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A B S T R A C T

Objective: Hereditary hearing loss (HL) is a noticeable concern in medicine all over the world. On average, 1 in
166 babies born are diagnosed with HL in Iran, which makes it a major public health issue. Autosomal recessive
non-syndromic HL (ARNSHL) is the most prevalent form of HL. Although over 60 genes have been identified for
ARNSHL, GJB2 mutations are the most prevalent causes of ARNSHL in many populations. Previous studies have
estimated the average frequency of GJB2 mutations to be between 16 and 18% in Iran, but would vary among
different ethnic groups. In the present study, we aimed to determine the frequency and mutation profile of 70
deaf patients from two different provinces (center and west) of Iran.
Methods: We enrolled 70 Iranian deaf patients with ARNSHL from Isfahan (40 family) and Hamedan (30 family)
provinces. After extraction of genomic DNA, the entire coding region of GJB2 was directly sequenced in all
patients. Multiplex PCR was used for detection of del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6
gene. In silico analyses were also performed by available software tools.
Results: A total of eleven different mutations were detected, nine of which were previously reported and the
other two (c.130T > G and c.178T > G) were novel. Homozygous GJB2 mutations were observed in 22.5%
and 20% of all the subjects from Isfahan and Hamedan provinces, respectively. c.35delG was the most frequent
mutation. One compound heterozygous genotype (c.358_360delGAG/c.35delG) was observed for c.35delG.
Screening for the two GJB6 deletions did not reveal any positive sample among heterozygous or GJB2 negative
samples.
Conclusions: The present study suggests that mutations in the GJB2 gene specially c.35delG are important causes
of ARNSHL in the center and west of Iran. Totally, 15% of the patients were heterozygous carriers. Further
investigation is needed to detect the genetic cause of HL in the patients with monoallelic GJB2 mutations.

1. Introduction

Hearing loss (HL) is the most frequent sensory impairment. The
incidence is 1–2 in 1000 neonates (http://hearing. screening.nhs.uk/
nationalprog), with approximately 50–70% of cases being related to
genetic causes. It is estimated that 70% of HL includes non-syndromic
forms (NSHL), where the hearing deficit is the only sign. Autosomal

recessive mode of inheritance (ARNSHL) makes up 80% of the NSHL
cases. ARNSHL is highly heterogeneous, for which over 60 mapped loci
are known to be involved (http://hereditaryhearingloss.org). Despite
this, mutations in one single locus, DFNB1 (13q11-12) which contains
GJB2 (NM_004004.5) and GJB6 (NM_001110219.2) genes, account for
50% of the etiology in many Western populations. GJB2 encodes the
connexin 26 protein (Cx26), which is a type of gap junction protein
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involved in the inner ear homeostasis through recycling of potassium
ions. The gene has a simple genomic structure with only two exons,
with exon 1 being untranslated [1]. To date, more than 100 pathogenic
mutations in the GJB2 gene and over 4 pathogenic mutations, including
gross del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene
have been identified resulting in ARNSHL (http://davinci.crg.es/
deafness). The prevalence of GJB2 mutations varies among different
populations. In Caucasians, c.35delG is the most common mutation
with the carrier frequency as high as 2–4% [2]. However, c.167delT,
c.235delC and p.Trp24* are the most frequent mutations in the Ash-
kenazi Jewish [3], Japanese [4] and Indians [5], respectively. Several
studies have shown that the contribution of GJB2 mutations to ARNSHL
is about 16–18% in Iran [6,7]. Furthermore, although the next-gen-
eration sequencing (NGS) has been developed and extended in medical
genetic applications such as molecular diagnostics of HL [8–10], the
investigation of GJB2 mutations is still the primary step before moving
on to the NGS.

Since the last decade, a series of studies have been conducted on the
Iranian population in order to identify the mutation spectrum and
prevalence of GJB2 mutations. The diverse ethnicities, coupled with the
high rate of consanguinity rates (38% in average) [11] tend to change
mutation frequencies among ethnic groups. Therefore, for accurate and
effective genetic counselling, studying certain ethnic groups is of high
importance [12,13]. The present study was launched to compare the
prevalence and spectrum of GJB2 mutations in two different provinces
of Iran including Isfahan and Hamedan.

2. Materials and methods

2.1. Families and clinical evaluations

We enrolled 70 consanguineous families with multiple hearing im-
paired individuals. The Ethics Committee of the Isfahan University of
Medical Sciences approved this project (code: IR.MUI.REC.1392.3.010).
All the family members signed an informed written consent prior to
recruitment. They met the following criteria: (1) confirmation of HL by
pure tone audiometry (PTA) from 250 to 8000 Hz (2) the autosomal
recessive inheritance through pedigree analysis (3) existence of three or
more affected members within the pedigree. A complete clinical eva-
luation including audiological, ophthalmological, and physical ex-
aminations was performed to exclude environmental exposures and to
determine the presence of syndromic findings in each family.

