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Abstract. The 12-dimensional Fomin-Kirillov algebra FK3 is defined as the quadratic algebra with

generators a, b and c which satisfy the relations a2 = b2 = c2 = 0 and ab+bc+ca = 0 = ba+cb+ac. By a

result of A. Milinski and H.-J. Schneider, this algebra is isomorphic to the Nichols algebra associated to
the Yetter-Drinfeld module V , over the symmetric group S3, corresponding to the conjugacy class of all

transpositions and the sign representation. Exploiting this identification, we compute the cohomology

ring Ext∗FK3
(k, k), showing that it is a polynomial ring S[X] with coefficients in the symmetric braided

algebra of V . As an application we also compute the cohomology rings of the bosonization FK3#kS3
and of its dual, which are 72-dimensional ordinary Hopf algebras.

1. Introduction

In [11], Fomin and Kirillov introduced a new class of quadratic algebras
{
FKn

}
n≥3

, as an attempt

to give a combinatorial explanation of the fact that, with respect to the linear basis on the cohomology
ring of a flag manifold consisting of all Schubert cells, the constant structures are non-negative.

Fomin-Kirillov algebras have many intersting properties. For example, they are strongly related to
Nichols algebras. Let us recall that, by definition, a Nichols algebra is an N-graded bialgebra in the
category of Yetter-Drinfeld H-modules, which is connected and generated by 1-degree elements. Here
H may be any Hopf algebra over a field k, but in this paper we are interested in the case when H is the
group algebra kG of a finite group G. Nichols algebras over abelian groups play a fundamental role in
the classification of finite dimensional pointed Hopf algebras with commutative coradical, cf. [4] and the
references therein. They have also been used as a very important tool for the investigation of certain
quantum groups. For a non-abelian group G, the structure of Nichols algebras over kG is not so well
understood, but nowadays this is a very dynamic research area, see [1, 2, 3, 17, 18, 19]. One of the
main difficulties in the non-commutative setting is that only few finite dimensional Nichols algebras are
known.

Turning back to Fomin-Kirillov algebras, it was proved in [24] that FKn is a graded bialgebra in the
category of Yetter-Drinfeld kSn-modules, and it is a Nichols algebra for n = 3, 4. A similar result was
obtained for n = 5 in [16]. Based on these results, Milinski and Schneider have conjectured that FKn is
a Nichols algebra too, for all other values of n. See also [11, Conjecture 9.3]. Notably, for n ≤ 5, it was
proved that dimFKn <∞ and it was conjectured that dimFKn =∞, provided that n ≥ 6.

The theory of support and rank variety for Hopf algebras is the driving force behind the results
concerning the finite generation of the cohomology ring of these and other related structures. Rather
recently, the famous result due to Golod, Venkov and Evans [14, 28, 10], stating that the cohomology ring
of a finite group is finitely generated, has been extended for several classes of Hopf algebras, including
the finite dimensional cocommutative Hopf algebras [12], the finite dimensional pointed Hopf algebras
with abelian coradical of dimension relatively prime to 210 and the corresponding Nichols algebras [23],
small quantum groups [13] and finite quantum function algebras [15].

According to our best knowledge, analogous results are not known for pointed Hopf algebras over
non-abelian groups, excepting the case when the corresponding Nichols algebras are of diagonal type,
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2 D. ŞTEFAN AND C. VAY

as in [23]. Nevertheless, using the GAP package QPA the dimension of ExtnFK3
(k,k) was computed for n

up to 40, the outcome suggesting that the Hilbert series of the cohomology ring E(FK3) is

HFK3 =
(1 + t)(1 + t+ t2)

(1− t)(1− t4)

and that E(FK3) is generated by three cohomology classes of degree 1 and one of degree 4, see [26].

The aim of this paper is to clarify the ring structure of E(FK3) and, in particular, to confirm the
computer calculations that we mentioned above. Roughly speaking, in our main result, Theorem 4.17,
we prove that E(FK3) is a polynomial ring S[X] over the braided symmetric algebra S = S(V ) of the
Yetter-Drinfeld kS3-module V that help us to regard FK3 as a Nichols algebra B(V ).

The key steps of the proof of Theorem 4.17 are the following. First we notice that, by [24], the algebra
FK3 is a twisted tensor product A ⊗σ R, where A and R are presented by generators and relations as
follows: A =

〈
a, b | a2, b2, aba− aba

〉
and R =

〈
c | c2

〉
, see §2.5.

This property allows us to use a version of Cartan-Eilenberg spectral sequence, that we construct
for any graded twisting product B = A ⊗σ R with invertible twisting map σ that satisfying an extra
mild condition. By definition, its second page is given by Ep,q2 = ExtpR

(
k, Eq(A)

)
and it converges to

E(B), cf. Theorem 2.14 and Corollary 2.15. In order to use this spectral sequence, we have to explicit
the ring structure of the cohomology ring E(A) and the R-action on E(A). In the special case of the
Fomin-Kirillov algebra FK3, this is done in the third section, see Theorem 3.3 and Theorem 3.5.

As an important step, we find lower and upper bounds for the dimension of En(FK3). To be more
specific, by Proposition 4.6 the subalgebra generated by E1(FK3) is precisely S, the braided symmetric
algebra of the Yetter-Drinfeld module V . Thus, the dimension of En(FK3) is at least the dimension of
Sn. On the other hand, using a basic property of spectral sequences, we deduce that the dimension of
En(FK3) is at most Nn =

∑n
p=0 dimEp,n−p2 . For n ≤ 3 the lower and the upper bounds of dimEn(FK3)

coincide and N4 = dimS4 +1. Furthermore, there is a 4-cohomology class which is a central element and
does not belong to S4. All these results imply that our spectral sequence degenerates and dimEn(FK3)
reaches the upper bound, see Theorem 4.14.

To give a presentation of E(FK3) by generators and relations we use that the cohomology ring of
a Nichols algebra is braided commutative [23, Corollary 3.13]. Taking into account this result and the
fact that E(FK3) is generated by elements of degree at most 4 (see Proposition 4.16) we are able to
prove that E(FK3) is a quotient graded algebra of S[X]. We conclude the proof of our main result by
showing that the homogeneous components of E(FK3) and S[X] are equidimensional.

As an application of our main result we also compute the cohomology ring of the bosonization
FK3#kS3. By definition, the bosonization of FK3 is the ordinary Hopf algebra whose underlying vector
space is FK3 ⊗ kS3 with the algebra and coalgebra structures given by the smash product and smash
coproduct, respectively. Our computation is a consequence of the fact that E(FK3#kS3) is the invariant
ring of a canonical S3-action on E(FK3). More precisely, in Theorem 4.19 we show that E(FK3#kS3) is
the quotient of the polynomial ring k[X,U, V ] by the principal ideal (U2V −UV 2). A similar computation
is performed in Theorem 4.22 for the dual Hopf algebra of FK3#kS3, which is also a bosonization of
FK3, regarded as a bialgebra in the category of Yetter-Drinfeld modules over the dual of kS3.

Finally, we would like to mention that a similar strategy might be helpful for the characterization of
the cohomology ring of other bialgebras in categories of Yetter-Drinfeld modules.

2. Preliminaries

2.1. Notation. Throughout k will denote a field of characteristic zero. Let X be a set. We denote by
kX the vector space freely generated by X. If X is a subset of a k-algebra Λ, then k[X] and (X) denote
the subalgebra and the ideal generated by X, respectively. If Λ is an N-graded algebra, then Λn denotes
the homogeneous component of degree n. For the two-sided ideal ⊕n>0Λn we shall use the notation Λ+.
An N-graded algebra Λ is said to be connected if and only if Λ0 = k.
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If V is a vector space, then let V (n) := V ⊗· · ·⊗V , where the tensor product has n factors. If there is
no danger of confusion we shall write a tensor monomial v1⊗ · · · ⊗ vn ∈ V (n) as an n-tuple (v1, . . . , vn).
We shall also use the shorthand notation v(n) for the element (v, . . . , v).

2.2. The category kG
kGYD and Nichols bialgebras. Let G be a group. By definition, a Yetter-

Drinfeld kG-module is a vector space V which is endowed with a G-action by linear automorphisms and
a decomposition as a direct sum of linear subspaces V = ⊕g∈GVg, such that gv ∈ Vghg−1 for all g, h ∈ G
and v ∈ Vh. A linear map between two Yetter-Drinfeld kG-modules V and W is called a morphism of
Yetter-Drinfeld modules if and only if it commutes with the actions and preserves the decompositions
of V and W . The category of Yetter-Drinfeld kG-modules will be denoted by kG

kGYD.

The category kG
kGYD is braided monoidal. The tensor product of two objects V and W in kG

kGYD is
V ⊗W , the tensor product of the underlying linear spaces with the diagonal action and the decomposition
(V ⊗W )g =

∑
x∈G Vx ⊗Wx−1g. The braiding in kG

kGYD is given, for v ∈ Vg and w ∈W , by

χV,W : V ⊗W →W ⊗ V, χV,W (v ⊗ w) = gw ⊗ v.

An algebra (Λ,m, u) in kG
kGYD is an ordinary k-algebra with the additional property that the multiplica-

tion m and the unit u are morphisms of Yetter-Drinfeld modules. Coalgebras in this monoidal category
can be defined in a similar way. The comultiplication and the counit of a coalgebra will be denoted by
∆ and ε, respectively. By an N-graded (co)algebra we mean an ordinary N-graded (co)algebra whose
homogeneous components are Yetter-Drinfeld modules.

An algebra (Λ,m, u) in kG
kGYD is braided commutative if and only if mχΛ,Λ = m. On the other hand,

we shall say that an N-graded algebra Λ is braided graded commutative if and only if

x · y = m(x⊗ y) = (−1)pqmχΛ,Λ(x⊗ y) = (−1)pq(gy · x),

for any x ∈ Λg and y ∈ Λ homogeneous of degree p and q, respectively.

By definition, a bialgebra in kG
kGYD consists of an algebra (Λ,m, u) and a coalgebra (Λ,∆, ε) such that

∆ and ε are morphisms of Yetter-Drinfeld modules. A bialgebra in kG
kGYD is said to be N-graded if and

only if the underlying algebra and coalgebra structures are graded and they have the same homogeneous
components. A bialgebra Λ in kG

kGYD is called a Nichols algebra if and only Λ0 is 1-dimensional, Λ1

coincides with the space of primitive elements and generates Λ as an algebra.

For any Yetter-Drinfeld kG-module V , the tensor algebra T (V ) has a canonical bialgebra structure
in kG

kGYD. If I(V ) denotes the sum of all Yetter-Drinfeld submodules of T (V ) which are generated by
N-homogeneous elements of degree ≥ 2 and that are ideals and coideals of T (V ), then the quotient
B(V ) := T (V )/I(V ) is a Nichols algebra. It will be called the Nichols algebra associated to V .

For more details on braided bialgebras and Nichols algebras, that are related to our work, the reader
is referred to [24, Section 2]. This paper is also useful to understand the relationship between Fomin-
Kirillov and braided bialgebras.

2.3. The Nichols algebra B(T3). Let Sn denote the set of all permutation of {1, . . . , n}. For the set
of transposition in Sn we use the notation Tn.

Let V (T3) be the Yetter-Drinfeld module which as a linear space has the basis {xt}t∈T3
and whose

kS3-action and kS3-coaction are given by

gxt = sgn(g)xgtg−1 and ρ(xt) = t⊗ xt

for any t ∈ T3 and g ∈ S3. The Nichols algebra B(T3) of V (T3) has been by investigated intensively by
several authors, see for instance [3, 11, 16, 24, 25].

Let us recall some basic facts about B(T3) from the above references. As an algebra, B(T3) is
generated by the set {xt | t ∈ T3}, subject to the relations

x2
t and

∑
(t′,t′′)∈T3(g)

xt′xt′′ , (1)
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where t is an arbitrary transposition, g is any 3-cycle in S3 and T3(g) = {(t′, t′′) ∈ T3 × T3 | t′t′′ = g}.
The comultiplication of B(T3) is uniquely defined such that the generators xt are primitive elements.
Since B(T3) is a Nichols algebra, any primitive element is a linear combination of the three generators.

