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Abstract

The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian
group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group
D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences
between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an
example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group
S3 attached to the 12-dimensional Fomin-Kirillov algebra, computing all the simple modules and calculating their
dimensions.
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1. Introduction

The Drinfeld doubles of bosonizations of braided Hopf algebras over abelian groups, and their quotients by central
group-likes, are known in the folklore as quantum groups. Such is the case of the quantum enveloping algebra
Uq(g) or the small quantum group uq(g) [4, 10]. These quantum groups have been intensely studied, both their
intrinsic structures and their representation theories. However, to the best of our knowledge, there is no research
which contemplates non-abelian groups. The purpose of our work is to give a first step in this direction.

More precisely, let G be a finite non-abelian group and V a Yetter-Drinfeld module over kG with finite-dimensional
Nichols algebra B(V) (we will work over an algebraically closed field k of characteristic zero). We denote by D the
Drinfeld double of the bosonization B(V)#kG and call it “quantum group at a non-abelian group” – recall that Uq(g)
is called quantum group at a root of 1 if the indeterminate q is specialized to a root of 1 [9]. In this work, we deal
with the category of representations of D. We use the methods coming from the theory of Lie algebras which were
also used in the study of quantum groups over abelian groups. We find similarities as well as differences between
our results and their analogues in the context of Lie algebras or the mentioned quantum groups. To explain these
similarities and differences, we first recall briefly the situation in those frameworks.

Assume that U is either an enveloping algebra of a Lie algebra as in [5, Chapter 7] or a quantum group as in [8,
Chapter 5], [10, Chapter 3]; the reader can find all the details of the following exposition in these chapters. Roughly
speaking, U has a distinguished commutative and cocommutative Hopf subalgebra U0. Hence

(a) the maximal spectrum of U0 is an abelian group T . The elements of T , the algebra maps U0 → k, are called
weights. The module corresponding to the weight α is denoted kα.

(b) The product of T is implemented by tensoring. That is, the tensor product of kα and kλ is the module kα+λ.
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Also, U admits a triangular decomposition, that means that there are subalgebras U− and U+ such that the multi-
plication U− ⊗U0 ⊗U+ → U gives a linear isomorphism. Indeed, U is a Z-graded algebra such that the degrees of U0,
U− and U+ are zero, negative and positive, respectively. Let U≥0 be the subalgebra generated by U0 and U+. Given a
weight λ, this can be seen as an U≥0-module by letting U+ act trivially on it. We denote it again by kλ.

Let M be an U-module and Mλ =
{
m ∈ M | h · m = λ(h)m for all h ∈ U0

}
its weight space of weight λ. We restrict

our attention to the U-modules which decompose as the direct sum of their weight spaces. For instance, U regarded
as a module with respect to the adjoint action. Then

(c) Uα · Mλ ⊆ Mα+λ for all weights α and λ.

An U-module M is called a highest-weight module (of weight λ) if it is generated by an element v ∈ Mλ such that
U+v = 0. Notice that M = Uv = U−v by the triangular decomposition of U. The basic examples of highest-weight
modules are the Verma modules M(λ) = U⊗U≥0kλ. These are essential in the study of the representation theory of U
because

(d) Every Verma module has a unique simple quotient and every simple U-module is a quotient of a unique Verma
module.

(e) Every Verma module is a free U−-module of rank 1.

Other important features of the Verma modules can be found in the references above.
Let us consider now a quantum group D at a finite non-abelian group G. The role of U0 shall be played by the

Drinfeld double D(G) of kG. This is a semisimple but not commutative Hopf subalgebra of D. We will see that D
admits a triangular decomposition

D = B(V)⊗D(G)⊗B(V)

where V denotes the dual object of V in the category of D(G)-modules and B(V) is its Nichols algebra. In this setting
the bosonization D≥0 = B(V)#D(G) shall play the role of U≥0. We will calculate the commutation rules between the
generators of D(G), V and V , and deduce that D is a Z-graded algebra with homogeneous spaces

Dn =
⊕
n= j−i

Bi(V)⊗D(G)⊗B j(V).

The classification of the simple D(G)-modules is well-known, see for instance [1, Subsection 3.1]; unlike (a),
there are simple modules of dimension greater than one. The simple D(G)-modules are parametrized by pairs (O, %),
where O is a conjugacy class in G and % is an irreducible representation of the centralizer of a fixed g ∈ O. If M(g, %)
denotes the corresponding simple D(G)-module, cf. (4), then it becomes a D≥0-module by letting B(V) act trivially
on it. Therefore we can define the Verma modules for a quantum group at a non-abelian group as the induced modules

M(g, %) = D⊗D≥0 M(g, %).

Thus M(g, %) is a free B(V)-module of rank dim M(g, %) = #Og · dim(U, %), compare with (e).
Our main result asserts that (d) holds true in our context, i. e. every Verma module M(g, %) has a unique simple

quotient and every simple D-module is a quotient of a unique Verma module, Theorem 3. Therefore we obtain a
bijective correspondence {

Simple D(G)-modules
}
!

{
Simple D-modules

}
M(g, %) ! L(g, %)

where L(g, %) denotes the head of M(g, %). Moreover, we prove that the socle S(g, %) of M(g, %) is simple what provides
another bijective correspondence between the set of simple D(G)-modules and the set of simple D-modules, Theorem
4. We also give a criterion to decide whether or not a Verma module is simple, Corollary 15, and show that the socle
and the head are related by (

S(g, %)
)∗
' L(ĝ∗, %̂∗)
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where M(ĝ∗, %̂∗) =
(
Btop(V)⊗M(g, %)

)∗ and Btop(V) is the homogeneous component of maximum degree of B(V),
Theorem 5; recall that Btop(V) is one-dimensional.

In order to compute explicitly the simple D-modules, we have to study the submodules of the Verma modules.
This is done in the abelian case using the properties (b) and (c) among others, which allow to obtain remarkable
results under certain general assumptions. Although the D-modules decompose as the direct sum of simple D(G)-
modules, our situation is more complex because (b) and (c) do not hold true. Here the tensor product between simple
D(G)-modules is not necessarily simple and hence we have to know their fusion rules.

We give a general strategy to compute the highest-weight submodules of any D-module M. We use that D is a
Z-graded D(G)-module with respect to the adjoint action, which respects the triangular decomposition, and the fact
that the action D⊗M → M is a morphism of D(G)-modules, §3.2. We carry out this strategy to compute the simple
modules in a concrete example in Section 4 as we summarize below.

1.1. A quantum group at the symmetric group S3

The first genuine example of a finite-dimensional Nichols algebra over a non-abelian group is the Fomin-Kirillov
algebra FK3 [6]. It is isomorphic to the Nichols algebra B(V) of the Yetter-Drinfeld module V = k{x(12), x(23), x(13)}

over kS3. The action and coaction on V are

g · x(i j) = sgn(g) xg(i j)g−1 and (x(i j))(−1)⊗(x(i j))(0) = (i j)⊗x(i j)

for any transposition (i j) and g ∈ S3 [13] where sgn : S3 → {±1} denotes the sign map.
Let now D be the Drinfeld double of B(V)#kS3. As an algebra, D is generated by

−the generators of B(V): x(12), x(23), x(13);
−the generators of D(S3): g, δg for all g ∈ S3;

−the generators of B(V): y(12), y(23), y(13);

we shall see that V ' V as D(S3)-modules. These elements are subjected to the next relations:

x2
(i j) = x(i j)x(ik) + x( jk)x(i j) + x(ik)x( jk) = x(ik)x(i j) + x(i j)x( jk) + x( jk)x(ik) = 0, (given by B(V) )

y2
(i j) = y(i j)y(ik) + y( jk)y(i j) + y(ik)y( jk) = y(ik)y(i j) + y(i j)y( jk) + y( jk)y(ik) = 0, (given by B(V) )

δh g =g δg−1hg, (given by D(S3) )

gx(i j) = sgn(g) xg(i j)g−1 g, δgy(i j) = y(i j)δ(i j)g, (given by the bosonizations)

δhx(i j) = x(i j)δ(i j)h, y(i j) g = sgn(g) g yg−1(i j)g,

y(i j)x(i j) + x(i j)y(i j) = 1 + (i j)(δ(i j) − δe), (given by the definition of D)
y(ik)x(i j) + x(i j)y( jk) = (i j)(δ(ik) − δ(ik)(i j)),

for all transpositions (i j), (ik) and g, h ∈ S3.
On the other hand, the simple D-modules are parametrized by the simple D(S3)-modules according to our main

result. Let σ = (12) and τ = (123) be permutations in S3. Then Oe, Oσ and Oτ are the conjugacy classes of S3 and
D(S3) has eight non-isomorphic simple modules. Namely,

M(e,+), M(e,−), M(e, ρ), M(σ,+), M(σ,−), M(τ, 0), M(τ, 1) and M(τ, 2).

We recall the structures of them and their fusion rules in §2.5.1–§2.5.4.
We compute the lattice of submodules of the corresponding Verma modules M(g, %) and classify the simple D-

modules. In particular, we prove that

• L(e,+) ' M(e,+) as D(S3)-modules and dim L(e,+) = 1, Corollary 27.
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• L(e, ρ) ' M(e, ρ) ⊕ M(σ,+) ⊕ M(τ, 0) as D(S3)-modules and dim L(e, ρ) = 7, Corollary 22.

• L(τ, 0) ' M(τ, 0) ⊕ M(σ,+) ⊕ M(e, ρ) as D(S3)-modules and dim L(τ, 0) = 7, Corollary 24.

• L(σ,−) ' M(σ,−) ⊕ M(τ, 1) ⊕ M(τ, 2) ⊕ M(σ,−) as D(S3)-modules and dim L(τ, 0) = 10, Theorem 7.

• The Verma modules M(e,−), M(τ, 1), M(τ, 2) and M(σ,+) are simple, Theorem 6. Their dimensions are 12,
24, 24 and 36, respectively. As D(S3)-modules they are the tensor product of B(V) with the associated simple
D(S3)-module.

We finish by pointing out other facts about these modules.

◦ The head L(g, %) and the socle S(g, %) are isomorphic, Theorem 6, Lemma 20 and Corollaries 27, except to

L(τ, 0) ' S(e, ρ) and L(e, ρ) ' S(τ, 0), Corollary 25.

