
ar
X

iv
:1

60
6.

06
32

2v
2 

 [
m

at
h.

R
T

] 
 8

 J
ul

 2
01

6

CLASSIFICATION OF FINITE DIMENSIONAL UNISERIAL

REPRESENTATIONS OF CONFORMAL GALILEI ALGEBRAS

LEANDRO CAGLIERO, LUIS GUTIÉRREZ FREZ, AND FERNANDO SZECHTMAN

Abstract. With the aid of the 6j-symbol, we classify all uniserial modules of
sl(2) ⋉ hn, where hn is the Heisenberg Lie algebra of dimension 2n+ 1.

1. Introduction

We fix throughout a field F of characteristic zero. All Lie algebras and represen-
tations considered in this paper are assumed to be finite dimensional over F, unless
explicitly stated otherwise.

Given a Lie algebra g and a g-module V , the socle series of V , namely

0 = soc0(V ) ⊂ soc1(V ) ⊂ · · · ⊂ socm(V ) = V

is inductively defined by declaring soci(V )/soci−1(V ) to be the socle of V/soci−1(V ),
that is, the sum of all irreducible submodules of V/soci−1(V ), 1 ≤ i ≤ m. By def-
inition, V is uniserial if the socle factors soci(V )/soci−1(V ) are irreducible for all
1 ≤ i ≤ m. In other words, V is uniserial if its socle series is a composition series,
or equivalently if its submodules are totally ordered by inclusion.

Uniserial and serial modules or rings are very important in the context of asso-
ciative algebras and there is an extensive literature devoted to them. For instance,
the class of serial rings and algebras includes discrete valuation rings, Nakayama al-
gebras, triangular matrix rings over a skew field and Artinian principal ideal rings
(see [EG, Pu]). In particular, every proper factor ring of a Dedekind domain is
serial. Also, serial algebras occur as the group algebras in characteristic p (see,
for instance [Sr]). In [BH-Z], among other things, a characterization of algebras of
finite uniserial type is given. In contrast, there are only few papers devoted to the
study these concepts for Lie algebras.

This work is a new step in a project aiming to systematically investigate the
uniserial representations of Lie algebras. Here, we classify all uniserial g-modules
for g = sl(2) ⋉ hn, where hn is the Heisenberg Lie algebra of dimension 2n + 1
and sl(2) acts on hn so that both the center z of hn and hn/z are irreducible
sl(2)-modules. More precisely, given an integer a ≥ 0, let V (a) be the irreducible
sl(2)-module with highest weight a. Thus,

hn ≃ V (m)⊕ V (0), m = 2n− 1,

as sl(2)-modules. The Lie algebra g is a conformal Galilei algebra and it is an im-
portant object in mathematical physics. Galilei algebras and their representations
attract considerable attention (see [AIK], [LMZ] and references therein).
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Previously, we obtained a classification of all uniserial g-modules when g = sl(2)⋉
V (a), a ≥ 1, over the complex numbers (see [CS1]), as well as when g is abelian,
over a sufficiently large perfect field (see [CS2]). In the first case the classification
turns out to be equivalent to determining all non-trivial zeros of the Racah-Wigner
6j-symbol within certain parameters, while in the second a sharpened version of
the Primitive Element Theorem plays a central role, specially over finite fields.

In this article we focus on g = sl(2) ⋉ hn. Since every non-trivial ideal of g
contains z, it follows that any non-faithful representation of g is obtained from a
representation of sl(2)⋉V (m). Therefore, the classification of all non-faithful unis-
erial g-modules follows from [CS1], while the classification of all faithful uniserial
g-modules is given by the following theorem, which is the main result of the paper.

Theorem 1.1. All faithful uniserial g-modules have length 3. Moreover, the socle
factors of a faithful uniserial g-module of length 3 must be one of the following:

m = 1 : V (a), V (a+ 1), V (a) or V (a+ 1), V (a), V (a+ 1), with a ≥ 0.

m = 3 : V (0), V (3), V (0) or V (1), V (4), V (1) or V (1), V (2), V (1) or V (4), V (3), V (4).

m ≥ 5 : V (0), V (m), V (0) or V (1), V (m+ 1), V (1) or V (1), V (m− 1), V (1).

Furthermore, each of these sequences arises from one and only one isomorphism
class of uniserial g-modules.

Remark 1.2. It follows from this theorem that for a given n > 2, sl(2) ⋉ hn has
only 3 isomorphism classes of faithful uniserial representations (if n = 2, it has 4),
whereas it has infinitely many classes of non-faithful ones.