From now on, to simplify the notation, we shall denote the Nichols algebra B(T3) by B and for the
generators we shall use the notation a = x(12), b = x(23) and c = x(13). Note that the square of each
generator of B is zero, and

ab+ bc+ ca = 0 = ba+ ac+ cb. (2)

We define A = k[a, b] and R = k[c] to be the subalgebras generated by {a, b} and {c}, respectively.

The subalgebra A can be presented by generators and relations as follows: A = k〈a, b | a2, b2, aba−bab〉
and the set A = {1, a, b, ab, ba, aba} is a k-linear basis of A, cf. [24, Corollary 5.9]. Clearly, R = k〈c | c2〉.

2.4. Twisted tensor products. We shall see in the next subsection that B is a twisted tensor product
of the algebras A and R. Since for our work this is one of the most important features of the Fomin-
Kirillov algebra B, we recall some general facts about arbitrary twisted tensor products of algebras. For
more details on twisted tensor products of algebras see, for example, [9, 20, 22, 27]. Let A and R be
associative and unital k-algebras with the product given by the maps mA and mR, respectively. By
definition a k-linear map σ : R ⊗ A → A ⊗ R is a twisting map between A and R if and only if it is
compatible with mA and mR, that is

σ(idR⊗mA) = (mA ⊗ idR)(idA⊗σ)(σ ⊗ idA),

σ(mR ⊗ idA) = (idA⊗mR)(σ ⊗ idR)(idR⊗σ).

In addition, σ must be compatible with the units of A and R, that is σ(r⊗1A) = 1A⊗r and σ(1R⊗x) =
x⊗ 1R, for all x ∈ A and r ∈ R.

To any twisting map σ between A and R corresponds an associative and unital algebra structure on
A⊗R, whose product is given by the relation:

mA⊗R := (mA ⊗mR)(idA⊗σ ⊗ idR).

Of course, the unit of A ⊗ R is 1A ⊗ 1R. We shall call this algebra the σ-twisted tensor product of A
and R and we shall denote it by A⊗σ R. Throughout the paper we shall assume that the twisting map
σ is invertible. We denote its inverse by τ .

Let us now assume that A and R are both graded. We shall say that the twisting map σ between A
and B is graded if it preserves the canonical gradings on R ⊗ A and A ⊗ R. For such a σ the algebra

A⊗σ R is graded with respect to the decomposition A⊗σ R =
⊕

d≥0

(⊕d
p=0A

p ⊗Rd−p
)
. In this paper

we work with graded twisting maps which, in addition, satisfies the relation σ(R⊗A+) = A+⊗R. The
restriction of σ to R⊗A+ will be denoted by σ+. For the inverse of σ+ we shall use the notation τ+.

Let us assume that R is finite dimensional. We fix a basis {e1, . . . , en} on R such that e1 = 1R and
all other elements belong to R+. For any 1 ≤ i, j ≤ n, there are endomorphisms σij and τij of A so that

σ(ei ⊗ x) =

n∑
j=1

σji(x)⊗ ej and τ(x⊗ ei) =

n∑
j=1

ej ⊗ τji(x).

Note that σ and τ are uniquely defined by the matrices σ̃ and τ̃ whose (i, j)-entries are the endomor-
phisms σij and τij . Since τ is the inverse of σ, these matrices are inverses each other. If x ∈ A, then let
σ̃(x) denote the matrix with (i, j)-entry σij(x).

Since σ is compatible with 1R and 1A we get σ11 = idA, σ1j = 0 for j > 1, and σ̃(1A) is the unit
matrix of order n with elements in A. The compatibility relation between σ and the product of A can
be written as σ̃(x)t · σ̃(y)t = σ̃(xy)t, for any x, y ∈ A, where σ̃(x)t denotes the transpose of σ̃(x). Let{
ckij
}
i,j,k

be the structure constants of R, that is eiej =
∑n
p=1 c

p
ijep. As σ and mR are compatible,

n∑
p=1

cpijσkp =

n∑
p,q=1

ckpqσpiσqj .
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For any q > 0, we lift σ to a linear map σ(q) : R⊗A(q) −→ A(q) ⊗R such that σ(1) = σ and

σ(q+1) =
(

idA(q) ⊗ σ
)(
σ(q) ⊗ idA

)
. (3)

Obviously σ(q) is invertible. Let τ (q) be the inverse of σ(q). Therefore, if x = x1 ⊗ · · · ⊗ xq, then

σ(q)(ei ⊗ x) =

n∑
i1,...,iq=1

σi1i(x
1)⊗ σi2i1(x2)⊗ · · · ⊗ σiqiq−1

(xq)⊗ eiq , (4)

τ (q)(x⊗ ei) =

n∑
i1,...,iq=1

ei1 ⊗ τi1i2(x1)⊗ · · · ⊗ τiq−1iq (x
q−1)⊗ τiqi(xq). (5)

Since by assumption σ(R ⊗ A+) = A+ ⊗ R, the endomorphisms σij and τij map A+ into itself. If σ
(q)
+

is the restriction of σ(q) to R⊗A(q)
+ , then the image of this map is A

(q)
+ ⊗R. The inverse of σ

(q)
+ will be

denoted by τ
(q)
+ .

2.5. The Nichols algebra B(T3) as a twisted tensor product. We are going to apply a result due
to A. Milinski and H.-J. Schneider, for proving that the Fomin-Kirillov algebra B is a twisted tensor
product. We keep the notation from [24, Theorem 3.2]. Let L′ and L be the group algebras of the
cyclic group generated by (13) ∈ S3 and of S3, respectively. We choose the braided bialgebras in the

categories L
′

L′YD and L
LYD to be R and B, respectively. Finally, we take i : R→ B and φ : B → R to be

the inclusion map and the algebra morphism such that φ(a) = φ(b) = 0 and φ(c) = c.

The Nichols algebra R coacts on B via the algebra map ρ : B → B ⊗ R uniquely defined such that
ρ(a) = a⊗1, ρ(b) = b⊗1 and ρ(c) = c⊗1 + 1⊗ c. The R-coinvariant subalgebra Bco(R) and A coincide.
The multiplication map mB induces linear transformations ν : A ⊗ R → B and ν′ : R ⊗ A → B. The
former map is invertible, cf. [24, Theorem 3.2]. Thus, by [6, p. 5], the map σ := ν−1ν′ is a twisting
map and ν is an isomorphism of algebras between B and A⊗σ R.

Since any twisting tensor product A⊗σR is free as a left A-module it follows that B as a left A-module
is free as well. In particular, we deduce that B is 12-dimensional, having as a linear basis the set

B := A
⋃
Ac = {1, a, b, ab, ba, aba, c, ac, bc, abc, bac, abac}.

We use the basis {1, c} of R to compute the twisting map σ. Let σ̃ be the corresponding matrix with
elements in Endk(A), see §2.4. For simplicity we shall rename σ12 and σ22 by α and β. So for any x ∈ A,

σ̃(x) =

[
x α(x)
0 β(x)

]
. (6)

Taking into account the equation (2) we have ca = −ab − bc. Thus σ(c ⊗ a) = −1R ⊗ ab − c ⊗ b. In a
similar way we obtain the relation σ(c⊗ b) = −1R ⊗ ba− c⊗ a. Hence

α(a) = −ab, α(b) = −ba, β(a) = −b and β(b) = −a. (7)

The condition σ̃(x)t · σ̃(y)t = σ̃(xy)t, for any x, y ∈ A, means that β is an algebra map and α is a
(1, β)-skew derivation. Since a and b generate A as an algebra, the above relations uniquely determine
α and β and imply the following equations:

α2 = 0, βα = −αβ and β2 = 1. (8)

The twisting map σ is bijective. Indeed, in view of the foregoing remarks, the inverse of σ̃ is the matrix

τ̃ =

[
idA βα
0 β

]
.

Clearly, β is a graded algebra morphism. Although α does not preserve the grading, it maps A+ to
itself. It follows that σ(R⊗A+) = A+ ⊗R.
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Finally, we note that there exist αn, βn, α′n and β′n in Endk
(
A(n)

)
such that the linear liftings σ(n)

and τ (n) are given, for any x ∈ A(n), by

σ(n)(c⊗ x) = αn(x)⊗ 1 + βn(x)⊗ c and τ (n)(x⊗ c) = 1⊗ α′n(x) + c⊗ β′n(x). (9)

By equations (4) and (5) we deduce that

αn =

n−1∑
i=0

β⊗i ⊗ α⊗ idA(n−i−1) , βn = β⊗n;

α′n =

n−1∑
i=0

id
A

(i)
+
⊗ βα⊗ β⊗(n−i−1), β′n = β⊗n.

(10)

Obviously, σ
(n)
+ and τ

(n)
+ also satisfy the relations (9) for any x ∈ A(n)

+ .

2.6. The normalized bar resolution. Let Λ be a connected graded k-algebra with associative mul-
tiplication m : Λ⊗ Λ→ Λ. We denote the restriction of m to Λ+ ⊗ Λ+ by m+.

Recall that the normalized bar resolution P∗(Λ) of k in the category of left Λ-modules is given by the
exact sequence

0←− k d0←− Λ
d1←− Λ⊗ Λ+

d2←− Λ⊗ Λ
(2)
+

d3←− Λ⊗ Λ
(3)
+

d4←− Λ⊗ Λ
(4)
+

d5←− · · ·
where d0 is the augmentation map of Λ.

For n > 0 we have dn =
∑n−1
i=0 (−1)idin and every map din is induced by m. More precisely, din(λ0 ⊗

· · · ⊗ λn) = λ0 ⊗ · · · ⊗ λiλi+1 ⊗ · · · ⊗ λn.

To compute En(Λ,M) := ExtnΛ(k,M) we use the complex Ω∗
(
Λ,M

)
obtained by applying the functor

HomΛ(−,M) to P∗(Λ). Thus in degree n we have Ωn
(
Λ,M

)
= Homk(Λ

(n)
+ ,M), where by convention

Ω0
(
Λ,M

)
= M . The differential maps are given by δ0(m)(λ) = λ ·m and

δn(f)(λ0, . . . , λn) = λ0 · f(λ1, . . . , λn) +

n−1∑
i=0

(−1)i+1f(λ0, . . . , λiλi+1, . . . , λn)

for any n > 0 and f ∈ Ωn
(
Λ,M

)
. Recall that (λ0, . . . , λn) is a shorthand notation for λ0 ⊗ · · · ⊗ λn.

If M = k, then we shall use the notation Ω∗
(
Λ
)

:= Ω∗
(
Λ,k

)
. Since the action of Λ on k is trivial,(

Ω∗
(
Λ
)
, δ∗
)

is a DG-algebra with respect to the Yoneda product

fg(λ1, . . . , λn+m) = f(λ1, . . . , λn) g(λn+1, . . . , λn+m),

where f ∈ Ωn
(
Λ
)

and g ∈ Ωm
(
Λ
)
. The vector space E(Λ) := ⊕n∈NEn(Λ,k) inherits an N-graded

algebra structure, which will be called the Yoneda ring or the cohomology ring of Λ.

In the case when Λ is finite dimensional, the complex Ω∗
(
Λ
)

can be rewritten as follows. Let V denote

the dual vector space of Λ+. Hence Ωn
(
Λ
) ∼= V (n) and, via this identification, δ1 can be regarded as a

map from V to V ⊗ V such that

δ1(f) = −
n∑
i=1

f ′i ⊗ f ′′i

if and only if f(λ1λ2) =
∑n
i=1 f

′
i(λ1)f ′′i (λ2), for any λ1, λ2 ∈ Λ+.

Similarly, for p > 1 the differential map δp is a morphism from V ⊗p to V ⊗p+1satisfying the relation:

δp+1 = δ1 ⊗ idV (p) − idV ⊗δp. (11)

In conclusion, the n-degree component En(Λ) of E(Λ) is the nth cohomology group of the complex:

0 −→ k δ0−→ V
δ1−→ V (2) δ2−→ V (3) δ3−→ V (4) δ4−→ · · · . (12)

It is worthwhile to note that the Yoneda product on Ω∗
(
Λ
)

coincides with the multiplication of the
tensor (free) algebra T (V ) of the vector space V .
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Example 2.7. Let R = k
〈
c|c2

〉
. For an R-module M we define D ∈ Endk(M) by D(m) = c ·m. Since

R+ is 1-dimensional the normalized bar complex Ω∗
(
R,M

)
can be identified to the complex (C∗, d∗),

where Cn := M and dn = D. Hence Ext0
R(R,M) = KerD and ExtnR(R,M) = KerD/ ImD, for n > 0.

