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ABSTRACT 
 

We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, 
which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on 
machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values 
and meteorological parameters as inputs. 

The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South 
America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos 
Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 
91% for this method and 57% for direct correlation. 

The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, 
the results for each AERONET station were individually analyzed. 

Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, 
especially for locations with systematic deviations. 
 
Keywords: Support Vector Regression; Artificial Neural Networks; AOD satellite retrieval; MODIS AOD bias correction; 
AERONET. 
 
 
 
INTRODUCTION 
 

The importance of aerosols has been increasingly 
stressed in recent decades. As aerosols scatter and absorb 
solar radiation, changes in their atmospheric concentrations 
and their chemical and physical properties can alter the 
transmission of the radiation through the atmosphere and 
impact climate change (IPCC, 2007). Regardless of the large 
number of studies dealing with the radiative properties of 
aerosols, their net effect on global climate is still unknown and 
represents one of the major uncertainties in the understanding 
of Earth’s climate system (e.g., Bond and Bergstrom, 
2006). An accurate estimation of the radiative effects of 
aerosols requires knowledge of their optical and physical 
properties (Tripathi et al., 2005). However, as a consequence 
of their short lifetime, aerosols exhibit a strong spatial and 
temporal variation in their properties and concentrations. 

To retrieve or infer the optical properties of aerosols, 
different procedures are used, mainly based on the interaction 
between particles and radiation (e.g., Giles et al., 2012). 
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Radiation measurements can be made at the surface or at 
different platforms such as satellites. Ground-based 
observations are measurements at a single point, and therefore 
cannot account for spatial variations unless a large network 
is operational. This gap can be filled by satellite sensors, 
which have the great advantage of covering the whole 
globe in a rather homogeneous manner. However, satellite 
measurements are based on important assumptions about 
the aerosol and surface properties. Surface measurements 
have not such constraint and therefore provide the aerosol 
optical properties with high accuracy. This is the reason 
why aerosol optical properties retrieved from satellites are 
usually validated against surface measurements (e.g., 
Estellés et al., 2012).  

The earth viewing sensor MODerate resolution Imaging 
Spectroradiometer (MODIS) aboard the NASA Earth 
Observing System Terra and Aqua satellites provides aerosol 
products in near-real time for monitoring and forecasting 
the aerosol transport (Kaufman et al., 1997). The evaluation 
of any retrieved data product is of critical relevance to 
establish its quality and suitability to be used in radiative, 
weather, and air pollution models. 

On a global scale, several studies have compared MODIS 
based aerosol optical depth (AOD) measurements with 
ground based measurements retrieved by AERONET (Holben 
et al., 1998) for different areas showing, in general, a good 
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correlation (e.g., Remer et al., 2008; More et al., 2013). 
Similar studies have been performed using the Multi-angle 
Imaging SpectroRadiometer (MISR) aboard Terra satellite, 
obtaining comparable correlations (Zhang and Reid, 2006; 
Khan et al., 2010). However, on a global comparison made 
by Mishchenko et al. (2010), the agreement is far less 
favorable than what has been obtained in previous studies. 

The number of studies investigating the satellite against 
ground based measurements correlation in South American 
stations is much more limited and they focus mostly on the 
biomass burning season. In one of these studies, Castro 
Videla et al. (2013) investigated the relative contribution 
of different South American biomass burning zones to the 
continental aerosol load. A comprehensive study for most 
of South American stations during the biomass burning 
season (August–October) has been published by Hoelzemann 
et al. (2009). In this work, they present a 2001–2007 
comparison between AERONET AOD observations and 
the MODIS AOD product from the Collection 5, finding 
that MODIS systematically underestimates the low AOD 
values and overestimates the high ones. MODIS products 
present some limitations over South America and some 
other regions around the globe. These limitations are related 
to the fact that the absorption and scattering properties of 
the aerosols display a significant variability on local or 
regional scales (Hoelzemann et al., 2009). In addition, most 
algorithms that retrieve AOD from satellite observation are 
derived from forward-simulation models according to the 
domain knowledge of the aerosol physical properties. AOD 
is retrieved by matching observed reflectance with the 
simulated values stored in the Look-Up Tables. One of the 
main problems of these tables is that they are generated 
using the aerosol properties from better characterized regions. 
Thus, they frequently have differences with the local aerosol 
properties. These algorithms are periodically tuned by domain 
scientists after validating the AOD values against the 
AERONET retrievals. Despite these drawbacks, satellite-
based observations help us to improve our knowledge on the 
geographical and temporal variation of aerosol properties, and 
for this reason, they represent an essential complement of 
the spatially limited surface measurements when seen from 
a large-scale perspective. Therefore, it would be useful to 
have a way to enhance the accuracy of MODIS, mainly for 
those cases where it has been demonstrated to fail. An 
efficient strategy is to build a model based on the collocated 
satellite and ground-based observations using satellite-based 
observations as inputs and ground-based observations as 
outputs. This model can therefore be used to predict AOD 
from satellite observations where ground-based retrievals 
are no longer available (temporally or permanently). If 
sufficient amount of training data is available, this model 
would be flexible to different retrieval scenarios and more 
accurate than the deterministic algorithms. Machine learning 
methods fulfill these requirements and have therefore been 
widely used in the aerosol science field in the last years 
(e.g., Hirtl et al., 2014). These studies use global or 
regional data sets to correct MODIS biases at these scales. 
However, they do not allow improving the retrievals in 
regions with low density of AERONET sites. Also, they do 

