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Orientation selectivity is ubiquitous in the primary visual cortex (V1) of mammals. In cats

and monkeys, V1 displays spatially ordered maps of orientation preference. Instead, in

mice, squirrels, and rats, orientation selective neurons in V1 are not spatially organized,

giving rise to a seemingly random pattern usually referred to as a salt-and-pepper

layout. The fact that such different organizations can sharpen orientation tuning leads

to question the structural role of the intracortical connections; specifically the influence

of plasticity and the generation of functional connectivity. In this work, we analyze the

effect of plasticity processes on orientation selectivity for both scenarios. We study a

computational model of layer 2/3 and a reduced one-dimensional model of orientation

selective neurons, both in the balanced state. We analyze two plasticity mechanisms.

The first one involves spike-timing dependent plasticity (STDP), while the second one

considers the reconnection of the interactions according to the preferred orientations of

the neurons. We find that under certain conditions STDP can indeed improve selectivity

but it works in a somehow unexpected way, that is, effectively decreasing the modulated

part of the intracortical connectivity as compared to the non-modulated part of it. For

the reconnection mechanism we find that increasing functional connectivity leads, in

fact, to a decrease in orientation selectivity if the network is in a stable balanced state.

Both counterintuitive results are a consequence of the dynamics of the balanced state.

We also find that selectivity can increase due to a reconnection process if the resulting

connections give rise to an unstable balanced state. We compare these findings with

recent experimental results.

Keywords: plasticity, orientation selectivity, visual cortex, orientation map, synaptic reconnection

Introduction

Neurons in primary visual cortex are characterized by being selective to several stimulus features,
such as orientation, ocular dominance or retinotopy. One of the most interesting aspects of the
primary visual cortex is that these cortical features can be spatially organized, i.e., nearby neurons
tend to have similar optimal stimuli. One important receptive field property, such as orientation
preference, can be mapped rather smoothly across the cortical surface. This was found in cats in
Hubel and Wiesel (1961, 1962), Bonhoeffer and Grinvald (1991) and also confirmed in primates
(Wiesel and Hubel, 1974). For these systems we say that an orientation map is present.
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More recently it was found that in rodents the visual cortex
behaves in a very different way. Cells in the primary visual
cortex are selective to orientation (Dräger, 1975; Scholl et al.,
2013) but there are no orientation maps (Ohki et al., 2005; van
Hooser et al., 2005). In fact, neighboring cells display completely
different preferred orientations, giving rise to the salt-and-pepper
organization of orientation selectivity (Ohki et al., 2007). This
structure can appear even for highly visual animals (van Hooser
et al., 2005).

Having high degree of orientation selectivity for such different
structures leads to question the structural organization of
the intracortical connections. It is known that neurons tend
to be connected with other neurons in their neighborhood
(Holmgren et al., 2003; Stepanyants et al., 2008); for systems
with columnar organization this means neurons with similar
selectivity properties. However, for the salt-and-pepper structure
the situation is not so clear. Neurons with similar response
properties could be more strongly connected independently of
the physical distance (Ko et al., 2011; Cossell et al., 2015).
Moreover, this functional connectivity could be the result of
plasticity processes. For instance, in Ko et al. (2013) it was found
that functional microcircuits are generated during development,
but their presence leads only to a small increment of selectivity.

From a theoretical point of view, it was recently found that
even if the connectivity patterns are totally random, selectivity
can be maintained from layer 4 to layer 2/3 (Hansel and
van Vreeswijk, 2012). This happens because as the network is
populated by both excitatory and inhibitory neurons operating
in a balanced activity regime, untuned excitatory and inhibitory
inputs roughly cancel each other giving rise to a sizable net
tuned input. The theory of balanced state has been proposed
to explain the temporal variability of the response in systems
that are highly connected (Softky and Koch, 1993). This theory
explains the variability without doing fine tuning of parameters
(van Vreeswijk and Sompolinsky, 1998) and was later supported
by experimental works (Destexhe et al., 2003; Shu et al., 2003;
Haider et al., 2006).

Even if balanced networks with totally random connections
can display a substantial degree of selectivity, it has been
suggested (Corey and Scholl, 2012) that increasing the
connection probability of nearby neurons with similar
orientation preference might further enhance their selectivity.
This increment could be generated by plasticity processes at the
synaptic level.

Here we intend to clarify the problem of the effect of plasticity
on orientation selectivity. The questions we address are: under
which conditions can plasticity improve selectivity? Is the effect
of plasticity different for the salt-and-pepper organization and
for systems with orientation maps? If plasticity does improve
selectivity, what is the main mechanism responsible for that
change?

We study these questions by analyzing a computational
model of layer 2/3 and a reduced one-dimensional model of
orientation selective neurons. Since we are modeling cortical
activity (characterized by both highly irregular response and
large connectivity), our computational and reduced models are
in the balanced state. We analyze two plasticity mechanisms, one

of them involves spike-timing dependent plasticity (STDP) and
the other considers the reconnection of neuronal interactions
according to the preferred orientations of the pre- and post-
synaptic neurons.

We find that spike-timing dependent plasticity improves
selectivity but it works in a somehow unexpected way, that is
effectively decreasing the modulated part of the intracortical
connectivity as compared to its non-modulated part. We find
this conclusion to be valid both for systems with salt-and-
pepper organization and with orientation maps. The effect of
reconnection of interactions is also non-intuitive: As predicted by
the one dimensional model, if the network dynamics is in a stable
balanced state, functional connectivity leads to a decrease in
selectivity. However, if the balanced state is unstable, functional
connectivity can indeed improve selectivity.

Materials and Methods

The Model Network
The model is composed of one layer representing a square
patch of layer 2/3 of size M × M, where we assume M to be
approximately 1mm. It has NE excitatory and NI inhibitory
neurons (see Figure 1). We denote neuron i = 1, . . . ,NA of
population A = E, I, with neuron (i,A). The neurons are
arranged on a square grid and the position (xiA, yiA) of neuron
(i,A) in its layer is given by xiA = ixM/

√
NA, yiA = iyM/

√
NA,

where ix = (i − 1) mod
√
NA and iy = ⌊(i − 1)/

√
NA⌋. Here,

⌊x⌋ is the largest integer equal or smaller than x. We choose NA

in such a way that
√
NA is an integer number. Thus, indices ix

and iy go from 0 to
√
NA − 1. Unless otherwise specified in the

simulations presented here, we take NE = 8100 and NI = 2025.