◦ The simple D-modules are self-duals except to(
L(τ, 0)

)∗
' L(e, ρ) and

(
L(e, ρ)

)∗
' L(τ, 0) by Theorem 5.

◦ M(σ,−) has submodules which are not homogeneous, Lemma 26, and its maximal submodule is not generated
by highest-weight submodules, Theorem 7.
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2. Preliminaries

Through this work k denotes an algebraically closed field of characteristic zero. The dual of a vector space V will
be denoted by V∗. If v ∈ V and f ∈ V∗, then 〈 f , v〉 denotes the evaluation of f in v. Let S be a set. We write kS for
the free vector space on S . Let A be an algebra. By an A-module, we mean a left A-module. If S is a subset of an
A-module M and B ⊆ A, then BS denotes the set of all bs with b ∈ B and s ∈ S .

Let H be a finite-dimensional Hopf algebra. We denote by ∆, S and ε the comultiplication, the antipode and the
counit of H. We will use the Sweedler notation ∆(h) = h(1)⊗h(2) for the comultiplication of any h ∈ H, and for the
coaction δ(m) = m(−1)⊗m(0) of an element m belonging to an H-comodule.

Recall that H
HYD denotes the category of Yetter-Drinfeld modules over H, whose objects are the H-modules and

H-comodules M such that for every h ∈ H and m ∈ M it holds that

(hm)(−1)⊗(hm)(0) = h(1)m(−1)S(h(3))⊗h(2)m(0).

4



2.1.
We consider the Drinfeld double D(H) of H according to [12, Theorem 7.1.1]. Namely, D(H) is H⊗H∗ as

coalgebra. Meanwhile, the multiplication and the antipode are given by

(h⊗ f )(h′⊗ f ′) =〈 f(1), h′(1)〉〈 f(3), SH(h′(3))〉(hh′(2)⊗ f ′ f(2)),

S(h⊗ f ) =(1⊗S−1
H∗ ( f ))(SH(h)⊗ε), for every h, h′ ∈ H and f , f ′ ∈ H∗.

(1)

In consequence, we have that H and H∗op are Hopf subalgebras of D(H).
Recall that the category H

HYD is braided equivalent to the category D(H)M of D(H)-modules. Namely, if M ∈ H
HYD,

then M is a D(H)-module by setting

(h f ) · m = 〈 f ,m(−1)〉hm(0) (2)

for every h ∈ H, f ∈ H∗ and m ∈ M.

2.2.
The Nichols algebra of V ∈ H

HYD is constructed as follows, see for instance [2, §2.1]. First, we consider the tensor
algebra T (V) as a graded braided Hopf algebra in H

HYD by defining

∆(v) = v⊗1 + 1⊗v, S(v) = −v and ε(v) = 0

for all v ∈ V . Let J(V) be the maximal ideal and coideal of T (V) generated by homogeneous elements of degree ≥ 2.
Then the Nichols algebra of V is the quotient

B(V) = T (V)/J(V)

which is a graded braided Hopf algebra in H
HYD. Its homogeneous component of degree n ∈ N will be denoted Bn(V).

Note that B1(V) = V and B0(V) = k. Moreover, if B(V) is finite-dimensional, then its homogeneous component of
maximum degree is one-dimensional and it is the space of left and right integrals, see for instance [1, §2.3 and §3.2].

2.3.
The bosonization B(V)#H [16, 11] is the Hopf algebra structure defined on B(V)⊗H in such a way that H is a

Hopf subalgebra, B(V) is a subalgebra,

hv = (h(1) · v)#h(2) and ∆(v) = v⊗1 + v(−1)⊗v(0) for all h ∈ H and v ∈ V . (3)

It is a graded Hopf algebra where its homogeneous component of degree n ∈ N is Bn(V)#H.

2.4.
Let G be a finite group. The unity element of G is denoted by e. We set kG = (kG)∗, the dual Hopf algebra of

the group algebra kG. Let {δg}g∈G be the dual basis of the canonical basis {g}g∈G of kG. The comultiplication of an
element δg is

∆(δg) =
∑
t∈G

δt⊗δt−1g.

Let M be a kG-module and g ∈ G. Then M is G-graded with homogeneous component of degree g:

M[g] = δgM =
{
m ∈ M | f · m = f (g)m ∀ f ∈ kG

}
.

If S ⊆ M, we set S [g] = S ∩ M[g]. We denote by Supp M the subset of G formed by those elements whose
homogeneous component in M is non-zero. The one-dimensional kG-module of degree g will be denoted kg. If kG is
a subalgebra of A, then we will consider A as a kG-algebra with the adjoint action, that is f a = ad( f )a = f(1)aS( f(2))
for any a ∈ A and f ∈ kG.
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2.5. The Drinfeld double of a group algebra
We denote by D(G) the Drinfeld Double of kG. Since kG is a commutative algebra, kG and kG are Hopf subalge-

bras of D(G). Then the algebra structure of D(G) is completely determined by

δh g = g δg−1hg ∀g, h ∈ G, cf. (1).

We will define Verma modules in §3.1 by inducing from the simple D(G)-modules. These are well-known because
they are equivalent to the simple objects in kG

kGYD and a description of these last can be found for instance in [1,
Subsection 3.1]. We recall this description but in the context of modules over D(G).

Let Og be the conjugacy class of g ∈ G, Cg the centralizer of g and (U, %) an irreducible representation of Cg. The
kG-module induced by (U, %),

M(g, %) = IndG
Cg

U = kG⊗kCg U, (4)

is also a kG-module if we define the action by

f · (x⊗kCg u) = 〈 f , xgx−1〉x⊗kCg u, for all f ∈ kG, x ∈ G and u ∈ U.

Then x⊗kCg u is of G-degree xgx−1 and Supp M(g, %) = Og. Note that dim M(g, %) = #Og · dim U.
Therefore M(g, %) is a D(G)-module. Moreover, M(g, %) is simple and every simple D(G)-module is of this form

by [1, Proposition 3.1.2].

Definition 1. A D(G)-module is of weight (g, %) if it is isomorphic to M(g, %).

Let S3 be the group of bijections on {1, 2, 3}. We set σ = (12) and τ = (123). These two cycles generate S3 and
satisfy the relations σ2 = e = τ3 and στσ = τ−1. The conjugacy classes of S3 are

Oe = {e}, Oσ = {(12), (13), (23)} and Oτ = {(123), (132)} .

Next, we describe the simple D(S3)-modules which we will consider in §4.

2.5.1. Simple modules attached to σ
The centralizer Cσ is just the cyclic subgroup generated by σ. Then Cσ has only two irreducible representations:

the trivial one and the induced by the sign map sgn : S3 → {±1}. Therefore the simple D(S3)-modules attached to σ
are

M(σ,+) := M(σ, ε) and M(σ,−) := M(σ, sgn).

Let us consider the set of symbols {|12〉±, |23〉±, |13〉±} as a basis of M(σ,±). Sometimes we write |στt〉± instead
of |i j〉±, if στt = (i j), and omit the subscript if there is no place for confusion. Hence the action of D(S3) on M(σ,±)
is defined in such a way that |στt〉± has S3-degree στt and

σ · |στt
〉± = ± |στ−t

〉± and τ · |στt
〉± = |στt+1

〉±.

2.5.2. Simple modules attached to τ
From now on, we fix a root of the unit ζ of order 3. The centralizer Cτ is the cyclic subgroup generated by τ. Then

Cτ has (up to isomorphisms) three irreducible representations. These are given by the group maps ρ` : Cτ = 〈τ〉 7−→ k∗,
τ 7→ ζ` for ` = 0, 1, 2. Therefore the simple D(S3)-modules attached to τ are

M(τ, `) := M(τ, ρ`) for ` = 0, 1, 2.

Let us consider the set of symbols {|123〉`, |132〉`} as a basis of M(τ, `). Sometimes we write |τt〉` instead of |i jk〉`,
if τt = (i jk), and omit the subscript if there is no place for confusion. Hence the action of D(S3) on M(τ, `) is defined
in such a way that |τ±1〉` is of S3-degree τ±1 and

στt · |τ±1
〉` = ζ±t`

|τ∓1
〉` and τt · |τ±1

〉` = ζ±t`
|τ±1
〉`

for t = 0, 1, 2. It is not difficult to check that

M(τ, 1) −→ M(τ, 2), |τ±1
〉1 7−→ |τ

∓1
〉2 (5)

is an isomorphism of kS3-modules.
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2.5.3. Simple modules attached to e
Let ρ : S3 → GL2(k) be the map defining the two-dimensional Specht S3-module. Then (k, ε), (k, sgn) and (k2, ρ)

is a complete list of non-isomorphic irreducible S3-modules. Therefore the simple D(S3)-modules attached to e are

M(e,+) = M(e, ε), M(e,−) = M(e, sgn) and M(e, ρ).

These are concentrated in S3-degree e. The modules M(e,±) are one-dimensional, we denote by |e〉± its generators
and omit the subscript if there is no place for confusion.

We can describe the kS3-action on M(e, ρ) using the canonical representation of kS3 on the vector space spanned
by {1, 2, 3}. In fact, k{1, 2, 3} decomposes into the direct sum (k, ε) ⊕ (k2, ρ) where the submodules of weight (k, ε)
and (k2, ρ) are spanned by {1 + 2 + 3} and {(1 − 2), (2 − 3)}, respectively.

Another special basis of M(e, ρ) is the set of symbol {|τ〉ρ, |τ−1〉ρ} where

|τ±1
〉ρ = ζ∓11 + ζ±12 + 3

This basis is special because it gives the following isomorphisms of kS3-modules

M(e, ρ) −→ M(τ, 1), |τ±1
〉ρ 7−→ |τ

±1
〉1. (6)

We omit the subscript in |τ±1〉ρ if there is no place for confusion.

2.5.4. Fusion rules
Let W and N be simple D(S3)-modules. We want to decompose the tensor products W⊗N into a direct sum

of simple D(S3)-modules. First, we have a decomposition into the direct sum of two submodules which are not
necessarily simple:

W⊗N =

⊕
g∈S3

W[g]⊗N[g]

 ⊕
 ⊕

g,h∈S3, g,h

W[g]⊗N[h]

 . (7)

Note that the first submodule is zero if Supp W , Supp N.
This decomposition is useful for us because each submodule has a basis which is a transitive S3-set in the sense of

the next lemma. Let BW and BN be the bases of W and N given in §2.5.1, 2.5.2 and 2.5.3. Then the sets

B1 =
⋃
g∈S3

BW [g]⊗BN[g] and B2 =
⋃

g,h∈S3, g,h

BW [g]⊗BN[h] (8)

are bases of the first submodule and the second one in (7), respectively.