If M = k is the trivial R-module, then D = 0. Thus, E(R) is the polynomial ring k[X]. The
indeterminate X is an element of degree 1, which corresponds to the 1-cocycle defined by the linear
transformation f : R+ → k, f(c) = 1.

2.8. The normalized bar complex of an algebra in kG
kGYD. We now take Λ to be a finite dimensional

algebra in the category of graded Yetter-Drinfeld modules over kG. Thus V , the dual of Λ+, is also an
object in this category. Its component Vp of degree p consists of all linear forms which vanish on Λq for
any positive q 6= p, and Vp is an object in the category kG

kGYD with respect to the action (g, f) 7−→ gf ,

where gf(v) = f
(
g−1

v
)
. The coaction is defined by the decomposition Vp =

⊕
g∈G Vp,g. By definition,

f ∈ Vp,g if and only if f(v) = 0 for any v ∈ Λp,h such that h 6= g−1. For details on the Yetter-Drinfeld
module structure of the linear dual of an object in kG

kGYD the reader is referred to [2, Section 2]. Since
kG
kGYD is monoidal, V (n) :=

⊕
p∈N V

(n)
p is a graded object of this category, where

V
(n)
p :=

〈
v1 ⊗ · · · ⊗ vn |

n∑
i=1

deg vi = p
〉
.

By definition, the kG-module structure of V
(n)
p is induced by the diagonal action, and the component

of degree g ∈ G is spanned by all v1 ⊗ · · · ⊗ vn ∈ V (n)
p such that vi ∈ Vgi and g1 · · · gn = g.

The differentials of (12) are morphism of graded Yetter-Drinfeld modules, so Ω∗
(
Λ
)

is a direct sum

Ω∗
(
Λ
)

=
⊕
p∈N

Ω∗
(
Λ, p

)
of subcomplexes in kG

kGYD. Since Ωn
(
Λ, p

)
= V

(n)
p , it follows that Ωn

(
Λ, p

)
= 0 for n > p.

Let Ω∗(Λ, p)Ge be the subcomplex of all cochains in Ω∗(Λ, p) that are of degree e and G-invariant.
Hence, ω ∈ Ωn(Λ, p)Ge if and only if gω = ω for all g ∈ G and ω belongs to Ωn(Λ, p)e, the component of
e-degree elements of the Yetter-Drinfeld module Ωn(Λ, p).

2.9. The dimension of Ωn(Λ, p)Ge . Let V be a k-linear representation of a finite group G and let V G

denote the space of G-invariant elements of V . Recall that, throughout this paper, the characteristic of
k is 0. If VG = k⊗kG V , then the linear map φ : V G → VG given by φ(v) = 1⊗ v is an isomorphism. Its
inverse maps 1⊗ v to 1

|G|
∑
g∈G

gv.

Let X be a G-set. We shall denote the orbit and the stabilizer of x ∈ X by [x] and Gx, respectively.
The set of all orbits of X will be denoted X/G. We fix a set of representatives R of X/G, that is a subset
of X so that any orbit contains a unique element in R.

By definition a linear representation V of G is called X-graded provided that it is endowed with
a decomposition V := ⊕x∈XVx such that gVx ⊆ Vg·x, for any g ∈ G and x ∈ X. For example, any
Yetter-Drinfeld kG-module may be seen as an X-graded module, by taking the G-set X to be G with
the adjoint action. Note that Vx is a kGx-module. If x ∈ R we define V[x] := ⊕y∈[x]Vy. Clearly, V[x] is
an X-graded representation of G and we have

V[x] = kG⊗ kGxVx.

Moreover, since the k-linear transformation φ is an isomorphism we get

V G =
⊕
x∈R

V G[x] '
⊕
x∈R

k⊗ kG (kG⊗ kGxVx) '
⊕
x∈R

k⊗ kGxVx '
⊕
x∈R

V Gxx .

Hence for any X-graded representation V we have

dimV G =
∑
x∈R

dimV Gxx .
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We are going to use this relation to compute the dimension of Ωn(Λ, p)Ge , where Λ is a finite dimensional
graded algebra in the category of Yetter-Drinfeld kG-modules. For, we introduce some more notation.

Let Nn[p] denote the set of all n-tuples p = (p1, . . . , pn) in Nn such that all pi are positive and∑n
i=1 pi = p. For a graded vector space V = ⊕n∈NVn and an n-tuple p = (p1, . . . , pn) as above let

Vp denote Vp1 ⊗ · · · ⊗ Vpn . Furthermore, we assume that each Vn = ⊕x∈GVn,x is an Yetter-Drinfeld
kG-module and we use the notation Vp,x := Vp1,x1

⊗ · · · ⊗ Vpn,xn , for any p ∈ Nn and x ∈ Gn.

Let G act on Gn by g(x1, . . . , xn) = (gx1g
−1, . . . , gxng

−1). Obviously X(n) = {x ∈ Gn | x1 · · ·xn = e}
is a G-subset of Gn and the homogeneous component of degree e of V

(n)
p := ⊕p∈N[p]Vp is the subspace(

V
(n)
p

)
e

=
⊕

x∈X(n)

⊕
p∈Nn[p]

Vp,x. (13)

We now take V to be the dual of Λ+, regarded as a graded object in kG
kGYD. Thus,

dim Ωn(Λ, p)Ge =
∑
x∈R

∑
p∈Nn[p]

dim(Vp,x)Gx .

In this relation R and Gx denote a set of representatives for X(n)/G and the stabilizer of x, respectively.
Note that Gx =

⋂n
i=1 CG(xi), where CG(xi) is the centralizer of xi in G.

We say that p and q are equivalent and we write p ∼ q if and only if there is π ∈ Sn such that
qi = pπ(i) for all 1 ≤ i ≤ n. Note that Vp and Vq are isomorphic as G-graded representations, provided
that p ∼ q. If Pn(p) denotes the set of all increasing n-tuples q ∈ Nn[p], then every p ∈ Nn[p] is
equivalent to a unique q ∈ Pn(p). An element of Pn(p) will be called positive n-partition of p.

Let X
(n)
q = {x ∈ X(n) | Vq,x 6= 0}. Obviously, X

(n)
q is a G-subset of X(n). To summarize, if

Rq = R ∩X
(n)
q and |q| is the number of tuples p equivalent to q, then the following formula holds true:

dim Ωn(Λ,m)Ge =
∑

q∈Pn(m)

∑
x∈Rq

|q|dim(Vq,x)Gx . (14)

2.10. The Cartan-Eilenberg spectral sequence of a twisted tensor product. The main tool
that we use for the computation of the ring E(B) is the Cartan-Eilenberg spectral sequence [7, Theorem
XVI.6.1]. For the variant of this spectral sequence that we need, the reader is referred to [13, §5.3].

A subalgebra A of B is called normal if and only if A+B = BA+. Thus, for a normal subalgebra A
of B we can define the quotient algebra B := B/A+B. Under the additional assumption that B is a flat
right A-module, it follows that B acts on Eq(A), and we have a multiplicative spectral sequence:

Ep,q2 = Extp
B

(
k, Eq(A)

)
=⇒ Ep+q(B). (15)

For applying the above spectral sequence to a specific extension A ⊆ B, we need an explicit computation
of the B-action on the Ext groups Eq(A). Since B is flat over A,

ExtqA(k,k) ' ExtqB(B ⊗A k,k) ' ExtqB(B, k).

By the proof of [13, Lemma 5.2.1], it follows that Eq(A) is a left B-module with respect to the action

induced by the right multiplication of B on itself. In conclusion, to describe this action we have to
consider an injective B-resolution 0 → k → I∗ of k and then to transport the B-module structure of
Hq(B, I∗) on Eq(A) via the above identification. In the following lemma we prove that, alternatively,

we may work with a special projective B-resolution of B.

Lemma 2.11. Let P∗ → B → 0 be a resolution of B by projective left B-modules. We assume that each
P∗ is a (B,B)-bimodule and that the maps that define the resolution are right B-linear. Then there is
an isomorphism of left B-modules Eq(A) ' Hq(HomB(P∗,k)).

Proof. Note that HomB(P∗,k) is a complex of left B-modules with the action induced by the right
B-action on P∗. We conclude by remarking that all objects used in the proof of [29, Theorem 2.7.6]
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inherit a left B-module structure and the maps between them are compatible with these actions. Thus,
proceeding as in the proof of that theorem, one shows that there are B-linear quasi-isomorphisms

HomB(B, I∗)→ Tot(HomB(P∗, I
∗))← HomB(P∗,k). �

In the remaining part of this section, we shall specialize the spectral sequence (15) to the particular
case when B = A⊗σ R, where A is a connected algebra and R is a graded algebra. The fact that R is
not necessarily connected will allow as to work with an arbitrary algebra R which is trivially graded,
that is R = R0. Furthermore, we assume that the twisting map σ is invertible and maps R ⊗ A+ to
A+ ⊗ R. We retain the notation from §2.5. Thus, σ+ denotes the restriction of σ to R ⊗ A+ and for

the lifting of σ+ to R⊗A(q)
+ , defined by the recurrence relation (3), we shall use the notation σ(q). The

inverses of these maps will be denoted by τ , τ+ and τ
(q)
+ , respectively.

We regard A and R as subalgebras of B via the inclusions x
iA7−→ x⊗1 and r

iR7−→ 1⊗ r. We first check
that A is normal in B and that B is a flat right A-module. Since by assumption σ and σ+ are bijective,
it is easy to see that AR = RA and A+R = RA+. Thus,

A+B = A+AR = A+R = RA+ = RAA+ = ARA+ = BA+,

so A is normal in B. Note that B = B/A+B = B/A+R ∼= R.

Under the conditions that we imposed on the twisting map, the right A-module B is not only flat,
but free. Indeed, the twisting map σ : R ⊗ A → A ⊗ R is an isomorphism of right A-modules, where
R⊗A and A⊗R are regarded as right A-modules via mA and by restriction of scalars with respect to
the inclusion of rings A ⊆ A⊗σ R = B.

Let us now describe the action of B ∼= R on Eq(A). When working with twisted tensor products
it is much more convenient to use in computations the graphical representation of morphisms, similar
to that one from the theory of braided monoidal categories, see [21, Chapter XIV.1]. This method is
also explained in [20, Section 4], where it is applied to the investigation of Koszulity of graded twisted
tensor products. As general rules, the identity of a vector space will be drawn as a sole string; the
tensor product and the composition of two morphisms will be represented by horizontal and vertical
juxtaposition, respectively.

Following the above references, we draw the string diagrams representing the most important maps
that we work with as in the picture below.

In the first three diagrams we introduce the graphical representation of the multiplication of an algebra

Λ, the twisting map σ between A and R and its inverse τ . The next two diagrams represent σ
(q)
+ and

τ
(q)
+ . Note the special representation of id

A
(q)
+

as a ‘stripe’ which replaces the corresponding q strings.

For the definition of the multiplication mA⊗σR see the fifth diagram. In the following two equations the
compatibility relations between σ and the multiplication maps are translated in diagrammatic language.
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Turning back to the Cartan-Eilenberg spectral sequence of a twisted tensor product, we are going to
construct a projective resolution of R as in Lemma 2.11, using the complex P∗(A) ⊗ R. We endow

A ⊗ A(q)
+ ⊗ R with a (B,R)-bimodule structure, where the right and left actions are given by mR and

µq. For the definition of µq see the first diagram in the figure below.

(16)

We claim that P∗(A) ⊗ R is an exact complex in the category of (B,R)-bimodules. Obviously, the
complex is exact and the differentials are morphisms of right R-modules, since by the definition of the
normalized bar resolution dq =

∑q−1
i=0 (−1)idiq, cf. §2.6. The fact that dq⊗idR is left B-linear is proved by

diagrammatic computation in the next figure. In the first equation we show that d0
q⊗ idR is a morphism

of left B-modules, using first that the product in A is associative and then the compatibility between
mA and σ. In the second equation we check that diq ⊗ idR is left B-linear, for any 0 < i < q. Here, we
need the same compatibility relation once again.