Single Neuron Dynamics of Layer 2/3 Cells
Neurons in layer 2/3 are described by a leaky integrate-and-fire
model. The membrane potential ViA of neuron (i,A),A = E, I,
evolves in time according to:

τ
dViA

dt
= −ViA + Rm(IL4,iA + Irec,iA + Iback,iA), (1)

where τ is the membrane time constant, Rm the membrane
resistance (see Section Default Parameters), IL4,iA is the input
current from layer 4, Irec,iA is the recurrent input from all the
other neurons in layer 2/3 and Iback,iA represents a background
input from other cortical regions. When the membrane potential
reached the threshold value VT = 30mV, it was immediately
reset to Vrest = 0mV.

The Model of the Feed-forward Input
The input is considered to have a firing rate that depends on the
visual stimulus, which is assumed to be a sinusoidal grating with
a fixed wavelength. For a grating with orientation θ , the input to
neuron (i,A) is given by:

IL4,iA = gALKAL frL(1+ 2ρiA cos(2(θ − θiA)), (2)

where gAL is the individual efficacy of the feed-forward synapse,
KAL is the number of feed-forward synapses, frL is the average
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firing rate of cells in layer 4, ρiA is the effective modulation of the
feed-forward input with respect to the orientation of the stimulus
and θiA is the stimulus orientation for which the feed-forward
input to neuron (i,A) takes its maximal value. In the following
we assume that all the neurons in each population receive inputs
with the same modulation, i.e., ρiA = ρA.

We analyze two different possibilities for the
orientations θiA:

1. Random orientations. The values of θiA are independent
random variables with uniform distribution between 0 and π .
This is known as the salt-and-pepper distribution.

2. Continuous orientation map. The values of the optimal feed-
forward inputs are given by:

θiA = arctan(sin(2πyiA/M)/ sin(2πxiA/M))/2+
π/2+ π(1+ sign(xiA/M − 0.5))/4. (3)

This condition guarantees a continuous distribution of the
optimal feed-forward inputs (except at the pinwheels) while
respecting periodic boundary conditions see Figure 1.

Recurrent Interactions
We assume that the recurrent interactions in layer 2/3 are
random. The probability of connection between neuron (j,B)
and (i,A) (A,B = E, I) is given by:

piA,jB = ZABG(xiA − xjB, σAB)G(yiA − yjB, σAB) (4)

where G is the periodic Gaussian with period M, G(x, σ ) =
∑∞

k = −∞ exp(−(x − Mk)2/(2σ 2)). ZAB insures that the average
number of connections from population B to population A is
given by KAB. In the following we take KAB = K.

In principle, the probability of having a connection depends
on the distance between the pre- and-postsynaptic neurons
(Holmgren et al., 2003; Stepanyants et al., 2008). For the system

with an orientation map, however, nearby neurons tend to have
similar preferred inputs. This implies that we necessarily have
functional connectivity, i.e., neurons with similar feed-forward
inputs are more likely to be connected. On the other hand for
the salt-and-pepper structure there is no correlation between the
position and the preferred stimulus. Functional connectivity can
be introduced by reconnecting neurons with similar preferred
orientations (see Section Reconnection Probability).

Synaptic Currents
After the connection probabilities are evaluated the connectivity
matrices CAB (A,B = E, I) can be determined. Their elements,
CAB
ij , are 0 or 1 according to the probabilities of Equation (4).

The recurrent currents are given by:

Irec,iA =
∑

B

gAB

NB
∑

j = 1

wiA,jBC
AB
ij

∑

k

exp(−(t − tk,j)/τsyn,B)

τsyn,B
,

(5)
where tk,j is the time of the kth spike of presynaptic neuron j. The
time scale of the synaptic interactions is controlled by τsyn,A and
their strength is determined by the coupling parameters gAB and
by the normalized synaptic efficacieswiA,jB. These parameters are
set to 1 at the beginning of the simulation and can be modified
in the presence of synaptic plasticity (see Section Spike-timing
Dependent Plasticity).

Let us note that, in order to have a well defined scaling in
the limit of large connectivity, while keeping a highly variable
temporal activity, the couplings have to be scaled with the
inverse of the square root of the connectivity (van Vreeswijk and
Sompolinsky, 1996, 1998). For that reason we define gAB = GAB√

KAB

(A,B = E, I).
For the background current we use the expression:

Iback,iA =
√
KIback,A. (6)

FIGURE 1 | The network model. Each one of the cells of layer 2/3

(lower panels) receives a feed-forward input whose preferred

orientation is shown in the corresponding position of the upper

panel. The circle in layer 2/3 represents the width of the recurrent

connectivity matrices. Left: orientation map; Right: salt-and-pepper

layout.
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This represents the effect of K excitatory only inputs, each one
with synaptic strength that scales as 1/

√
K.

Numerical Procedures and Analysis of the
Results
The numerical simulations were performed using an Euler
scheme to integrate the neuronal dynamics, the neuronal
interactions and the synaptic plasticity (Press et al., 1992). The
time step is δt = 0.05 ms. The typical simulation run was 20 s
long and the transient period was 0.1 s. The transient was chosen
in order to let the firing rate stabilize after the beginning of the
simulation.

For stimulus angle θ the firing rate of the neuron
was estimated by averaging its spike response over the
whole run (after the transient). We took 9 stimulus angles:
θ = 0, 20, 40, 60, 80, 100, 120, 140, 160◦. The selectivity was
quantified using the Orientation Selectivity Index (OSI) of the
activity:

OSIiA =
√

(
∑

θ fiA(θ) cos(2θ))
2 + (

∑

θ fiA(θ) sin(2θ))
2

∑

θ fiA(θ)
, (7)

where fiA(θ) is the firing rate of neuron (i,A) when the stimulus
angle is θ . Notice that this definition of the orientation selectivity
index corresponds to the ratio between the first and the zeroth
Fourier components of the firing rate. This number goes between
0 and 1. It is 0 for flat tuning curves and becomes 1 when the
tuning curve is a delta function.

The preferred orientation of neurons in layer 2/3 was
estimated using the population vector. The angle of the
population vector POiA of neuron (i,A) indicates its preferred
orientation and is evaluated according to:

tan(2POiA) =
∑

θ fiA(θ) sin(2θ)
∑

θ fiA(θ) cos(2θ)
. (8)

To check that the time step in the numerical simulations was
sufficiently small, we performed several simulations with a
smaller time step, δt = 0.025ms, and verified that the results
were not affected. We also performed some simulations on
networks with approximately twice as many neurons (NE =
16129, NI = 4096), keeping the average number of connections
into excitatory and inhibitory cells the same, to verify that our
results were not an artifact of a small network size.