Theorem 1.1 is a direct consequence of Theorems 3.1, 4.1 and 5.2 below. Explicit
realizations of these modules are given in §4.

Let us say a few words about Theorem 1.1. Suppose g = s ⋉ n, with s simple,
n nilpotent, and assume that n is generated as a Lie algebra by an s-submodule
n0 ⊂ n. By general results of the theory, in order to obtain a faithful uniserial
g-module of length ℓ with socle factors Vi, 1 ≤ i ≤ ℓ, the following is required:

(1) for 1 ≤ i ≤ ℓ, a matrix representation Ri : s → gl(di) corresponding to the
s-module Vi; at least one Ri must be non-trivial.

(2) for 2 ≤ i ≤ ℓ, a faithful matrix presentation Xi : n0 → Mdi−1,di
(F) correspond-

ing to an s-module homomorphism n0 → Hom(Vi, Vi−1);
(3) for the linear map R : s⊕ n0 → gl(

∑

di), defined by

R(s+ u) =















R1(s) X2(u) 0 · · · 0
0 R2(s) X3(u) · · · 0
...

. . .
...

0 0 · · · Rℓ−1(s) Xℓ(u)
0 0 · · · 0 Rℓ(s)















, s ∈ s, u ∈ n0,

the matrix Lie algebra ñ generated by R(n0) must be isomorphic to n (note
that ñ consists of block upper triangular matrices).

When g = sl(2) ⋉ n, the following fact describes what happens with the second
superdiagonal of ñ, namely [R(n0), R(n0)], which should be isomorphic to [n0, n0] ⊂
n as s-modules.
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Fact: Generically speaking, it turns out that the block (i − 2, i), 3 ≤ i ≤ ℓ, of ñ
consists of all irreducible s-submodules of Λ2n0 that also appear in Hom(Vi, Vi−2).
Nevertheless, in some curious cases, some of these constituents do not appear in
[R(n0), R(n0)], as the following example shows.

Example: Let g = sl(2)⋉ h2, so that n0 = V (3) and [n0, n0] = V (0). Assume that
{v0, v1, v2, v3} is a standard basis of n0, as defined in §2.2. Proceeding as above, we
obtain a faithful representation of g with socle factors V (4), V (3), V (4) via:

R
(
∑3

i=0 aivi
)

=























0

−6a1 6a0 0 0
−3a2 0 3a0 0
−a3 −3a2 3a1 a0

0 −3a3 0 3a1

0 0 −6a3 6a2

0
3a2 −6a1 3a0 0 0
a3 0 −3a1 2a0 0
0 2a3 −3a2 0 a0

0 0 3a3 −6a2 3a1

0























.

It turns out that, by “some miracle”, [R(n0), R(n0)] is just V (0), as opposed to
the expected result of V (0)⊕ V (4) (note that V (4) is indeed a constituent of both
Hom(V (4), V (4)) and Λ2n0. This “miracle”, which is due to the exceptional zero
{4

2
3
2

3
2

3
2

4
2

3
2

}

= 0 of the 6j-symbol, produces an unexpected uniserial g-module.

In general, if g = sl(2) ⋉ n then the exceptional zeros of the 6j-symbol control
when the matrix Lie algebra generated by R(n0) is isomorphic to n. Item (3) above
might be very difficult to determine for other simple Lie algebras s.

2. Preliminaries

2.1. Matrix recognition of uniserial representations. In this subsection we
recall from [CS1] some basic facts about uniserial representations of a Lie algebra
g with solvable radical r and fixed Levi decomposition g = s⋉ r.

Given a representation T : g → gl(V ) and a basis B of V we let MB : g → gl(d),
d = dim(V ), stand for the corresponding matrix representation.

Since s is semisimple, it follows that there exist irreducible s-submodules Wi,
1 ≤ i ≤ n, such that

(2.1) 0 ⊂ W1 ⊂ W1 ⊕W2 ⊂ W1 ⊕W2 ⊕W3 ⊂ · · · ⊂ W1 ⊕ · · · ⊕Wn = V

is the composition series of V . Let B = B1 ∪ · · · ∪Bn be a basis of V , where each
Bi is a basis of Wi. We say that B is adapted to the composition series (2.1). If B
is adapted to a composition series, then MB(s) is block diagonal for all s ∈ s.

It is well-known [Bo, Ch. I, §5, Th. 1] that [g, r] annihilates every irreducible
g-module. Therefore, if B is adapted to a composition series, then MB(r) is strictly
block upper triangular for all r ∈ [g, r].

