independent) conditions.

The anaerobic route was observed in the strains of

P. freudenreicchii, Salmonella enterica and Bacillus megate-

rium (Warren et al. 2002; Warren 2006; Escalante-Seme-

rena 2007). The initial characterization problems were

primarily due to the fact that the central Co2+ ion was

inserted into the corrinoid ring in an early step that

generated unstable intermediates that were difficult to

isolate. On the other hand, in the oxygen-dependent

route, cobalt is inserted in a later stage creating more sta-

ble intermediates.

Because of the complexity of B12 biosynthesis and the

limitations of the scope of this chapter, interested readers

are invited to read excellent reviews that have been pub-

lished on this subject (Raux et al. 2000; Scott 2003;

Roessner and Scott 2006; Escalante-Semerena 2007).

It was shown that Lact. reuteri CRL1098 was able to

metabolize glycerol in a B12-free medium; this being the

first hint that a LAB might be able to produce cobalamin

(Taranto et al. 2003). The chromatographic analysis of

the intracellular bacterial extract of Lact. reuteri CRL 1098

confirmed that this strain was able to produce a cobala-

min-like compound with an absorption spectrum closely

resembling that of standard cobalamin but with a differ-

ent elution time, while cobalamin production was con-

firmed using different bioassays (Taranto et al. 2003).

Genetic evidence of cobalamin biosynthesis by

Lact. reuteri CRL 1098 was then obtained through the use

of different molecular biology techniques, and it was

shown that at least 30 genes are involved in the de novo
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synthesis of the vitamin. The genetic organization (cob

and cbi genes) are very similar to those of Salm. enterica

and Listeria innocua (Santos et al. 2007).

One distinctive characteristic of the cob cluster of

Lact. reuteri is the presence of hem genes in the middle of

the cluster. In the respiratory organisms Listeria and Sal-

monella with similar cob clusters, the hem genes are

located at other positions of their genome. The presence

of the hem genes in the cob cluster is a characteristic that

has only been observed in certain genomes of Clostridium

(Rodionov et al. 2003). Recently, the transcription of a

vast set of genes involved in cobalamin synthesis in sour-

dough prepared with strain Lact. reuteri ATCC 55730 was

described (Hufner et al. 2008).

In addition to CRL1098, other Lact. reuteri strains were

shown to be capable of producing some corrinoids such as

Lact. reuteri DCM 20016 (Santos et al. 2008a), JCM1112

(Santos et al. 2008b) and CRL 1324 and 1327, strains iso-

lated from human vagina (Vannini et al. 2008). After the

detection of B12 production by Lact. reuteri CRL1098 and

the study of its cobalamin biosynthesis cluster, the geno-

mic sequence of two strains of Lact. reuteri, with different

characteristics, was released by the Joint Genome Institute:

Lact. reuteri F275 (type stain DSM20016) isolated from

human faeces that is unable to colonize mice and

Lact. reuteri 100-23 isolated from the mouse intestine.

Curiously, comparative genomic data revealed that the

strain isolated from the human intestine (DSM 20016)

contains the cobalamin biosynthesis cluster, which is asso-

ciated with the anaerobic catabolism of glycerol (or 1,2-

propanediol), whereas the mouse strain (100-23) neither

contained the cob nor the glycerol metabolism genes. Based

on the horizontal transfer hypothesis of the cob-pdu clus-

ter, it would be expected that other strains of LAB would

also have received this genomic island by one of the many

mechanisms of genetic transfer. Notably, of the current

sequenced genomes of LAB, only Lact. reuteri contain

the pdu-cob genes (DSM20016 ⁄ JCM1112 and the Biogaia

strain Lact. reuteri ATCC55730). Recently, a reuterin-

producing strain of Lactobacillus coryniformis isolated from

goat milk was characterized and was shown to produce a

cobalamin-type compound (Martin et al. 2005). Prelimin-

ary genetic and biochemical data from our laboratory

(Vannini et al. 2008) indicate that the cob-pdu cluster is

indeed present in other lactobacilli (Lact. coryniformis and

Lactobacillus murinus). The possibility of various vitamin

B12-producing strains and species of LAB is important for

future studies on cobalamin production, not only in evolu-

tionary studies to address how the cob-pdu genomic island

was acquired, but also to explore its potential application

in the development of products that contain B12.