2.2. Molecular genetic testing

Genomic DNA of patients was extracted from peripheral blood
lymphocytes using the standard salting out procedure [18]. GJB2 was
screened for the coding region mutations (exon 2) using direct se-
quencing. Primers and PCR conditions were selected as previously de-
scribed by Tabatabaiefar et al. [14]. The following primers were used
for amplification of exon 2 of the GJB2 gene: F1 (5′-GCTTACCCAGAC
TCAGAGAAG-3′) and R1 (5′-CTACAGGGGTTTCAAATGGTTGC-3′). The
automated Genetic Analyzer ABI 3130 XL (Applied Biosystems 3130,
Foster City, California, USA) was applied to bidirectionally sequence
PCR products using The BigDye® Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems 3130, Foster City, California, USA).

Patients with heterozygous variants in the GJB2 gene were screened
for pathogenic variants in exon 1 of GJB2 and the presence of the del
(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, as de-
scribed by del Castillo et al. [15]. The GJB2 exon 1 was amplified using
the following primers: F1: (5′-TCCGTAACTTTCCCAGTCTCCGAGGGA
AGAGG- 3′) and R1: (5′-CCCAAGGACGTGTGTTGGTCCAGCCCC- 3′).
For the examination of the GJB6 gene deletions, the breakpoint junc-
tions of del(GJB6-D13S1830) and del(GJB6-D13S1854) were in-
vestigated using multiplex with the following primers: del(GJB6-
D13S1830) breakpoint junction: F1 (5′-CACCATGCGTAGCCTTAACCA

TTTT-3′) and R1 (5′-TTTAGGGCATGATTGGGGTGATTT-3′); del(GJB6-
D13S1854) breakpoint junction: F2 (5′- CAGCGGCTACCCTAGTTGT
GGT-3′) and R2 (5′-TCATAGTGAAGAACTCGATGCTGTTT-3′); GJB6
(exon 1): F3 (5′-CATGAAGAGGGCGTACAAGT TAGAA-3′) and R3
(5′-CGTCTTTGGGGGTGTTGCTT 3′).

2.3. Computational analyses

We used Bioinformatics predictive tools including MutationTaster
[16], PolyPhen [17], SIFT and PROVEAN to assess possible effects of
mutations on the protein structure. Multiple sequence amino acid
alignment of the Cx26 protein and visualization of conserved amino
acids was performed using the Mutation@A Glance software [18].
Databases including: Connexin-deafness homepage (http://davinci.crg.
es/deafness), the Single Nucleotide Polymorphism database (dbSNP)
(http://www.ncbi.nlm.nih.gov/project/SNP), The NHLBI Exome Se-
quencing Project (http://evs.gs.washington.edu/EVS/) and the 1000
Genomes Project (http://browser.1000genomes.org) were investigated
for novel variants.

3. Results

A total of 70 Iranian families segregating pre-lingual ARNSHL were
recruited from two provinces (40 family from Isfahan and 30 family
from Hamedan) in the center and west of Iran. In 7 patients, PTA was
consistent with severe HL (61–80 dB) and the remaining had profound
HL (≥80 dB). Among 70 probands, there were 41 males and 29 fe-
males, with ages ranging from 2 to 42 years. In one family, both parents
were hearing impaired, suggesting the presence of the same identical-
by-descent mutation.

GJB2 mutations were detected in 9 (22.5%) out of the 40 families
from Isfahan province and 6 (20%) out of the 30 families from
Hamedan. GJB2 variants are shown in Table 1. Totally, 11 different
variants were identified, 9 of which were previously reported as pa-
thogenic. These include: c.35delG, c.358_360delGAG, c.95G > A,
c.36T > G, c. 23_24ins A, c.163A > G, c.79G > A, c.314A > G,
c.100A > G. The two remaining variants including c.130T > G and
c.178T > G, from Isfahan province, are novel. Fig. 1 shows the dis-
tribution of the identified mutations in the schematic structure of Cx26.
All the in silico programs predicted c.130T > G and c.178T > G var-
iants to have damaging effects (Table 1). The homozygous c.35delG
mutation was observed in 6 families from Isfahan, accounting for 71.0%
of the GJB2 mutations and in 6 families from Hamedan, accounting for
100.0% of the GJB2 mutations. Thus, in both of the studied popula-
tions, c.35delG was the most frequent mutation. One compound het-
erozygous genotype (c.358_360delGAG/c.35delG) for c.35delG was
observed in Isfahan province. Other identified homozygous mutations
included: c.358_360delGAG and c.95G > A, each in a single family.
The p.Val27Ile variant was found in one patient in the cis state with
p.Glu114Gly (p.Val27Ile; p.Glu114Gly/wt). Our study included one
non-consanguineous deaf-to-deaf marriage. Interestingly, both of the
couples were found to be homozygous for c.35delG.