Spike-timing Dependent Plasticity
The excitatory synapses undergo a process of plasticity according
to the following rule (Bi and Poo, 1998; Abbott andNelson, 2000).
When neuron j in population E generates a spike at time tpre
and neuron i in population A (A = E, I) (which is connected
post-synaptically to (j,E)) generates a spike at time tpost , the
normalized synaptic efficacy between the two neurons ismodified
according to:

wiA,jE = wiA,jE +1wiA,jE, (9)

where

1wiA,jE = a+ exp(−(tpost − tpre)/τ+)(2− wiA,jE) (10)

if tpost > tpre or

1wiA,jE = a− exp(−(tpre − tpost)/τ−)wiA,jE (11)

if tpost < tpre. We take a+ > 0, a− < 0 (see Figure 2). This
implies that if the postsynaptic spike comes after the presynaptic
spike the connection becomes stronger and for the reverse order
it becomes weaker. Themultiplicative dependencies (Rubin et al.,
2001) of the synaptic modification on the synaptic strengths
(2− wiA,jE in Equation 10 and wiA,jE in Equation 11) insure that
themodifications become very weak aswij approach the bounds 0
or 2. Let us note that inhibitory synapses are not plastic, i.e.,wiA,jI

is always equal to 1. The plasticity mechanism is applied during
the first 2/3 of the simulation (13.33 s). During the last third of
the simulation (6.66 s) the plasticity process is stopped and the
activity is recorded in order to evaluate the selectivity properties
and other parameters such as the values of the synaptic efficacies.
During the whole simulation, only one stimulus orientation is
applied.

Reconnection Probability
In the way it is described above, spike-timing dependent plasticity
can give rise to the strengthening or weakening of the synaptic
connections but not to a change in the connection probability
(i.e., it does not create nor destroy connections). However, this
change is observed in rodent visual cortex in Ko et al. (2013).
Thus, in order to implement it, we first measure the preferred
orientation of each neuron according to the population vector
(see Equation 8). Then the probability of connection between
neuron (j,B) and neuron (i,A) is given by:

p̂iA,jB = piA,jB(1+ ǫcB cos(2(POjB − POiA)), (12)

where piA,jB is given by Equation (4). If parameter ǫcB > 0,
neurons with similar preferred orientations are more likely to be
connected than neurons with orthogonal preferred orientations.
We assume that the reconnection parameter depends only on

FIGURE 2 | STDP window: the relative changes of synaptic efficacy

depend on the time difference between the post-synaptic (tpost) and

the pre-synaptic (tpre) spikes. Green indicates facilitation and red

depression.
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the presynaptic population. After the reconnection process is
applied, the simulation continues for 6.66 s to measure the
selectivity properties and the preferred orientations of the
neurons. As before, only one stimulus angle is presented during
each simulation.

Default Parameters
The membrane time constant is τ = 20ms (Somers et al., 1995)
and the membrane resistance is Rm = 38.3 M� (Koch, 1999).
The parameters of the synapses areGEE = 32,GEI = −96,GIE =
96, GII = −128, gEL = 1.65, gIL = 1.65 nA ms , τsyn,E = 25ms,
τsyn,I = 4ms (Hansel and van Vreeswijk, 2012). We choose a
longer time constant for the excitation to represent a mixture
of AMPA and NMDA synapses. Unless otherwise specified, the
average recurrent connectivity is K = 500 and the feed-forward
connectivity is KAL = 250. The standard deviations of the
recurrent connections are σAB = σAL = 0.2M (A = E, I).
The firing rate of cells in layer 4 is frL = 15 Hz and the default
values of the selectivity of the feed-forward input are ρE = ρI =
0.06. The values of the background currents are Iback,E = 0.12
nA, Iback,I = 0.12 nA. The default parameters of the spike-
timing dependent plasticity process are given by: a+ = 0.0128,
a− = −0.0045, τ+ = 30ms , τ− = 40ms (Bi and Poo, 1998).

The Reduced Model
The reduced model is composed by two populations of spiking
neurons evenly spaced in the state space (0, 1]. The variable θ in
this space denotes the preferred orientation of the external input
divided by π . There are N neurons, half of them are excitatory
and half of them inhibitory (Rosenbaum and Doiron, 2014). The
location of the kth neuron is θ = k/N. The input current to the
kth excitatory (A = E) or inhibitory (A = I) neuron is given by:

IAk(t) =
N

∑

j= 1

gAk,EjsE,j(t)− gAk,IjsI,j(t)+ iext,Ak(θ), (13)

where gAk,Bj is the connection strength between neuron j in
population B and neuron k in population A (A,B = E, I).
sA,j(t) =

∑

l δ(t− tlA,j) is the spike train of neuron j in population

A. The lth spike of neuron (j,A) occurs at time tlA,j. External input

is provided by iext,Ak(θ). The synaptic weights gAk,Bj are equal to
the constant gAB with probability KCAB(θ − ψ) or 0 else, where
θ and ψ are the locations of neurons k and j, respectively. We
take CAB(θ − ψ) =

∑∞
n=−∞ cAB(θ − ψ − n) to insure periodic

boundary conditions and we fix it in such a way that the average
number of connections is always K, with 1 ≪ K ≪ N. Let us
remark that this is the probability of having a connection in the
state space, not in the physical space as in the previous model.
A system with salt-and-pepper organization is represented by
functions CAB(θ − ψ) that are totally flat. In contrast, a system
with an orientation map has to be modeled with a modulated
probability CAB(θ − ψ).