not account for the behavior of individual AERONET 
stations, making them reliable only on a global scale. 

In this work, a method to improve MODIS AOD (AODM), 
using AERONET AOD (AODA) as a reference, is presented. 
The method was applied to South American stations for the 
whole MODIS measurement period (2000–2014). We used 
the recently released MODIS Collection 6 (C6), which 
improves the algorithm from Collection 5, and corrects 
calibration errors of the MODIS sensor onboard Terra 
satellite (Levy et al., 2013). The method is based on machine 
learning techniques that significantly improve the results of 
the direct (AODM against AODA) correlation. The models 
were trained separately for every AERONET station in South 
America, seeking to improve the retrievals at each site and 
to provide a simple and reliable way to correct local bias 
and outliers. In order to make the method applicable to raw 
data, the outliers were not removed from the data set. To keep 
the method requirements at a minimum, only meteorological 
variables and two new variables (related to the average 
variation of the meteorological conditions throughout the 
year) were added as possible inputs. 
 
DATA 
 
AERONET 

AERONET (AErosol RObotic NETwork) is a remote 
sensing aerosol monitoring network of CIMEL sun-sky 
photometers, established and maintained by NASA and 
LOA-PHOTONS (CNRS) (Holben et al., 1998). It provides a 
long-term public database of aerosol optical properties in 
strategic sites all over the world. 

The photometer makes three solar extinction measurements 
in eight spectral bands 30 seconds apart, creating a triplet 
observation for each wavelength. These triplet observations 
are made every 15 minutes, and are then used to compute 
AOD. Sharp discontinuities among the triplets or between 
consecutive triplet averages allow cloud screening because of 
the different time variation presented by clouds compared 
to the aerosols. 

In this study, level 2.0 AODs (cloud screened and quality 
assured for instrument calibration), processed with the 
algorithm version 2 were used. As the AOD value at 550 
nm (measured by MODIS) is not provided by AERONET, 
the available AOD values at all the other wavelengths were 
adjusted to a log-log quadratic regression at a given time 
(Eck et al., 1999). 

Only stations having at least a thousand days of 
measurements were included in this work: Cordoba-CETT, 
CEILAP-BA, Arica, Sao_Paulo, CUIABA-MIRANDA, 
Campo_Grande_SONDA, Alta_Floresta, Rio_Branco, and 
SANTA_CRUZ (Fig. 1 and Table 1). In addition, ground-
based meteorological data have to be available within 40 km 
from the AERONET site. However, some of the stations that 
satisfied those criteria were not used. For example, La Paz, 
CASLEO, and Trelew were not used because the AODA 
values were very low (within the MODIS sensitivity). 
 
MODIS 

The MODIS (Moderate Resolution Imaging 
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Fig. 1. Geographical location of the used AERONET stations and the South American largest cities. 

 
Table 1. AERONET stations with their location, number of MODIS data, and average AODA (interpolated at 550) for the 
measurement period. 

Name Location 
Long; Lat 
[degrees] 

Elevation
[masl]

Number of  
MODIS data 
Terra / Aqua 

Average AODA

550 nm 

Alta_Floresta Alta Floresta, Brazil –56.10; –9.87 277 468 / 356 0.27 
Arica Arica, Chile –70.31; –18.47 25 320 / 428 0.22 

Campo_Grande_SONDA Campo Grande, Brazil –54.54; –20.44 677 635 / 472 0.13 
CEILAP-BA Buenos Aires, Argentina –58.50; –34.57 10 999 / 1023 0.092 

Cordoba-CETT Córdoba, Argentina –64.46; –31.52 730 765 / 602 0.084 
CUIABA-MIRANDA Cuiabá , Brazil –56.02; –15.73 210 836 / 597 0.23 

Rio_Branco Río Branco, Brazil –67.87; –9.96 212 490 / 213 0.25 
SANTA_CRUZ Santa Cruz de la Sierra, Bolivia –63.18; –17.80 442 250 / 218 0.18 