The following result, proven in [CS1, Theorem 2.4] over C, remains valid over F.

Theorem 2.1. The g-module V is uniserial if and only if, given any basis B
adapted to a composition series, none of the blocks in the first superdiagonal of
MB(r) is identically 0. Moreover, if [g, r] = r and there exists a basis B adapted
to a composition series such that none of the blocks in the first superdiagonal of
MB(r) is identically 0, then V is uniserial.
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2.2. Uniserial representations of sl(2) ⋉ V (m). Recall that V (a) is the irre-
ducible sl(2)-module with highest weight a ≥ 0. We fix a basis {v0, . . . , va} of V (a)
relative to which e, h, f ∈ sl(2) act as follows:

hvi = (a− 2i)vi,

evi = (a− (i − 1))vi−1,

fvi = (i + 1)vi+1,

where 0 ≤ i ≤ a and v−1 = 0 = va+1. Such basis of V (a) will be called standard.
We write Ra : sl(2) → gl(a+ 1) for the corresponding matrix representation.

The following theorem, proved in [CS1], provides a classification, up to isomor-
phism, of all the uniserial representations of the Lie algebra sl(2)⋉ V (m), m ≥ 1,
when the underlying field is C. Nevertheless, the classification remain true over F.

Theorem 2.2. Up to a reversing of the order, the following are the only possible
sequences of socle factors of uniserial representations of sl(2)⋉ V (m):

Length 1. V (a).

Length 2. V (a), V (b), where a+ b ≡ m mod 2 and 0 ≤ b− a ≤ m ≤ a+ b.

Length 3. V (a), V (a+m), V (a+ 2m); or

V (0), V (m), V (c), where c ≡ 2m mod 4 and c ≤ 2m.

Length 4. V (a), V (a+m), V (a+ 2m), V (a+ 3m); or

V (0), V (m), V (m), V (0), where m ≡ 0 mod 4.

Length ≥ 5. V (a), V (a+m), . . . , V (a+ sm), where s ≥ 4.

Moreover, each of these sequences arises from only one isomorphism class of unis-
erial g-modules, except for the sequence V (0), V (m), V (m), V (0), m ≡ 0 mod 4.
The isomorphism classes of uniserial g-modules associated to this sequence are
parametrized by F.

Explicit realizations of these modules can be found in [CS1].

2.3. The Lie algebra g = sl(2) ⋉ hn. We fix an integer n ≥ 1. Let hn be the
Heisenberg Lie algebra of dimension 2n+1 and set m = 2n− 1. Of all Lie algebras
of a given dimension (that, a fortiori, must be odd), hn is characterized by the fact
that its center, say z = Cz, is 1-dimensional and [hn, hn] = z.

We know that sl(2) acts via derivations on hn in such a way that

hn ≃ V (m)⊕ z

as sl(2)-modules, where z ≃ V (0). There is a unique sl(2)-invariant skew-symmetric
bilinear form on V (m), up to scaling. Thus, the bracket on V (m) is uniquely
determined, up to scaling. We fix [v0, vm] = z and obtain

[vi, vm−i] = (−1)i
(

m

i

)

z, 0 ≤ i ≤ m.

Let g = sl(2)⋉ hn.
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2.4. The 6j-symbol. Given three half-integers, j1, j2 and j3, we say that they
satisfy the triangle condition if j1 + j2 + j3 ∈ Z and there is a triangle with sides
j1, j2 and j3; that is

|j1 − j2| ≤ j3 ≤ j1 + j2.

In particular, j1, j2 and j3 must be non-negative. If either |j1 − j2| = j3 or j3 =
j1+j2 we say that the triple (j1, j2, j3) is a degenerate triangle. The Clebsch-Gordan
formula states that dimFHomsl(2)(V (k), V (a) ⊗ V (b)) = 1 if (a2 ,

b
2 ,

k
2 ) satisfies the

triangle condition and 0 otherwise.

We recall from [VMK, Chapter 9] some of the main properties of the 6j-symbol.

(1) Given six half-integers j1, j2, j3, j4, j5 and j6 the 6j-symbol

{

j1 j2 j3
j4 j5 j6

}

is a

real number that is, by definition, zero if one of following four triples

(2.2) (j1, j2, j3), (j1, j5, j6), (j4, j2, j6), (j4, j5, j3)

does not satisfy the triangle condition. In particular,

{

j1 j2 j3
j4 j5 j6

}

= 0 if some

ji < 0. In contrast, if all four triples (2.2) satisfy the triangle condition and

one of them is a degenerate triangle then

{

j1 j2 j3
j4 j5 j6

}

6= 0 (see [VMK, §9.5.2]).