The synaptic weights are scaled according to:

gAB = GAB√
K
, (14)

and the external inputs according to:

iext,Ak(θ) = Iext,Ak(θ)
√
K. (15)

The mean firing rate of neuron k in the network is denoted by
νA(x) =

〈

sA,k(t)
〉

, where< . > denotes average over time. Under
these conditions, neuron k in population A will receive a total
input given by:

µAk =
√
K





∑

j

(JAk,EjνEj − JAk,IjνIj)+ Iext,Ak(θ)



 (16)

where JAk,Bj = GABNAk,Bj and NAk,Bj = 0, 1 is the number of
connections between neuron j in population B and neuron k in
population A. In the continuum limit, i.e., in the limit when the
number of neurons N becomes very large, the interaction term
can be written as JAB(θ, ψ) = GAB(CAB(θ − ψ) + ξAB(θ, ψ)),
where ξAB(θ, ψ) are Gaussian random variables with 0 mean and
correlation< ξAB(θ, ψ)ξA′B′ (θ

′, ψ ′) >= δAA′δBB′δ(θ−θ ′)δ(ψ−
ψ ′)CAB(θ − ψ)/K. In the limit of large K, the interaction term
becomes translational invariant (JAB(θ, ψ) = JAB(θ − ψ)) and
the input can be written as:

µA(θ) =
√
K

[

JAE ∗ νE(θ)− JAI ∗ νI(θ)+ Iext,A(θ)
]

, (17)

where ∗ stands for the circular convolution.
In order to have a finite result in the limit of large K the

following equation has to be satisfied:

JAE ∗ νE(θ)− JAI ∗ νI(θ)+ Iext,A(θ) = O(1/
√
K) (18)

for A = E, I.
Taking the Fourier transform these integral equations become:

J̃AE(n)ν̃E(n)− J̃AI(n)ν̃I(n)+ Ĩext,A(n) = O(1/
√
K), (19)

where f̃ (n) =
∫ 1
0 f (θ) exp(−2iπnθ)dθ . The solution of this linear

system at the leading order is given by:

ν̃E(n) = J̃II(n)Ĩext,E(n)− J̃EI(n)Ĩext,I(n)

J̃IE(n)J̃EI(n)− J̃EE(n)J̃II(n)
(20)

ν̃I(n) = J̃IE(n)Ĩext,E(n)− J̃EE(n)Ĩext,I(n)

J̃IE(n)J̃EI(n)− J̃EE(n)J̃II(n)
. (21)

Stability of the Balanced State
The balanced state solution from Equations (20) and (21) is stable
only if the eigenvalues of the matrix:

A(n) =
∣

∣

∣

∣

J̃EE(n) −J̃EI(n)

J̃IE(n) −J̃II(n)

∣

∣

∣

∣

(22)

have negative real part (Rosenbaum and Doiron, 2014). This
condition, that is valid in the mean-field approximation to firing
rate dynamics, implies that the following equations must be
satisfied for each Fourier mode n:

J̃EE(n)− J̃II(n) < 0 (23)

J̃IE(n)J̃EI(n)− J̃EE(n)J̃II(n) > 0. (24)
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Results

Orientation Selectivity in the Reduced Model
We first analyze the selectivity properties of a one-dimensional
network of spiking neurons in the balanced state.We assume that
we are in the condition for which there is a stable solution with
non-zero average firing rate. From Equations (20) and (21), this
requires that (Rosenbaum and Doiron, 2014):

Ĩext,E(0)

Ĩext,I(0)
>

J̃EI(0)

J̃II(0)
>

J̃EE(0)

J̃IE(0)
. (25)

Moreover, we will take the simple case where the spatial structure
of the connectivity probability depends only on the presynaptic
population, (J̃AB(n) = GAB J̃B(n)) and the external currents
have the same spatial profile in both populations (Ĩext,A(n) =
Ĩext(n)Iext,A). In that situation, Equations (20) and (21) become:

ν̃E(n) = (GIIIext,E − GEIIext,I)Ĩext(n)

(GIEGEI − GEEGII)J̃E(n)
(26)

ν̃I(n) = (GIEIext,E − GEEIext,I)Ĩext(n)

(GIEGEI − GEEGII)J̃I(n)
. (27)

The feed-forward input current on the neuron located at
coordinate θ when the stimulus orientation is θ0 will be taken
as:

Iext,A(θ, θ0) = (1+ 2ρ cos(2π(θ − θ0)))Iext,A. (28)

Let us remark that the state space does not necessarily correspond
with the physical space. For a salt-and-pepper organization they
are, in fact, independent: The physical location of a neuron
is unrelated to its preferred orientation. This means that the
connection probabilities must have a flat spatial structure.

According to Equation (28) and using the definition f̃ (n) =
∫ 1
0 f (θ) exp(−2iπnθ)dθ , the following result can be obtained:

Ĩext(0) = Iext,A, Ĩext(1) = ρIext,A and Ĩext(n) = 0 for all n > 1.
Therefore, ρ is simply the orientation selectivity index of the
external current (see Equation 7). According to Equations (26)
and (27), ν̃E(n) = ν̃I(n) = 0 for all n > 1 while:

ν̃E(1)

ν̃E(0)
= ρ

J̃E(0)

J̃E(1)
(29)

ν̃I(1)

ν̃I(0)
= ρ

J̃I(0)

J̃I(1)
. (30)

This result implies that the selectivity of the cortical activity

( ν̃A(1)
ν̃A(0)

) is directly proportional to the selectivity of the feed-

forward input (ρ) but inversely proportional to the spatial
modulation of the intracortical connections (J̃E(1)). This
somehow surprising behavior was already discussed in van
Vreeswijk and Sompolinsky (2005). The cortical network receives
an excitatory input of order

√
K that has to be canceled by

the intracortical activity giving rise to a net input of order 1.
The intracortical input to a given neuron is a convolution of
the cortical activity and the connectivity matrices. Then, if the

connectivity matrices have a wide spatial profile, the cortical
activity must be narrower to keep a fixed spatial profile of the
intracortical input. This leads to strong cortical selectivity since
it contributes to the term ν̃(1) of Equations (29) and (30). This
result is in contrast with the one found in Ben-Yishai et al. (1995),
where the modulation of the excitatory connections leads to
increasing selectivity. The difference is due to the fact that in this
last case the network is not in a balanced state. Thus, the recurrent
connections do not lead to the cancelation of the leading term of
the input but, instead, to its amplification.

Comparison of Orientation Selectivity in

Salt-and-pepper and Orientation Map
For a given feed-forward input, the selectivity of the cortical

activity is determined by the ratio J̃A(0)

J̃A(1)
. For both structures (salt-

and-pepper and orientation map) the numerator is equal to the
average number of intracortical connections K. In contrast, the
behavior of the denominator is completely different.

