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ABSTRACT 

Nickel (Ni) foam-based symmetric/asymmetric electrochemical supercapacitors benefit from a randomly 

3D structured porous geometry that functions as an active material support and as a current collector. The 

surface composition stability and consistency of the current collector is critical for maintaining and 

consistency supercapacitor response, especially for various mass loading and mass coverage. Here we 

detail some annealing environment conditions that change the surface morphology, chemistry and 

electrochemical properties of Ni foam by NiO formation. Air-annealing at 400 and 800 °C and annealing 

also in N2 and Ar at 800°C result in the in-situ and ex-situ formation of NiO on the Ni foam (NiO@Ni). 

Oxidation of Ni to NiO by several mechanisms in air and inert atmospheres to form an NiO coating is 

subsequently examined in supercapacitors, where the electrochemical conversion through Ni(OH)2 and 

NiOOH phases influence the charge storage process. In parallel, the grain boundary density reduction by 

annealing improves the electronic conductivity of the foam current collector. The majority of stored 

charge occurs at the oxidized Ni-electrolyte interface. The changes to the Ni metal surface that can be 

caused by chemical environments, heating and high temperatures that typically occur when other active 

materials are grown on Ni directly, should be considered in the overall response of the electrode, and this 

may be general for metallic current collectors and foams that can oxidize at elevated temperatures and 

become electrochemically active.   

*Corresponding Authors. *Emails: rajarammane70@srtmun.ac.in  (Rajaram S. Mane, Prof.); 

c.odwyer@ucc.ie (C. O’Dwyer) 
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1. INTRODUCTION 

The ever-growing human population demand on energy resources and the rapid industrial development 

of portable electronics, electric vehicles and the growing use of renewable and clean energies requires 

high-performance electrochemical energy conversion and storage devices like fuel cells, batteries and 

electrochemical supercapacitors (ECs). Of these, ECs (including pseudocapacitors, double layer 

capacitors, and symmetric and asymmetric capacitors) have attracted intense attention as promising 

electrochemical energy storage devices due to their fast and efficient energy storage capabilities. They 

exhibit higher power density and longer lifespan compared to rechargeable lithium-ion batteries, and 

higher energy density compared with traditional dielectric capacitors [1-2]. Electrochemical double layer 

capacitor materials are basically carbon based materials like, activated carbon, single/multi-walled carbon 

nanotubes, graphene etc., which stores charges at electrode/electrolyte interface. On the other hand, in 

pseudocapacitors or redox supercapacitors charge is stored through fast and reversible surface/near-

surface processes and transition metal oxides/hydroxides, carbonates and conducting polymers etc., are 

some materials of this category [3].  

Carbonaceous SCs have limited electrochemical performance (generally measured as specific 

capacitance) but long lasting cycle life whereas carbonates or conducting polymer-based materials 

demonstrate low operating potential window and a weaker chemical/environmental stability. However, 

recently developed symmetric/asymmetric EC devices can achieve reasonably high energy density as well 

as high power density along with a larger operating cell voltage. Fabrication of such 

symmetric/asymmetric devices often requires active material combinations such as metal oxide||metal 

oxide, conducting polymers||conducting polymer, metal oxide||carbon based materials etc., a suitable 

electrolyte and a current collector (substrate) [4-8]. The current collector is an important constituent of 

ECs, and often used as the substrates on which further material fabrication is made for electrodes of 

symmetric/asymmetric supercapacitor devices. Substrates such as graphite [9], gold (layer) on glass [10], 

aluminum [11], stainless-steel [12], carbon cloth [13], Si-Pt based foils [14], nickel-based metallic foams 

[15-18] etc., are commonly used in electrochemical energy storage devices as current collectors as well 

as active mass supporters. It has been proven that the active material nanostructures supported on 3D 

substrates facilitate larger surface area, easy electrolyte access to the electrode, efficient electron transfer 

and faster ion transportation, which has allow electrodes them to achieve high contact area for promoting 

the ion transportation rate, improving the utilization of electrochemically active material [19−24] for 

optimum performance.  
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Nickel (Ni) foam-based symmetric/asymmetric electrochemical supercapacitor investigations have 

recently gained considerable attention due to their 3D structure, high electrical conductivity, low cost and 

relative abundance [25]. In most of the reported studies, though Ni-foam has been vigorously used as base 