Lemma 2. If α, β ∈ B`, ` = 1, 2, then there is π ∈ S3 such that π · α = λβ for some non-zero scalar λ.

Proof. The sets BW [g] and BN[g], g ∈ S3, are either empty or have only one element |g〉 except to M(e, ρ), but in
this case the basis is {|τ〉ρ, |τ−1〉ρ}. In these bases, we see from the definition that π|g〉 = λ|πgπ−1〉 for some non-zero
scalar λ. We conclude by remarking that S3 acts transitively by conjugation on the sets {g× g | g ∈ Supp W ∩ Supp N}
and {g × h | g ∈ Supp W, h ∈ Supp N, g , h}.

As a consequence of the above lemma we have the next remark wich will be useful in §4 where the action of V ,
or V , on N will play the role of µ.

Remark 3. Let µ : W⊗N → N′ be a map of D(S3)-modules. Assume there is α ∈ B1, respectively α ∈ B2, such
that µ(α) = 0. Hence µ restricted to

⊕
g∈S3

W[g]⊗N[g], respectively
⊕

g,h∈S3, g,h W[g]⊗N[h], is zero since S3 acts
transitively on the basis B1, respectively B2.

7



We next list the precise fusion rules only for those tensor products which will appear in Section 4. We give
the assignments (or describe the submodules) which realize the listed isomorphisms but we leave to the reader the
verification that these really are maps of D(S3)-modules (or D(S3)-submodules).

• M(e,−)⊗M(e,−) ' M(e,+) and M(σ,±)⊗M(e,−) ' M(σ,∓).

The isomorphisms are given by m⊗|e〉 7−→ m.

• M(e, ρ)⊗M(e,−) ' M(e, ρ) and

• M(τ, `)⊗M(e,−) ' M(τ, `) for all ` = 0, 1, 2.

The assignments |τ±1〉⊗|e〉 7−→ ± |τ±1〉 give these isomorphisms.
In the sequel, by abuse of notation, i` and ` + i denote the multiplication and sum module 3.

• M(τ, `)⊗M(τ, `) ' M(e,+) ⊕ M(e,−) ⊕ M(τ, 2`) for all ` = 0, 1, 2.

We obtain this isomorphism keeping in mind that

M(e,±) ' k
{
|τ〉`⊗|τ

−1
〉` ± |τ

−1
〉`⊗|τ〉`

}
and M(τ, 2`) ' k

{
|τ〉`⊗|τ〉`, |τ

−1
〉`⊗|τ

−1
〉`

}
.

• M(τ, `)⊗M(e, ρ) ' M(τ, ` + 1) ⊕ M(τ, ` + 2) for all ` = 0, 1, 2.

The isomorphism follows by considering the submodules{
|τ±1
〉`⊗|τ

±1
〉ρ

}
and

{
|τ±1
〉`⊗|τ

∓1
〉ρ

}
. (9)

• M(τ, i)⊗M(τ, j) ' M(e, ρ) ⊕ M(τ, k) with {i, j, k} = {0, 1, 2}.

Here we use that

M(e, ρ) ' k
{
|τ〉i⊗|τ

−1
〉 j, |τ

−1
〉i⊗|τ〉 j

}
and

M(τ, k) ' k
{
|τ〉i⊗|τ〉 j, |τ

−1
〉i⊗|τ

−1
〉 j

}
.

(10)

• M(τ, `)⊗M(σ,−) ' M(σ,+) ⊕ M(σ,−) ' M(σ,−)⊗M(τ, `) for all ` = 0, 1, 2.

In the first isomorphism |στi〉± ∈ M(σ,±) identifies with the element

ζ i`
|τ〉`⊗|στ

i+1
〉− ∓ ζ

−i`
|τ−1
〉`⊗|στ

i+2
〉− for i = 0, 1, 2, (11)

meanwhile in the second isomorphism, |στi〉±, for i = 0, 1, 2, identifies with

ζ i`
|στi+2

〉−⊗|τ〉` ∓ ζ
−i`
|στi+1

〉−⊗|τ
−1
〉` = ζ i`(1 ± στi)|στi+2

〉−⊗|τ〉` (12)

• M(τ, `)⊗M(σ,+) ' M(σ,+) ⊕ M(σ,−) for all ` = 0, 1, 2.

Here we take the assignments ζ i`|τ〉`⊗|στ
i+1〉+ ± ζ

i`|τ−1〉`⊗|στ
i+2〉+ 7−→ |στ

i〉± for i = 0, 1, 2.

• M(σ,−)⊗M(σ,±) ' M(e,∓) ⊕ M(e, ρ) ⊕
⊕

`=0,1,2 M(τ, `).

For this isomorphism we use that k
{∑2

i=0 |στ
i〉−⊗|στ

i〉±

}
is a one-dimensional submodule; the maps

M(e, ρ) −→ M(σ,−)⊗M(σ,−), |τ j
〉ρ 7−→

2∑
i=0

ζ−i j
|στi
〉−⊗|στ

i
〉− and

M(e, ρ) −→ M(σ,−)⊗M(σ,+), |τ j
〉ρ 7−→

2∑
i=0

jζ−i j
|στi
〉−⊗|στ

i
〉+,

(13)
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with j = ±1, define inclusions of D(S3)-modules and M(τ, `) is included as D(S3)-module by identifying the element
|τi〉` of M(τ, `) with the element

(ζ` + ζ−`τ−i + τi) |σ〉−⊗|στ
i
〉− ∈ M(σ,−)⊗M(σ,−), respectively

i(ζ` + ζ−`τ−i + τi) |σ〉−⊗|στ
i
〉+ ∈ M(σ,−)⊗M(σ,+),

(14)

for i = ±1 and ` = 0, 1, 2.

• M(σ,−)⊗M(e, ρ) ' M(σ,+) ⊕ M(σ,−).

Here we have to identify |στi〉± ∈ M(σ,±), for i = 1, 2, 3, with the element

ζ i
|στi
〉−⊗|τ〉ρ ∓ ζ

−i
|στi
〉−⊗|τ

−1
〉ρ = ζ i(1 ± στi)|στi

〉−⊗|τ〉ρ. (15)

3. A quantum group at a non-abelian group

Through this section, we fix a finite non-abelian group G and a Yetter-Drinfeld module V ∈ kG
kGYD such that its

Nichols algebra B(V) is finite-dimensional. We denote by D the Drinfeld double of the bosonization B(V)#kG. For
shortness we say that D is a quantum group at a non-abelian group.

In the first part of the section we describe the algebra structure of D. Then we introduce and study the Verma
modules for D.

Definition 4. We set V to be V∗ endowed with the Yetter-Drinfeld module structure over kG defined by the following
properties:

〈 f · y, x〉 = 〈 f , S(x(−1))〉〈y, x(0)〉 and 〈y, g · x〉 = 〈y(−1), g〉〈y(0), x〉 (16)

for every y ∈ V, x ∈ V, g ∈ G and f ∈ kG.

It is a straightforward computation to check that these structures satisfy the compatibility for Yetter-Drinfeld
modules. Also, this is a consequence of the next lemma. Recall the Hopf algebra structure of a bosonization in §2.3.

Lemma 5. The algebra map ϕ : B(V)#kG −→ (B(V)#kG)∗op defined by

〈ϕ( f ), g〉 = 〈 f , g〉 and 〈ϕ( f ),Bn(V)#kG〉 = 0,
〈ϕ(y), x#g〉 = 〈y, x〉 and 〈ϕ(y),Bm(V)#kG〉 = 0

for all g ∈ G, f ∈ kG, x ∈ V, y ∈ V, n > 0 and m , 1, is an isomorphism of graded Hopf algebras.
In particular, the Hilbert series of the Nichols algebras B(V) and B(V) are equals.

Proof. We can deduce that (B(V)#kG)∗op ' R#kG where R is the Nichols algebra of its homogeneous space of
degree 1 following for instance [3, Section 2]. Also, we see from the definition in the statement that ϕ : V#kG −→

(B(V)#kG)∗op, with ϕ(y# f ) = ϕ( f )ϕ(y) for all y ∈ V and f ∈ kG, is a linear map which is bijective in degree 0 and 1.
Therefore the lemma follows if we show that

∆ϕ(δg) =
∑
t∈G

ϕ(δt)⊗ϕ(δt−1g), ϕ(δgδh) = ϕ(δh)ϕ(δg), (17)

∆ϕ(y) = ϕ(y)⊗1 + ϕ(y(−1))⊗ϕ(y(0)) and ϕ(y)ϕ(δg) =
∑
t∈G

ϕ(δt−1g)ϕ(δt · y) (18)

for all g, h ∈ G and y ∈ V . In fact, (17) ensures that ϕ|kG is a Hopf algebra map. By (18), we determine that V is
the space of coinvariants in degree 1 of (B(V)#kG)∗op with respect to the projection over kG and the corresponding
Yetter-Drinfeld structure is given by Definition 4. Hence R is the Nichols algebra of V .
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We check the first equality of (18), the remainder ones can be checked in a similar way. As B(V)#kG is a graded
Hopf algebra it is enough to see that

〈∆ϕ(y), a⊗(x#b)〉 =〈ϕ(y), a(x#b)〉 = 〈ϕ(y), (a · x)#ab〉 = 〈y, a · x〉 = 〈y(−1), a〉〈y(0), x〉 = 〈ϕ(y(−1)), a〉〈ϕ(y(0)), x〉
=〈ϕ(y), a〉〈1, x#b〉 + 〈ϕ(y(−1)), a〉〈ϕ(y(0)), x#b〉 = 〈ϕ(y)⊗1 + ϕ(y(−1))⊗ϕ(y(0)), a⊗(x#b)〉

for all a, b ∈ G and x ∈ V .

Convention 6. We identify the Hopf subalgebra (B(V)#kG)∗op of D with B(V)#kG by invoking the above lemma.