For the salt-and-pepper structure the connection probability
is, on average, independent of the distance in the state space.
According to this, selectivity should be infinite in the limit of
large K (in that limit J̃A(1) = 0), but this is impossible because
selectivity cannot be larger than 1. However, as fluctuations of
the connectivity patterns generate contributions to the selectivity
that are proportional to 1/

√
K (see Supplementary Material),

and these contributions become dominant for very weakly
modulated interactions, the selectivity remains bounded between
0 and 1. In practice, numerical simulations must be performed
in order to test whether a reasonable value of connectivity is
compatible with the balanced state. In this scenario, the balanced
state can be preserved in the limit of large K if the modulation of
the input, ρ, also scales as 1/

√
K. This is studied in Hansel and

van Vreeswijk (2012).
In contrast, in systems with an orientationmap the numerator

and the denominator are both proportional to K. As a
consequence, for large connectivity, and keeping the rest of
the parameters the same, one should expect salt-and-pepper
structures to be more selective than systems with an orientation
map, as the denominator of orientation map (∼ K) is larger than
the denominator of salt-and-pepper ((∼ 1/

√
K)). Moreover, for

systems with an orientation map, selectivity could increase by
taking a broader connection probability profile.

Effect of Plasticity on Orientation Selectivity in the

Reduced Model
The plasticity rules of Equations (10) and (11) depend on the
precise timing of the pre- and post-synaptic spikes. However,
in the balanced state, significant cross-correlations between
different spike trains are not expected (van Vreeswijk and
Sompolinsky, 1998; Renart et al., 2010). In this situation, the net
change in the synaptic strength will be controlled by the total
number of spikes, by the integral of the STDP window and by the
synaptic strength itself (through the terms wiA,jE and 2 − wiA,jE

in Equations 10, 11). As the normalized value of the synapses is
initially wiA,jE = 1, the integral is equal to α = a+τ+ + a−τ−. In
order to estimate the effect of plasticity on selectivity we neglect
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the effect of the non-linear terms in the plasticity rule. Thus, the
change in the synaptic strength per unit time between neurons
(j,E) and (k,A), A = E, I, is given by:

1wAk,Ej = ανAkνEj. (31)

If the feed-forward input is described by Equation (28) and we
neglect the changes of the firing rates generated by the changes
in the synaptic weights, the firing rates can be approximated as a
function of the stimulus orientation θ :

νAk(θ) = ν◦Ak(1+ 2ξAk cos(2π(θ − θAk)) (32)

νEj(θ) = ν◦Ej(1+ 2ξEj cos(2π(θ − θEj)) (33)

where θAk, θEj are the preferred orientations, ν
◦
Ak
, ν◦Ej are the firing

rates averaged over the stimulus orientations and ξAk, ξEj are
the selectivities of neurons (k,A) and (j,E), respectively. Notice
that the approximation will be valid only when the changes of
the synaptic weights are small. Replacing Equations (32), (33)
in Equation (31) and averaging over the stimulus orientation we
obtain:

1wAk,Ej = αν◦Akν
◦
Ej(1+ 2ξAkξEj cos(2π(θAk − θEj)). (34)

A similar result is obtained for a fixed stimulus orientation after
averaging over θAk and θEJ , keeping θAk − θEJ constant, and
assuming that the mean rates and the selectivities of the neurons
are independent from the position on the network. This means
that the specific protocol for the stimulus presentation does not
affect the synaptic weights.

For the salt-and-pepper architecture this result implies the
generation of functional connectivity, i.e., a connectivity pattern
that is linked to the relative preferred orientation of the
neurons. For positive values of α, neurons with similar preferred
orientations will have stronger synapses than neurons with
orthogonal preferred orientations. In terms of the Fourier
components of the connectivity matrices, the first Fourier
component will be increased by a term that is proportional to
the square of the selectivity of the cortical activity. But, at the
same time, the zeroth Fourier component will be reinforced by a
term that is order 1 in the selectivity. Thus, for initial small values
of cortical selectivity, plasticity will improve it. It is interesting
to note that this improvement does not emerge because of the
generation of functional connectivity, but in spite of it.

For systems with cortical maps the situation is similar: the
modulated component of the connectivity matrices will be
reinforced, but typically less than the non-modulated part. This
mechanism leads to an increment of the selectivity.

Let us remark that these conclusions are valid only at the initial
stages of learning, where the non-linear terms can be neglected.
The long term behavior must be analyzed on the network model
with numerical simulations.

Effect of Reconnection Probability on Orientation
Selectivity in the Reduced Model
For the salt-and-pepper structure with a connection probability
that depends only on the physical distance between the neurons,

the connection probability in the space of preferred orientations
is totally flat, i.e.,

piA,jB = K

N/2
, (35)

so that we always have in average K connections per neuron
for each one of the N/2 neurons in population A incoming
from population B (A,B = E, I). The reconnection probability
rule of Equation (12) gives rise to modulation of the probability
in this state space. If the preferred orientations of the neurons
are perfectly correlated with the orientations that maximize the
feed-forward input the probability of connection between neuron
(i,A) and (j,B) will be:

p̃iA,jB = K

N/2
(1+ ǫcB cos(2π(θjB − θiA)). (36)

This implies thatCAB(θ−ψ) = 1+ǫcB cos(2π(θ−ψ)) and (in the
limit of large K) that JAB(θ −ψ) = GAB(1+ ǫcB cos(2π(θ −ψ))).
The first Fourier components are:

J̃AE(1) = GAEǫcE/2 (37)

J̃AI(1) = GAIǫcI/2, (38)

while the other Fourier components are not affected by
the reconnection. By replacing Equations (37) and (38) into
Equations (29) and (30) we can see that more functional
modulation implies a reduction of the orientation selectivity:

ν̃E(1)

ν̃E(0)
∝ 1

ǫcE
(39)

ν̃I(1)

ν̃I(0)
∝ 1

ǫcI
. (40)

We can also observe by replacing Equations (37) and (38) into
Equation (23) that changes in functional connectivity may lead to
the loss of stability of the balanced state. This will happen when:

ǫcE

ǫcI
>

GII

GEE
, (41)

since Equation (23) will not be satisfied for n = 1. This means
that the excitatory modulated recurrent input is too strong to
be compensated by the inhibitory–inhibitory interactions. Under
these conditions, the predictions of Equations (29) and (30) are
not valid anymore and numerical simulations are required to
assess selectivity.