(2) The Biedenharn-Elliott identity yields, in particular, the following three-term
recurrence relation (see [VMK, §9.6.2] or [SG, pag. 1963])

i1E(i1 + 1)

{

i1+1 i2 i3
i4 i5 i6

}

+ F (i1)

{

i1 i2 i3
i4 i5 i6

}

+ (i1 + 1)E(i1)

{

i1−1 i2 i3
i4 i5 i6

}

= 0

where

F (i1) = (2i1 + 1)
(

i1(i1 + 1)(−i1(i1 + 1) + i2(i2 + 1) + i3(i3 + 1))

+i5(i5 + 1)(i1(i1 + 1) + i2(i2 + 1)− i3(i3 + 1))

+i6(i6 + 1)(i1(i1 + 1)− i2(i2 + 1) + i3(i3 + 1))

−2i1(i1 + 1)i4(i4 + 1)
)

and

E(i1)=
√

(

i21 − (i2 − i3)2
)(

(i2 + i3 + 1)2 − i21
)(

i21 − (i5 − i6)2
)(

(i5 + i6 + 1)2 − i21
)

.

(3) The 6j-symbol is invariant under the permutation of any two columns. It is also
invariant if upper and lower arguments are interchanged in any two columns.

Proposition 2.3. Let j1, j2, j3, j4, j5 and j6 be non-negative half-integers such
that j1 = j5 + j6 ≥ 3, j2 = j3 and all the triples

(2.3) (h, j2, j3), (h, j5, j6), (j4, j2, j6), (j4, j5, j3)

satisfy the triangle condition for h = j1, h = j1 − 1. If

{

j1−1 j2 j3
j4 j5 j6

}

= 0 then
{

j1−2 j2 j3
j4 j5 j6

}

6= 0 and

{

j1−3 j2 j3
j4 j5 j6

}

6= 0. In particular, the triples (2.3) satisfy

the triangle condition for h = j1 − 2 and h = j1 − 3.
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Proof. Fix (i2, i3, i4, i5, i6) = (j2, j3, j4, j5, j6). Since j2 = j3, we have

E(i1)=
√

i21
(

(2j2 + 1)2 − i21
)(

i21 − (j5 − j6)2
)(

(j5 + j6 + 1)2 − i21
)

.

F (i1) = −(2i1 + 1)i1(i1 + 1)

× (i1(i1 + 1)− 2j2(j2 + 1)− j5(j5 + 1)− j6(j6 + 1) + 2j4(j4 + 1)).

As the triangle condition is satisfied by (j1 − 1, j5, j6), we get |j5 − j6| ≤ j1 − 1
and thus |j5 − j6| < j1. Likewise, as the triangle conditions satisfied by (j1, j2, j2),
we get j1 < 2j2 + 1. Moreover, by hypothesis, j1 = j5 + j6, so j1 < j5 + j6 + 1.
Recalling that j1 > 0, these inequalities imply that

E(j1) 6= 0.

Observe next that F (j1) = 0. Indeed, (j1 + 1, j5, j6) does not satisfy the triangle

condition and, by hypothesis,

{

j1−1 j2 j3
j4 j5 j6

}

= 0. It follows from Property (2)

applied to i1 = j1 that

(2.4) F (j1)

{

j1 j2 j3
j4 j5 j6

}

= 0.

But the second factor is non-zero since all four triples (2.2) taken from (2.4) satisfy
the triangle condition and (j1, j5, j6) is a degenerate triangle. Thus F (j1) = 0.

We next claim that F (j1 − 2) 6= 0. Indeed, from j1 > 0 and F (j1) = 0 we obtain

j1(j1 + 1)− 2j2(j2 + 1)− j5(j5 + 1)− j6(j6 + 1) + 2j4(j4 + 1) = 0.

If F (j1 − 2) = 0 then j1 > 2 implies j1(j1 + 1) = (j1 − 2)(j1 − 1), so j1 = 1
2 , a

contraction. This proves that F (j1 − 2) 6= 0.

We apply Property (2) to i1 = j1 − 1. By above, (j1 − 1)E(j1)

{

j1 j2 j3
j4 j5 j6

}

6= 0

and, by hypothesis,

{

j1−1 j2 j3
j4 j5 j6

}

= 0. We infer

{

j1−2 j2 j3
j4 j5 j6

}

6= 0.