Sao_Paulo São Paulo, Brazil –46.73; –23.56 865 367 / 208 0.22 
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Spectroradiometer) instruments were launched aboard the 
Terra and Aqua satellites in the years 2000 and 2002, 
respectively, to make global observations of the earth in a 
wide wavelength range (Kaufman et al., 1997). These 
measurements are used to derive several aerosol parameters, 
based on the fact that the aerosol contribution is low at 2.1 
µm. This fact allows determining the surface reflectance at 
this wavelength and estimating its contribution in the 
spectral visible range. The top-of-atmosphere and surface 
reflectances are used as inputs of dynamical aerosol models to 
retrieve AOD values. Two algorithms are applied to 
retrieve AOD over land: dark target (Kaufman et al., 
1997), developed to be used over dense and dark 
vegetation, and deep blue (Hsu et al., 2004), that provides 
coverage over bright surfaces such as deserts. 

In this work, we used the recently released Atmosphere 
level 2, C6, product MOD04_L2 for Terra, and MYD04_L2 
for Aqua. Details of the modifications introduced in C6 are 
explained by Levy et al. (2013). All data available for each 
satellite up to the year 2014 were included.  Results for 
deep blue algorithm are not presented in this work (except 
for CEILAP-BA site) due to a variety of reasons. For 
Amazon rainforest-influenced stations, it is known (Sayer 
et al., 2014) that deep blue algorithm provides around 20% 
less matchups than dark target. As Sao_Paulo exhibits a 
similar yearly aerosol variation to the Amazonian stations, 
dark target was also the chosen algorithm. For the other 
sites, both algorithms were evaluated in all the cases in order 
to find out the best one to train the models. Dark target had 
the best correlation with AERONET in all the sites, except 
for Aqua satellite in CEILAP-BA site, where deep blue 
produced better results. It was noticeable that in the Arica 
site, a better performance of the deep blue algorithm was 
expected due to the proximity of the site to the desert, but 
its R2 was much lower than dark target (0.1 vs. 0.7).  

AOD at 550 nm was retrieved for both ocean and land 
only if it had the best quality data (QA Confidence Flag = 
3). The valid range for this parameter goes from –0.05 to 
5.00. Negative values appear because MODIS does not have 
sensitivity over land to retrieve AOD values with accuracy 
better than ±0.05. These values are indicative of very clean 
conditions and they are allowed in order to avoid an 
artificial bias in statistics. 

AOD 550 values are available from the Level 1 and 
Atmosphere Archive and Distribution System (LAADS) 
website (http://ladsweb.nascom.nasa.gov) and are delivered in 
Hierarchical Data Format (HDF), with a pixel resolution of 
10 km × 10 km (at nadir). 
 
METHODOLOGY 
 
AOD Spatiotemporal Collocation 

Comparison between MODIS and AERONET values is 
not direct: even though the measurement times were 
coincident (which rarely happens), the single data obtained 
by the sun-photometer at a given time is not equivalent to 
the geographically averaged AOD retrieved over the 
MODIS pixel. Hence, to validate the MODIS retrievals, it 
is necessary to employ a spatiotemporal approach to ensure 

a proper comparison between both measurements. To do so, 
the spatial average of the pixels that fall within a 22.5 km 
radius from the AERONET station is computed and correlated 
with the temporal average of the AERONET measurements 
that fall within ±30 minutes of MODIS overpass (Petrenko 
et al., 2012). In this work, the geographical and temporal 
averages were calculated. To evaluate the temporal averages, 
at least two data points were required. This widely used 
(e.g., Remer et al., 2008) spatiotemporal approach is 
available at MAPSS webpage (http://giovanni.gsfc.nasa. 
gov/mapss/) for each AERONET station over the world. 
 
Machine Learning Methods 

Machine learning is a subfield of artificial intelligence 
which attempts to develop algorithms that can empirically 
learn from the behavior or the properties of a given data 
set. The methods used in this work were Artificial Neural 
Networks (ANN) and Support Vector Machines (SVM). In 
these methods, a training data set is provided separated into 
“inputs” and “outputs”, and the algorithm tries to find a 
connection between them. The outputs are the variables to 
be predicted, while the inputs are the variables which will feed 
the algorithm. A portion of the dataset was not used during 
the training; it was reserved only for validation purposes. 

In this work, the goal is to obtain an AOD value from 
MODIS as close as possible to the one obtained from 
AERONET. AODM (collocated with AODA as previously 
described) with the addition of variables representing the 
day of the year and meteorology were used as inputs, and 
AODA was used as output. 
 