Orientation Selectivity in the Network Model
We now analyze the behavior of the network model in order to
check some of the predictions done by the reduced model. First,
we studied the dynamical state from the point of view of the
total input on an individual neuron. We performed simulations
with connectivity K = 250 and 1000. For each value of K, we
chose a neuron and depicted its excitatory and inhibitory input
(see Figure 3). On one hand, as the theory of balanced state
predicts, as connectivity grows both contributions to the total
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A B

FIGURE 3 | The excitatory and inhibitory inputs to one neuron tend to

cancel even as they grow stronger with larger connectivity. (A) K = 250,

(B) K = 1000. NE = 16129,NI = 4096. The rest of the parameters are set to

default.

input increase proportionally to
√
K. On the other hand, the

net result is almost the same, showing the cancelation between
the two components. The average firing rate of the excitatory
population has changed from fE = 3.02 Hz for K = 250 to
fE = 2.61 Hz for K = 1000. For the inhibitory population, the
firing rate has gone from fI = 7.81 Hz to fI = 5.71 Hz.

We also studied the selectivity properties of the two cortical
architectures mentioned above: orientation map and salt-and-
pepper. For the system with an orientation map, we found
that the mean orientation selectivity index of the excitatory
population is < OSIE >= 0.27 (see Figure 4A). If exactly the
same network is considered, but now it has a salt-and -pepper
structure instead of an orientation map, < OSIE >= 0.57 (see
Figure 4B). Note that the change in selectivity appears without
a strong change in the average firing rate, that has gone from
fE = 2.51 Hz (orientation map) to fE = 2.62 (salt-and-pepper).
This is a somehow counterintuitive result, but it agrees with the
predictions of the reduced model. In systems with an orientation
map, the correlation between the position of the neurons in the
network and their preferred orientations gives rise to functional
connectivity. Therefore, there will be a significant modulation of
the connectivity matrix in the functional space, that will reduce
selectivity according to Equations (29) or (30). This does not
necessarily imply that systems with salt-and-pepper organization
should always havemore selectivity than systemswith orientation
map. This could only be the case if all the other parameters are
kept constant. For instance, the modulation of the external input
ρ. A given value of orientation selectivity in layer 2/3 will require
amoremodulated input in a systemwith an orientationmap than
in a network with a salt-and-pepper structure.

Effect of STDP on Orientation Selectivity in the

Network Model
Here, we analyze the influence of STDP on orientation selectivity
for both architectures (salt-and-pepper and orientation map).
In Figure 5 we show the distribution of OSI of the neurons in
the excitatory population. In both cases, the average selectivity
increases once plasticity is applied, although in a much smaller
degree in salt-and-pepper (< OSI > from 0.57 to 0.63) than in
orientation map (< OSI > from 0.27 to 0.36). We checked that
these values are stable by comparing simulations of 20 s and 40 s
long.

A B

FIGURE 4 | Distribution of orientation selectivity index for the neurons

of the excitatory population. Systems with orientation maps (A) are less

selective than networks with a salt-and-pepper organization (B). Parameters

set to default values.

A B

C D

FIGURE 5 | Spike-timing dependent plasticity increases selectivity. (A)

Salt-and-pepper before synaptic modifications < OSI >= 0.57, (B)

salt-and-pepper after synaptic modifications < OSI >= 0.63, (C) orientation

map before synaptic modifications < OSI >= 0.27, (D) orientation map after

synaptic modifications < OSI >= 0.36. In all the cases we show the

distribution of orientation selectivity index for the neurons of the excitatory

population. Parameters as in the previous figure.

What is the reason for the different behaviors? In the balanced
state, the change in selectivity is controlled by the ratio between
the mean value (J̃A(0)) and the modulation (J̃A(1)) of the
connectivity matrices in the orientation space (see Equations
29 and 30). These two quantities can be estimated from the
simulations by evaluating the change in the synaptic strength as a
function of the difference of the preferred orientations between
the pre- and post-synaptic neurons. Those changes are shown
in Figure 6 for salt-and-pepper (Figures 6A,B) and orientation
map (Figures 6C,D).

Figures 6A,C show how the strength of the connections
changes as a function of the difference of the preferred
orientations. As those changes display a great amount of
variability, in Figures 6B,D we show the average for all the
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A B

C D

FIGURE 6 | Only for the system with salt-and-pepper organization

STDP gives rise to a significant degree of functional connectivity. (A)

Final value of the normalized synaptic efficacy wi,j (see Equations 10 and 11)

between neurons (i,E) and (j,E) as a function of the difference in the preferred

orientations of the same neurons. (B) Average of the previous points in

intervals of 10◦. Green line: fit with the function F (x) = a0 + 2a1 cos(πx/90◦).
The values of the fitted parameters are a0 = 0.14, a1 = 0.016. (C,D) As in

(A,B) but for the orientation map. The values of the fitted parameters are now

a0 = 0.15, a1 = −0.00084. All the rest of parameters as in the previous figure.

pairs of neurons whose differences in preferred orientations fall
within an interval of 10 degrees (i.e., [0◦, 10◦), [10◦, 20◦), ...).
The resulting averages were fitted with the function a0 +
2a1 cos(πx/90

◦). The value of a0 gives an estimation of
the change in the mean synaptic strength 1J̃A(0), while
a1 approximates the change in the modulation 1J̃A(1). In
both cases a0 is positive (see Figure 6), this means the
connections are strengthened in presence of STDP. For the
orientation map the change in the modulation is very small,
what leads to a significant improvement of selectivity as the
numerator of Equation (29) grows much more as compared
with the denominator. For the salt-and-pepper structure both
the mean value and the modulation of the synaptic strength
grow significantly. This modification gives rise to opposite
contributions to the selectivity: While the increase of the mean
value tends to improve selectivity, the strong modulation reduces
it. For this particular case, the net effect is small but positive,
although we cannot rule out a situation where the net result is
negative.

Effect of Reconnection Probability on Orientation

Selectivity in the Salt-and-pepper Structure
As presented here, the spike-timing dependent plasticity rule
can either strengthen or weaken existing connections but cannot
create or destroy existing ones (although destruction could be
implemented by including an absorbing barrier for a zero value of
the synapse). Experimental results (Ko et al., 2013) indicate that
a substantial reconnection process takes place in the initial stage
of development in rodents. After eye opening, local connectivity

A B

C D

FIGURE 7 | Preferred orientations of the neurons (POiA) are strongly

correlated to preferred orientations of the feed-forward inputs (θiA) and

they are conserved after reconnection. All the graphs correspond to the

salt-and-pepper organization with default parameters. (A,C) Excitatory

neurons. (B,D) Inhibitory neurons. In all the panels we show 2025 neurons.