We finally apply Property (2) to i1 = j1 − 2. By hypothesis,

{

j1−1 j2 j3
j4 j5 j6

}

= 0,

while F (j1 − 2)

{

j1−2 j2 j3
j4 j5 j6

}

6= 0. It follows that

{

j1−3 j2 j3
j4 j5 j6

}

6= 0. �

Remark 2.4. Proposition 2.3 is not true without the hypothesis j2 = j3 and, indeed,
there are many examples showing this. For instance, if (j1, j2, j3, j4, j5, j6) is either

(3, 3, 2, 2, 1, 2), (4, 3/2, 7/2, 3/2, 3, 1), (6, 5/2, 13/2, 3, 9/2, 3/2)

then j1 = j5 + j6 ≥ 3, the triples (2.3) satisfy the triangle condition for h = j1,

h = j1−1;

{

j1−1 j2 j3
j4 j5 j6

}

= 0 (this can be verified with an on-line calculator or from

the explicit formula for the 6j-symbol given in [VMK, §9.2.1]) but (j1 − 3, j2, j3)

does not satisfy the triangle condition and thus

{

j1−3 j2 j3
j4 j5 j6

}

= 0.
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3. Uniqueness of faithful uniserial g-modules of length 3

Theorem 3.1. Suppose V is a faithful uniserial g-module of length 3 with socle
factors V (a), V (b), V (c). Then c = a. Moreover,

(i) If m = 1 then either b = a+ 1, or a ≥ 1 and b = a− 1.
(ii) If m ≥ 3 then either a = 0 and b = m, or a = 1 and b = m+ 1, or a = 1 and

b = m− 1, or m = 3, a = 4 and b = 3.

Furthermore, in all cases the isomorphism type of V is completely determined by
that of its socle factors.

Proof. Let 0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 = V be the only composition series of V as g-
module. As sl(2) is semisimple, there exist sl(2)-submodules W2 and W3 of V such
that V2 = V1⊕W2 and V3 = V2⊕W3. Here V1 ≃ V (a), W2 ≃ V (b) and W3 ≃ V (c).
Let B1, B2, B3 be bases of V1,W2,W3, respectively, so that B = B1 ∪ B2 ∪ B3 is
adapted to a basis of V . Since hn = [g, hn], it follows from §2.1 that there is a block
upper triangular matrix representation R : g → gl(d), d = a+ b+ c+ 3, relative to
B, of the form

(3.1) R(s+ h) =





R1(s) X(h) Z(h)
0 R2(s) Y (h)
0 0 R3(s)



 , s ∈ sl(2), h ∈ hn.

We may view gl(d) as a g-module via x · A = [R(x), A]. Note that the 6 upper
triangular blocks, say M11,M22,M33,M12,M23,M13, become sl(2)-submodules of
gl(d). Moreover, X : hn → M12, Y : hn → M23, Z : hn → M13 are sl(2)-
homomorphisms and M12 ≃ Hom(V (b), V (a)), M23 ≃ Hom(V (c), V (b)), M13 ≃
Hom(V (c), V (a)) as sl(2)-modules. By (3.1), R(z) = R([hn, hn]) ⊆ M13. Thus, X
and Y vanish on z. Since R is faithful, Z does not vanish on z. Hence V (0) enters
V (c)⊗ V (a) and this implies, by the Clebsch-Gordan formula, that c = a and Z(z)
consists of scalar operators. Moreover, since m 6≡ 2a mod 2, Z must vanish on
V (m) and therefore Z is completely determined by X and Y , whose restrictions
to V (m) are non-trivial by Theorem 2.1. Conjugating by a suitable block diagonal
matrix, with each block a scalar matrix, we can arbitrarily scale all blocks in the
first superdiagonal. This shows that V is uniquely determined by its socle factors
(cf. [CS1, Proposition 3.2]). Furthermore, since V (m) enters V (a)⊗V (b), we obtain
(i).

We assume for the remainder of the proof that m ≥ 3. Consider the sl(2)-
homomorphism Λ2V (m) → M13 given by u∧ v = X(u)Y (v)−X(v)Y (u) = Z[u, v].
By above, its image, say J , is isomorphic to V (0). Set r = min{2m− 2, 2a} if a is
even, and r = min{2m− 2, 2a− 2} if a is odd.

Suppose first

(3.2)

{m
2

r
2

m
2

a
2

b
2

a
2

}

is non-zero. Then, according to [CS1, Corollary 9.2], V (r) enters J . Therefore
r = 0. Recalling that m ≥ 3, and taking into account that V (m) enters V (a)⊗V (b),
we obtain a = 0 with b = m if a is even, and a = 1 with b = m± 1 if a is odd.