material, less attention has been paid to its own properties in spite of several decades of knowledge on Ni 

oxides in strong base. In general, the mass of active material is typically the difference between Ni-foam 

plus active material and that of Ni-foam itself. This measurement translates to specific capacity and related 

calculations when used to store charge. Often, the Ni foam is used as the support on which material is 

grown, in air and relatively high temperatures [14-18], which affect the grain structure on the surface 

phase of the Ni. Here we report the structure, surface morphology and electrochemical properties of Ni-

foam after air-annealing (O2) at 400 and 800°C temperatures, and compare it to Ni foam annealed in 

nitrogen (N2) and Argon (Ar) atmospheres at 800°C and show how they are different to pristine Ni-foam. 

Due to oxidation of nickel, nickel oxide (NiO), a secondary phase, is developed on Ni-foam whose 

crystallinity and coverage varies with annealing environments. The study confirms that mass calculations 

and the nature of the electrochemical response of electrodes using Ni foam should consider the presence 

of NiO and related phases instead of only two i.e. Ni-foam and active material, which tends to be common 

practice. 

2. EXPERIMENTAL SECTION 

Ni-foam (labeled hereafter as Ni) was purchased from Artenano Company limited (Hong Kong) with 

pore-density of 110 PPI and mass density of 320 gm2 and was used for the further studies. Pieces of Ni 

were obtained in ~ 1 × 2 cm2 dimensions were air-annealed at 400 and 800°C for 1 h in an annealing 

furnace, labelled as NiO@Ni (400°C) and NiO@Ni (800°C) and also annealed in nitrogen and argon 

atmospheres at 800 °C, labeled as NiO@Ni (N2–800°C) and NiO@Ni (Ar–800°C). To observe the effect 

of annealing at different temperatures in air atmosphere (i.e. 400 and 800°C) and the effect of different 

annealing atmosphere (at 800°C) on the structural, morphological and electrochemical properties of Ni 

were measured. The weight of NiO formed on the Ni foam surface was determined by the weight 

difference method. The average weight increase found onto each sample is ~0.55-0.70 mg. To observe 

the phase change due to air-annealing, X-ray diffraction patterns (XRD, D8-Discovery Brucker, Cu Kα, 

40 kV, 40 mA) of pristine, 400 and 800°C air-annealed Ni and the samples annealed in nitrogen and argon 

atmosphere at 800℃ were obtained in a scanning range of 20-80o with a 0.02o step size (2Ɵ). Raman 

spectra of NiO@Ni (800°C), NiO@Ni (N2-800°C) and NiO@Ni (Ar-800°C) were acquired on a Jobin-

Yvon Horibra LABRAM-HR800 UV Raman spectrometer with a diode laser of wavelength 514 nm as 

the excitation source. Field-emission scanning electron microscope (FESEM, Hitachi, S-4800, 15 kV) 

digital plane-view images were used to examine the surface morphology change. X-ray photoelectron-
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spectroscopy (XPS) measurements were carried out using surface analysis system (VG Scientifics 

ESCALAB250) using a monochromatic Al Kα source (1486.6 eV) to analyze the bonding of Ni-foam and 

NiO@Ni (800°C) samples. The XPS spectra were calibrated to the carbon C 1s peak at 284.6 eV.  

The electrochemical measurements were performed using a three-electrode electrochemical system in 

6 mol dm-3 KOH electrolyte solution at room temperature (25°C). A platinum plate and SCE were used 

as the counter and reference electrodes, respectively. Cyclic-voltammetry (CV), galvanostatic charge-

discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements were performed on 

an Ivium-n-Stat electrochemical workstation (Ivium, Netherlands).  

