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Abstract

BCS is a method to estimate body fat stores and accumulated energy balance of cows. 
This value influences productivity, reproduction, and health of cows. Therefore, it is 
important to monitor BCS to achieve a better animal response. In practice, this task 
is performed by expert scorers mainly visually, and could vary between scorers and 
be time-consuming. For this reason, several studies have tried to automate BCS by 
applying image analysis and machine learning techniques. An overview of selected 
studies is provided in this mini review.
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[2,3]. Extreme values of BCS are related with health risk, low 
productivity level and impaired pregnancy rate [4-7]. The 
subjectivity in the judgment of raters can lead to different 
scores for the same cow under consideration, or inconsistent 
scores of the same expert, which requires regular repeatability 
assessments [8]. As a result of the increasing availability of wide 
range of information and communication technology (ICT), 
more and higher-quality information to be available is expected 
in support of daily decision-making [9]. Consequently, there 
are multiple opportunities for automation and digitalization of 
livestock farming tasks, and different studies have particularly 

focused on automation of BCS. This brief review selects the most 
relevant and recent studies on the topic. 

Discussion
Different authors have studied the feasibility of utilizing digital 

images to determine BCS. In this mini review relevant works 
later than 2007 and based on cow images from a top view were 
considered. In the Table 1 main characteristics and results from 
the selected papers are shown. Developed methods have two 
stages: 

Abbreviations: BCS: Body Condition Score; ICT: Information 
and Communication Technology; 3D: Three-Dimensional

Introduction
The BCS system is a means of accurately determining body 

condition of cows, independent of body weight and frame size 
[1], using a 5-point scale with 0.25-point increments (with 1 
representing emaciated cows and 5 representing obese cows) 

Table 1: General characteristics and results of BCS estimation systems.

Work Camera Cow Breed Dataset Size (# of 
Images)

Automation 
level Real Time Results

Bewley et al. [10] 2D Digital Holstein-
Fresian

834 (US-BCS), 767 (UK-
BCS) Low NO 92.79% within 0.25, 100% within 0.5

Krukowski [11] 3D, ToF SRB 351 (training), 120 (test) Medium NO Test Set: 20% within 0.25, 46% within 0.5

Anglart [20] 3D, ToF SRB 1329 (10% training, 
90% test) Medium N/A R=0.84.

69% within 0.25, 95% within 0.50

Azzaro et al. [12] 2D Digital Holstein-
Fresian 286 Low NO ErrorLOOCV=0.31

Halachmi et al. [17] Termal Holstein 172 High YES R=0.94

Bercovich et al. 
[13] 2D Digital Holstein 87 (training), 64 (test) Medium NO

Test set: R2=0.64.
Around 50% within 0.25, around 100% 

within 0.75
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Salau et al. [14] 3D, ToF Fleckvieh

540 (for GLM with all 
features).

514 (for correlation 
analysis on individual 

features)

High NO RGLM
2=0.7

Hansen et al. [18]

3D, Light 
Coding (RGB 

+ depth 
sensor)

Holstein-
Fresian 95 High YES

N/D. Inverse relationship between angularity 
and BCS.  High repeatability scoring an 

individual cow (14/15).

Fischer et al. [15]
3D, Light 

Coding (RGB 
+ depth)

Holstein 57 (training), 25 (test 
cows), 25 (test stage) Low NO

Test Set 1: R=0.89 y RMSE=0.31.
Test Set 2:

R=0.96 y RMSE=0.32

Shelley [19]

3D, Light 
Coding (RGB 

+ depth 
sensor)

Holstein 18517 High NO 71.35% within 0.25, 93.91% within 0.5

Spoliansky et al. 
[16]

3D, Light 
Coding (RGB 

+ depth 
sensor)

N/A 11824 High NO R2=0.75.
74% within 0.25, 91% within 0.5

2D: Two Dimensional; 3D: Three-Dimensional; ToF: Time-of-Flight; SRB: Swedish Red Breed; GLM: Generalized Linear Model; US-BCS: United State Body 
Condition Score; UK-BCS: United Kingdom Body Condition Score; R: Correlation Coefficient; R2: Coefficient of Determination; LOOCV: Leave One Out 
Cross Validation; RMSE: Root Mean Square Error

(i)	 Image analysis techniques to extract relevant characteristics 
(such as angles, distances and areas between anatomical 
points; intensity/depth pixels values; cow contour or a 
representation of it) to differentiate fat reserves levels of 
cows; 

(ii)	 Usage of collected characteristics to implement a BCS 
estimation model. Mostly, there are two types of models 
used: regression analysis models (as in [10-16]) and 
algorithms that measure cow’s body angularity (as in [17-
19]) according to the hypothesis that the body shape of a 
fatter cow is rounder than that of a thin cow. Moreover, three 
automation levels are described. In the lowest level are 
[10,12,15], which require to manually identify anatomical 
points in the images to extract characteristics to develop 
the estimation models. In the medium level are [11,13,20], 
where the input images used are manually selected, but 
the rest of the process is automatic. Finally, in the highest 
level are [14,16-19], where the process is completely 
automated. Among the latter studies, only [17,18] carry out 
real time estimations (i.e. estimation result is showed to 
the user few seconds after the cow goes under the camera) 
because image preprocessing techniques (segmentation, 
normalization, features extraction) used in the other 
studies are time-consuming. In more recent studies the 
use of 3D cameras is more frequent. The use of thermal 
cameras [17,21], although allows an easy segmentation of 
the entire body of the cow (the warm cow shape highlight 
above its cold surroundings), are less common probably 

associated to a their higher costs. In [11] and [20] they used 
red breed dairy cows because the camera used to acquire 
the images has operational problems with black pigment 
cows. The selected studies applied different statistical 
metrics to estimate BCS visually observed by experts, and 
the most frequently used indicator was the accuracy of the 
automatic estimated scores to be within ±0.25 and within 
±0.50 increment score of the manual BCS. However, more 
efficient computing processing methods based on powerful 
machine learning technique fated to improve BCS accuracy 
are under testing [22].

Conclusion
The literature attempts to automate BCS assessment look 

promising as a tool for supporting cattle decision-making, in 
a context where ICT technology is becoming more efficient, 
productive, and cheaper. Acceptable accuracy within the range of 
human error have been reported, with room for improvement as 
more effective computing processing methods became available. 
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