Suppose next (3.2) is zero. We deal first with the case when a is even. If
r = 2a then all four triples (2.2) taken from (3.2) satisfy the triangle condition and
(a2 ,

r
2 ,

a
2 ) is a degenerate triangle, so Property (1) yields that (3.2) is non-zero, a
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contradiction. Therefore, we must have r = 2m− 2 with m− 1 < a. Set

j1 = m, j2 = j3 =
a

2
,

j4 =
b

2
, j5 = j6 =

m

2
.

From the fact that (3.2) is zero, it follows from Property (3) that

(3.3)

{

j1−1 j2 j3
j4 j5 j6

}

= 0.

Moreover, all four triples (2.2) taken from (3.3) satisfy the triangle condition. Fur-
thermore, since m ≤ a, all four triples (2.2) taken from (j1, j2, j3, j4, j5, j6) satisfy
the triangle condition. Thus, all hypotheses of Proposition 2.3 are met. We obtain
{

j1−3 j2 j3
j4 j5 j6

}

6= 0. Making use of [CS1, Corollary 9.2] and Property (3), we infer

that V (r − 4) appears in J . Thus r = 4, that is, m = 3. We now need to find out
the possible values of a and b.

The fact that (3.2) is zero becomes

(3.4)

{ 4
2

3
2

3
2

b
2

a
2

a
2

}

=

{ 3
2

4
2

3
2

a
2

b
2

a
2

}

= 0.

Now

(3.5)

{ 4
2+1

3
2

3
2

b
2

a
2

a
2

}

6= 0,

since a ≥ 3 and therefore all four triples (2.2) taken from (3.5) satisfy the triangle
condition and we have the degenerate triangle (62 ,

3
2 ,

3
2 ). On the other hand,

(3.6)

{ 4
2+2

3
2

3
2

b
2

a
2

a
2

}

= 0

as (82 ,
3
2 ,

3
2 ) does not satisfy the triangle condition. It follows from Property (2)

applied to (i2, i3, i4, i5, i6) = (32 ,
3
2 ,

b
2 ,

a
2 ,

a
2 ) that F (3) = 0. The definition of F (3)

now gives

(3.7) a(a+ 2) = b(b+ 2) + 9,

and the only pair (a, b) of non-negative integers satisfying (3.7) is (a, b) = (4, 3).
The final case, when a is odd, is impossible. Indeed, set

j1 =
r

2
+ 1 = min{m, a}, j2 = j3 = max

{m

2
,
a

2

}

,

j4 =
b

2
, j5 = j6 = min

{m

2
,
a

2

}

.

Then Proposition 2.3 applies to give r = 4. As above, this gives m = 4 or a = 4,
which is impossible since m and a are both odd. �

4. Construction of faithful uniserial g-modules of length 3

Theorem 4.1. In all cases below there is faithful uniserial g-module of length 3
with socle factors V (a), V (b), V (a).

(i) m = 1 with b = a+ 1 or b = a− 1 (in the latter case a > 0).
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(ii) m ≥ 3, with (a, b) = (0,m) or (a, b) = (1,m + 1) or (a, b) = (1,m − 1) or
(m, a, b) = (3, 4, 3).

Proof. We will give an explicit faithful uniserial representation R : g → gl(d),
d = 2a+ b+ 3, in every case listed above. In each case,

R(s+ v + az) =





Ra(s) X(v) Z(az)
0 Rb(s) Y (v)
0 0 Ra(s)



 , s ∈ sl(2), v ∈ V (m), a ∈ C.

Here X : V (m) → Hom(V (b), V (a)) and Y : V (m) → Hom(V (a), V (b)) are sl(2)-
homomorphisms given in matrix form relative to standard bases of V (a) and V (b),
and Ra and Rb are as given in §2.3. Moreover, Z : z → gl(V (a)) is an sl(2)-
homomorphism given in matrix scalar form. It is straightforward to see (cf. [CS1,
§3]) that such R is indeed a Lie homomorphism (and hence a faithful uniserial
representation by Theorem 2.1) provided Z 6= 0 and

(4.1) X(vi)Y (vj)−X(vj)Y (vi) = Z([vi, vj ]), 0 ≤ i ≤ m.

We leave it to the reader to verify (4.1) in each case, recalling from §2.3 that

[vi, vj ] = 0 if i+ j 6= m, while [vi, vm−i] = (−1)i
(

m

i

)

z.

Let A′ stand for the transpose of a matrix A and set v =
∑

0≤i≤m

aivi ∈ V (m), ai ∈ C.