 

3. RESULTS AND DISCUSSION 

Figure 1 (a) shows digital photographs of the Ni, NiO@Ni (400°C) and NiO@Ni (800°C) foam samples 

where the change in surface appearance, caused by air-annealing, is clearly noticed. Qualitatively, the 

surface changes from silvery white to black on air-annealing is expected if NiO forms on Ni.  Figure 1 (b) 

shows the XRD patterns obtained from Ni, NiO@Ni (400°C) and NiO@Ni (800°C) samples. The Ni 

shows three prominent peaks at 44.59, 51.94 and 76.45 corresponding to the (111), (200) and (220) 

reflections from cubic Ni (JCPDS-04-0850). However, after annealing at 400 and 800°C for 1 h, the X-

ray diffraction patterns undergo changes due to NiO formation. At 800°C air-annealing temperature 

reflections from crystalline NiO from the (111), (200), (220) and (113) (JCPDS- 47-1049) planes appear 

at 37.74, 43.74, 63.28 and 75.78, supporting the formation of NiO@Ni. Along with the three 

prominent reflections from cubic Ni, the XRD patterns of NiO@Ni (N2-800°C) and NiO@Ni (Ar-800°C) 

samples consist of the reflections at 37.74, 43.74, 63.28 and 75.78 corresponding to the (111), (200), 

(220) and (113) planes (JCPDS-47-1049), supporting the formation of NiO@Ni as shown in Figure 1 (c).  

The plausible mechanism involved in this process of crystallization/recrystallization was also reported 

elsewhere [26-28]. In the initial stage of air-annealing, the Ni atoms redistribute to preferred sites and 

interact with the atmosphere oxygen (crystallization). Furthermore, annealing in air initiates nucleation 

sites for the partial formation NiO (re-crystallization) at lower temperatures and occurs throughout the Ni 

surface. However, in the latter case for air-annealing above 400 °C, the growth of oxide is dominated by 

the diffusion of Ni+ ions into this NiO layer. Oxygen may penetrate to the surface NiO through the 

redistributed sites, stimulated by metal diffusion at higher temperature. Also, if the Ni+ cations from the 

NiO@Ni interface diffuse faster than the O- anions, the may reaches the oxygen atoms first and may be 

responsible for the recrystallization to form NiO@Ni. In other words, oxidation of Ni caused by air-

annealing (transfer of electrons through the interface to form a monolayer of adsorbed oxygen ions at the 

surface) together with the diffusion of oxygen anions into the Ni metal forms NiO whose physicochemical 
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properties are different than pristine Ni. However, the plausible mechanism involved during the annealing 

of the nickel foam in nitrogen and argon atmosphere considers ionization of surface Ni. At 800°C, the 

ionization of nitrogen and argon gas into N- and Ar- ions, respectively, may occur. These ionized gas 

molecules may insert into the Ni lattice sites and loosely bond with the Ni+ atoms. Due to the weak 

bonding of N- and Ar- ions, the atmospheric O2- ions upon subsequent exposure to air may readily react 

with Ni+ atoms and will replace the nitrogen and argon ions and hence the oxidation of Ni foam will form 

NiO@Ni.  

Raman spectra of the NiO@Ni(800°C), NiO@Ni(N2-800°C) and NiO@Ni(Ar-800°C) samples are 

shown in Figure 2. It has been observed that the peak observed at 513 cm-1 corresponds to longitudinal 

optical (LO) modes of NiO.[17, 29] Figure 3(a-e)  shows the surface morphological analysis of Ni, 

NiO@Ni (400°C), NiO@Ni (800°C), NiO@Ni (N2-800°C), and NiO@Ni(Ar-800°C) samples from FE-

SEM digital plan-view images. Figure 3 (a) shows the planar surface appearance of Ni samples. Sharp 

edged grains of irregular dimensions are clear without any treatment, however, as the samples were 

annealed at 400°C (figure 3(b)) dense and small granular type of morphology was obtained from classical 

grain boundary size reduction. The re-crystallization of the Ni surface as discussed in the plausible 

mechanism, is evident whereby partial formation of NiO is found throughout the sample surface. Figure 

3(c) shows the FESEM plan view images of NiO@Ni(800°C). The image clearly indicates porous and 

rough surface is formed with non- homogeneously distributed larger grains. This may be attributed to 

more efficient Ni+ diffusion at higher annealing temperature (on smaller grains) resulting in the formation 

of a thicker NiO layer on the Ni surface as NiO@Ni. [28] A similar mechanism may also be applicable in 

the cases where the Ni foam was deposited by electro-active material through which the Ni+ ions become 

diffused through the material and interact with the oxygen to form NiO during the case of air annealing. 