It remains to show that A ⊗ R ⊗ A(q)
+ is free as a left B-module. Let us remark that A ⊗ R ⊗ A(q)

+ is
a (B,R)-bimodule with respect to the left and right actions given by mB and ηq. The latter map is
defined in the second diagram of (16).

Moreover, by the computation below it follows that the (B,R)-bimodule map idA⊗ σ
(q)
+ : A ⊗ R ⊗

A
(q)
+ → A⊗A(q)

+ ⊗R is an isomorphism. In the first equation we prove that this map is a morphism of

left B-modules using that σ and mR are compatible. The same property and the fact that σ
(q)
+ and τ

(q)
+

are inverses each other allow us to conclude that idA⊗ σ(q)
+ is right R-linear as well.

In particular we deduce that P∗(A)⊗R is an exact complex in the category of (B,R)-bimodules which
is a resolution of R by free B-modules too. In order to get a simpler form of this resolution we define
the map ∂q =

∑q−1
i=0 (−1)i∂iq, where for every 0 ≤ i ≤ q − 1 we let ∂iq to be given by

∂iq =
(

idA⊗σ(q)
+

)(
diq ⊗ idR

)(
idA⊗τ (q−1)

+

)
.

Clearly, each ∂iq is a (B,R)-bimodule morphism. Obviously
(
A⊗R ⊗ A(∗)

+ , ∂∗
)

is another resolution of

R that shares the properties of P∗(A)⊗ R. The maps ∂iq are computed in the figure below. For future
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references, we gather the foregoing results in Lemma 2.12.

Lemma 2.12. The complex of (B,R)-bimodules
(
A ⊗ R ⊗ A(∗)

+ , ∂∗
)

is a resolution of R by free left

B-modules. In degree q the differential is defined by the relation ∂q =
∑q−1
i=0 (−1)i∂iq, where

∂iq =

{ (
mA ⊗ id

R⊗A⊗A(q−1)
+

)(
idA⊗σ ⊗ id⊗A(q−1)

+

)
, if i = 0;

id
R⊗A⊗A(i−1)

+
⊗mA ⊗ id

A
(q−i−1)
+

, if i > 0.

Remark 2.13. In the defining relations of ∂iq, for brevity, we used the same notation mA for the maps
induced by the product of A. Strictly speaking, if i = 0, then mA stands for the restriction of the product
to A⊗A+. Similarly, if i > 0, then mA denotes the restriction of the multiplication to A+ ⊗A+.

We have just seen that Eq(A) is the qth cohomology group of the complex obtained by applying
the functor HomB(−,k) to the resolution constructed in Lemma 2.12. For any q, the resulting vector

space HomB(B ⊗ A(q)
+ ,k) is canonically isomorphic to Homk(A

(q)
+ ,k). Through this identification, the

differential HomB(∂q+1,k) corresponds to −δq, where δq denotes the arrow of Ω∗
(
A
)

in degree q.

Via the same identification as above, we get a left R-module structure on the k-dual of A
(q)
+ . By a

straightforward computation we can see that, for any r ∈ R, x ∈ A(q)
+ and any linear form f on A

(q)
+ ,

(r · f)(x) =

m∑
i=1

ri · f(xi) =

m∑
i=1

εR(ri)f(xi), (17)

where τ
(q)
+ (x⊗ r) =

∑
ri ⊗ xi and we denoted the augmentation map of R by εR.

We now assume that A and R are finite dimensional. Thus, taking V to be the linear dual of A+,
we can use the complex (12) for computing E(A). The R-module structure of Ω∗

(
A
)

corresponds to a

left R-action on this complex. In order to write explicitly the formula for the R-action on V (q), we fix
a linear basis of R, say {e1, . . . , en}, such that e1 = 1R and all other elements are in R+. Using the
relation (5) we easily see that, for any f1, . . . , fq ∈ V ,

ei · (f1 ⊗ · · · ⊗ fq) =

n∑
i1,...,iq−1=1

f1τ1i1 ⊗ f2τi1i2 ⊗ · · · ⊗ fq−1τiq−2iq−1
⊗ fqτjq−1i, (18)

as ej ∈ R+ for any j > 1. In conclusion, we have proved the following.

Theorem 2.14. Let B = A ⊗σ R be a twisted tensor product, where A is connected and R is graded,
but not necessarily connected. We assume that σ is invertible and σ(R⊗A+) = A+ ⊗R.

(a) The left R-module structure of E(A) is induced by the R-action on
(
Ω∗
(
A
)
, δ∗
)

given in (17).
(b) If A and R are finite dimensional, then E(A) is the cohomology of the complex (12), and the

R-module structure of E(A) is induced by the action (18) on this complex.
(c) There is a multiplicative spectral sequence:

Epq2 = ExtpR
(
k, Eq(A)

)
=⇒ Ep+q(B).

As a first application of Theorem 2.14, let us take B to be a twisted tensor product B = A ⊗σ R,
where R = k

〈
c | c2

〉
. We keep the notation from §2.5 and we choose the basis {e1, e2} = {1, c} on R.
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Thus, in this particular case, for i = 2, the equation (18) becomes:

c · (f1 ⊗ · · · ⊗ fq) =

q∑
i=1

f1 ⊗ · · · ⊗ fi−1 ⊗ fiβα⊗ fi+1β ⊗ · · · ⊗ fqβ. (19)

By Example 2.7 we identify Ω∗
(
R,Eq(A)

)
to the complex (C∗, d∗), where Cn = En(A) and dn(w) = c·w,

for any n. For any p, q ≥ 0 we define Zp,q := {w ∈ Eq(A) | c · w = 0}. On the other hand, we set
B0,q := 0 and Bp,q := {c · w | w ∈ Eq(A)}, for any p > 0 and q ≥ 0.

Corollary 2.15. If R = k
〈
c | c2

〉
, then there is a multiplicative spectral sequence:

Epq2 =⇒ Ep+q(B), (20)

where Epq2 := Zp,q/Bp,q, for any p, q ≥ 0.

Proof. We apply Theorem 2.14 taking into account the fact that Epq2 and ExtpR
(
k, Eq(A)

)
are isomor-

phic. �

2.16. The Yoneda ring of a smash product. Also as an application of the multiplicative spectral
sequence from Theorem 2.14 we shall investigate the relationship between the cohomology ring of a
graded H-module algebra Λ and the cohomology ring of the smash product Λ#H.

Let H be a Hopf algebra with comultiplication ∆H and counit εH . We assume that the antipode
S of H is bijective and we denote the inverse of S by S. Let us recall that the antipode of a finite
dimensional Hopf algebra is always bijective.

A graded H-module algebra consists of an N-graded algebra Λ = ⊕n∈NΛn and an H-action on each
Λn such that h · 1Λ = εH(h)1Λ and the following relation holds for any h ∈ H,x ∈ Λn and y ∈ Λm:

h · (xy) = (h(1) · x)(h(2) · y).

In the above equation we used Sweedler’s notation ∆H(h) = h(1)⊗h(2). As Λ is an H-module algebra, we
can define the smash product Λ#H of Λ and H. As a vector space Λ#H = Λ⊗H and the multiplication
is defined by (a#h)(b#k) = a(h1 · b)#h2k, for all x ∈ Λn, y ∈ Λm and h, k ∈ H. Of course, the unit of
Λ#H is 1Λ#1H .

The smash product Λ#H can be seen as a graded twisted tensor product with invertible twisting
map. Indeed, we define an N-grading on H by imposing that all elements to be of degree 0. Let
σ : H ⊗ Λ→ Λ⊗H be the k-linear map defined for x ∈ Λn and h ∈ H by

σ(h⊗ x) = h(1) · x⊗ h(2).

One easily sees that σ is graded and σ(H ⊗ Λ+) ⊆ Λ+ ⊗ H. Moreover, σ is bijective and its inverse
τ maps x ⊗ h to S(h(1)) · x ⊗ h(2). Thus we can apply Theorem 2.14 for the twisted tensor product
Λ⊗σH = Λ#H, so there is a canonical H-module structure on E(Λ). Under the additional assumption
that H and Λ are finite dimensional we can compute this action using the relation (18), where we take
V to be the linear dual of Λ+. For, we fix a basis {e1, . . . , en} on H such that e1 = 1H and all other
elements are in the kernel of εH . If we write ∆H(ei) =

∑n
j=1 ej ⊗hji, then the (i, j)-entry of the matrix

τ̃ associated to τ is the linear endomorphism τij : Λ → Λ which maps x to S(hij) · x. It follows that,
for any f ∈ V and x ∈ Λ,

fτij(x) = f
(
S(hij) · x

)
= (hij · f)(x),

where the left H-action on V is given by (h · f)(x) = f(S(h) · x). By (18) we get

ei · (f1 ⊗ · · · ⊗ fq) =

n∑
i1,...,iq−1=1

h1i1 · f1 ⊗ hi1i2 · f2 ⊗ · · · ⊗ hiq−2iq−1
· fq−1 ⊗ hiq−1i · fq.
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Let ∆1
H := ∆H . For any i ≥ 2 we define the iterated comultiplication ∆i+1

H by the recurrence relation

∆i+1
H := (∆H ⊗ idH(i))∆i

H . In particular we have

∆q+1
H (ei) =

n∑
i0,...,iq−1=1

ei0 ⊗ hi0i1 ⊗ hi1i2 ⊗ · · · ⊗ hiq−2iq−1
⊗ hiq−1i.

Since e1 = 1 and ei0 is in the kernel of the counit, for any i0 > 1, by applying εH ⊗ idH(n) to both sides
of the above equation, we deduce that

∆q
H(ei) =

n∑
i1,...,iq−1=1

h1i1 ⊗ hi1i2 ⊗ · · · ⊗ hiq−2iq−1 ⊗ hiq−1i

In conclusion, the H-action on the bar complex (12) is induced by the diagonal action of H on V , defined
by (h · f)(x) = f

(
S(h) · x

)
, for any h ∈ H, f ∈ V and x ∈ Λ. We conclude this section by proving the

following result.

Theorem 2.17. Let H be a semisimple Hopf algebra (a fortiori finite dimensional). If Λ is a finite
dimensional H-module algebra then there is an isomorphism of graded algebras

E(Λ#H) ' E(Λ)H , (21)

where E(Λ)H = {ω ∈ E(Λ) | h · ω = εH(h)ω,∀h ∈ H} is the space of H-invariant elements of E(Λ)
with respect to the H-module structure on E(Λ) induced by the action on Ω∗

(
Λ
)

given by

h · (f1 ⊗ · · · ⊗ fq) = h(1) · f1 ⊗ · · · ⊗ h(q) · fq,

where for any h ∈ H and f ∈ V we have (h ·f)(x) = f(S(h) ·x). In particular, for any finite dimensional
algebra in H

HYD the smash product Λ#H makes sense, and the isomorphism (21) holds true.

Proof. By the foregoing remarks we know that the H-action on E(Λ) satisfy the properties stated in
the theorem. As H is semisimple, the multiplicative spectral sequence

Ep,q2 = ExtpH
(
k, Eq(Λ)

)
=⇒ Ep+q(Λ#H)

(see Theorem 2.14) degenerates at the second page, yielding the graded algebra isomorphism (21).

Let us now suppose that Λ is a finite dimensional algebra in H
HYD. As the multiplication and the

unit of Λ are morphisms in the category of Yetter-Drinfeld modules, Λ is an H-module algebra. Thus
the smash product Λ#H exists, and we have the isomorphism from equation (21). �

Remark 2.18. If Λ is a braided Hopf algebra in the category of Yetter-Drinfeld H-modules, then Λ#H
has a natural structure of ordinary Hopf algebra, which is called the bosonization of Λ. As a coalgebra
the bosonization of Λ is the smash coproduct, see for instance [2, §1.3].