Lemma 7. The quantum group D at a non-abelian group can be presented as an algebra generated by the elements
belonging to V, V, kG and kG subject to their relations in B(V), B(V), kG and kG, plus the commutation rules

g x =(g · x) g, δg y =
∑
t∈G

(δt · y)δt−1g, (19)

δg x =
∑
t∈G

〈δt, x(−1)〉x(0)δt−1g, y g =〈y(−1), g〉 gy(0), (20)

y x − 〈y(−1), x(−1)〉 x(0)y(0) = 〈y, x〉1 + 〈y(−2), x(−2)〉〈y(0), S(x(0))〉 x(−1)y(−1), (21)
δh g = g δg−1hg. (22)

for all g, h ∈ G, x ∈ V and y ∈ V.

Proof. The equations (19) correspond to the bosonization, see (3). Meanwhile (20), (21) and (22) follow from (1).

Lemma 8. The subalgebra of D generated by kG and kG is a Hopf subalgebra isomorphic to D(G) and it is the
coradical of D. In particular, D is non-pointed.

Proof. It follows from Lemma 5 and (22).

Due to the above lemmata, a quantum group at a non-abelian group has a triangular decomposition, that is

D = B(V)⊗D(G)⊗B(V), (23)

and it is a Z-graded algebra by setting

deg V = −1, degD(G) = 0, deg V = 1. (24)

Convention 9. We consider V and V as Yetter-Drinfeld modules over D(G) with the adjoint action and the same
coaction as kG-comodule and kG-comodule, respectively.

That is possible because the rules (19) and (20) guarantee that V and V are stable by the adjoint action of D(G),
i. e. ad(h)x = h(1)xS(h(2)) ∈ V and ad(h)y = h(1)yS(h(2)) ∈ V for all h ∈ D(G), x ∈ V and y ∈ V. Also, D(G) = kG⊗kG

as coalgebra.

We extend these structures to B(V) and B(V). Hence the bosonization

D≤0 = B(V)#D(G), respectively D≥0 = B(V)#D(G), (25)

identifies with the subalgebra of D generated by D(G) and V , respectively V .

Remark 10. The adjoint action of D(G) on V coincides with the action defined by the equivalence of categories
between kG

kGYD and D(G)M, see (2).

We would like to remark other facts about V and V . We refer to [1] for details about the item (iv) below.

Lemma 11. (i) V is the dual object of V in the tensor category D(G)M.
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(ii) B(V) and B(V) are the Nichols algebras of V and V in D(G)
D(G)YD, respectively.

(iii) B(V) and B(V) are the Nichols algebras of V and V in D(G)M, respectively.
(iv) B(V) is isomorphic to the opposite and copposite Hopf algebra B(V)∗bop in D(G)M.

Proof. (i) Let y ∈ V , x ∈ V and g ∈ G. By (20), we have that 〈ad(g)y, x〉 = 〈y(−1), g−1〉〈y(0), x〉. On the other hand, (16)
and (19) imply that 〈y, ad(g−1)x〉 = 〈y, g−1 · x〉 = 〈y(−1), g−1〉〈y(0), x〉. Then 〈ad(g)y, x〉 = 〈y, ad S(g)x〉. In a similar way,
we see that 〈ad(δg)y, x〉 = 〈y, ad S(δg)x〉.

(ii) B(V) and B(V) are braided Hopf algebras in D(G)
D(G)YD, because D≤0 and D≥0 are Hopf algebras, which satisfy

the defining properties of a Nichols algebra
(iii) follows from (ii) because the braiding of D(G)

D(G)YD on V coincides with that of D(G)M and the same holds for

V .
(iv) Let Ṽ be the dual object of V in kG

kGYD. By [1, Theorem 3.2.30], B(Ṽ) ' B(V)∗bop in kG
kGYD. We said

before that the adjoint action of D(G) on V coincides with the action defined by the functor given the equivalence of
categories between kG

kGYD and D(G)M. Then, by (i), V is the image of Ṽ by this functor and (iv) follows because the
braidings of these categories are equal via this functor.

3.1. Verma modules
A classical technique in Representation Theory is to study modules induced by simple modules of a subalgebra.

Such is the case of the Verma modules for quantum groups, see for instance [5, Chapter 7], [8, Chapter 5] and [10,
Chapter 3]. Following this idea, we shall induce from the subalgebra D≥0.

Every simple D≥0-module is isomorphic to a simple D(G)-module where B(V) acts via the counit. This holds
because B(V) is local and hence ker(ε)#D(G) is the Jacobson radical of D≥0.

Definition 12. Let M(g, %) be a simple D(G)-module. The Verma module M(g, %) is the D-module induced by M(g, %)
seen as a module over D≥0. Explicitly,

M(g, %) = D⊗D≥0 M(g, %).

We fix a simple D(G)-module M(g, %) and set M = M(g, %). Immediately from the definition, we get that M is free
as B(V)-module of rank dim M(g, %) = #Og · dim %. Moreover,

M = B(V)⊗M(g, %) in D(G)M (26)

since h(x⊗m) = (hx)⊗m = ad(h(1))xh(2)⊗m = ad(h(1))x⊗h(2)m, for h ∈ D(G), x ∈ B(V) and m ∈ M(g, %), and the last
term is the definition of the action in the tensor product of two D(G)-modules.

Also M inherits the Z-grading of D and its homogeneous spaces are D(G)-submodules. Namely, its homogeneous
space of degree n ≤ 0 is

Mn = B−n(V)⊗M(g, %).

Thus M turns out to be an Z-graded D-module since

V Mn = Mn−1 and V Mn ⊆ Mn+1. (27)

In fact, the first equality holds as the action by an element of V is just the multiplication in the Nichols algebra and
this is generated by V . We proceed by induction to prove the second inclusion. If n = 0, then M0 = k1⊗M(g, %) on
which V acts by zero. If n < 0, then

V Mn−1 = VV Mn ⊆ VV Mn + D(G)Mn ⊆ Mn,

where the first inclusion follows from (21) and the second one by inductive hypothesis.
As D≤0-module, M is generated by any element of degree 0, that is

M = D≤0(1⊗m) ∀m ∈ M. (28)

In fact, D≤0(1⊗m) = B(V)⊗D(G)m = B(V)⊗M(g, %) since M(g, %) is D(G)-simple. However we have more genera-
tors for a Verma module as D≤0-module.
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Lemma 13. If m ∈ M0 is non-zero, then M = D≤0(m + n) for any n ∈ ⊕n<0Mn.

Proof. By (28) the lemma follows if n = 0. Otherwise, we write n = n1 + n2 with 0 , n1 ∈ Mn1 and n2 ∈ ⊕n<n1 M
n. By

(28) there is z ∈ D≤0 such that zm = n1, moreover z ∈ Bn1 (V)#D(G). Then

(m + n) − z(m + n) = m + (n2 − zn1 − zn2) ∈ D≤0(m + n)

and the maximum degree of (n2−zn1−zn2) is smaller than n1. Hence the lemma follows by induction in the maximum
degree of n since B(V) is finite-dimensional and VM−ntop = 0 if ntop is the maximum degree of B(V).

Using the above lemma we prove one of the main properties of a Verma module.

Theorem 1. A Verma module has a unique maximal D-submodule and it is homogeneous.

Proof. If N is a strict D-submodule of M, then there exists a non-zero negative integer nN such that N ⊆ ⊕n<nN Mn by
Lemma 13. Hence the sum X of all strict D-submodules is the unique maximal D-submodule of M.

Let
∑

n nn ∈ X with nn ∈ Mn. If we see that nn ∈ X for all n, then X is homogeneous.
Otherwise, without loss of generality, we can assume nn < X with n maximal, then Dnn = M. Thus there is

z ∈ Bn(V)#D(G) such that 0 , znn = 1⊗m ∈ M0 and hence z
∑

n nn = 1⊗m + ñ with ñ ∈ ⊕n<0Mn. Then D
∑

n nn = M
by Lemma 13 but this is not possible because

∑
n nn ∈ X ( M.

As it is common, we introduce the highest-weight modules in such a way that a Verma module is a highest-weight
module. The weights in our case are the simple D(G)-modules which can have dimension greater than one.

Definition 14. Let N be a D-module and M ⊂ N a simple D(G)-submodule of weight (g, %). Assume that N is
generated as D-module by M.

We say that N is a highest-weight module of weight (g, %) if V M = 0.
We say that N is a lowest-weight module of weight (g, %) if V M = 0.

Hence we have that

N = DM = B(V)M = D≤0m ∀m ∈ M (29)

if N is a highest-weight module, and

N = DM = B(V)M = D≥0m ∀m ∈ M (30)

in case that N is a lowest-weight module. These follow from the decomposition (23) of D and since M is D(G)-simple.
We set Msoc = Bntop (V)⊗M(g, %) where ntop is the maximum degree of the Nichols algebra. Note that Msoc is

simple as a D(G)-module since Bntop (V) is one-dimensional.

Theorem 2. The socle of the Verma module M is simple as a D-module and equals B(V)Msoc.

Proof. The socle is simple if we show that Msoc ⊂ Dm for any homogeneous element m , 0 of degree −n in M with
n < ntop. To show that, we write m =

∑
i zi⊗mi with zi ∈ Bn(V) and {mi} ⊂ M(g, %) linearly independent. We pick

zi. Since Bntop (V) is the space of integrals of the Nichols algebra, there is x1 ∈ V such that 0 , x1zi ∈ Bn+1(V).
Then 0 , x1m ∈ Dm is an homogeneous element of degree −n − 1. Hence xntop−n · · · x1m , 0 for appropriated
xntop−n, . . . , x1 ∈ V and therefore Msoc ⊂ Dm because Msoc is D(G)-simple.

Finally, the socle is a lowest-weight module because it is generated by Msoc. Therefore the socle is equal to
B(V)Msoc by (30).

As a direct consequence we obtain a criterion for the simplicity of a Verma module. Recall that the Hilbert series
of B(V) and B(V) are equal by Lemma 5.

Corollary 15. Let xtop ∈ Bntop (V), ytop ∈ Bntop (V) and m ∈ M. The Verma module M is simple as D-module if and
only if ytop(xtop⊗m) , 0.
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Proof. By (27), ytop(xtop⊗m) ∈ M0 and hence it generates M by (28). Then the socle, which is simple by the above
theorem, is exactly M.

Assume now that M is a simple D-module. In particular, M is generated by xtop⊗m and thus there is an element
z ∈ D such that 0 , z(xtop⊗m) ∈ M0. By (27), z ∈ Dntop =

∑
j−i=ntop

Bi(V)D(G)B j(V). Since ntop is the maximum
degree of B(V) and B(V), we have that z ∈ D(G)Bntop (V). Finally, we can take z = ytop because Bntop (V) is one-
dimensional.