Machine Learning Methods - Artificial Neural Network 

ANNs are a kind of machine learning method inspired in 
biological nervous systems (Basheer and Hajmeer, 2000). 
ANNs are composed of several processing units called 
neurons, working in parallel. In the structure of a typical 
ANN, the inputs are connected to one or several layers of 
neurons which, in turn, are connected to the outputs. The 
weights of these connections are the parameters adjusted 
during an ANN training. The training process is iterative: 
in each loop the root mean square error, rmse, is evaluated 
and, according to the result, the connection weights are 
modified until the network can correctly predict the outputs. 
This way of training is called supervised learning because 
the truthful outputs are provided. 

In this work, the training was carried out using the 
Matlab® Neural Network Toolbox (version 2011Rb). The 
data set was randomly separated into three sub-sets: 70% 
of the data were used for training the ANN, 15% of the data 
were used for validation (by evaluating the rms error), and 
15% of the data were used for testing after the training was 
completed. The ANNs were trained using the Levenberg-
Marquardt back-propagation algorithm, changing both the 
number of neurons (only one layer was used) and the transfer 
function in order to find the best network architecture for 
each data set. 
 
Machine Learning Methods -Support Vector Regression 

SVMs were first introduced and developed for 
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classification and regression problems (Vapnik, 1995). SVMs 
are widely accepted in the machine learning community. 
They have been used for a broad range of applications 
because of their ability to generalize (e.g., Hirtl et al., 2014). 
One of its important characteristics is that when a data set 
is not linearly separable, the SVM method uses a kernel 
representation to project the data onto a high dimensional 
feature space where the linear separation is possible. 

Briefly, the goal in the Support Vector Regression 
technique (SVR) is to find a function f(x) that has at most ε 
deviation from the outputs of the training data set and, at 
the same time, is as flat as possible to control the system 
complexity and the training error simultaneously. However, 
not all data pairs can be adjusted with ε deviation and need 
to be captured by slack variables ξi,, ξi

* (ξi
(*) refers to both of 

them), which are penalized in the function by introducing a 
regularization constant C. In this work, the method υ-SVR 
was used (Schölkopf et al., 2000), which introduces a constant 
υ ∈ (0, 1) that moderates the value of ε. The size of ε is a 
tradeoff between model complexity and slack variables. 

Given a simple training data set {(x1, y1), …, (xl, yl)} the 
linear function can be written in terms of a weight vector w 
and a bias b: 
 

 x w, xf b    .  (1) 

 
Function flatness can be achieved seeking a small w, and 

one way to ensure this is to minimize the norm 

(
2

w ,w w   ). The problem can be written as a convex 

optimization problem, which allows finding the global 
minimum, i.e., 
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. (2) 

 
This optimization problem can be solved more easily in 

its dual formulation, introducing multipliers for the constraints 
(αi

(*), ηi
(*), β) and constructing the Lagrangian In order to 

minimize expression (2), it is necessary to find the saddle 
point of the Lagrangian function, which yields to Eq. (3) 
and the support vectors. 
 

 *
i i i

i

w x    (3) 

 
To make the SV algorithm nonlinear, the training data 

pairs are mapped into some feature space with higher 
dimensionality using a kernel function k(x, y) to carry out 
all computations in that space but without using directly 
the function Ф that maps into that space 
 
k(x, y) = (Ф(x)·Ф(y)) (4) 

Finally, the υ-SVR optimization problem is to maximize: 
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In this work, the υ-SVR provided by the library LIBSVM 

(Chang and Lin, 2011) was used. The data set was 
randomly separated into two equally sized sub-sets. One 
sub-set was used for training and the other one for testing. 
The histogram of the output values was uniform for both 
sub-sets. For each data set, the cross validation accuracy 
for different combinations of C and γ (a kernel parameter) 
was evaluated to find the best combination for each particular 
case. The value of υ was changed only for one data set, 
observing no significant improvement in the correlation. 
Therefore, a fixed value of υ (0.5), which is the default 
value in LIBSVM, was used. 
 
Inputs Design 

With the purpose of finding the best set of inputs for 
each station, all the variables were collocated in space and 
time as described before. Day of the year (DOY) could be 
used as a parameter to represent meteorological conditions. 
However, to make the DOY representative, it was necessary 
to introduce some modifications, given the fact that January 
1st and December 31st have nearly the same average 
conditions. This is because they are placed at the ends of 
the DOY scale (1 and 365, respectively). Therefore, the DOY 
was modified to create a different, but related variable: the 
modified DOY (MDOY) (Olcese et al., 2015). The MDOY is 
equal to 1 on January 1st, reaches its highest value (183) on 
July 1st and July 2nd, and then decreases to be again equal 
to 1 on December 31st (Eq. (6)), so it represents the annual 
average trend of meteorological conditions. In addition, to 
differentiate MDOY with the same values, a complementary 
variable called MDOY direction was introduced. 
 