Whereas, in the case of Ni foam annealing in different environments such as N2 and Ar, the crystallization 

process occurring is through the loose bonding of the N- and Ar- ions at 800°C, respectively, which further 

recrystallizes to NiO by replacing these loosely bonded ions by atmospheric O2- ions when exposed to air 

upon cooling.  This process of crystallization/recrystallization, contributes to the formation of uniformly 

distributed porous, granular and rough surface morphology of NiO@Ni, as evidenced from Figure 3(d) 

and Figure 3(e),  for N2 and Ar atmosphere annealing, respectively. 

 To validate the formation of NiO on the Ni foam surface, XPS analysis was performed on untreated 

Ni and NiO@Ni (800°C) as shown in Figure 4. As shown in the core-level photoemission spectra of the 

Ni 2p for both samples, the peaks appearing at 855.8 and 873.8 eV with respective satellite peaks at 861.1 

and 878.9 eV, correspond to spin-orbit coupling fine structure of the Ni 2p3/2 level and the Ni 2p1/2 levels 

respectively. [30-32] The O 1s spectrum of both samples has two peaks at 529.7 and 530.7 eV which were 

Page 5 of 21 AUTHOR SUBMITTED MANUSCRIPT - MRX-108931.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



6 

 

attributed to the O2- in the Ni-O bond.[33] The peak intensity in O 1s spectrum for NiO@Ni(800°C) at 

529.7 eV is much larger than that of Ni sample peak. This indicates that the surface of the sample is 

converted into the NiO. In C 1s spectra, the peak at 284.6 eV is the characteristic photoemission of 

adventitious carbon.[34] 

 To investigate the effect of annealing temperature in air as well as the effect of annealing 

environment on the electrochemical performance of Ni foam, the electrochemical properties of Ni, 

NiO@Ni(400°C), NiO@Ni(800°C), NiO@Ni(N2-800°C) and NiO@Ni(Ar-800°C)  samples were 

examined using CV, GCD and EIS measurements in 6 mol dm-3 KOH aqueous electrolyte using three 

electrode cell with SCE and platinum plate as reference and counter electrodes, respectively. Figure 5 (a) 

shows the CV curves obtained for Ni, NiO@Ni(400°C) and NiO@Ni(800°C) at a scan rate of 10 mV/s 

within a potential window of 0-0.6 V vs. SCE. The CV of Ni indicates a negligible current response. 

However, for the Ni samples annealed at 400 and 800℃ the respective anodic and cathodic sweeps indicate 

pseudocapacitive behaviour from the annealed Ni foams. The CV curve of the sample NiO@Ni(400℃) 

composed of redox peak during the cathodic sweep at 0.32 V corresponding to the conversion of surface 

NiO (i. e. Ni+2) to NiOOH (i.e. Ni+3) which is the reversible redox process (eqn. 1) [35-36]. Further, the 

curve consists of a second peak at 0.37 V. This may be attributed due to the contribution of Ni foam (i.e. 

Ni0) which can be converted into β-Ni(OH)2 (i.e. Ni+2) earlier at first redox peak 0.32 V (eqn. 2) followed 

by conversion from β-Ni(OH)2 (i.e. Ni+2)  to NiOOH (i.e. Ni+3) at 0.37 V (eqn. 3) [25, 37-38]. This process 

of double peaks at cathodic sweeps observed for the sample NiO@Ni (400°C) is likely due of the lower 

thickness of the oxide layer on the surface of Ni foam, or from regions devoid of NiO, that facilitates ion 

access to the Ni metal surface. Conversely, the process was not observed in the CV curve of the sample 

NiO@Ni(800°C), as the thickness of the oxide layer and its degree of Ni coverage increased during the 

recrystallization process. The process involved during these actions is as follows: 

 

                                                              𝑁𝑖𝑂 + 𝑂𝐻¯ ↔ 𝑁𝑖𝑂𝑂𝐻 + 𝑒¯                 (1) 

  𝑁𝑖° + 2𝑂𝐻¯ → 𝛽𝑁𝑖(𝑂𝐻)2 + 2𝑒¯          (2) 

 𝛽𝑁𝑖(𝑂𝐻)2 + 𝑂𝐻¯ → 𝑁𝑖𝑂𝑂𝐻 + 𝐻2            (3) 

The specific capacitance of the samples NiO@Ni (400°C) and NiO@Ni (800°C) derived from the 