Due to the above theorems we can introduce the following D-modules.

Definition 16. Let M(g, %) be a simple D(G)-module. Then

• X(g, %) denotes the maximal D-submodule of M(g, %).

• L(g, %) denotes the head of M(g, %).

• S(g, %) denotes the socle of M(g, %) as D-module.

The following theorem states that the correspondence M(g, %) ! L(g, %), between the sets of simple D(G)-
modules and simple D-modules, is bijective.

Theorem 3. (i) Let M(g, %) be a simple D(G)-module. Then L(g, %) is the unique simple highest-weight module of
weight (g, %).

(ii) Every simple D-module is isomorphic to L(g, %) for a unique simple D(G)-module M(g, %).

Proof. (i) L(g, %) is a simple D-module by Theorem 1. As M(g, %) is generated by M(g, %), L(g, %) is so. Moreover,
V M(g, %) = 0 then L(g, %) is a highest-weight module. The uniqueness follows from the fact that a highest-module L
of weight (g, %) is a quotient of M(g, %) since M(g, %) turns out to be a D≥0-submodule of L. If also L is D-simple,
then L ' L(g, %) since X(g, %) is the unique maximal submodule of M(g, %).

(ii) Every D-module L has a simple D≥0-module, say M(g, %). Then we have a morphism M(g, %) −→ L of D-
modules and this map is surjective if L is D-simple. Hence L(g, %) ' L. On the other hand, if there exists another
L(g′, %′) isomorphic to L, then M(g, %) ' M(g′, %′) because they are highest weights of L.

The correspondence M(g, %) ! S(g, %) also is bijective by the next theorem. We set M(ĝ, %̂) to be the simple
D(G)-module isomorphic to Bntop (V)⊗M(g, %).

Theorem 4. (i) Let M(g, %) be a simple D(G)-module. Then S(g, %) is the unique simple lowest-weight module of
weight M(ĝ, %̂).

(ii) Every simple D-module is isomorphic to S(g, %) for a unique simple D(G)-module M(g, %).

Proof. The socles of the Verma modules are lowest-weight modules by Theorem 2. Also, the socles of non-isomorphic
Verma modules are non-isomorphic because their lowest-weight components are not. Hence the uniqueness in (i) and
(ii) follow from the fact that the sets of simple D-modules and simple D(G)-modules are in bijective correspondence
by Theorem 3.

We denote by M(g∗, %∗) the dual D(G)-module of M(g, %).

Theorem 5. The dual D-module
(
S(g, %)

)∗ is a highest-weight module of weight M(ĝ∗, %̂∗). Therefore
(
S(g, %)

)∗
'

L(ĝ∗, %̂∗) as D-modules.

Proof. Let Si, i ≥ −ntop, be the homogeneous component of degree i of S(g, %). Then
(
S(g, %)

)∗
= ⊕iS∗i and S∗−ntop

'

M(ĝ∗, %̂∗) as D(G)-modules. Since
(
S(g, %)

)∗ is simple, it is generated by S∗−ntop
. Moreover, VS∗−ntop

= 0. In fact,
〈VS∗−ntop

,Si〉 = 〈S∗−ntop
, S(V)Si〉 = 0 because S(V)Si ⊆ Si+1 and −ntop < i + 1 for all i ≥ −ntop. Hence the theorem

follow from Theorem 3.

Remarks 17. (i) Even though the maximal submodule of M is homogeneous, a submodule is not necessarily ho-
mogeneous, cf. Lemma 26.

(ii) The maximal submodule is not necessarily generated by highest-weight submodules, cf. Theorem 7.
(iii) The head and the socle of a Verma module are not necessarily isomorphic, cf. Corollary 25.
(iv) There are examples with M(ĝ, %̂) ; M(g, %). For instance, let R be the Nichols algebra considered in [15]. Then

Rntop is not necessarily trivial as Yetter-Drinfeld module.
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3.2. Highest and lowest weight modules

We fix a D-module N and a D(G)-submodule M ⊂ N. We will explain how we can compute the D-submodule
generated by M under the hypothesis that it is either a lowest-weight or highest-weight module.

We denote by µ, and call it action map, the restriction to V⊗M of the action of D over N. By abuse of notation,
we also denote by µ the restriction to V⊗M. The key of our idea is the simple observation that

the action map µ is a morphism in the category D(G)M. (31)

Indeed, we want to see that µ(h(z⊗m)) = hµ(z⊗m) for any z ∈ V ∪ V , h ∈ D(G) and m ∈ M. The action on the
tensor product is h(z⊗m) = h(1) · z⊗h(2)m. Then we apply the action map and obtain (h(1) · z)h(2)m = ad(h(1))zh(2)m =

h(1)zS (h(2))h(3)m = h(zm) = hµ(z⊗m).
By (29) and (30), the D-submodule generated by M is either B(V)M or B(V)M. Hence we can compute DM

following the algorithm described in the next remark.

Remark 18. Keep the above hypothesis and notation.

(I) Decompose the tensor product V⊗M, or V⊗M depending on the case, into the direct sum ⊕S ` of simple D(G)-
modules.

This is possible because D(G) is semisimple. Moreover, its simple modules are well-know, recall §2.5.

(II) Apply the action map to each simple D(G)-module S `.

The restriction of the action map to S ` is either zero or an isomorphism by Schur’s Lemma. Therefore the image of
the action map is isomorphic as D(G)-module to the direct sum of the simple modules S ` that are not annulled. Note
that µ(S `) = 0 if and only if µ(w) = 0 for some w ∈ S `.

(III) Repeat the process with the D(G)-submodule µ(V⊗M), or µ(V⊗M) depending on the case, instead of M.

We have to repeat the process as many times as the maximum degree of B(V) or B(V).

(IV) The D-submodule generated by M is the sum of all D(G)-submodules obtained in the step (II).

4. The quantum group at the symmetric group S3 attached to the 12-dimensional Fomin-Kirillov algebra

Throughout this section V = k{x(12), x(23), x(13)} is the Yetter-Drinfeld module over kS3 given by

g · x(i j) = sgn(g) xg(i j)g−1 and (x(i j))(−1)⊗(x(i j))(0) = (i j)⊗x(i j)

for any transposition (i j) and g ∈ S3. Let V ∈ kS3

kS3
YD be the Yetter-Drinfeld module attached to V from Definition 4.

From [13] we know that B(V) is isomorphic to the 12-dimensional Fomin-Kirillov algebra introduced in [6].
We denote by D the Drinfeld double of the bosonization B(V)#kS3. The aim of this section is to apply the results

of the previous section in the specific example of this quantum group.

We have to consider V and V as D(S3)-modules with the adjoint action in D. Using Remark 10, we see that
V ' M(σ,−) via the assignment

V −→ M(σ,−), x(i j) 7−→ |i j〉

for every transposition (i j).
By Lemma 11, V is the dual object of V in the category D(S3)M. We denote by {y(12), y(23), y(13)} the basis of V dual

to {x(12), x(23), x(13)}, that is 〈y(i j), x(lk)〉 = δ(i j),(lk). Then it is not difficult to check that V ' M(σ,−) via the assignment

V −→ M(σ,−), y(i j) 7−→ |i j〉

for every transposition (i j).
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The defining relations of the Nichols algebra B(V) are

x2
(12), x2

(13), x2
(23),

x(12)x(13)+x(23)x(12) + x(13)x(23) and (32)
x(13)x(12)+x(12)x(23) + x(23)x(13).

We denote by B the basis of B(V) which is obtained by choosing one element per row of the next list and multiply
them from top to bottom, see e. g. [7]:

1, x(12),

1, x(13), x(13)x(12),

1, x(23).

We set Bn = B ∩Bn(V), n ≥ 0. The element of maximum degree in B is

xtop = x(12)x(13)x(12)x(23) ∈ B4.

Lemma 19. We have the following isomorphisms of D(S3)-modules.

(i) B0(V) ' B4(V) ' M(e,+),
(ii) B1(V) ' B3(V) ' M(σ,−); the last isomorphism is given by the assignment

|12〉 7−→ x(13)x(12)x(23), |23〉 7−→ −x(12)x(13)x(12), |13〉 7−→ x(12)x(13)x(23).

(iii) B2(V) ' M(τ, 1) ⊕ M(τ, 2), the isomorphism is given by

|τ〉` 7−→ (ζ` − 1)x(12)x(23) + (ζ−` − 1)x(13)x(12),

|τ−1
〉` 7−→ (ζ` − ζ−`)x(12)x(13) + (1 − ζ−`)x(13)x(23) for ` = 1, 2.

Proof. (i) For B0(V) the isomorphism is clear. For B4(V) it is enough to see that

σ · xtop = sgn4(σ)x(12)(12)(12)x(12)(13)(12)x(12)(12)(12)x(12)(23)(12) = x(12)x(23)x(12)x(13)

= −x(12)x(13)x(23)x(13) = x(12)x(13)x(12)x(23) = xtop by (32).

To prove (ii) we note that σ · x(13)x(12)x(23) = −x(13)x(12)x(23) and

σ · x(12)x(13)x(23) = sgn(σ)3x(12)(12)(12)x(12)(13)(12)x(12)(23)(12) = −x(12)x(23)x(13) = x(12)x(13)x(12).

(iii) follows from (14) and using (32).

4.1. Description of the action on a Verma module
We fix a simple D-module M and take the basis BM of M which consists of elements of the form |g〉, g ∈ S3,

recall §2.5.1, §2.5.2 and §2.5.3.
Let M be the Verma module of M. Since D ' B(V)⊗D(S3)⊗B(V), a basis of M is the set of elements

x|g〉 = x⊗|g〉 ∀x ∈ B, |g〉 ∈ BM .

Then the action of B(V) on M is given just by the multiplication:

z · x|g〉 = (zx)|g〉 ∀z ∈ B(V).