Parameters set as default.

reorganizes extensively in such a way that new connections
between neurons with similar visual responses arise. However,
connectivity rate does not significantly change during this
process and only a modest increment in orientation selectivity
takes place, taking average OSI from 0.62 to 0.68 (Ko et al., 2013).
Another motivation for introducing a reconnection mechanism
as implemented in Equation (12), is that the average synaptic
efficacy is automatically kept constant. In the balanced state the
mean firing rates are determined by the mean connectivity (see
Equations 26, 27 for n = 0). As the reconnection process does not
affect the total number of connections, there should be no change
in the average firing rates. Thus, any change in the selectivity
properties will be given by a modification of the modulated part
of the tuning curves.

We analyze the effect of this reconnection process in our
computational model.We first calculate the preferred orientation
of each neuron using the population vector (Equation 8) with a
simulation of 20 s. Then, according to that preferred orientation,
the connection probability is recalculated (Equation 12) and a
new connectivity matrix is generated. Note that even for the
salt-and-pepper organization this process will generate a new
network with a significant degree of functional connectivity.
This procedure will work only if there is a significant degree
of correlation between the preferred orientations both before
and after the reconnection. This is verified for both populations
in Figure 7, where we show that the preferred orientations
are strongly correlated with the preferred orientation of the
feed-forward input (see Figures 7A,B), and that the are mostly
preserved by the reconnection process (see Figures 7C,D).

The reconnection parameters (ǫcE, ǫcI) determine how much
modulated the corresponding connectivity matrix is. It is
important to remark that if the degree of modulation in
the excitatory interactions is too large as compared to the
modulation in the inhibitory interactions, the balanced state
might become unstable (see Equation 41). The results of
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Ko et al. (2013) indicate a degree of functional connectivity
between excitatory neurons compatible with a value of ǫcE ≈ 0.44
(see Figure 2i in Ko et al., 2013). According to the coupling
values we are using, and asking for the network to remain
in the stable balanced state, ǫcI is required to be at least
equal to 0.11 (because |GEE/GII | = 1/4, see Equation 41).
In Figure 8 we show the mean values of selectivity of both
populations for combinations of ǫcE, ǫcI that preserve the stability
of the balanced state. We observe that increasing the functional
connectivity in the excitatory population leads to a decrease in the
excitatory selectivity (Figure 8A), while increasing the functional
connectivity in the inhibitory population conveys a reduction in
the inhibitory selectivity (Figure 8B); Both effects were predicted
by the reduced model. Note, however, that in both cases there
is a change of selectivity for the population whose interactions
have not been affected by the reconnection process (population
I in Figure 8A and population E in Figure 8B). This behavior
is not predicted by the reduced model and deserves further
investigation to fully understand it. It is probably due to the
different topology between the two models. Let us note that in all
the cases, the reconnection rule generates a change in the mean
firing rates always smaller than 5%.

It is also possible to choose a combination of the reconnection
parameters so that the balanced state becomes unstable, for
instance ǫcE = 0.44 and ǫcI = 0.03. Using those parameters, the
mean value of orientation selectivity is < OSIE >= 0.67 (see
Figure 9). This result represents an increment of selectivity from
the control situation, at which < OSIE >= 0.57. This increase
cannot be predicted by the theory of the reduced model in the
balanced state, since the network is not balanced anymore. Note
that the loss of stability for the first Fourier mode does not lead
to a significant change of the mean firing rates, that are given by
fE = 2.38 Hz and fI = 6.19 Hz for ǫcE = 0.44 and ǫcI = 0.03
(compared to fE = 2.61 Hz and fI = 6.05 Hz in the control case).
As the balanced state is not longer stable, the results we show
here may depend on the details of the network dynamics since
the non-linearities of the neuron transfer curve are not washed
out by the balanced equations anymore.

FIGURE 8 | When the balanced state is stable increasing functional

connectivity in the excitatory interactions leads to a loss of selectivity

in the excitatory population and an increase of selectivity in the

inhibitory population. In contrast, increasing functional connectivity in the

inhibitory interactions always leads to reduction of selectivity. (A) Average

orientation selectivity index for the excitatory population (blue) and for the

inhibitory population (red) as a function of the reconnection parameter ǫcE
keeping ǫcI = 0.22. (B) The same averages as a function of ǫcI with

ǫcE = 0.44.

Discussion

We studied the selectivity properties of systems with orientation
map or salt-and-pepper structure. We found that, keeping all the
rest of the parameters the same, systems with an orientation map
were less selective for orientation than systems with a salt-and-
pepper organization. If we define functional connectivity as the
correlation between the connectivity structure and the responses
of the neurons, the result we found is due to the fact that the
more functional connectivity the system has, themoremodulated
its connectivity profile is. Therefore, according to Equations (29)
and (30), the system becomes less selective to orientation. This
does not mean that systems with salt-and-pepper architecture
should always be more selective than systems with an orientation
map. For instance, high selectivity in a systemwith an orientation
map can be achieved by increasing the selectivity of the feed-
forward input.

We worked in the framework of balanced networks. Several
experimental works support the idea that cortical systems operate
in a balanced regime, i.e., excitation is compensated by inhibition
(Destexhe et al., 2003; Shu et al., 2003; Haider et al., 2006).
This idea was proposed to explain why neurons in vivo fire
so irregularly (Holt et al., 1996) in spontaneous as well as in
sensory-evoked activity (van Vreeswijk and Sompolinsky, 1996,
1998). It also intends to explain the highly irregular neuronal
firing pattern in persistent activity by introducing synaptic non-
linearities (Hansel and Mato, 2013).

For a network to operate in the balanced regime, the recurrent
and the feed-forward inputs have to be large as compared to
the threshold of the neurons (van Vreeswijk and Sompolinsky,
1996, 1998; Hansel and van Vreeswijk, 2012). Under very general
conditions, the balance emerges from the recurrent dynamics
of the network so that the net input is much smaller than its
excitatory and inhibitory components. Thus, as the mean value
of the net input is below the threshold neurons fire because of
the fluctuations of the input. Therefore, the firing properties are
essentially determined by the statistical properties of the input
and the intrinsic dynamic of the neuron is not relevant (Hansel
and van Vreeswijk, 2002). Moreover, in Rauch et al. (2003) it was

FIGURE 9 | When the balanced state is unstable for the first Fourier

mode, increasing functional connectivity in the inhibitory interactions

leads to reduction of selectivity. Average orientation selectivity index for the

excitatory population (blue) and for the inhibitory population (red) as a function

of ǫcI with ǫcE = 0.44.
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found that the firing properties of cortical neurons in vivo can be
well approximated by an integrate-and-fire model. These results
imply that the findings we here present do not depend on the
integrate-and-fire model, but they apply to other neuron models
too. However, at high firing rates this conclusion does not longer
hold because of the refractory period of the neurons, but these
effects are irrelevant for systems that are as far from the saturation
of the firing rate as our results are.