CV curves is shown in Figure 5 (c). Specifically, the maximum specific capacitance calculated was found 

to be 184 F cm-2 and 265 F cm-2 at 5 mV s-1 scan rate for NiO@Ni (400°C) and NiO@Ni (800°C), 

respectively. The specific capacitance steadily reduces with faster potential scan rate (from 5 mV to 50 

mV) for both materials as shown in Figure 5(c). Figure 5 (b) shows the GCD measurements carried out at 
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1 A g-1 for Ni, NiO@Ni(400°C) and NiO@Ni(800°C). The data endorse the non-linear behaviourr 

supporting the pseudocapacitive nature of the response [39]. To compare with the specific capacitance 

result from CV curves, the SC values were also calculated from GCD measurement curves. The obtained 

values for NiO@Ni(400°C) and NiO@Ni(800°C) were 108 F cm-2 and 164 F cm-2, respectively. The 

specific capacitance values are decreasing with respect to the increasing current density as depicted from 

Figure 5 (d).  

Figure 6(a) shows the CV curves obtained for Ni, NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C) 

at scan rate of 10 mV s-1 within a potential window of 0-0.6 V vs. SCE. Akin to Ni samples annealed at 

400 and 800°C, the peaks formed at the respective anodic and cathodic sweeps for NiO@Ni(N2–800°C) 

and NiO@Ni(Ar–800°C) indicate the pseudocapacitive behavior of the Ni foams following annealing in 

N2 or Ar. The CV curves of the samples NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C) are composed of 

redox peaks in the cathodic sweep at 0.24 V and 0.23 V, respectively, corresponding to the conversion of 

surface NiO (i.e. Ni+2) to NiOOH (i.e. Ni+3) which is the reversible redox process (eqn.1)[35-36]. Further, 

the curves consist of a second peak at 0.26 V and 0.32 V for NiO@Ni(N2–800°C) and NiO@Ni(Ar–

800°C). This may be attributed due to the contribution of Ni foam (i.e. Ni0) which can be converted into 

β-Ni(OH)2 (i.e. Ni+2) at the first redox peak at ~0.24V (eqn. 2) followed by conversion from β-Ni(OH)2 

(i.e. Ni+2)  to NiOOH (i.e. Ni+3) at 0.26 V and 0.32 V, respectively, for  Ni foam annealed in N2 and Ar 

(eqn. 3). [25, 37-38] This process of double peaks at cathodic sweeps observed for the samples 

NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C) is due to the Ni(OH)2 and NiOOH formation on Ni in 

strong base, following NiO formation upon exposure to air after inert environment annealing. The specific 

capacitance of the samples NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C) derived from the CV curves is 

shown in Figure 6(c). The maximum specific capacitance calculated was found to be 256.8 F cm-2 and 

291.2 F cm-2 at 10 mV s-1 scan rate for the samples NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C), 

respectively. The specific capacitance also reduces with increased potential scan rate (from 5 mV to 50 

mV) for both the samples as shown in Figure 6(c), similar to the behaviour of samples annealed in air at 

both temperatures, confirming a similar involvement of NiO and related oxidized phases of Ni. Figure 6 

(b) shows the GCD measurements curves carried at 1 A g-1 for Ni, NiO@Ni(N2–800°C) and NiO@Ni(Ar–

800°C), and also confirms a pseudocapacitive behaviour from an oxidized Ni surface [39] following 

annealing in inert environment and subsequent air exposure. To compare with the specific capacitance 

result from CV curves, the SC values were calculated from GCD measurement curves. The obtained 

values for samples NiO@Ni(N2–800°C) and NiO@Ni(Ar–800°C) were 164 F cm-2 and 182 F cm-2, 

respectively. The specific capacitance values are decreasing with respect to the increasing current density 

as depicted in Figure 6(d). 
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The variations in the SC values observed for all samples annealed in air at different temperatures 

as well as in different atmospheres of N2 and Ar calculated from CV of course differ slightly from those 

obtained at constant current in GCD measurement curves. SC values are calculated from CV curves at the 

particular potential, while those calculated from GCD measurements curves are the time-integrated 

capacitance over the potential range 0–0.5 V [40-41]. Figure 5(e-f) and Figure 6(e-f) illustrate the reliance 

of voltammetric charge (q*) on the scan rate of CV and compares the effect of the ion diffusion resistance 

of the oxide layer grown on the Ni surface during the annealing in air at 400°C and 800°C, and during the 

annealing in N2 and Ar at 800°C, respectively. The voltammetric charge is usually recognized as a key 

parameter in assessing the electrochemically active sites between the sample surface oxide (i.e. NiO) and 

aqueous electrolyte. The outer charge (qo*) belonging to the region in contact with the electrolyte directly 

is used to estimate the active outer electrochemical surface, whereas the inner charge (qi*) indicates the 

region of pore, grain boundaries, voids and cracks etc. from the sample bulk and is used to estimate the 

active inner electrochemical surface. The total charge (qt*) is obtained from the intersection of q* to ν = 