(1) m ≥ 1 and V has socle factors V (0), V (m), V (0).

Z(z) = (2).

X(v) =
(

−
(

m

m

)

am
(

m

m−1

)

am−1 · · ·
(

m

2

)

a2 −
(

m

1

)

a1
(

m

0

)

a0
)

.

Y (v) =
(

a0 a1 · · · am−1 am
)′
.

(2) m ≥ 1 and V has socle factors V (1), V (m+ 1), V (1).

Z(z) =

(

m+ 2 0
0 m+ 2

)

.

X(v) =

(

−
(

m

m

)

am
(

m

m−1

)

am−1 · · ·
(

m

2

)

a2 −
(

m

1

)

a1
(

m

0

)

a0 0

0 −
(

m

m

)

am
(

m

m−1

)

am−1 · · ·
(

m

2

)

a2 −
(

m

1

)

a1
(

m

0

)

a0

)

.

Y (v) =

(

(m+ 1)a0 ma1 · · · 2am−1 am 0

0 a0 2a1 · · · mam−1 (m+ 1)am

)′

.

(3) m ≥ 1 and V has socle factors V (1), V (m− 1), V (1).

Z(z) = I2.
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X(v) =

((

m−1
m−1

)

am−1 −
(

m−1
m−2

)

am−2 · · ·
(

m−1
2

)

a2 −
(

m−1
1

)

a1
(

m−1
0

)

a0
(

m−1
m−1

)

am −
(

m−1
m−2

)

am−1

(

m−1
m−3

)

am−2 · · · −
(

m−1
1

)

a2
(

m−1
0

)

a1

)

.

Y (v) =

(

a1 a2 · · · am−1 am

−a0 −a1 −a2 · · · −am−1

)′

.

(4) m = 1 and V has socle factors V (a), V (a+ 1), V (a).
Let Ik be the identity matrix of size k, let 0k be the zero column matrix with

k rows. Let J+
k , J−

k be the diagonal matrices of size k given by

J+
k =









k 0 · · · 0
0 k − 1 · · · 0

0 0
. . . 0

0 0 · · · 1









, J−
k =









1 0 · · · 0
0 2 · · · 0

0 0
. . . 0

0 0 · · · k









.

Z(z) = (a+ 2)Ia+1.

X(v0) =
(

0a+1 Ia+1

)

and X(v1) =
(

−Ia+1 0a+1

)

.

Y (v0) =

(

J+
a+1

0′a+1

)

and Y (v1) =

(

0′a+1

J−
a+1

)

.

(5) m = 1 and V has socle factors V (a+ 1), V (a), V (a+ 1).

Z(z) = −(a+ 1)Ia+2.

X(v0) =

(

J+
a+1

0′a+1

)

and X(v1) =

(

0′a+1

J−
a+1

)

.

Y (v0) =
(

0a+1 Ia+1

)

and Y (v1) =
(

−Ia+1 0a+1

)

.

(6) m = 3 and V has socle factors V (4), V (3), V (4).

Z(z) = 6I5.

The matrices X(v0), X(v1), X(v2), X(v3) ∈ V (m) are respectively:












0 6 0 0
0 0 3 0
0 0 0 1

0 0 0 0
0 0 0 0













,













−6 0 0 0
0 0 0 0
0 0 3 0

0 0 0 3
0 0 0 0













,













0 0 0 0
−3 0 0 0
0 −3 0 0

0 0 0 0
0 0 0 6













,













0 0 0 0
0 0 0 0
−1 0 0 0

0 −3 0 0
0 0 −6 0













.

The matrices Y (v0), Y (v1), Y (v2), Y (v3) ∈ V (m) are respectively:








0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0









,









0 −6 0 0 0
0 0 −3 0 0
0 0 0 0 0
0 0 0 0 3









,









3 0 0 0 0
0 0 0 0 0
0 0 −3 0 0
0 0 0 −6 0









,









0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0









.

�
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5. Non-existence of faithful uniserial g-modules of length ≥ 4

Proposition 5.1. The are no faithful uniserial g-modules of length 4.

Proof. Suppose, if possible, that V is a faithful uniserial g-module of length 4,
with socle factors V (a), V (b), V (c), V (d). Then V has a uniserial submodule W1

with socle factors V (a), V (b), V (c) and a uniserial quotient W2 = V/V (a) with
socle factors V (b), V (c), V (d). Four cases arise, depending on whether W1,W2 are
faithful or not. The case when W2 is faithful, but W1 is not, follows by duality (see
[CS1, Lemma 2.6]) from the case when W1 is faithful but W2 is not.