Recently, a vitamin B12-deficient murine experimental

model was developed to evaluate maternal B12 deficiency

from the end of the gestation period to weaning (Molina

et al. 2008). In this experimental animal model, vitamin

B12 deficiency caused a significant reduction in the hae-

matological parameters (haemoglobin, haematocrit and

reticulocytes values) and anthropometric alterations in

pregnant females compared with the control animals,

which were fed a B12-sufficient diet. Moreover, the defi-

cient females gave birth to smaller numbers of offspring,

which also showed growth retardation (smaller size) and

a decrease in haematological values with associated histo-

logical alterations in the small intestine and a decrease in

the number of IgA-producing cells of the females and in

their offspring. This experimental model of murine

females and their offspring allowed the assessment of the

incidence of maternal cobalamin deficiency in offspring,

probably also representing a useful tool to evaluate the

efficiency of functional foods containing B12-producing

micro-organisms to prevent the nutritional deficit of

cobalamin. Using this model it was shown that Lact. reu-

teri CRL 1098 was able to revert vitamin B12 deficiency,

demonstrating the bioavailability of the vitamin produced

by this strain (Molina et al. 2009). It is known that when

Lact. reuteri CRL 1098 is grown in strict anaerobiosis, this

micro-organism produces almost exclusively pseudocobal-

amin (Santos et al. 2007), a variant of the vitamin that

appears to be inactive in animals, though, relevant in the

microbial studies. Salmonella enterica serovar typhimuri-

um, a B12-producing facultative anerobic bacterium, syn-

thesizes pseudocobalamin in anaerobiosis, but in

microaerophilic conditions the coenzyme B12 is also pro-

duced (Keck et al. 1998). Preliminary studies from our

laboratory indicate that an additional corrinoid com-

pound (with an absorption spectrum similar to cobala-

min) is produced when Lact. reuteri is grown in

microaerophilic conditions (V. Vannini, G. Font de

Valdez, P. Taranto and F. Sesma, unpublished data).

These results may explain the results from the biodispon-

ibility assays and emphasize the need for further meta-

bolic studies to establish better conditions for the

production of the active form of the vitamin.

A common method to improve B12 yields is random

mutagenesis and the use of genetic engineering (Martens

et al. 2002; Burgess et al. 2009). Different metabolic engi-

neering strategies have been applied to increase vitamin

B12 production in P. freudenreichii (Piao et al. 2004a,b). A

recombinant P. freudenreichii strain harbouring a plasmid

containing hemA, from Rhodobacter sphaeroides, and ho-

mologues of hemB and cobA showed 2Æ2-fold overproduc-

tion of vitamin B12 (Piao et al. 2004b). These studies

show that multigene expression systems improve the vita-

min B12 production levels in propionibacteria. On the

other hand, no similar studies have been conducted in

lactobacilli. Knowledge of multiple genomic sequences of
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Lact. reuteri B12-producing strain will facilitate the design

of strategies for constructing food-grade strains with

enhanced capacity to produce this essential vitamin.

Other B-group vitamins

Besides riboflavin, folate and vitamin B12, increased levels

of other B-group vitamins such as niacin and pyridoxine

have also been reported as result of the LAB fermentation

in yoghurt, cheeses and other fermented products (Shah-

ani and Chandan 1979; Alm 1982). The concentration of

thiamine in milk was also positively influenced (11%

increase) following 48 h of fermentation with B. longum

(Hou et al. 2000). Recently, it was shown that a slight

(but not statistically significant) increase in the thiamine

and pyridoxine concentration occurred as a result of soy

fermentation with Strep. thermophilus ST5 and Lactobacil-

lus helveticus R0052 or B. longum R0175 (Champagne

et al. 2010). These authors state that their strains were

not as efficient, as those reported in literature, but clarify

that in these previous studies, fermentations had been

carried out in milk-based products, and results were not

subjected to statistical analyses. The authors then

conclude that this was the first study on thiamine and

pyridoxine amounts in soy beverages fermented by pure

cultures of Lact. helveticus and Strep. thermophilus.

Other vitamins

Although B-group vitamins are the most commonly stud-

ied because of their importance in nutrition and general

metabolism, a few reports have shown that other water-

soluble vitamins can be produced by LAB. In one such

study, LAB were examined for their ability to produce

quinone compounds as vitamin K occurs naturally in two

forms, namely, K1 (phylloquinone) in green plants and

K2 (menaquinones) in animals and some bacteria (Mo-

rishita et al. 1999). Lactococcus lactis ssp cremoris (three

strains), L. lactis ssp lactis (two strains) and Leuc. lactis

were selected as high producers of quinone that synthe-

sized more than 230 nmol of quinones g)1 of dried cells.

These strains, when grown either in reconstituted nonfat

dry milk or in a soymilk medium, produced a beneficial

quantity for dietary supplement (i.e. 29–123 lg of men-

aquinones l)1 of the fermented medium) (Morishita et al.

1999). Vitamin K is an essential cofactor for the forma-

tion of c-carboxyglutamic acid (Gla) residues in proteins,

and these can bind calcium ions and influence, for exam-

ple, blood coagulation and tissue calcification (e.g. osteo-

calcin found in bone tissues). Vitamin K deficiency has

been implicated in several clinical ailments such as intra-

cranial haemorrhage in newborn infants and possible

bone fracture resulting from osteoporosis. The menaqui-

none-producing LAB strains identified by Morishita et al.

could thus be useful to supplement vitamin K require-

ment for humans.

Conclusions

This review describes the possibility to increase vitamin

concentrations in fermented foods through judicious

selection of the microbial species and cultivation condi-

tions. It is expected that the food industry will take the

next step to use this information for selecting vitamin-

producing strains as part of their starter cultures to pro-

duce fermented products with elevated levels of these

essential compounds. Such products would provide

economic benefits to food manufacturers as increased

‘natural’ vitamin concentrations would be an important

value-added effect without increasing production costs.

Consumers would obviously benefit from such products

as they could increase their vitamin intakes while con-

suming them as part of their normal diet.

With the increased availability of genome sequences

and the development of novel engineering tools for LAB,

the manufacture of products using GM vitamin-produc-

ing strains is now possible, and these are a viable cost-

effective alternative to current vitamin fortification

programmes. The ultimate use of such GM-LAB may rely

on the regulatory acceptance of genetically modified

organisms in nutrition and nutraceutical preparations.

Undoubtedly, consumers will play a decisive role in such

a decision, and their position should be guided by the

safety status of such genetically modified organisms and

their associated, scientifically proven health benefits.
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