3. The ring E(A)

Our aim in this section is to investigate the Yoneda ring of the subalgebra A = k[a, b] of the 12-
dimensional Fomin-Kirillov algebra B. We start by providing a resolution of the trivial left A-module k
by free left A-modules. It will be obtained as the total complex associated to a certain double complex.
Then we shall show that the ring R := k[c] acts on the cohomology ring E(A) and we shall explicitly
compute this action. In order to do all that, we consider the following diagram in the category of left
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A-modules, where ρx denotes the right multiplication by x ∈ A.
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��

A
ρ−aoo

ρba

��

A
ρ−aoo

ρba

��

· · ·
ρ−aoo

A

ρb

��

A
ρbaoo

ρab

��

A
ρboo

ρab

��

A
ρboo

ρab

��

A
ρboo

ρab

��

· · ·
ρboo

A A
ρ−a
oo A

ρ−a
oo A

ρ−a
oo A

ρ−a
oo · · ·

ρ−a
oo

We claim that this diagram defines a first-quadrant double complex C = (C∗∗, d
h
∗∗, d

v
∗∗), where Cp,q = A.

Note that, if q > p then dvp,q = ρb (respectively dvp,q = ρ−a), provided that p is even (respectively odd).

For q ≥ p we have dhp,q = ρba (respectively dhp,q = ρab), provided that q is odd (respectively even). On

the other hand, for q < p we set dhp,q = β ◦ dvq,p ◦ β and for any q ≤ p one takes dvp,q = β ◦ dhq,p ◦ β.

Lemma 3.1. The above diagram is a double complex of left A-modules. The total complex Tot∗(C) is
a minimal resolution of k by free left A-modules. In particular dimEn(A) = n+ 1, for all n ∈ N.

Proof. The columns and the rows are complexes as a2 = b2 = 0. The squares anti-commute since
aba = bab. Let us prove that Tot∗(C) is exact in positive degree and that its homology in degree 0 is k.
By [29, Definition 5.6.2], the filtration by rows of C induces a spectral sequence with IIE1

p,q := Hh
q (Cp,∗).

Since the horizontal arrows of C maps the basis A to itself, we may identify IIE1
p,q to a subspace of A

which is spanned by some elements of A.

For x ∈ {a, b} we have Ker(ρx) = Im(ρx). On the other hand, if x and y are distinct elements in
{a, b}, then

A

Im(ρxy)
= 〈1, x, y, xy〉, Ker(ρyx)

Im(ρxy)
= 〈y, yx〉, Ker(ρxy)

Im(ρx)
= 〈xy〉.

Let us denote these vector spaces by Cx,y, C ′x,y and C ′′x,y, respectively. Since A/ Im(ρa) = 〈1, b, ab〉 it

follows that IIE1
0,∗ is the complex

0←− 〈1A, b, ab〉 ←− Cb,a ←− Cb,a ←− · · · ←− Cb,a ←− · · · ,
whose differential maps are all induced by ρb. It is easy to see that the nth homology group of this
complex is precisely k1A provided that n = 0, and it is trivial otherwise. Similarly, IIE1

1,∗ is the complex

0←− 0←− C ′′b,a ←− C ′b,a ←− · · · ←− C ′b,a ←− · · · .

In this case, the map C ′b,a → C ′′b,a is induced by ρab, while the other maps are induced by ρ−a. It follows

that the homology of IIE1
1,∗ is trivial. For p > 1, one proves that Hq(

IIE1
p,∗) = 0 in a similar way.

We conclude that all IIE2
p,q are trivial, excepting IIE2

0,0 which is of dimension 1. Thus the spectral
sequence collapses at r = 2 and Hn(Tot∗(C)) = 0, for any n > 0. On the other hand H0(Tot∗(C)) = k,
so Tot∗(C) is a free resolution of k in the category of left A-modules.

Since HomA(ρx,k) = 0 for any x ∈ A \ {1}, it follows that the horizontal and vertical differen-
tial maps of the double complex HomA(C, k) are all trivial. In conclusion, the differential maps of
HomA(Tot∗(C),k) are also trivial. Hence, the resolution Tot∗(C) is minimal and

En(A) = ExtnA(k,k) = HomA(Tot∗(C),k) = HomA(An+1,k) ∼= kn+1.
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Thus dimEn(A) = n+ 1. �

For the computation of the algebra structure of E(A) we need another important property of A,
namely that it is a K2-algebra. Following [8] we shall say that A is a K2-algebra if and only if E(A) is
generated as an algebra by E1(A) and E2(A). Note that any Koszul algebra is K2, as its cohomology
ring is generated by the homogeneous component of degree 1, cf. [8].

Lemma 3.2. The algebra A is K2.

Proof. Let A′ = k〈a, b | a2, b2〉. It is well known that A′ is Koszul, see for example [20, Theorem 6.12].
By the foregoing remarks, A′ is K2 as well. Note that g = aba − bab is normal and regular in A and
A = A′/A′g. We conclude that A is K2 using [8, Theorem 9.1]. Note that the map

γ : Ext2
A′(k,k)→ Ext1

A(k,k(3))

that appears in the statement of the foregoing mentioned result is trivial, in view of the observation
preceding [8, Corollary 9.2] and the fact that A′ has no defining relations of degree deg(g) + 1 = 4. �

Theorem 3.3. There is a graded algebra isomorphism

E(A) ' k〈x, y, z | xy, yx, zx + yz, xz + zy〉,

such that deg x = 1 = deg y and deg z = 2.

Proof. We denote the k-linear dual of A+ by V . We use the normalized bar complex (12) to find elements
x, y and z in E(A) that generate this algebra and satisfy the above relations.

If A+ := A \ {1}, then we take {px}x∈A+ to be the dual basis of A+. It is easy to see that

δ1(pa) = 0 = δ1(pb), δ1(pab) = pa ⊗ pb, δ1(pba) = pb ⊗ pa,
δ1(paba) = pa ⊗ pba + pab ⊗ pa + pb ⊗ pab + pba ⊗ pb.

(22)

We set x, y and z to be the cohomology classes of pa, pb and pb ⊗ pab + pba ⊗ pb, respectively. Note that
x, y ∈ E1(A), while z ∈ E2(A). Using the fact that dimEn(A) = n+ 1, we deduce that {x, y} is a basis
of E1(A) and {x2, y2, z} is a basis of E2(A). By Lemma 3.2, the algebra A is K2. It follows that E(A)
is generated as an algebra by x, y and z.

It remains to prove that these cohomology classes satisfy the relations from the statement of the
theorem. Since xy is the cohomology class of pa ⊗ pb we get xy = 0 in view of the second relation of
(22). The relation yx = 0 can be proved in a similar way. On the other hand xz + zy is trivial, as it is
the cohomology class of

w = δ2(paba ⊗ pb + pab ⊗ pab).
The last relation can be proved in a similar way.

Let E := k〈X,Y, Z | XY, Y X,XZ+ZY, Y Z+ZX〉. We regard E as a graded algebra by imposing the
relations degX = deg Y = 1 and degZ = 2. By the preceding remarks, there is a canonical surjective
morphism of graded algebras φ : E → E(A). As Z ∈ E2, it follows that

En := {Xn−2iZi | 0 ≤ i ≤ n
2 }
⋃
{Y n−2iZi | 0 ≤ i ≤ n

2 }

is a basis of En. Since dimEn = n+ 1, we conclude that φ is an isomorphism. �

Lemma 3.4. The action (19) of R on the generators of E(A) is given by

c · x = 0 = c · y and c · z = x2 − y2.

Proof. Recall that x is the cohomology class of pa, see the proof of Theorem 3.3. Hence c · x is the
cohomology class of c · pa. Note that c · pa = −paβα = 0, since by (7) the image of αβ is included into
A≥2, the square of the augmentation ideal A+, and pa vanishes on this ideal by definition. It follows
that c · x = 0. The equation c · y = 0 can be proved in a similar way.
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Let w = pb ⊗ pab + pba ⊗ pb. Taking into account the equation (19) we have

c · w = pb ⊗ pabβα+ pbβα⊗ pab ◦ β + pba ⊗ pbβα+ pbaβα⊗ pbβ.

We have seen that pbβα = 0. By equation (7), we get pabβα = −pb and pbaβα = −pa. On the other
hand, pbβ = −pa. Therefore c · w = pa ⊗ pa − pb ⊗ pb. As z is the cohomology class of w, we get
c · z = x2 − y2. �

Theorem 3.5. Let t ∈ {x, y}. The R-action on E(A) satisfies the relations

c · (tl z2k) = 0 and c · (tl z2k+1) = tl(x2 − y2)z2k.

Proof. Clearly, c · 1 = 0, since α(1) = 0. As β is a bijective morphism of algebras, β′q = β⊗q = βq
induces an automorphism of Eq(A) that will be denoted by βq as well. By (19) we have

c · (w′w′′) = w′(c · w′′) + (c · w′)βq(w′′) (23)

for any homogeneous elements w′,w′′ ∈ E(A). Therefore, c · (w′w′′) = w′(c ·w′′), provided that c ·w′ = 0.

Keeping this additional assumption on w′, it follows by induction that c · w′ l = 0, for any l ≥ 0.

Let us prove that c · z2 = 0. Equation (23) yields

c · z2 = z(c · z) + (c · z)β′2(z).

Let w = pb ⊗ pab + pba ⊗ pb. By equation (7) we get

w(β ⊗ β) = pbβ ⊗ pabβ + pbaβ ⊗ pbβ
= −pa ⊗ pba − pab ⊗ pa
= pb ⊗ pab + pba ⊗ pb − δ1(paba).

Hence w(β⊗β) = w+δ1(paba). This relation implies that β2(z) = z. Since by Theorem 3.3 the equations
xz = −yz and yz = −xz hold true, we get

c · z2 = z(x2 − y2) + (x2 − y2)z = 0.

Consequently, c · z2k = 0 for any k ≥ 0. Furthermore,

c · z2k+1 = z2k(c · z) = (x2 − y2)z2k,

where for the last equality we used the preceding lemma and the relation z2(x2 − y2) = (x2 − y2)z2. By
the same lemma, c · t = 0. Thus, c · tl = 0 for any l ≥ 0. Since both tl and z2k are annihilated by the
action of c, we deduce that c · (tlz2k) = 0. We conclude the proof by the following computation:

c · (tl z2k+1) = tlz2k(c · z) = tlz2k(x2 − y2) = tl(x2 − y2)z2k. �

Remark 3.6. Let l > 0. Since xy = 0 = yx, the action of R on E(A) satisfies the relations

c · (xl z2k+1) = xl+2z2k and c · (yl z2k+1) = −yl+2z2k,

for any n, l ∈ N.

4. The cohomology ring of the 12-dimensional Fomin-Kirillov algebra

In this section we shall prove our main result, the computation of the Yoneda ring E(B). We start

by describing the subalgebra Ẽ(B) generated by E1(B). On the dual vector space of B+, we take the
dual basis {qx}x∈B+

of B+ = B \ {1}. Then E1(B) is spanned by the cohomology classes [qa], [qb] and

[qc]. In particular, they generate Ẽ(B) as an algebra. Some obvious relations between these generators

arise from the fact that Ẽ(B) is graded braided commutative.

Lemma 4.1. The Yoneda ring E(B) is graded braided commutative. In particular, [qx][qy] = [qz][qx]
for any permutation (x, y, z) of (a, b, c).
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Proof. Recall that, by definition, a graded algebra Λ in the category of Yetter-Drinfeld kS3-modules is
graded braided commutative if and only if gw · v = (−1)nmv · w, for any v ∈ Λn and w ∈ Λm so that v
is homogeneous of degree g.

By [23] the cohomology ring of a Nichols bialgebra is graded braided commutative. Thus, in particular,
E(B) is such an algebra, so [qa][qb] = −(12)[qb][qa]. Since the S3-action on E1(B) is induced by that
one of the dual of B and (12)qb = −qc, we have just proved the required relation in the particular case
when (x, y, z) = (a, b, c). For any other permutation (x, y, z) we can prove the corresponding relation in
a similar way. �

Remark 4.2. We know that E1(B) is an Yetter-Drinfeld kS3-module. By the proof of the preceding
lemma, the cohomology classes a = [qa], b = [qb] and c = [qc] are the elements of a vector basis on
E1(B). Moreover, they are homogeneous of the same degree as a, b and c, the generators of B. Since
the actions of S3 on {a, b, c} and {a, b, c} are identical, it follows that we can identify E1(B) with the
Yetter-Drinfeld module B1 = V (T3) in such a way that a, b and c correspond to a, b and c.