, 183

365 , 183

DOY DOY
MDOY

DOY DOY

   
 

0, 183
 

1, 183

DOY
MDOY direction

DOY


  

 (6) 

 
In some cases (Table 2), actual meteorological data 

needed to be included in order to improve the prediction 
capability. In these cases, meteorological variables 
(temperature, relative humidity, wind speed and direction)  
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were taken from weather stations located no further away 
than 40 km from the AERONET stations. Wind direction 
was considered as a vector with (x, y) components. The 
meteorological variables included here were the only ones 
found to be relevant to our model. As the meteorological 
data were available as one hour averages, some considerations 
about the correspondence between the MODIS passing 
time and the meteorological data were necessary. If the 
MODIS passing time over the site was during the first half 
of a given hour, then the average meteorological data from 
that particular hour were used. Otherwise, values for the 
next hour were used. It should be noted that not all the 
AOD values have their corresponding meteorological data, 
which implies that not all the AOD data were included in 
the finally selected data set. To verify that this loss of data 
does not introduce an artificial bias, the R2 and the slope 
from both linear correlations between AODM and AODA 
(with and without meteorology) were compared, without 
observing significant differences. 

Because every site is different, it is not possible to know, 
a priori, which is the best combination of variables producing 
the best correlation for each machine learning method. 
Therefore, after all inputs were spatial and temporally 
collocated, each of the 32 possible combinations among 
AODM and up to five of the other variables (MDOY and 
MDOY direction/temperature/relative humidity/wind speed/ 
x and y wind directions) was evaluated in order to determine 
the best set. Every combination was used for training both 
ANN and SVR. 
 
Best Model Selection 

A comprehensive procedure was carried out to evaluate 
the best combination of ANN/SVM architecture and the best 
combination of inputs, referred as models from now on. 

Once the models were trained, a linear regression between 
the model output and AODA was performed. To evaluate 
model performance, the coefficients of determination (R2) 
for the training, testing and the whole data set were 
computed. The best model and input variables for each site 
and satellite (Terra and Aqua) were selected according to the 
highest R2 for the unseen testing set only if the difference 
between the highest and the lowest R2 (for all the sub-sets) 
was less than 0.07. This constraint assured that the model 
worked well with the whole data set (seen and unseen values), 
ensuring also that there was no overtraining/memorization. 

Choosing which machine learning method was the best 
for each site was not always straightforward because only 
in a few sites a method performed much better than the other 
one. The ideal method should yield the highest R2 for the 
whole data set, have a slope close to 1, and predict values as 
close as possible to AODA. In the sites where the results 
from ANN and SVR were very similar, additional conditions 
were considered: the method should include the lowest 
number of inputs, predict correctly the highest AOD values, 
and reproduce properly its annual variation. 
 
RESULTS AND DISCUSSION 
 

The direct correlation between AODA and AODM 
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measurements and the results for the model considered as 
the best one (ANN or SVR) are shown in Fig. 2 (Terra) 
and Fig. 3 (Aqua). In these figures, the equations for the 
linear fits are included in each panel. In general, these 
figures show several improvements with respect to the 
direct correlation. One of the most noticeable improvements 
was that almost all the outliers were corrected. The other 
one was that both the systematic under and overestimations 
existing at some sites were not longer present. 

Fig. 4(a) depicts the R2 values for the direct and improved 
correlations for the Terra satellite. Fig. 4(b) shows the slopes 
and Fig. 4(c) shows the fraction of data falling within the 
expected error for the dark target algorithm, which has 
been determined to be ±(0.05 + 0.15 × AODA) (Levy et al., 
2013). Figs. 4(d)–4(f) shows the equivalent results, but for 

Aqua satellite. Fig. 5 shows the percentage of improvement 
of the previous variables compared to the AODM. The 
improvement in the slope is calculated considering its 
closeness to 1. Table 2 shows the combinations of input 
variables used to obtain the best results at each site. 

In order to show the overall performance of the methods 
for all the South American stations, histograms of the 
difference between AODA and the model results, as well as 
the same histogram, but for the direct correlation are 
presented in Fig. 6. It can be seen that in 81% and 80% of 
the cases (Terra and Aqua, respectively) the results fall 
within the sensitivity of MODIS over land (±0.05), which 
represents a large improvement over the 42% for Terra and 
42% for Aqua for the direct correlation. 

However, an analysis of the continental improvement

 

 
Fig. 2. Direct (red points) and improved (black points) Terra AODM vs. AODA correlation, the method used to obtain it, 
and the corresponding linear fit equations. 
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Fig. 3. Direct (green points) and improved (black points) Aqua AODM vs. AODA correlation, the method used to obtain it, 
and the corresponding linear fit equations. 