In the balanced state the main role of the recurrent
connections is to cancel the leading order of the feed-forward
input. One of the consequences of this behavior is that increasing
all the coupling constants by a given factor leads to a decrease
in the firing rates by the same factor if the external inputs are
kept constant (van Vreeswijk and Sompolinsky, 1998). As at
the population level the system is linear, the same behavior is
found for each one of the Fourier components of the activity
(see Equations 26 and 27). In other words, there is an inverse
relation between the modulation of the activity profile and the
modulation of the connectivity profile. This fact was already
observed in van Vreeswijk and Sompolinsky (2005), where it
was analyzed in terms of the cancelation of the leading terms
of the external input. In the limit of large size the recurrent
input is equal to the convolution between the network activity
and the connectivity matrices. Therefore, in order to keep
the recurrent input constant, wider connectivity profiles and
narrower activities must be balanced out. This counterintuitive
behavior is not always observed nor well understood. For
instance, in Corey and Scholl (2012), it was stated that increasing
the connection probability of nearby neurons with similar
orientation preference might further enhance their selectivity.
However, here we show that this is not necessarily true. In fact,
for networks in the balanced state the opposite result is the one
that should be expected.

In a recent work (Ko et al., 2013) it was shown that after
eye opening, local connectivity reorganized extensively without
changing the overall connectivity. This means that connections
between neurons with similar visual response were created and
strengthened, but that the mean value of connections remained
the same. This reconnection process must coexist with plasticity
mechanisms that affect the synaptic strength without changing
the number of synapses. Such a plasticity mechanism could
be STDP that, in fact, has also been found in cortical systems
(Markram et al., 1997; Feldman, 2000).

We investigated both mechanisms separately: The STDP
process and the reconnection rule. Regarding STDP, this rule
leads to a significant increment in the orientation selectivity for
systems with orientation map (∼50%), while it results in a very
small effect for salt-and-pepper (∼10%). We also found that
in the first case the plasticity rule did not generate significant
functional connectivity, while in the second one, it did. The
observed change in selectivity is consistent with the one found
with the theoretical analysis of the reduced model. If there is
a positive effect on the selectivity it is because the mean value
of the connections increases more than its modulation. For
instance, as for the salt-and-pepper structure STDP generates a
strong modulation of the connectivity profile, the generation of
functional connectivity results in a negative effect on selectivity.

On the other hand, for systems with an orientation map the
most significant effect of STDP is the increment of the average
connectivity without giving rise to functional connectivity. This
combination strongly increases selectivity. Note that despite the
fact that STDP can generate functional connectivity, this feature
does not contribute to an increment of selectivity. The rise in
selectivity is dominated by the change of the mean value of
the connectivity profile as compared to the modulation that it
acquires after plasticity is applied. This non-trivial result is a
consequence of the dynamics of the balanced regime.

It is important to remark that the difference in the growth of
selectivity for both architectures that we found, is probably due
to the small degree of selectivity that systems with an orientation
map have in the first place in our simulations. For the STDP rule,
the amount of functional connectivity generated is proportional
to the square of the selectivity before learning (see Equation 34).
As the initial value of selectivity in salt-and-pepper is more than
twice as large as the original value of selectivity in orientation
map, much more functional connectivity is generated in the first
case. However, note that some kind of self-regulatory mechanism
arises: Systems with strong selectivity develop more functional
connectivity as STDP is applied, but the more functional
connectivity is generated, the less the selectivity increases. In
other words, for systems that are highly selective to orientation,
STDP does not produce such an increment of selectivity as it does
for systems that are initially less selective.

Though in some systems inhibitory connections exhibit STDP
(Haas et al., 2006) too, for simplification we here assume that only
excitatory synapses are plastic. However, the effect of plasticity
on inhibitory connections can be easily analyzed with the same
tools presented here. For instance, an increase of the modulated
part of the inhibitory interactions should lead to some degree
of reduction of the orientation selectivity in the inhibitory
population if the non-modulated part is kept constant (see
Equation 30). An increase of the non-modulated part, in contrast,
should lead to more selectivity. These effects are the same as
the ones found for the excitatory interactions. The difference
between both of them is that an increment of the modulation of
the inhibitory interactions cannot lead to the loss of the stability
of the balanced state. If Equation (23) is initially satisfied, then an
increase in the modulation would only make the second term of
the left side more negative.

Similarly, the effect of homeostatic processes (Turrigiano and
Nelson, 2000, 2004) that tend to keep constant the mean firing
rate could be analyzed too. These mechanisms might affect
selectivity even if the total amount of modulation of the tuning
curves is kept constant. For instance, an additive homeostatic
process would modify the zeroth Fourier component of the
connectivity matrices but not the other ones. If this mechanism
acts at the same time as STDP on the excitatory interactions, it
will cancel the change of the mean value of the connections while
keeping constant the rise of the modulated part. This will lead to
the loss of orientation selectivity. In contrast, a global synaptic
rescaling that equalizes the postsynaptic firing rates (Turrigiano,
1999; van Rossum et al., 2000) will affect by the same factor all the
synapses independently of the position of the neurons in the state
space. Therefore, the ratio between the zeroth Fourier component
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and the first one will not be affected and the change of selectivity
will be the same as without homeostasis.

Finally, we want to remark that in order to preserve the
stability of the balanced state, some constraints between the
modulation of the excitatory interactions and the modulation
of the inhibitory interactions must be satisfied (see Equation
41). If the modulation of the excitatory interactions is large
enough, then the balanced state becomes unstable for the first
Fourier mode. Remarkably, the loss of stability does not give
rise to a significant change of the average firing rate, implying
that the instability does not affect the zeroth Fourier mode.
This comment is also applicable to the generation of functional
connectivity using STDP only on the excitatory interactions:
Increasing the modulation of the excitatory population gives
rise to an increase in selectivity, but even a small increment
of the modulation of the inhibitory interactions might cancel
the effect. This could explain the results of Ko et al. (2013),
where it was found that a significant increase in functional
connectivity of the excitatory interactions generates a very small

change of orientation selectivity. In any case, it is clear that
more information on the functional connectivity of the inhibitory
interactions is needed to understand completely the behavior of
the system.
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