Our next goal is to show that there are no other relations in the presentation of Ẽ(B). For, we are
going to investigate some properties of an arbitrary algebra that contains three elements satisfying the
set of relations from Lemma 4.1. More precisely, we are interested in computing the dimension of the
homogeneous components of the subalgebra generated by these three elements.

Let Λ = ⊕n∈NΛn be a graded k-algebra. We assume that S = {a, b, c} ⊆ Λ1 is a set of nonzero
elements such that xy = zx, for any permutation (x, y, z) of (a, b, c). For such a permutation (x, y, z)

xyz = zyx = xzx = zxz = yz2 = z2y = yx2 = x2y.

Let Γ denote the subalgebra generated by S.

Lemma 4.3. Let S1 = S and Sn := {an, bn, cn, an−1b, an−1c, an−2b2}, for any n ≥ 2. The set Sn spans
linearly the homogeneous component Γn, for any n > 0.

Proof. For n = 1 we have nothing to prove. We show by induction on n ≥ 2 that any monomial
ω = x1 · · ·xn in Γn belongs to Sn. The case n = 2 and x1 = x2 is clear, as x2

1 ∈ S2. If x1 6= x2, then let
x3 such that S = {x1, x2, x3}. Since x1x2 = x2x3 = x3x1 it follows that ω = au, for a certain u ∈ S\{a}.

Supposing that we have proved that Γn ⊆ Sn, let us pick a monomial ω = x1 · · ·xn+1 in Γn+1.
We can assume that at least two factors of ω are distinct; otherwise, ω is obviously an element of
Sn. Henceforth, ω = xp1xp+1 · · ·xn+1, with x1 6= xp+1. Note that xp1xp+1 = xp+1x

p
1, if p is even, and

xp1xp+1 = x1xp+1x
p−1
1 , if p is odd. Thus ω can be written as a product of n+ 1 elements of S, satisfying

the additional property that the first two factors are not equal. By the case n = 2, we can rewrite ω
such that its first factor is a. By the induction hypothesis it follows that

ω ∈ {an+1, abn, acn, anb, anc, an−1b2}
It remains to prove that abn and acn belong to Sn+1. To show that the former element is in Sn+1 we
are going to prove the following two equations

ab2p+1 = a2p+1b and ab2p = a2p−1b2.

Using the relations x2y = z2y = yx2 = yz2, we get ab3 = ab2b = ac2b = aa2b = a3b. So, by induction,

ab2p+1 = ab2p−1b2 = a2p−1b3 = a2p−2ab3 = a2p+1b.

The second relation is a consequence of the first one: ab2p = ab2p−1b = a2p−1b2. The fact that
acn ∈ Sn+1can be proved in a similar way, remarking that ac2 = ab2. �

Lemma 4.4. We keep the notation from the above lemma. Let us suppose in addition that:

(i) Λ is a S3-graded algebra, whose homogeneous component of degree g is Λg.
(ii) a ∈ Λ(12), b ∈ Λ(23) and c ∈ Λ(13);

(iii) There is an algebra morphism θ : Λ→ k such that θ(x) = 1 for all x ∈ S;
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(iv) For every x ∈ S there is an algebra morphism θx : Λ → k such that θx(x) = 1 and θx(y) = 0,
for y ∈ S \ {x}.

Under these conditions, Sn is a basis of Γn, for any n ≥ 1 ( b2 is counted only once in S2, of course).

Proof. Let ω = x1 · · ·xn be a monomial in Γn. Since θ(ω) = 1 it follows that ω 6= 0. In particular
all elements of Sn are nonzero. We know that Sn generates Γn. Let us assume that n is odd. Then
{an, an−2b2} ⊆ Λ(12). On the other hand, {bn, an−1b} ⊆ Λ(23) and {cn, an−1c} ⊆ Λ(13). Hence Sn is
linearly independent if and only if the above three sets are so.

Let µan + νan−2b2 = 0 be a linear combination with coefficients in k. By applying θ and θa to the
left-hand side of this relation we get µ = 0 and µ + ν = 0. Hence µ = ν = 0. Proceeding in a similar
way one shows that the other two sets are linearly independent.

Now let us assume that n is even and n ≥ 4 (the case n = 2 can be handled in an analogous way). For
such an n we have {an, bn, cn, an−2b2} ⊆ Λe. Since an−1b ∈ Λ(123) and an−1c ∈ Λ(132) it is enough to

show that any linear combination µan+νbn+γcn+εan−2b2 = 0 is trivial. Using the algebra morphisms
θ and θx, for all x ∈ S, we get the equations µ+ ν + γ + ε = 0 and µ = ν = γ = 0. �

As a first application of Lemma 4.4 we consider the following setting. We take S := {a, b, c} to be the
set of generators of E1(B). Let S be the symmetric braided algebra of this Yetter-Drinfeld kS3-module,
that is the free algebra k〈a, b, c〉 modulo the ideal I generated by all relations xy − zx where x, y and z
are distinct elements in S.

Clearly, S is an N-graded algebra. By construction, it is also S3-graded. Indeed, since a, b and c are
homogeneous of degree (12), (23) and (13), respectively, it follows that any generator xy− zy of I is also
S3-homogeneous of degree deg x deg y = deg z deg x.

The canonical map E1(B) → S is injective, as I is generated by homogeneous elements of degree 2.
Hence we identify an element x ∈ S to its image in S.

Corollary 4.5. The set Sn is a basis of Sn, for any n ≥ 1.

Proof. The corollary is a direct consequence of the preceding lemma. We have to check the existence of
the algebra morphisms θ and θx, for all x ∈ S. We define θ′ : E1(B) → k to be the unique linear map
sending the elements of S to 1. Using the universal property of k〈a, b, c〉, there is an algebra map that
lifts θ′. Clearly, this algebra map factorizes through S, as it vanishes on the ideal I. We take θ to be the
resulting algebra morphism. The other three algebra morphisms are constructed in a similar way. �

Proposition 4.6. We keep the same notation as above.

(a) The algebra E(B) satisfy the conditions (iii) and (iv) from Lemma 4.4.

(b) There is an embedding of S into E(B) as an algebra in kS3
kS3YD whose image is precisely Ẽ(B).

Proof. Let x ∈ B1 be a nonzero element such that x2 = 0. The inclusion k[x] ⊆ B induces a morphism
of algebras ϑx : E(B) → E(k[x]). By Example 2.7 we have E(k[x]) ∼= k[X] and the indeterminate X
corresponds to the linear function that maps x to 1.

For any 1-cocycle f : B+ → k in Ω∗
(
B
)

we have ϑx([f ]) = f(x)X. Let ε : k[X] → k be the unique
algebra map such that ε(X) = 1. Thus εϑx([f ]) = f(x), so we can take θ = εϑa+b+c and θx = εϑx for
any x ∈ S. Note that (a+ b+ c)2 = 0, as the generators of B satisfy the relations (2).

To prove the second part, we consider the canonical graded algebra morphism ϕ : S → E(B) that

maps x to [qx] for any x ∈ S. Obviously, the image of ϕ is Ẽ(B). By Lemma 4.4, the vector spaces Sn
and Ẽn(B) are equidimensional, so ϕ is an isomorphism. �

We continue our investigation of the Yoneda ring E(B) by computing the dimension of the vector
spaces Ep,q2 that define the second page of the spectral sequence from Corollary 2.15 (c).

Proposition 4.7. Let m0 = m2 = 1, m1 = 2 and m3 = 0. Let k ≥ 0 denote an integer number.
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(a) For any i ∈ {1, 2, 3} we have dimE0,4k+i
2 = 2(k + 1), and dimE0,4k

2 = 2k + 1.

(b) For any p > 0 and i ∈ {0, 1, 2, 3} we have dimEp,4k+i
2 = mi.

Proof. In view of Theorem 3.5 and the proof of Theorem 3.3, it follows that the R-action on Eq(A)
maps an element of the basis Eq either to zero or to another element of the same basis. Recall that z is
an element of degree 2. Hence, it is not difficult to see that

B′p,q =
{
xiz2k | i+ 4k = q

}⋃{
yiz2k | i+ 4k = q

}
is a basis of Zp,q. Note that x0z0 = y0z0 = 1 (the unit of E0(A) = k). By Theorem 3.5 and Remark 3.6,
it follows that xiz2k, yiz2k and (x2 − y2)z2j are all in Bp,q, provided that i+ 4k = q = 2 + 4j and i ≥ 3.
Since Eq is a basis of Eq(A), these elements generate Bp,q.

Now we can easily prove the lemma. By definition Ep,q2 := Zp,q/Bp,q. Let [w]p denote the class of
w ∈ Zp,q ⊆ Eq(A) in Ep,q2 . Counting the cardinal of B′0,q we conclude the proof of the first part of the

proposition, as E0,q
2 = Z0,q.

Let q = 0. Since E0(A) = k and the action of R on k is trivial, we get Ep,02 = Homk(R
(p)
+ ,k). Clearly,

if fp ∈ Ep,02 is the unique linear transformation such that fp(c
(p)) = 1, then {fp} is a basis on Ep,02 .

We are now assuming that p, q > 0. Thus Bp,q = B′p,q
⋃
B′′p,q is a basis of Ep,q2 , where

B′p,q =
{[
xiz2k

]
p
| i ∈ {0, 1, 2}, i+ 4k = q

}
,

B′′p,q =
{[
yiz2k

]
p
| i ∈ {0, 1, 2}, i+ 4k = q

}
.

If q = 4k then i = 0 and Bp,4k =
{

[z2k]p
}

. In the case when q = 4k + 1, then Bp,q has two elements,

[xz2k]p and [yz2k]p. Let us suppose that q = 4k + 2. As x2z2k − y2z2k is an element in Bp,q,we get
Bp,q =

{
[x2z2k]p

}
. We conclude observing that Bp,q = ∅, for q = 4k + 3. �

Remark 4.8. Since B0,q
2 = 0, any element in Z0,q

2 identifies to its class in E0,q
2 . Thus, we shall regard

B0,q as a basis of both vector spaces Z0,q
2 and E0,q

2 .

By definition of multiplicative spectral sequences, for any r ≥ 2 the page E∗,∗r = ⊕p,q≥0E
p,q
r is

a bigraded algebra such that the differentials dp,qr satisfy the graded Leibniz rule. In particular the
second page is a bigraded algebra and its component of bidegree (p, q) is Ep,q2 . Let us remark that

[w]p[w
′]p′ = [ww′]p+p′ , for any w ∈ Zp,q and w′ ∈ Zp′,q′ .

We have seen that E0,∗
2 = ⊕q≥0E

0,q
2 is the subalgebra of Epq2 generated by three elements. Two of

them, f = [x]0 and g = [y]0, have bidegree (0, 1). The third one, h = [z2]0 is of bidegree (0, 4).

Let us now consider the graded algebra E∗,02 = ⊕p≥0E
p,0
2 . By the proof of Proposition 4.7, Ep,02 is

1-dimensional and fp generates this linear space. Since fpfp′ = fp+p′ for any p, p′ ∈ N, we deduce that

E∗,02 is the polynomial ring k[l], where l = f1. As an element of E∗,∗2 , the generator l has bidegree (1, 0).

Proposition 4.9. The bigraded algebra E∗,∗2 is generated by the set E = {f, g, h, l}.

Proof. We claim that every linear space Ep,q2 is contained in the subalgebra generated by E. Clearly,

E0,q
2 is a linear subspace of the subalgebra generated generated by E, see the foregoing remarks. The

claim now follows by remarking that for p > 0 the set Bp,q is a linear basis of Ep,q2 and that the following
relations hold: [xiz2k]p = fihklp and [yiz2k]p = gihklp. �

The next step in the computation of dimEn(B) is to find an upper bound of this number. To do this,
we define the sequence {Nn}n≥0 of positive integers such that N0 = 1, N1 = 3, N2 = 5 and N3 = 6. For
n ≥ 5, we define Nn by the recurrence relation:

Nn+4 = Nn + 6. (24)

Note that {Nn}n≥0 contains all integers that are congruent to 1, 3, 5 and 0 modulo 6, that is

{Nn}n≥0 = {1, 3, 5, 6, 7, 9, 11, 12, 13, . . . }.
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Proposition 4.10. If n is a non-negative integer, then dimEn(B) ≤ Nn. Moreover, dimEn(B) = Nn
for n ≤ 3 and dimE4(B) ≥ 6.