 

does not reflect the MODIS drawbacks and the method 
performance for each particular station. Therefore, a 
comprehensive analysis of the results for each site is 
presented in the following sections. 
 
Buenos Aires (CEILAP-BA) 

The characteristics of pollution detected in Buenos Aires 
city are very particular. Although it is one of the South 
American megacities, with a population of nearly 13 
million inhabitants, it does not have an aerosol load as high 
as it would be expected. This is mainly because of the 
flatness of the terrain and its coastal location at the edge of 
the Río de la Plata River (50 km wide at that point). These 
characteristics lead to a quick dilution and ventilation of 
the air pollutants, mainly because of the winds blowing 

from the river (Arkouli et al., 2010). 
The direct correlation between AODA and AODM values 

shows a R2 equal to 0.52 and 0.33 for Terra and Aqua 
satellites, respectively. These low correlation values were 
expected, given that it is a known fact that the MODIS aerosol 
algorithm cannot provide accurate retrievals in coastal zones 
due to surface inhomogeneity and/or sub-pixel water 
contamination (Chu et al., 2002). The regression not only 
is low but also shows a strong overestimation of the AODA 
values, as can be seen more clearly in Figs. 2 and 3. 

This is the only site where the deep blue product from the 
Aqua satellite was used. A large discrepancy was observed 
in the AOD retrievals from both satellites (although both 
were low), mainly in the R2 values. The reason for this 
large difference is still not clear. One possible explanation 
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Fig. 4. R2, slope and fraction within error values for the linear fit between AODM and AODA (solid) and between the best 
model and AODA (dashed). 

 

is related to the effect of different aerosol patterns in the 
morning (Terra) and in the afternoon (Aqua). In addition, 
the low average aerosol load (AODA values are 0.092 and 
0.089 at the time of Terra and Aqua overpass, respectively) 
coupled with the MODIS uncertainties (±0.05 units) can 
produce large errors in the determinations. 

Regarding the correlations using machine learning 
methods, both SVR and ANN showed an important 
improvement over the direct correlation. Using ANN, the 
R2 values improved 0.75 for Terra and 0.59 for Aqua; 
similar values were obtained using SVR. Here, it is important 
to note that the use of the ANN allowed discriminating 
which of the high AODM values corresponded to the actual 
high AOD values and which ones were consequences of 
errors in the MODIS algorithm. As expected, and despite 
the noticeable improvement in the correlation, the discrepancy 
in the retrievals from both satellites was not removed (in 
both cases there was a difference of about 0.25 units in the 
R2 values). 

The systematic overestimation was noticeably improved 
by the method. A histogram of the data (not shown), 
similar to Fig. 6, shows that in the improved method for 
Terra, 92% of all the points fall within the expected error 
of the MODIS algorithm (compared to 35% for the direct 

correlation). For Aqua, these values are 89% and 63%, 
respectively. Temporal series of the AODA minus AODM 
are presented in Figs. 7(c)–7(d), where it can be seen how 
the model corrects not only the systematic overestimation, 
but also the outliers frequently found in this station. 
 
Córdoba (Cordoba-CETT) 

The AERONET station is located in a rural area, 20 km 
to the west of Córdoba City (around 1.5 million inhabitants). 
The meteorology in this region is characterized by dry 
winters and rainy summers. During the dry season (April–
September) the surrounding hills and mountains are prone 
to fires, especially during winter–spring time. Monthly AOD 
variation shows a spring peak with the maximum value 
around September–October, similarly to what has been 
observed for other sites in South America. In this period, 
the low humidity, the dryness of the soil, and the strong 
winds favor the relatively high aerosol loading. The opposite 
situation (low wind speed and frequent precipitations) is 
observed during summer and fall leading to the low AOD 
values (Olcese et al., 2014). 

The direct correlation between AODA and AODM values 
showed a R2 of 0.58 and 0.62 for Terra and Aqua satellites, 
respectively. AOD values are underestimated by MODIS 
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Fig. 5. Percentage of improvement of R2, slope and data fraction within error when applying the best method compared to 
the direct correlation. 

 

 
Fig. 6. Histogram of AODA minus AODM for all South American stations, and for the direct and the improved values with 
the chosen method. 

 

in most of the cases, probably due to an incorrect 
characterization of the local aerosols and the 
predominantly low AOD values observed. Although the 
underestimation is systematic throughout the year, it is 
within the MODIS sensitivity. This problem is particularly 
noticeable for the monthly average values (not shown). 

The method improved these correlations by 35 and 21% 
for Terra and Aqua, respectively. The underestimation 
problem was corrected, and in the few cases where the 
AOD values were high, the predictions are now much 
closer to the ground-truth AERONET values. 
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Fig. 7. Temporal series of AODA minus AODM in CEILAP-BA and Campo_Grande_SONDA stations for the direct and 
the improved values with the chosen method. 