Case 1. W1 is faithful and m ≥ 3. By Theorem 3.1, (a, b, c) must be one of
(0,m, 0), (1,m+ 1, 1), (1,m− 1, 1), (4, 3, 4), where in the latter case m = 3. If W2

is faithful, a second application of Theorem 3.1, this time to (b, c, d), leaves no
possible value for b. If W2 is not faithful we appeal to the classification of uniserial
sl(2) ⋉ V (m)-modules of length 3 given in Theorem 2.2. It forces c = m to be in
{0, 1, 4}, or (b, c, d) to be an arithmetic progression of step ±m, which is impossible.

Case 2. W1 is faithful and m = 1.
Suppose first W2 is also faithful. From Theorem 3.1 we deduce that (a, b, c, d) =

(a, a+ 1, a, a+ 1) or (a, b, c, d) = (b + 1, b, b+ 1, b).
Let us deal with the case (a, b, c, d) = (a, a + 1, a, a+ 1) first. Consider a basis

B = B1 ∪B2 ∪B3 ∪B4 of V adapted to the composition (socle) series. We choose
Bi so that the matrix representation R : g → gl(d), d = 4a + 6, relative to B has
the form

(5.1) R(s+ h) =









Ra(s) A(h) D(h) F (h)
0 Ra+1(s) B(h) E(h)
0 0 Ra(s) C(h)
0 0 0 Ra+1(s)









, s ∈ sl(2), h ∈ hn.

Here A,C, F : hn → Hom(V (a+1), V (a)), B : hn → Hom(V (a), V (a+1)), D : hn →
Hom(V (a), V (a)) and E : hn → Hom(V (a+1), V (a+1)) are sl(2)-homomorphisms
given in matrix form and are unique up to scaling. Therefore, since both W1 and
W2 are faithful and uniserial (and B is part of the definition of both modules), it
follows from Theorem 3.1 that A,B,C,D,E are exactly as given in §4. In particular
D(z) = (a + 2)Ia+1 and E(z) = −(a + 1)Ia+2. Now R([v1, z]) = 0, whereas block
(1,4) of [R(v1), R(z)] is −(2a+ 3)

(

0a+1 Ia+1

)

, a contradiction. This shows that
this case is impossible for all a.

It is easy to see that the case (a, b, c, d) = (b+1, b, b+1, b) is dual to the previous
one (see also [CS1, Lemma 2.6]) and is therefore impossible.

Suppose next W2 is not faithful. Appealing to Theorem 2.2 we deduce that
(a, b, c, d) = (a, a+ 1, a, a− 1) or (a, b, c, d) = (b+ 1, b, b+ 1, b+ 2).

Arguing as above we find that block (1,4) of [R(v1), R(z)] is −(a+ 2)

(

J+
a

0′a

)

in

the first case and (b+1)
(

0b+2 Ib+2

)

in the second one. Both cases are impossible.

Case 3. Neither W1 nor W2 is faithful. Since V is faithful, then V (0) must enter
Hom(V (d), V (a)), whence d = a. We appeal, again, to the classification of uniserial
sl(2) ⋉ V (m)-modules of length 3 given in Theorem 2.2. Since d = a, we see that
(a, b, c) cannot be in an arithmetic progression of step ±m, which forces (a, b, c) to
be (0,m, c) or (a,m, 0). In the latter case (b, c, d) = (m, 0, a), against Theorem 2.2.
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In the former, (b, c, d) = (m,m, 0) by Theorem 2.2. But this is only possible when
m ≡ 2m mod 4, which is not the case. �

Theorem 5.2. The are no faithful uniserial g-modules of length ℓ > 3.

Proof. By induction on ℓ. The base case ℓ = 4 is proven in Proposition 5.1. Sup-
pose V is a uniserial g-module of length ℓ > 4 and there are no faithful uniserial
g-modules of length ℓ− 1. Let V (a1), . . . , V (aℓ) be the socle factors of V . Then V
has a submodule W1 with socle factors V (a1), . . . , V (aℓ−1) and a quotient module
V/V (a1) with socle factors V (a2), . . . , V (aℓ). By inductive hypothesis, these unise-
rial g-modules are not faithful. Therefore, they are uniserial sl(2)⋉V (m)-modules.
The classification of uniserial sl(2)⋉V (m)-modules of length ≥ 4 given in Theorem
2.2 forces a1, . . . , aℓ to be an arithmetic progression of step ±m. Thus, V (0) does
not enter Hom(V (aj), V (ai))) for any i < j, so z acts trivially on V . �
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