The action of D(S3) is the diagonal action by (26):

h · x|g〉 = ad h(1)(x)⊗h(2) · |g〉 ∀h ∈ D(S3).
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Computing the action of B(V) is more laborious. We have to use the commutation rules between the generators
of B(V) and B(V) given by (21). In our case (21) is rewritten as follow

y(i j)x(i j) = 1 + (i j)(δ(i j) − δe) − x(i j)y(i j) and (33)
y(ik)x(i j) = (i j)(δ(ik) − δ(ik)(i j)) − x(i j)y( jk) (34)

for all distinct transpositions (i j) and (ik). However, if we know the action of y(12) on M, then we can deduce the action
of the remainder generators of B(V). In fact, let (i j) , (12) and t ∈ S3 such that t(i j)t−1 = (12). Hence

y(i j) · x|g〉 = sgn(t)t y(12) t−1 · x|g〉. (35)

In the Appendix we give explicitly the action of y(12) on each element x|g〉 in the basis of M. We leave this for the
Appendix because it is a very long list and we don’t want to bore the reader now. We shall use these computations in
the next subsections without previous mention.

4.2. The simple Verma modules
Theorem 6. The Verma modules M(e,−), M(σ,+), M(τ, 1) and M(τ, 2) are D-simple. Therefore L(g, %) ' S(g, %)
holds for these weights.

Proof. By Corollary 15, it is enough to check that ytop(xtopv) , 0 for some v ∈ M(g, %). In the case M(e,−), using the
calculations done in the appendix we have that ytop(xtop|e〉) = −12|e〉 , 0. For M(σ,+), in the same way we obtain
ytop(xtop|στ〉) = 2|στ〉 , 0. Finally, in both cases M(τ, 1) and M(τ, 2) we have that ytop(xtop|τ

−1〉) = −3|τ−1〉 , 0.
Therefore the isomorphism L(g, %) ' S(g, %) holds because B4(V) ' M(e,+).

4.3. The Verma module M(σ,−)
The aim of this subsection is to prove the next theorem which describes the submodules of M(σ,−). As a byprod-

uct, we find L(σ,−) and the remaining simple D-modules as subquotients of M(σ,−).

Msoc

N2

UN0
t0,1

R
Q P

(σ,−)

(σ,−)

N1

O0 (τ, 2)(τ, 1)V
t1,0

tλ,µ

Figure 1: Submodules of M(σ,−)

Theorem 7. Every D-submodule of M(σ,−) is obtained by adding the D-submodules

S(σ,−), OPU, VQN and Tλ,µ with λ, µ ∈ k.

In particular, X(σ,−) = OPU + VQN + T1,0 + T0,1 and

L(σ,−) ' M(σ,−) ⊕ M(τ, 1) ⊕ M(τ, 2) ⊕ M(σ,−).

as D(S3)-modules. Moreover,
{
L(σ,−), L(τ, 0), L(e, ρ), L(e,+), L(e,+), L(σ,−)

}
are the composition factors of M(σ,−).
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The submodules mentioned in the statement will be given in the successive lemmas but the Figure 1 helps to
visualise them. Namely, each dot represents a weight of M(σ,−). This follows from the fusion rules given in §2.5.4
since M(σ,−) = B(V)⊗M(σ,−): O0 is of weight (τ, 0), U and V are of weight (e, ρ), P and Q are of weight (σ,+), R
and Msoc are of weight (σ,−), tλ,µ is of weight (e,+) for any λ, µ ∈ k, N` is of weight (τ, `) for ` = 0, 1, 2. Of course,
the weights in the same row are in the same homogeneous component and the degree decreases from the top to the
bottom.

Then, the dots connected by a thick line represent the socle S(σ,−), Lemma 20. The dots over the northwest
lines form VQN, Lemma 21, and those over the northeast lines form OPU, Lemma 23. The dots enclosed by circles
represent a D-submodule Tλ,µ, Lemma 26. The isolated dots on the right hand side represent the weights of L(σ,−).

We start by calculating the socle of the Verma module and then we describe the highest-weight submodules. For
that, we shall use the algorithm described in Remark 18. In order to avoid extra computations, we approximate the
kernel of the action map before applying this algorithm using Remark 3.

Let N` and R be the D(S3)-submodules of M(σ,−) generated by

• n` = ζ`x(13)x(12)x(23)|23〉 + ζ−`x(12)x(13)x(23)|12〉 − x(12)x(13)x(12)|13〉, for ` = 0, 1, 2, and

• r = −(x(12)x(13) + x(13)x(23))|12〉 − (x(12)x(23) + x(13)x(12))|13〉,

respectively. By (14), n` identifies with the element |τ〉` and belongs to the submodule of weight (τ, `). Hence
N` ' M(τ, `) for ` = 0, 1, 2.

Lemma 20. The socle of M(σ,−) is
S(σ,−) = Msoc ⊕ N1 ⊕ N2 ⊕ R,

where Msoc ' M(σ,−) ' R and N` ' M(τ, `) as D(S3)-modules, ` = 1, 2.
Moreover, S(σ,−) is a highest-weight module of weight (σ,−) and therefore

S(σ,−) ' L(σ,−).

Proof. We use the algorithm proposed in Remark 18 to compute the socle. Recall that S(σ,−) = B(V)Msoc by
Theorem 2.

As D(S3)-module, we have that

V⊗Msoc = k{y(i j)⊗ xtop|i j〉 | i , j} ⊕ k{y(i j)⊗ xtop| jk〉 | i , j , k , i}

by (7). Since y(12)(xtop|12〉) = 0, the action map is zero in the first submodule by Remark 3. The second submodule
decomposes into the direct sum M(τ, 0) ⊕ M(τ, 1) ⊕ M(τ, 2) where (ζ` + ζ−`τ−1 + τ)(y(12)⊗ xtop|23〉) belongs to the
submodule of weight (τ, `) by (14). The action map applied to these elements gives

(ζ` + ζ−`τ−1 + τ)y(12)(xtop|23〉) = (ζ` + ζ−`τ−1 + τ)(−x(12)x(13)x(23)|12〉 + x(13)x(12)x(23)|23〉)

= (ζ−` − ζ`)x(12)x(13)x(23)|12〉 + (ζ` − 1)x(13)x(12)x(23)|23〉 + (ζ−` − 1)x(12)x(13)x(12)|13〉,

which is zero iff ` = 0. Otherwise, we obtain 1
1−ζ−` n` and hence

VMsoc = N1 ⊕ N2,

recall Remark 18.
Now, we calculate VN`. By (12), V⊗N` ' M(σ,+) ⊕ M(σ,−) as D(S3)-modules and the element ζ`(1 ±

(23))y(12)⊗n` belongs to the submodule of weight (σ,±). We apply the action map to these elements and obtain

r±` := ζ`(1 ± (23))y(12)n` = ζ`(1 ± (23))(x(23)x(12)|12〉 + x(23)x(13)|13〉) = ζ`(1 ∓ 1)(x(23)x(12)|12〉 + x(23)x(13)|13〉).

Hence r+
` = 0 and 0 , 1

ζ`2 r−` = r ∈ R[(23)]. Therefore

R = VN1 = VN2 ' M(σ,−) for ` = 1, 2.
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Finally, we consider y(12)⊗(13)r ∈ V[(12)]⊗R[(12)] and y(12)⊗r ∈ V[(12)]⊗R[(23)]. Since y(12)(13)r = 0 = y(12)r,
we see that VR = 0 by Remark 3. Therefore

S(σ,−) = B(V)Msoc = Msoc ⊕ N1 ⊕ N2 ⊕ R.

Moreover, S(σ,−) is simple and generated by R ' M(σ,−) with VR = 0. Therefore S(σ,−) = L(σ,−).

Let V and Q be the D(S3)-submodules of M(σ,−) generated by

• v = ζ−1x(23)|23〉 + ζx(13)|13〉 + x(12)|12〉 and

• q = x(12)x(23)|23〉 − x(12)x(13)|13〉,

respectively. Note that V is of weight (e, ρ) by (13).

Lemma 21. Let VQN = S(σ,−) ⊕ V ⊕ Q ⊕ N0. Then

(i) VQN = DV is a highest-weight submodule of weight (e, ρ).

(ii) VQN = DQ = DN0.

(iii) Q is of weight (σ,+).

Proof. Since y(12)v = 0, VV = 0 by Remark 3 and thus DV is a highest-weight module. Hence we will use Remark
18 to compute DV = B(V)V.

By (15), V⊗V ' M(σ,+) ⊕ M(σ,−) where (1 ± σ)x(12)⊗v belongs to the submodule of weight (σ,±). The action
map applied to these elements gives

(1 + σ)x(12)v = (ζ−1 − ζ)q and (1 − σ)x(12)v = (13)r

Hence VV = R ⊕ Q. In particular, Q ' M(σ,+) which proves (iii).
Now, we just have to compute VQ since VR ⊂ S(σ,−). As D(S3)-modules, V⊗Q ' M(e,−) ⊕ M(e, ρ) ⊕⊕
`=0,1,2 M(τ, `), cf. §2.5.4. The action map on the components of weight (e,−) and (e, ρ) is zero since x(12)q = 0,

recall Remark 3. Meanwhile, the action map on the components of weight (τ, `) is not zero. In fact, (ζ` + ζ−`τ−1 +

τ)(x(12)⊗(13)q) belongs to the submodule of weight (τ, `) by (14) and

(ζ` + ζ−`τ−1 + τ)x(12)(13)q = (ζ` + ζ−`τ−1 + τ)(1 − ζ2)
(
x(12)x(13)x(23)|12〉 − x(12)x(13)x(12)|13〉

)
= (ζ2 − 1)

(
ζ−`x(12)x(13)x(23)|12〉 − x(12)x(13)x(12)|13〉 + ζ`x(13)x(12)x(23)|23〉

)
.

Hence VQ = N0 ⊕ N1 ⊕ N2. Since VN` ⊆ Msoc, we conclude that DV = VQN and (i) follows.
Finally, we proof (ii) by noting that V ⊂ DQ and V ⊂ DN0 since

1
2

y(12)q =
1
3

y(12)y(13)n0 = (ζ−1 − ζ)−1(1 − σ)v ∈ V.

Using the characterization of the simple modules given in Theorem 3, the next result follows directly from the
above lemma.

Corollary 22. The quotient VQN/S(σ,−) is a simple highest-weight module of weight (e, ρ). Therefore

L(e, ρ) ' M(e, ρ) ⊕ M(σ,+) ⊕ M(τ, 0),

as D(S3)-modules.