 

Arica (Arica) 
The AERONET station is located in the coastal city of 

Arica, Chile (about 200,000 inhabitants). The city is 
surrounded by the Atacama Desert, and the monthly 
variation of the AOD (not shown here) is remarkably 
different from all the other stations in South America. The 
main source of aerosols in this site is the dust coming from the 
desert, identifiable even by satellite. There is no contribution 
of urban or biomass burning related aerosols (Mélin et al., 
2010). Although the site is close to the Amazon rainforest 
(around 400 km), its location on the west side of the Andes 
mountain range prevents the transport of aerosols produced 
by the biomass-burning activities in that region. 

The yearly average AOD is 0.22 with almost no seasonal 
dependence. There is a small peak in August, probably 
related to a slight change in the weather conditions, mainly 
due to an increase in the relative humidity. 

The direct correlation gave R2 values of 0.71 and 0.61 
for Terra and Aqua, respectively. This correlation is good 
for a coastal station, specially compared to Buenos Aires. The 
machine learning algorithms produced R2 values of 0.76 
for Terra and 0.72 for Aqua, which represent an improvement 
of 7% and 18%, respectively, although the slope values 
were further away from 1. This was the only site where the 
benefits of the utilization of the method over the direct 
correlation were only marginal. 
 
São Paulo (Sao_Paulo) 

The AERONET site in São Paulo City (20 million 

inhabitants in the metropolitan area) is located about 60 km 
away from the coast so that the satellite measurements are 
not influenced by the water surface as in Buenos Aires. 
Although both São Paulo and Buenos Aires are megacities, 
their monthly variation patterns of AOD are different. São 
Paulo shows a strong AOD peak in September, mainly related 
to biomass burning emission from the Amazon rainforest 
and the Cerrado region, located in the southeast of the 
Amazon (Landulfo et al., 2003). In addition, fires related 
to agricultural activities and sugar cane harvesting inside 
and close to the São Paulo state during the dry season (June–
October) contribute to these high AOD values (Hoelzemann 
et al., 2009). During the rest of the year, the monthly 
average values of AOD are around 0.15, which is twice the 
value recorded in Buenos Aires (0.07). The cause of this 
difference may be related to the higher emissions and a 
stable planetary boundary layer, producing frequent thermal 
inversion layers, thus resulting in unfavorable conditions 
for the dispersion of pollutants (de Almeida Albuquerque 
et al., 2011). The direct correlation showed a R2 coefficient 
of 0.75 for Terra and 0.86 for Aqua. In the case of Terra 
and Aqua measurements, there was a slight, but systematic 
overestimation of values in the September–March period, 
as well as a slight, but systematic underestimation of AOD 
values in the May–August period. The slope of the linear 
fit is 0.95, but this is caused by the compensation between 
under and overestimated measurements. Thus, this number 
cannot be used as an indicator of a good estimation. 

The increase in the R2 coefficient was 15% for Terra and 
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7% for Aqua. More importantly, the Terra and Aqua 
under/over estimation was corrected. 
 
Amazon Rainforest-Influenced Stations (Alta_Floresta, 
CUIABA-MIRANDA, Rio_Branco, 
Campo_Grande_SONDA, SANTA_CRUZ) 

The Rio_Branco and Alta_Floresta stations are located 
in the Amazon rainforest. Instead, CUIABA-MIRANDA, 
SANTA_CRUZ and Campo_Grande_SONDA are located 
in its vicinity (about 200, 400 and 600 km, respectively). The 
aerosol regimes of all these stations are heavily influenced by 
the rainforest emissions (Hoelzemann et al., 2009). The 
average monthly variation for these stations shows low 
AOD values from January to July, then a steep increase, 
reaching the peak in September, and finally a decrease up 
to the minimum value in November. The main factor 
controlling this pattern is the biomass burning, as there is a 
strong correlation between the burned area and AOD levels 
(Bevan et al., 2009). This pattern is valid even for the more 
urban influenced site located in Santa Cruz de la Sierra. 
The AOD values recorded in these stations were the highest in 
South America, with many values higher than 1. 

The general agreement between AODM and AODA in the 
region is very good, being all the R2 higher than 0.89. 
Nevertheless, MODIS underestimates the lower values and 
overestimates the larger values, which may indicate an 
incorrect parameterization of particle absorption (Hyer et 
al., 2011), although this overestimation has been partially 
corrected in the C6. 