Proof. The term Ep,qr+1 of the spectral sequence from Corollary 2.15 is a subquotient of Ep,qr . Thus
dimEp,qr+1 ≤ dimEp,qr for any p, q ≥ 0 and r ≥ 2. Since for r large enough we have dimEp,q∞ = dimEp,qr ,
we deduce that

dimEn(B) =

n∑
p=0

dimEp,n−p∞ ≤
n∑
p=0

dimEp,n−p2 .

Let N ′n :=
∑n
p=0 dimEp,n−p2 . By the above computation, Nn ≤ N ′n for all n ∈ N. We have to prove

that N ′n = Nn. Clearly, N0 = 1. We also have N1 = 3 and N2 = 5, these numbers representing the
number of the generators and of the relations that define B. Hence, by Proposition 4.7, it follows that
N ′n = Nn for n = 0, 1, 2. On the other hand, by Proposition 4.6(c), the braided symmetric algebra S of
E1(B) embeds into E(B), so N3 ≥ dimS3 = 6. Since N3 ≤ N ′3 = 6 we deduce the relation N3 = N ′3.
Let us notice that

N ′n+4 = dimE0,n+4
2 + dimE1,n+3

2 + dimE2,n+2
2 + dimE3,n+1

2 + dimE4,n
2 +

+

n+4∑
p=5

dimEp,n−p+4
2 .

By Proposition 4.7 we have
∑4
p=1 dimEp,n−p+4

2 = 6. Note that dimE0,n+4
2 = dimE0,n+2

2 + 2. Since the

last term from the right-hand side of the above displayed equation is precisely
∑n
p=1 dimEp,n−p2 we get

N ′n+4 = N ′n + 6. Hence, by induction, N ′n = Nn, for all n.

In view of Proposition 4.6(c) and Corollary 4.5 we conclude that N4 ≥ dimS4 = 6. �

Remark 4.11. The subspace Sn of En(B) = Hn(Ω∗(B)) coincides with Hn(Ω∗(B,n)). Thus, as a
consequence of the proof of the above lemma, it follows that the nth cohomology group of Ω∗(B,m)
vanishes for any n ≤ 3 and m 6= n.

In order to show that E4(B) is 7-dimensional we are going to compute Mn = dim Ωn(B, 6)S3e . Clearly,
if either n < 2 or n > 6 we have Mn = 0.

Lemma 4.12. If n ∈ {2, 3, 4, 5, 6}, then dimMn ∈ {1, 17, 68, 90, 41}.

Proof. To compute the dimension of these vector spaces we use the relation (14). It is well known that
B and its dual B∗ are isomorphic as braided algebras in the category of Yetter-Drinfeld kS3-modules.
Let Bn,g denote the set of all x ∈ Bn which are homogeneous of degree g ∈ S3. We use the notation
introduced in §2.9. For simplicity we shall write G and Pn instead of S3 and Pn(6), respectively. Since
B and its dual are isomorphic as objects in kG

kGYD we have Vn,g ∼= Bn,g.

Let n = 2. If q ∈ P2 and q2 > 4, then Bq2 = 0. Henceforth, in the relation (14) all terms that
corresponds to a partition q as above vanishes. Therefore, the first sum in the right-hand side of (14)
has only two terms, corresponding to (2, 4) and (3, 3). On the other hand, B2,e = 0 and B4,g = 0 for all

g 6= e. Thus, for q = (2, 4) and any x ∈ X(2) we have Bq,x = 0, which means that the second sum in
the right-hand side of (14) is zero.

Let q = (3, 3). We do not get new pairs by permuting the components of q. Thus |q| = 1. It is easy

to see that X
(2)
q = {(hgi, hgi) | i = 0, 1, 2}, where h = (12) and g = (123). If x = (h, h), then Gh = 〈h〉.

Thus X
(2)
q is precisely the orbit [x] of x, and Rq = {x}. We deduce that dimM2 = dim(B3,h⊗B3,h)〈h〉.

Since, the subspace B3,h is generated by bac and bac⊗bac is 〈h〉-invariant, we conclude that dimM2 = 1.

To show that dimM3 = 17 we proceed in a similar way. The positive 3-partition q such that Bq 6= 0
are the following: (1, 1, 4), (1, 2, 3) and (2, 2, 2).



THE COHOMOLOGY RING OF THE 12-DIMENSIONAL FOMIN-KIRILLOV ALGEBRA 21

If q = (1, 1, 4), then X
(3)
q is the set of all triples (hgi, hgi, e), where i = 0, 1, 2. Hence |X(3)

q | = 3.
Trivially, |q| = 3. In this case there is a unique orbit of length 3, so Rq = {(h, h, e)}. The stabilizer of

the unique element of Rq is 〈h〉 and (B1,h ⊗B1,h ⊗B4,e)
〈h〉 = 〈a⊗ a⊗ abac〉k.

If q = (1, 2, 3), then the elements of X
(3)
q are the triples (hgi+j , gi, hgj) with i = 1, 2 and j = 0, 1, 2.

Thus |X(3)
q | = 6 and |q| = 6. Let x := (hg, g, h). Obviously,

Gx ⊆ CG(h)
⋂
CG(g) = 〈h〉 ∩ 〈g〉 = {e}.

Thus X
(3)
q = [x] and dim(Bq,x)Gx = dim(B1,hg ⊗B2,g ⊗B3,h) = 2.

If q = (2, 2, 2), then |q| = 1 and X
(3)
q consists of the triples (gi, gi, gi), with i = 1, 2. It follows that

|X(3)
q | = 2 and Rq = {x}, where x = (g, g, g). Thus (Bq,x)Gx = (B2,g ⊗B2,g ⊗B2,g)

〈g〉.

As a representation of 〈g〉 the linear space B2,g = 〈ab, bc〉k either decomposes as a direct sum of two
1-dimensional representations or is irreducible, depending on the fact that there is, or there is not, a
primitive root of unity of order 3 in k. In the former case, if ζ is such a root of unity, it is easy to see

that (Bq,x)Gx =
⊕

i=1,2B
ζi

2,g ⊗B
ζi

2,g ⊗B
ζi

2,g, where Bζ
i

2,g = 〈ab− ζibc〉k. Hence dim(Bq,x)Gx = 2. On the
other hand, if B2,g is irreducible then B2,g ⊗ B2,g decomposes as a direct sum of B2,g with two copies

of the trivial representation. Hence B
(3)
2,g is a direct sum of three copies of B2,g with two copies of the

trivial representation. Thus in this case we also get dim(Bq,x)Gx = 2. In conclusion, for n = 3 we have

dimM3 = 3 · 1 + 6 · 2 + 1 · 2 = 17.

Let n = 4. If q is a positive 4-partition such that Bq 6= 0, then q is either (1, 1, 1, 3) or (1, 1, 2, 2). In
the first case |q| = 4 and there is an orbit of length 3 and 4 orbits of length 6. The orbit of length 3
corresponds to (h, h, h, h) and

(B1,h ⊗B1,h ⊗B1,h ⊗B3,h)〈h〉 = 〈a⊗ a⊗ a⊗ bac〉k.

If x ∈ Rq and x is not (h, h, h, h), then Gx is trivial and dim(Bq,x)Gx = 1. For q = (1, 1, 2, 2) we get
|q| = 6. In this case there are two orbits of length 6. For each x ∈ Rq the stabilizer Gx is trivial and
we have

dim(Bq,x)Gx = dim(B1,x1
⊗B1,x2

⊗B2,x3
⊗B2,x4

) = 4.

We get

dimM4 = 1 · 4 · 1 + 4 · 4 · 1 + 2 · 6 · 4 = 68.

For n = 5 there is a unique positive 5-partition q such that Bq 6= 0, namely q = (1, 1, 1, 1, 2). Thus |q| =
5. The G-set X

(5)
q has 9 orbits, each one of length 6. If x ∈ Rq, then Gx is trivial and dim(Bq,x)Gx = 2,

as B2,x5
is 2-dimensional. Therefore,

dimM5 = 9 · 5 · 2 = 90.

Finally, if n = 6, then there is a unique positive 6-partition of 6, namely q = (1, 1, 1, 1, 1, 1). The elements

of the G-set X
(6)
q are the 6-tuples x =

(
x6x5x4x3x2, x2, . . . , x6

)
, where x2, . . . , x6 are all transpositions.

Hence |X(6)
q | = 35 = 243. If x2 = · · · = x6 = h, then Gx = 〈h〉 and (Bq,x)Gx = 〈a(6)〉k. On the other

hand, if the components of x are not equal, let us say that xi 6= xj , then Gx ⊆ 〈xi〉 ∩ 〈xj〉. Thus the

stabilizer of x is trivial and X
(6)
q has 40 orbits of this type, each one of length 6. Therefore, in this case,

(Bq,x)Gx = B1,x1 ⊗ · · · ⊗B1,x6 . We conclude that dimM6 = 1 · 1 · 1 + 1 · 40 · 1 = 41. �

Lemma 4.13. There is a unique (up to multiplication by a scalar) class d ∈ E4(B)e which is S3-
invariant and does not belong to S ⊆ E(B). In particular, dimE4(B) = 7.

Proof. With the notation from the above lemma, the complex Ω∗
(
B, 6

)S3
e

can be written as follows:

0 −→ 0 −→ 0 −→M2
δ26−→M3

δ36−→M4
δ46−→M5

δ56−→M6 −→ 0.



22 D. ŞTEFAN AND C. VAY

By Remark 4.11, it is exact in degree 2 and 3, so δ2
6 is injective and dim Im δ3

6 = dimM3−dimM2 = 16.
On the other hand, the sequence

0 −→ Ker(δ5
6) −→M5

δ56−→M6 −→ H6(M∗) −→ 0

is exact. We have seen that the sixth cohomology group of Ω∗
(
B, 6

)
identifies to S6. Via this identi-

fication, a cohomology class in H6(M∗) corresponds to an S3-invariant homogeneous element of degree
e in S6. It is easy to see that (S6)S3e is spanned by a6 + b6 + c6 and a4b2, so it 2-dimensional. Thus
dim Ker(δ5

6) = 90 − 41 + 2 = 51, so the dimension of the image of δ4
6 is at most 51. We get that

dim Ker δ4
6 ≥ dimM4 − dim 51 = 17, so dimH4(M∗) ≥ 1. We conclude the proof using Remark 4.11

and Proposition 4.10. �

Theorem 4.14. We have dimEn(B) = Nn, for all n ∈ N.

Proof. By Proposition 4.10 and Lemma 4.13 it follows that the claimed relation holds for n ≤ 4. In
order to prove that it is true for all n, by the proof of Proposition 4.10, it is enough to show that the
Cartan-Eilenberg spectral sequence degenerates at the second page, i.e. Ep,q∞ = Ep,q2 , for any p, q ≥ 0.
In other words, we have to prove that all maps dp,qr vanish for r ≥ 2.

Let r = 2. Since d∗,∗2 satisfies the graded Leibniz rule, these maps are trivial if and only if d1,0
2 , d0,1

2

and d4,0
2 vanish on the generators of E∗,∗2 , that is the following relations hold true

d1,0
2 (f) = d1,0

2 (g) = d4,0
2 (h) = d0,1

2 (l) = 0.

Obviously, by definition of spectral sequences, the maps d1,0
2 and d0,1

2 are zero. If we suppose that

d4,0
2 (h) is not zero, then dimE4,0

3 < dimE4,0
2 . As in the proof of Proposition 4.10, it would follow that

dimE4(B) < 7, fact that is not possible. In conclusion, dp,q2 = 0, for any p, q > 0. In particular, we have
an isomorphism of bigraded algebras E∗,∗3 ' E∗,∗2 , so E∗,∗3 is generated by elements of degree at most
4. Thus, we can repeat the above argument to show by induction that dp,qr = 0 for any r ≥ 2 and all
p, q ≥ 0. �

In order to prove that the algebra E(B) is generated by elements of degree at most 4, we need the
following result, which probably is well known. For completeness, we include a proof of it.