Let U, P and O` be the D(S3)-submodules generated by

• u = −ζ−1x(12)x(13)x(12)|23〉 + ζx(12)x(13)x(23)|13〉 + x(13)x(12)x(23)|12〉,
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• p = −(2x(13)x(12) + x(12)x(23))|23〉 − (2x(13)x(23) + x(12)x(13))|13〉 and

• o` = ζ−`x(13)|12〉 + ζ`x(12)|23〉 + x(23)|13〉, for ` = 0, 1, 2,

respectively. We see that U is of weight (e, ρ) by (13) and Lemma 19, and O` is of weight (τ, `) by (14).

Lemma 23. Let OPU = S(σ,−) ⊕ U ⊕ P ⊕ O0. Then

(i) OPU = DO0 is a highest-weight submodule of weight (τ, 0).

(ii) OPU = DU = DP.

(iii) P is of weight (σ,+).

Proof. We have that DO0 is a highest-weight module, since y(12)o0 = 0 and Remark 3 provides VO0 = 0. Then we
compute DO0 = B(V)O0.

By (12), V⊗O0 ' M(σ,+)⊕M(σ,−) where (1±σ)x(13)⊗o0 belongs to the submodule of weight (σ,±). The action
map gives

(1 + σ)x(13)o0 = −p and (1 − σ)x(13)o0 = (13)r

and we obtain VO0 = R ⊕ P. In particular, P ' M(σ,+) which proves (iii).
Now, we calculate VP. As D(S3)-modules, V⊗P ' M(e,−)⊕M(e, ρ)⊕

⊕
`=0,1,2 M(τ, `), cf. §2.5.4. Using (14) we

see that the action map on the components of weight (e,−) and (τ, 0) is zero since x(12)p + x(13)(23)p + x(23)(13)p = 0
and (1 + τ + τ−1)x(12)(13)p = 0. Meanwhile, from (13) and (14), the action map on the components of weight (τ, 1),
(τ, 2) and (e, ρ) is not zero. In fact, for ` = 1, 2:

(ζ` + ζ−`τ−1 + τ)x(12)(13)p = (ζ` + ζ−`τ−1 + τ)
(
x(12)x(13)x(23)|12〉 + x(12)x(13)x(12)|13〉

)
= (ζ` − 1)x(12)x(13)x(23)|12〉 + (ζ` − ζ−`)x(12)x(13)x(12)|13〉 + (1 − ζ−`)x(13)x(12)x(23)|23〉.

For the component (e, ρ) we have that x(12)p + ζx(13)(23)p + ζ−1x(23)(13)p = 2(ζ − ζ−1)u. Hence VP = U ⊕ N1 ⊕ N2.
Since VN` ⊆ Msoc, VU ⊆ Msoc and R ⊂ S(σ,−), we conclude that DO0 = OPU and (i) follows.

For the proof of (ii) we note that O0 ⊂ DP and O0 ⊂ DU since

(1 + τ + τ2)y(12)(13)p = ζ(1 + τ + τ2)y(12)(13)(1 + σ)y(12)u = 2(1 − ζ)o0 ∈ O0.

The next result is a direct consequence of the above lemma.

Corollary 24. The quotient OPU/S(σ,−) is a simple highest-weight module of weight (τ, 0). Therefore

L(τ, 0) ' M(τ, 0) ⊕ M(σ,+) ⊕ M(e, ρ)

as D(S3)-modules.

Corollary 25. As D-modules, L(τ, 0) ' S(e, ρ) and L(e, ρ) ' S(τ, 0).

Proof. Since U ⊂ M−3(σ,−), VU ⊂ Msoc. Hence U is a lowest-weight in the quotient OPU/S(σ,−). Therefore this
quotient is isomorphic to S(e, ρ) by Theorem 4. The proof of the second isomorphism is similar.

The D(S3)-submodules of M(σ,−) of weight (e,+) are

• tλ,µ = k
(
λ|e〉1 + µ|e〉3

)
where λ, µ ∈ k,

|e〉1 =x(12)|12〉 + x(23)|23〉 + x(13)|13〉 and |e〉3 = x(13)x(12)x(23)|12〉 − x(12)x(13)x(12)|23〉 + x(12)x(13)x(23)|13〉.

Lemma 26. Let Tλ,µ = tλ,µ ⊕ S(σ,−) for any λ, µ ∈ k. Then Dtλ,µ = Tλ,µ. In particular, T1,0 is a highest-weight
submodule of weight (e,+).
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Proof. We see that y(12)|e〉1 = 0 and y(12)|e〉3 = −(13)r ∈ R. Meanwhile, x(12)|e〉1 = −(13)r and clearly, x(12)|e〉3 ∈
Msoc. Then VTλ,µ,VTλ,µ ⊂ S(σ,−) and the lemma follows.

Corollary 27. The quotient T1,0/S(σ,−) is a simple highest-weight module of weight (e,+). Therefore

L(e,+) ' M(e,+)

as D(S3)-modules. Moreover, L(e,+) ' S(e,+) as D-modules.

Proof. The first part follows as the above corollaries. In particular, L(e,+) is one-dimensional and then it is also a
lowest-weight module. Hence L(e,+) ' S(e,+) holds.

Proof of Theorem 7. Let N be a D-submodule of M(σ,−). Then N = ⊕tS t where S t is D(S3)-simple. Since N =∑
t DS t, it is enough to compute the D-submodule generated by S t case-by-case according to the weight of S t. Recall

the weights of M(σ,−) from Figure 1.

(Case 1) If S t is of weight (e,+), then DS t = Tλ,µ for some λ, µ ∈ k by Lemma 26.
(Case 2) If S t is of weight (e, ρ), then there is an element a + b ∈ S t with a ∈ U and b ∈ V. Assume a , 0 , b,

otherwise DS t is either UPO or VQN by Lemmas 21 and 23. Then VS t = VU = R ⊕ P because VV = 0,
and hence DP = OPU ⊂ DS t. Thus (a + b) − a = b ∈ DS t and therefore DS t = OPU + VQN.

(Case 3) If S t is of weight (τ, 0) or (σ,+). Proceeding as above, we can see that DS t ⊆ OPU + VQN.
(Case 4) If S t is of weight (τ, `) with ` , 0, then there is an element c + d ∈ S t with c ∈ N` and d ∈ O`. Moreover,

d ∈ DS t as N` ⊆ S(σ,−) ⊆ DS t. Then either DS t = S(σ,−), if d = 0, or DS t = M(σ,−) because
y(12)o` = (ζ−` − ζ`)|23〉 ∈ DS t.

(Case 5) If S t is of weight (σ,−), then either DS t = S(σ,−) or there is 0 , y + t ∈ S t with y ∈ M0(σ,−) and
t ∈ M−2(σ,−) \ S(σ,−). If y + t , 0, then DS t = M(σ,−) by Lemma 13 when y , 0 or by noting that
Vt = M0(σ,−) when t , 0.

4.4. The Verma module M(e,+)
Theorem 8. The proper D-submodules of M(e,+) are S(e,+) ⊂ X(e,+) where

(i) X(e,+) = ⊕n<0Mn(e,+) is a highest-weight submodule of weight (σ,−).
(ii) S(e,+) = Msoc is a highest-weight submodule of weight (e,+).

Therefore
{
L(e,+), L(σ,−), L(e,+)

}
are the composition factors of M(e,+).

X
Msoc

(σ,−)

(τ, 2)

(σ,−)

(τ, 1)

(e,+)

Figure 2: Submodules of M(e,+)

In the Figure 2, we have schemed the submodules of M(e,+). The weights are represented by dots, notice that
M(e,+) ' B(V) as D(S3)-module. The big dot in the bottom represents the socle S(e,+). The dotted area represents
the maximal D-submodule X(e,+) and hence the dot in the top corresponds to L(e,+).
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Proof. By Corollary 27, L(e,+) ' M(e,+) as D(S3)-module and hence X(e,+) = ⊕n<0Mn(e,+). Since X(e,+) is
homogeneous by Theorem 1, VM−1(e,+) = 0. Moreover, M−1(e,+) generates X(e,+) because M(e,+) ' B(V) as
B(V)-modules. Therefore X(e,+) is a highest-weight submodule of weight (σ,−) and (i) follows.

By (i) and Theorem 3, X(e,+) has a quotient isomorphic to L(σ,−). By Theorem 7, L(σ,−) ' M(σ,−)⊕M(τ, 1)⊕
M(τ, 2) ⊕ M(σ,−) as D(S3)-modules. Then, we deduce that the unique D-submodule of X(e,+) is Msoc by inspection
in the weights of the Verma module, see Figure 2. Therefore S(e,+) = Msoc and (ii) follows.

The last sentence of the statement is immediate.

4.5. The Verma module M(τ, 0)
Let J ⊂ M−1(τ, 0) and G ⊂ M−2(τ, 0) be the D(S3)-submodules of weight (σ,−) and (e, ρ) with basis

• ji = (1 − στi)xστi+2 |τ〉, i = 0, 1, 2, see (12);

• g = (x(13)x(23) − ζ
2x(12)x(13))|τ〉 + (x(13)x(12) − ζ

2x(12)x(23))|τ−1〉 and σg,

recall (10) and Lemma 19 (iii).

Theorem 9. The proper D-submodules of M(τ, 0) are S(τ, 0) ⊂ X(τ, 0) where

(i) X(τ, 0) = DJ is a highest-weight submodule of weight (σ,−).
(ii) S(τ, 0) = DG is a highest-weight submodule of weight (e, ρ).

Therefore
{
L(τ, 0), L(σ,−), L(e, ρ)

}
are the composition factors of M(τ, 0).

The weights of M(τ, 0) are represented by dots in the Figure 3 which can be computed using the fusion rules
in §2.5.4. The weights conected by a line form the socle S(τ, 0) and those over the dotted area form the maximal
D-submodule X(τ, 0). The weights on the left hand side correspond to L(τ, 0).

(σ,−)

(e, ρ)

(σ,+)

(τ, 1)

Msoc

(σ,+)

(τ, 2)

J

G

(τ, 0)

Figure 3: Submodules of M(τ, 0)

Proof. (ii) By Corollary 25, S(τ, 0) is a highest-weight module of weight (e, ρ). We see that VG = 0 using Remark 3.
Therefore S(τ, 0) = DG.