As an example, the results from Campo_Grande_SONDA 
site are analyzed in detail. In this site, MODIS underestimates 
AOD values lower than one. The opposite behavior is 
found at the CEILAP-BA station. In addition, the AOD 
values higher than one are sometimes overestimated, which 
is particularly notorious when plotting the temporal series 
of AODA minus AODM (Figs. 7(a)–(7b)). Both deviations 
were corrected by the model. The overestimation of the 
higher values did not perceptibly change the R2 because 
the correlation between the points with lower AOD values 
is very good. Nevertheless, this drawback would prevent 
the use of the highest AOD values from MODIS in case 
the AERONET station is not operative. 

Even though the direct correlations for the Amazon 
rainforest-influenced sites are very good, there is still room 
for some improvements. First, the results of the machine 
learning methods showed a small improvement in the 
correlation. Second, the overestimations were corrected, 
which resulted in a significant improvement of the regression 
slopes. Lastly, the fraction of data within the expected 
error was strongly increased, going from 62% and 57% to 
94% and 91% (Terra and Aqua respectively). 

Going a step further in this subject, and given the 
important number of AOD values higher than 1 found at 
these stations, a more detailed study about the overestimation 
problem was carried out using this particular subset of data 
(Figs. 8(a)–8(b)). In this case, the R2 values increased from 
0.77 to 0.95 for Terra satellite and from 0.62 to 0.80 for 
Aqua. The slopes of the fitted line showed values of 0.97 
instead of 1.42 for Terra and 0.80 instead of 1.20 for Aqua. 

 
Fig. 8. AODM vs. AODA correlation (for AODM values larger 
than 1) in Amazon rainforest-influenced stations for the 
direct and improved correlations. Linear fit is also showed. 

 

SUMMARY AND CONCLUSIONS 
 

In this work, a method to correct AOD values measured 
by the MODIS instruments was presented. The method is 
based on machine learning techniques using AODM values 
and meteorological parameters as inputs. The method was 
applied to nine stations in South America, located in a 
variety of environments, showing significant improvements 
in the correlations between the recently released MODIS 
Collection 6 and AODA values. The improvement was 
particularly noticeable since it corrected the outliers of 
high AOD values, the underestimation of low AOD values 
measured at the stations in the Amazon region, and the 
systematic overestimation and outliers in Buenos Aires City. 

In theory, SVR should be better to generalize the 
relationship between the pairs of inputs-outputs without 
memorizing them (thus being able to predict new cases). 
However, ANN and SVR methods performed similarly well 
at estimating the AOD, measured in terms of the coefficient 
of determination (R2). Based on this, there is not a simple 
way to determine which method will produce the best 
results; the choice of the technique will depend on the user 
preference. Computationally, the search for the optimum 
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conditions to run the model (network topology in ANN and 
parameters in SVR) is time and resource consuming. 
However, once the conditions are found, the implementation 
of both methods is fast and straightforward. 

The input variables required to estimate the AOD 
values, in addition to AODM, were the MDOY and the 
MDOY direction for most of the sites. This result 
reinforces the idea that the simple addition of MDOY is a 
reasonable way to represent the annual average variability in 
the weather conditions. All the other variables (temperature, 
RH, wind speed and wind direction) were used in 
approximately the same number of sites (about half of 
them). No clear correlation has been observed among the 
required meteorological variables, their ranges and which 
of them were used in each site. Other input variables, such 
as planetary boundary height, aerosol composition, etc., 
were not included because they are not available for all the 
sites of the study. 

This method can also be applied to other regions of the 
world, especially in zones where the aerosols are poorly 
characterized, and thus the MODIS algorithm is less reliable. 
Those zones are located mostly in Africa, Asia and Australia 
(Shi et al., 2011). The only requirement to train a model is 
to have an AERONET station and meteorological data. 

It would be interesting to extend the applicability of the 
method to regions where ground-based data were never 
available. One possible way to accomplish that is to define 
an area surrounding each station in which the obtained 
model would still be valid. Once this area is defined, the 
AOD values from MODIS can be corrected for this region. 
Elbern et al. (2007) used this approach to estimate the shape 
of these areas for several chemical species in Europe, and 
Hoelzemann et al. (2009) used a similar approach to find 
the area of influence of the AERONET stations in South 
America during the biomass burning season. This kind of 
studies can be improved by using the correction of the 
MODIS values proposed in this work. 

Estimations of PM2.5 and PM10 based on satellite 
measurements are a topic of great relevance to the 
atmospheric sciences (e.g., Luo et. al, 2015). By using 
local measurements of particulate matter, and applying a 
similar methodology to that described in this work, it 
would be possible to obtain better values of PM2.5 and 
PM10 from satellite measurements. Although the use of this 
method to estimate particulate matter would require other 
input variables measured by MODIS or by local stations, it 
can be useful for underdeveloped zones, where particulate 
matter is not routinely measured and the only sources of 
data are short or sparse campaigns. 
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