Lemma 4.15. Let H = ⊕n≥0H
n be a graded algebra. We assume that each Hn is filtered

Hn = F 0Hn ⊇ F 1Hn ⊇ · · · ⊇ FnHn ⊇ 0

such that (F pHq)(F rHs) ⊆ F p+rHq+s.

(a) The linear spaces F pH = ⊕n≥0F
pHn defines a decreasing algebra filtration of H such that

the graded associated grF H = ⊕p≥0F
pH/F p+1H is a bigraded algebra with the homogeneous

component of bidegree (p, q) given by (grF H)p,q = F pHp+q/F p+1Hp+q.
(b) If grF H is generated as an algebra by some homogeneous elements a1, . . . , ar of degree at most

n, then H is also generated by some homogeneous elements h1, . . . , hr of degree at most n.

Proof. The first part is an easy exercise. Let us prove (b). Note that the component of degree n of grF H
is grnF H = ⊕np=0F

pHn−p/F p+1Hn−p. If ni = deg ai, we may assume that ai ∈ F piHni−pi/F pi+1Hni−pi .

Let hi be an electronic in F piHni−pi such that hi + F pi+1Hni−pi = ai.

Let Ep,q = (grF H)p,q = F pHp+q/F p+1Hp+q. Then grnF H = ⊕p+q=nEp,q. We also define the graded

algebra E∗,0 = ⊕p≥0E
p,0 = ⊕p≥0F

pHp. Since Ep,q ·Ep′,q′ ⊆ Ep+p′,q+q′ and a1, . . . , ar generate E∗,∗, it
follows that E∗,0 is generated by those elements hi = ai that belong to Epi,0.

We claim that any element in H is a linear combination of monomials in the elements h1, . . . , hr.
We fix n and we will prove by induction on i that the linear space Fn−iHn is spanned by monomials
in h1, . . . , hr. If i = 0, this follows by the foregoing remark. Let us assume that Fn−iHn satisfies the
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required property. Let x ∈ Fn−i−1Hn. If x ∈ Fn−iHn ⊆ Fn−i−1Hn, we have nothing to prove. Other-
wise, the class of x in En−i,i is a linear combination of monomials x+ Fn−iHn =

∑
αi1,...,ikai1 · · · aik .

Hence x−
∑
αi1,...,ikhi1 · · ·hik ∈ Fn−iHn. We conclude by applying the induction hypothesis. �

Proposition 4.16. The k-algebra E(B) is generated by four elements of degree at most 4.

Proof. By the proof of Theorem 4.14, the Cartan-Eilenberg spectral sequence collapses at the second
page, so the algebras E∗,∗∞ and E∗,∗2 are isomorphic. Thus, by Proposition 4.9, the algebra E∗,∗∞ is
generated by elements of degree at most 4. Now we can apply the preceding lemma, as the spectral
sequence converges to E(B). �

Theorem 4.17. The graded algebra E(B) is isomorphic to the polynomial ring S[X], where the grading
on the latter ring is taken so that degX = 4.

Proof. Let HS be the Hilbert series of S. By Corollary 4.5, we have

HS = 1 + 3t+ 5t2 + 6
∑
n≥3

tn.

On the other hand, the Hilbert series of k[X] is H =
∑
n≥0 t

4n, as X is of degree 4. Hence HS[X], the

Hilbert series of S[X] ∼= S⊗ k[X], is the product of HS and H. Thus HS[X] =
∑
n≥0Nnt

n. Henceforth,

the homogeneous components of S[X] and E(B) are equidimensional.

Recall that E(B) is braided graded commutative, see Lemma 4.1. Therefore, any S3-invariant co-
homology class of even degree is a central element in E(B). In particular, by Lemma 4.16, it follows
that d is central. Let Φ : S[X]→ E(B) be the unique algebra morphism that extends the identity of S
and maps X to d. Since En(B) = Sn, for n ≤ 3, and E4(B) = S4 ⊕ kd it follows that ⊕n≤4En(B) is a
subspace of the subalgebra S[d] generated by S and d. By Proposition 4.16 we deduce that ⊕n≤4En(B)
generates E(B) as an algebra, so Φ is surjective. In view of the fact that En(B) and Sn have the same
dimension, we conclude that Φ is an isomorphism. �

As an application of the above theorem, we compute the cohomology ring of the bosonization of B,
that is of the ordinary Hopf algebra whose underlying algebra and coalgebra structures are the smash
product algebra B#kS3 and the smash coproduct coalgebra B#kS3 (see §2.16 and Remark 2.18).

By Theorem 2.17 there is an isomorphism E(B#kS3) ∼= E(B)S3 of graded algebras. Here the invariant
subring is taken with respect to the canonical S3-action on E(B) which is obtained by using the fact
that Ω∗

(
B
)

is a complex in the category of Yetter-Drinfeld kS3-modules. By our main result we identify
E(B) and S[X]. Since X corresponds to the S3-invariant cohomology class d, a polynomial in S[X] is
invariant if and only if its coefficients are so. Thus we have to investigate the properties of the ring SS3 .

Lemma 4.18. Let S denote the braided symmetric algebra of E1(B). Then:

(a) The algebra S S3 is generated by u = a(b + c) and v = a2 + b2 + c2.
(b) The generators u and v commute and 2uv2 + 3u2v − 9u3 = 0.
(c) The Hilbert series of S S3 is HS S3 = 1 + 2t2 + 3

∑
n≥2 t

2n.

(d) There is an isomorphism S S3 ∼= k[U, V ]/(U2V − UV 2) of graded algebras.

Proof. To prove (a), let us recall that S1 and B1 are isomorphic as Yetter-Drinfeld modules. Thus
(12)a = −a and (12)b = −c. It follows that for any invariant element w = αa + βb + γc in S1 we have
α = 0 and β = γ. On the other hand, (23)a = −c and (23)b = −b. Since w is also (23)-invariant, we
deduce in a similar way that β = 0. Hence there are no invariant elements in S1, excepting the trivial
cohomology class.

We now want to prove that S S3
n = 0, for any odd number n > 1. By Corollary 4.5 the set

Sn = {an, bn, cn, an−1b, an−1c, an−2b2}
is a linear basis of Sn. Let w = αan+βbn+γcn+ δan−1b+ εan−1c+λan−2b2 be an invariant element in
Sn. Since (12)w = w, we get α = −α and β = −γ. On the other hand, δ = −ε and λ = −λ. Note that
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for the former relation we used the equation an−2c2 = an−2b2 which, in turn, follows by ac2 = ab2; see
the proof of Lemma 4.3. By imposing the condition (23)w = w we also get β = 0, so w = δan−1(b− c).
Thus (23)w = δ(cn−1b− cn−1a). Since cn−1a = an−2b2 and cn−1b = an−1b we conclude that w = 0.

Proceeding in a similar way one proves that u and v span S S3
2 . Also, if n is even and n > 2, then we

can show that an + bn + cn, an−1(b+ c) and an−2b2 are linearly independent elements which span S S3
n .

Note that the Hilbert series of SS3 is given by HSS3 = 1 + 2t2 +
∑
n≥2 3t2n, so (c) has been proved too.

To complete the proof of (a) we first show by induction on n that the following relations hold true:

un =
1

3
[2n + (−1)n+1]a2n−1(b + c) +

2

3
[2n−1 + (−1)n]a2n−2b2;

vn = a2n + b2n + c2n + 3(3n−1 − 1)a2n−2b2;

uvn = 3na2n+1(b + c).

These equations imply that, for any n ≥ 2, the above basis on SS3
n is included into the subalgebra

generated by u and v. Since a2, b2 and c2 are central elements of S we get uv = vu. Then the part (b)
follows by the computation below:

uv2 = 9a5(b + c) = 3u3 − 6a4b2 = 3u3 − 2va2b2 = 3u3 − 1

3
(3u2v − uv2).

In order to prove (d), we observe that there is a surjective morphism of graded algebras from S′ =
k[U, V ]/(2UV 2 + 3U2V − 9U3) to SS3 ; see the first two parts of the lemma. Since the generator of the
ideal that defines S′ equals (3U + V )(−3U + 2V )U , by the variable change

U 7→ 3U + V and V 7→ −3

2
U + V,

we can identify the graded algebras S′ and k[U, V ]/(U2V − UV 2). Thus, via this identification, the
generators U and V of S′ satisfy the relation U2V = UV 2. Clearly dimS′0 = 1 and dimS′1 = 2. On the
other hand, for n ≥ 2, the set {Un, V n, UV n−1} is a basis on S′n. In conclusion the Hilbert series of S′

and SS3 are equal, so the canonical graded algebra map from S′ to SS3 is an isomorphism. �

Theorem 4.19. The k-algebra E(B#kS3) is isomorphic to k[X,U, V ]/(U2V − V U2), where degU =
deg V = 2 and degX = 4.

Proof. We have already noticed that by Theorem 2.17 there is an isomorphism of graded algebras
E(B#kS3) ∼= S[X]S3 . Since X is an S3-invariant element, a polynomial in S[X] is invariant if and only
if it belongs to the polynomial ring SS3 [X]. �

4.20. The Yoneda ring of the bosonization of B by kS3 , the dual Hopf algebra of kS3. The

Fomin-Kirillov algebra B is a braided graded Hopf algebra in kS3
kS3YD with respect to the action and

coaction given by

f · x = f(deg x)x and ρ(x) =
∑
g∈S3

δg−1 ⊗ gx

for all f ∈ kS3 and x ∈ B, where in the second formula {δg}g∈S3 denotes the basis of kS3 dual to {g}g∈S3 .
It is well-known that B is the Nichols algebra of B1 in the category of Yetter-Drinfeld kS3 -modules, cf.
[5, § 3.2]. We also remark that B#kS3 and B#kS3 are Hopf algebras dual each other.

We shall compute E(B#kS3) proceeding as in the proof of Theorem 4.19. Since the counit of kS3 is

the evaluation map f 7→ f(e) for all f ∈ kS3 , the invariant subring E(B)k
S3

coincides with the subring
of elements of degree e. Also, the degree of the generator X of E(B) = S[X] is e. Thus we have to

compute the subring SkS3 = Se.

Lemma 4.21. Let S denote the braided symmetric algebra of E1(B). Then:

(a) The algebra Se is generated by p = a2, q = b2 and r = c2.
(b) The generators p, q and r commute, and pq = pr = qr.
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(c) The Hilbert series of Se is HSe = 1 + 3t2 + 4
∑
n≥2 t

2n.

(d) There is an isomorphism Se ∼= k[P,Q,R]/(PQ− PR,PQ−QR) of graded algebras.

Proof. Recall that there is an isomorphism S1 ' B1 of Yetter-Drinfeld modules. Thus deg a = (12),
deg b = (23) and deg c = (13).

By Lemma 4.3, the set {a2n, b2n, c2n, a2n−2b2}n∈N is a basis of Se . Therefore (a) and (c) are clear.
The second statement follows by the computation:

pq = a2b2 = a(ab2) = a(ac2) = pr = (a2c)c = (b2c)c = qr.

Let S′ = k[P,Q,R]/(PQ − PR,PQ − QR). By (a) and (b), there is a surjective morphism of graded
algebras from S′ to Se. Then to prove (d) it is enough to see that the homogeneous components of
S′ and Se are equidimensional. Clearly dimS′0 = 1 and dimS′1 = 2. Moreover, for n ≥ 2, the set
{Pn, Qn, Rn, Pn−1Q} is a basis of S′n as, by induction, PnQ = PQn = PRn = QnR = QRn. �

The proof of the next theorem is similar to that one of Theorem 4.19.

Theorem 4.22. The k-algebras E(B#kS3) and k[X,P,Q,R]/(PQ − PR,PQ − QR) are isomorphic,
where degP = degQ = degR = 2 and degX = 4. �

Remark 4.23. For any connected graded coalgebra C over a field k one defines the cohomology ring
E(C) = Ext∗C(k,k) as in the case of connected algebras, but now the Ext-groups are computed for the
trivial right C-comodule k. Since B#kS3 and B#kS3 are dual each other, it follows that the cohomology
ring of the former Hopf algebra, regarded as a coalgebra, is precisely the polynomial algebra from
Theorem 4.22.
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