0 in the plot of 1/q* versus ν1/2 as shown in Figure 5(e) and Figure 6(e). The quantity of outer charge (qo*) 

is obtained from the intersection of q* to ν = ∞ in the plot of q* versus 1/ν1/2 as shown in Figure 5(f) and 

Figure 6(f). From this information one can obtain the contribution due to the inner active surface by 

subtracting qo* from qt* [42-45]. The estimated values of the voltammetric charges and their ratios for 

samples annealed at 400℃ and 800℃ and those annealed in different environments are tabulated in Table 

1. The ratios qi*/qt*and qo*/qt* for the NiO@Ni(400℃) are 0.39 and 0.60, whereas, those for 

NiO@Ni(800°C) is 0.23 and 0.77 respectively. However, the ratio qi*/qt*and qo*/qt* for the sample 

NiO@Ni(N2-800°C) are 0.14 and 0.86, and those for NiO@Ni(Ar-800°C) are 0.25 and 0.75, respectively. 

Here, the results indicate a preferential outer charge contribution from the Ni oxide-electrolyte interface. 

The EIS measurements confined within a frequency range of 0.1 to 105 Hz with a potential 

amplitude of 5 mV vs. SCE were carried out in 6 mol dm-3 KOH solution to compare the charge transport 

kinetics of the samples. Figure 7(a, b) shows the Nyquist plot and extended view in the high frequency 

region respectively, for NiO@Ni(400°C) and NiO@Ni(800°C). The inset shows the Nyquist plot of the 

Ni. Figure 7(c, d) shows the Nyquist plot and extended view in high frequency region respectively, for 

NiO@Ni(N2-800°C) and NiO@Ni(Ar-800°C). The equivalent series resistance of a supercapacitor 

comprises ionic and electronic contributions. The electronic resistance is related to the intrinsic electronic 

resistance of the surface NiO particles layer and the interfacial resistances of particle-to-particle and 

particle-to current collector. The ionic resistance is linked with the electrolyte resistance in the pores and 

the ionic (diffusion) resistance of ions moving in small pores.[46-47] The equivalent series resistance 

(ESR) of samples was obtained from the intercept of real impedance at high frequency side. The ESR 
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values of Ni, NiO@Ni(400°C) and NiO@Ni(800°C) samples were 843.36 ,  0.35  and 0.15 , 

respectively and that for the samples NiO@Ni(N2-800℃) and NiO@Ni(Ar-800℃) 0.28  and 0.26  

respectively. These results clearly indicates that the relatively high impedance of untreated Ni foam (i.e. 

Ni) is significantly reduced to a very low impedance value after annealing in air atmosphere at 400°C and 

800°C, and in N2 and Ar at 800°C, which is similar to a classic metal annealing condition. The electrical 

conductivity improvement is due to grain boundary density reduction as expected from annealing of 

granular polycrystalline Ni in both environments. As such, annealing treatments do markedly improve the 

electrical conductivity of the foam as a current collector. However, the surface formation of oxyhdroxide 

and oxide phases in strong base, typical of supercapacitor electrolytes, does noticeably affect the nature 

of the charge storage process with the outer surface. 