(i) By Corollary 24, L(τ, 0) ' M(τ, 0) ⊕ M(σ,+) ⊕ M(e, ρ) as D(S3)-module. Hence the sum of the simple
D(S3)-submodules over the dotted area in Figure 3 have to form the maximal D-submodule X(τ, 0). Since X(τ, 0)
is homogeneous, VJ = 0 and then DJ is a highest-weight submodule of weight (σ,−). On the other hand, DJ has
a quotient isomorphic to L(σ,−) and contains the socle S(τ, 0). Therefore X(τ, 0) = DJ and S(τ, 0) is the unique
D-submodule of X(τ, 0).
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4.6. The Verma module M(e, ρ)
The proof of the next theorem and the description of Figure 4 are similar to the above subsection. Let E ⊂ M−1(e, ρ)

and C ⊂ M−2(e, ρ) be the D(S3)-submodules of weight (σ,−) and (τ, 0) with basis

• ei = ζ i(1 − στi)xστi+2 |τ〉, i = 0, 1, 2, see (15);

• c =
(
ζx(13)x(12) − x(12)x(23)

)
|τ〉ρ +

(
x(12)x(23) − ζ

−1x(13)x(12)

)
|τ−1〉ρ and σc,

recall (9) and Lemma 19 (iii).

Theorem 10. The proper D-submodules of M(e, ρ) are S(e, ρ) ⊂ X(e, ρ) where

(i) X(e, ρ) = DE is a highest-weight submodule of weight (σ,−).
(ii) S(e, ρ) = DC is a highest-weight submodule of weight (τ, 0).

Therefore
{
L(e, ρ), L(σ,−), L(τ, 0)

}
are the composition factors of M(e, ρ).

(σ,+)

C

E

(τ, 1)

Msoc

(σ,−)

(τ, 2)

(σ,+)

(τ, 0)

(e, ρ)

Figure 4: Submodules of M(e, ρ)

Appendix

Here we compute the action of y(12) ∈ D on the Verma Modules. We noticed in (35) that it suffices to calculate the
action of y(12) to know the action of the generators y(23) and y(13).

For the modules M(e,±) and M(e, ρ) we have only one list since all elements have weight e. For the module
M(σ,±) we have three lists (as the elements may have weight (12), (13) or (23)) and for the module M(τ, `) we have
two lists (for the possible weights (123) and (132)).

List 1: Action on M(e,±)
y(12) · (x(12)|e〉±) = (1 ∓ 1)|e〉±
y(12) · (x(13)|e〉±) = 0
y(12) · (x(23)|e〉±) = 0
y(12) · (x(12)x(13)|e〉±) = x(13)|e〉±
y(12) · (x(12)x(23)|e〉±) = x(23)|e〉±
y(12) · (x(13)x(12)|e〉±) = ∓x(23)|e〉±
y(12) · (x(13)x(23)|e〉±) = −x(13)(1 ∓ 1)|e〉±
y(12) · (x(12)x(13)x(12)|e〉±) = x(13)x(12)|e〉± ± x(12)x(23)|e〉±
y(12) · (x(12)x(13)x(23)|e〉±) = x(12)x(13)(1 ∓ 1))|e〉± + x(13)x(23)|e〉±
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y(12) · (x(13)x(12)x(23)|e〉±) = 0
y(12) · (x(12)x(13)x(12)x(23)|e〉±) = x(13)x(12)x(23)(1 ∓ 1)|e〉±

List 2: Action on M(e, ρ)
y(12) · (x(12)|τ

±1〉ρ) = 1|τ±1〉ρ − 1|τ∓1〉ρ
y(12) · (x(13)|τ

±1〉ρ) = 0
y(12) · (x(23)|τ

±1〉ρ) = 0
y(12) · (x(12)x(13)|τ

±1〉ρ) = x(13)|τ
±1〉ρ

y(12) · (x(12)x(23)|τ
±1〉ρ) = x(23)|τ

±1〉ρ
y(12) · (x(13)x(12)|τ

±1〉ρ) = −ζ±1x(23)|τ
∓1〉ρ

y(12) · (x(13)x(23)|τ
±1〉ρ) = −x(13)|τ

±1〉ρ + ζ±1x(13)|τ
∓1〉ρ

y(12) · (x(12)x(13)x(12)|τ
±1〉ρ) = x(13)x(12)|τ

±1〉ρ + ζ∓1x(12)x(23)|τ
∓1〉ρ

y(12) · (x(12)x(13)x(23)|τ
±1〉ρ) = x(12)x(13)|τ

±1〉ρ − ζ
±1x(12)x(13)|τ

∓1〉ρ + x(13)x(23)|τ
±1〉ρ

y(12) · (x(13)x(12)x(23)|τ
±1〉ρ) = 0

y(12) · (x(12)x(13)x(12)x(23)|τ
±1〉ρ) = x(13)x(12)x(23)|τ

±1〉ρ − x(13)x(12)x(23)|τ
∓1〉ρ

List 3: Action on M(σ,±)
y(12) · (x(12)|12〉±) = (1 ± 1)|12〉±
y(12) · (x(13)|12〉±) = ±1|23〉±
y(12) · (x(23)|12〉±) = ±1|13〉±
y(12) · (x(12)x(13)|12〉±) = x(13)|12〉± ∓ x(12)|23〉±
y(12) · (x(12)x(23)|12〉±) = x(23)|12〉± ∓ x(12)|13〉±
y(12) · (x(13)x(12)|12〉±) = 0
y(12) · (x(13)x(23)|12〉±) = −x(13)|12〉± ± x(12)|23〉±
y(12) · (x(12)x(13)x(12)|12〉±) = x(13)x(12)|12〉±
y(12) · (x(12)x(13)x(23)|12〉±) = x(13)x(23)|12〉± + x(12)x(13)|12〉±
y(12) · (x(13)x(12)x(23)|12〉±) = 0
y(12) · (x(12)x(13)x(12)x(23)|12〉±) = x(13)x(12)x(23)(1 ± 1)|12〉±

List 4: Action on M(σ,±)
y(12) · (x(12)|13〉±) = 1|13〉±
y(12) · (x(13)|13〉±) = 0
y(12) · (x(23)|13〉±) = 0
y(12) · (x(12)x(13)|13〉±) = x(13)|13〉± ± x(23)|23〉±
y(12) · (x(12)x(23)|13〉±) = x(23)|13〉±
y(12) · (x(13)x(12)|13〉±) = ±x(23)|13〉±
y(12) · (x(13)x(23)|13〉±) = −x(13)|13〉±
y(12) · (x(12)x(13)x(12)|13〉±) = x(13)x(12)|13〉± ∓ x(12)x(23)|13〉±
y(12) · (x(12)x(13)x(23)|13〉±) = (x(13)x(23) + x(12)x(13))|13〉± ∓ (x(13)x(12) + x(12)x(23))|23〉±
y(12) · (x(13)x(12)x(23)|13〉±) = ±x(13)x(12)|12〉±
y(12) · (x(12)x(13)x(12)x(23)|13〉±) = x(13)x(12)x(23)|13〉± ∓ x(12)x(13)x(12)|12〉±

List 5: Action on M(σ,±)
y(12) · (x(12)|23〉±) = 1|23〉±
y(12) · (x(13)|23〉±) = 0
y(12) · (x(23)|23〉±) = 0
y(12) · (x(12)x(13)|23〉±) = x(13)|23〉±
y(12) · (x(12)x(23)|23〉±) = x(23)|23〉± ± x(13)|13〉±
y(12) · (x(13)x(12)|23〉±) = ∓x(13)|13〉±
y(12) · (x(13)x(23)|23〉±) = −x(13)(1 ± 1)|23〉±
y(12) · (x(12)x(13)x(12)|23〉±) = x(13)x(12)|23〉± ∓ x(13)x(23)|13〉±
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y(12) · (x(12)x(13)x(23)|23〉±) = x(13)x(23)|23〉± − x(12)x(13)(1 ± 1)|23〉±
y(12) · (x(13)x(12)x(23)|23〉±) = ∓x(12)x(13)|12〉± ∓ x(13)x(23)|12〉±
y(12) · (x(12)x(13)x(12)x(23)|23〉±) = ±x(12)x(13)x(23)|12〉± + x(13)x(12)x(23)|23〉±

List 6: Action on M(τ, `)
y(12) · (x(12)|123〉`) = 1|123〉`
y(12) · (x(13)|123〉`) = 0
y(12) · (x(23)|123〉`) = −ζ`|132〉`
y(12) · (x(12)x(13)|123〉`) = x(13)|123〉` − x(23)|132〉`
y(12) · (x(12)x(23)|123〉`) = x(23)|123〉` + ζ`x(12)|132〉`
y(12) · (x(13)x(12)|123〉`) = 0
y(12) · (x(13)x(23)|123〉`) = −x(13)|123〉`
y(12) · (x(12)x(13)x(12)|123〉`) = x(13)x(12)|123〉`
y(12) · (x(12)x(13)x(23)|123〉`) = (x(13)x(23) + x(12)x(13))|123〉` + (x(13)x(12) + x(12)x(23))|132〉`
y(12) · (x(13)x(12)x(23)|123〉`) = ζ−`x(12)x(13)|132〉` + ζ−`x(13)x(23)|132〉`
y(12) · (x(12)x(13)x(12)x(23)|123〉`) = x(13)x(12)x(23)|123〉` − ζ−`x(12)x(13)x(23)|132〉`

List 7: Action on M(τ, `)
y(12) · (x(12)|132〉`) = 1|132〉`
y(12) · (x(13)|132〉`) = −ζ`|123〉`
y(12) · (x(23)|132〉`) = 0
y(12) · (x(12)x(13)|132〉`) = x(13)|132〉` + ζ`x(12)|123〉`
y(12) · (x(12)x(23)|132〉`) = x(23)|132〉` − x(13)|123〉`
y(12) · (x(13)x(12)|132〉`) = x(13)|123〉`
y(12) · (x(13)x(23)|132〉`) = ζ`x(12)|123〉` − x(13)|132〉`
y(12) · (x(12)x(13)x(12)|132〉`) = x(13)x(12)|132〉` + x(13)x(23)|123〉`
y(12) · (x(12)x(13)x(23)|132〉`) = x(13)x(23)|132〉` + x(12)x(13)|132〉`
y(12) · (x(13)x(12)x(23)|132〉`) = −ζ−`x(13)x(12)|123〉`
y(12) · (x(12)x(13)x(12)x(23)|132〉`) = x(13)x(12)x(23)|132〉` + ζ−`x(12)x(13)x(12)|123〉`
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