4. CONCLUSION  

This investigation has demonstrated that annealing of Ni foam in air and in inert gases such as N2 and Ar, 

can result in surface oxidation processes that alter the nature of charge storage processes with the Ni foam 

current collector when used in symmetric or asymmetric supercapacitors in aqueous electrolytes. After 

annealing at 400 and 800 °C in either air, N2 or Ar at 800°C, we observe the formation of NiO@Ni 

confirmed by Raman scattering and electron microscopy. The recrystallization process, where metallic 

Ni+ cations are activated to quickly form NiO with air during annealing in air forms the NiO layer on the 

surface of Ni foam, with an associated reduction in grain boundary resistance through the metallic Ni 

foam determined by EIS measurements. Whereas, during the annealing in the N2 and argon environment 

the recrystallization process was initiated by replacement of loosely bound N- and Ar- by O2- when 

exposed to air after annealing. The FESEM plan view images clearly show the NiO morphology and 

coverage in each case, where that NiO growth expands latterly over the sample surface initially. As the 

temperature reaches 400 or 800°C, the recrystallization process through diffusion of Ni+ ions within the 

initially grown oxide layer allows continual oxide growth an thickening and conversion into NiO@Ni. 

The XPS analysis confirms the formation Ni-O bonding. The electrochemical measurements indicate 

pseudocapacitive behavior with the redox peaks at the respective anodic and cathodic sweeps 

characteristics of an oxidized Ni surface rather than a metallic one. As such, the changes to the Ni metal 

surface that can be caused by chemical environments, heating and high temperatures that typically occur 

when other active materials are grown on Ni directly, should be considered in the overall response of the 

electrode. This is especially true of the electrolyte can access to NiO surface, which in base undergoes 

transitions to Ni(OH)2 and NiOOH phases from redox process that contribute to measured charge in 

voltammetric and galvanostatic measurements. Analysis of electrochemical data confirmed that the 
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majority (60 – 86%) of the stored charge from these annealed Ni foams arises from the processes at the 

non-metallic surface-electrolyte interface.  
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Figure 1: (a) Digital photoimages of Ni, NiO@Ni(400°C), and NiO@Ni(800°C) samples. (b) XRD 

patterns of Ni, NiO@Ni(400°C), and NiO@Ni(800°C). (c) XRD patterns of Ni, NiO@Ni (N2-800°C) and 

NiO@Ni(Ar-800°C) obtained from annealing of Ni foam in N2 and Ar atmospheres. 
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Figure 2: Raman spectra of Ni, NiO@Ni (800°C), NiO@Ni (N2-800°C) and NiO@Ni (Ar-800°C). 
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Figure 3: FE-SEM plan images of (a) Ni, (b) NiO@Ni(400°C), (c) NiO@Ni(800°C), (d) NiO@Ni(Ar - 

800°C) and (e) NiO@Ni(N2 - 800°C). 
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Figure 4: (a) XPS survey spectrum and (b) C 1s, (c) O 1s, (d) Ni 2p core-levels obtained from Ni foam 

and NiO@Ni(800°C). 
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Figure 5. (a) CV curves at 10 mV/s scan rate, (b) GCD curves at 1A/g current density, (c) SC vs. scan 

rate variation, (d) SC vs. current density variation, and (e) plots of 1/q* vs. v1/2and (f) q* vs. 1/v1/2 for 

NiO@Ni (400°C) and NiO@Ni(800°C). 
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Figure 6. (a) CV curves at 10 mV/s scan rate, (b) GCD curves at 1 A/g current density, (c) SC vs. scan 

rate variation, (d) SC vs. current density variation, and (e) plots of 1/q* vs. v1/2and (f) q* vs. 1/v1/2 for the 

samples NiO@Ni (N2-800°C) and NiO@Ni(Ar-800°C). 
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Figure 7: Nyquist plots of (a) NiO@Ni (400°C) and NiO@Ni(800°C). The inset shows the Nyquist plot 

of Ni foam. (b) The NiO@Ni (400°C) and NiO@Ni(800°C) EIS spectra in the high frequency region. (c) 

EIS Nyquist plots of NiO@Ni (N2-800°C) and NiO@Ni (Ar-800°C) and (d) corresponding spectral 

response in high frequency region. 
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Table 1: Inner and outer surface charge contribution determined from analysis of CV acquired as a 

function of scan rate. 

Electrode qt*(mC. cm-2) qo* (mC. cm-2) qi* (mC.cm-2) qi*/qt* qo*/qt* 

NiO@Ni(400 °C) 99.01 72.76 26.25 0.39 0.60 

NiO@Ni(800 °C) 178.06 137.35 40.71 0.23 0.77 

NiO@Ni(N2-

800 °C) 
163.93 140.65 23.28 0.14 0.86 

NiO@Ni(Ar-

800 °C) 
192.32 144.14 49.38 0.25 0.75 
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