We did not find any correlation between the severity and pro-
gressivity of HL and the presence of the identified variants in the study
groups. In all of the patients with GJB2 mutations, PTA was consistent
with profound HL (≥80 dB).

The two novel GJB2 variants including p.Trp44Gly and p.Cys60Gly
appeared in the heterozygous state.The p.Trp44Gly variant is the result
of c.130T > G transition, changing a TGG codon for Trp residue to a
GGG codon for Gly. The pedigree and electropherogram results of the
c.130T > G heterozygous allele are shown in Fig. 2-A. The second
novel variant, p.Cys60Gly is the result of c.178T > G transition. This T
to G nucleotide change at position 178 of the GJB2 gene converts the
amino acid Trp at codon 44 to glycine. The p.Cys60Gly/wt genotype
was found in the pedigree ISF-10 (Fig. 2-B). In both related families
(ISF-10 and ISF-18), PTA was consistent with profound HL (≥80 dB)
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(Fig. 2-C).
For these heterozygous patients, no mutation was detected in exon 1

of the GJB2. Screening for the two GJB6 deletions did not reveal any
positive sample among GJB2 negative or heterozygous cases.

4. Discussion

Hearing loss (HL) related to GJB2 is the most frequent cause of
autosomal recessive non-syndromic HL (ARNSHL) [19]. Differences
exist as to the spectrum of GJB2 mutations in different populations; it
ranges from 86.7% in Finland [20] to 57.5%, 33.3% and 25% in Li-
thuania [21], Croatia [22] and Turkey [23], respectively to very low
frequencies in the populations such as Pakistan 3.7% [24] and Oman
0% [25]. Previous studies on the GJB2 mutations in Iran have shown
that the mutation frequency of GJB2 varies between 0 and 35% among
different regions of this country [26].

A study performed by Chaleshtori et al. [27] on different Iranian
populations with hearing loss showed that the frequency of GJB2 mu-
tations to be 27.5% in the North and Northwest of Iran, while it was less
than 4% in the Southeast region. This finding is comparable to those
obtained previously by Najmabadi et al. [7]. They reported the highest
percentage of GJB2-related HL in the Northwest and West provinces of
Iran to be 38.3% and 22.2%, respectively, highlighting a non-

homogeneous distribution in the frequency of GJB2 HL throughout
Iran. The observed Northwest-to-Southeast GJB2 HL gradient is further
supported by data specific to the Southeast and Northwest Iran, where
the populations are related to the neighboring Pakistan and Turkey.
Naghavi et al. [28] screened 100 ARNSHL families from Sistan & Ba-
luchistan province in Southeast Iran for GJB2 mutations. They reported
that GJB2 mutations were found in 7% of the ARNSHL families studied.
Interestingly, p.Trp24* was the most frequent GJB2 mutation (80% of
the identified GJB2 mutations), while c.35delG was absent in this
ethnicity. This finding was similar to the presented data from the Pa-
kistan population [24]. On the other hand, Davarnia et al. [29] pre-
sented that GJB2 mutations were responsible for about 26% of ARNSHL
in the Iranian Azeri patients (Northwest Iran) and the allele frequency
of the c.35delG mutation was reported to be 62% of GJB2 mutations,
which is similar to the reported results of the Turkish population [23].

The families presented in this study live in the west and center parts
of Iran. According to the previous studies, we expected high frequencies
of GJB2 mutations; the contribution of GJB2 mutations to ARNSHL was
22.5% and 20% in Isfahan and Hamedan provinces, respectively. This is
about three times the frequency of GJB2 mutations in Southeast Iran
(Table 2). In both of the studied populations, the most common mu-
tation was c.35delG, accounting for 100% of the GJB2 mutations in
Hamedan and 75.0% of GJB2mutations in Isfahan. The data conform to
the Northwest-to-Southeast c.35delG related HL gradient that is sug-
gested across Iran, drawing the movement pathway of the initial
founders through the silk route (Table 2). In our study, the homozygous
c.358_360delGAG mutation was found in one family from Isfahan (1/
40). c.35delG and c.358_360delGAG were the first and second most
common mutations in Iran, respectively, which is in agreement with
other data [30], Besides, we could identify the homozygous c.95G > A
(p.Arg32His) mutation in one family. This mutation has been reported
from a Lebanese family for the first time [31]. The Arg32 residue is a
highly conserved residue in the GJB2 protein and in silico functional
analysis shows that Arg to His substitution is a damaging variant
(Table 1). The pathogenic roles of the p.Arg32His mutation has been
investigated in vitro by Xiao et al. [32]. They inferred that the mutated
protein failed to reach the cell membrane and remained localized
completely within the endoplasmic reticulum in the cells.

Both p.Val27Ile (c.79G > A) and p.Glu114Gly (c.341G > A) are
common in the East Asia [33]. Pandya et al. [34] suggested that when
these two variants present together in the cis state, homozygous p.Va-
l27Ile; p.Glu114Gly or compound heterozygote with another variant
can result in HL. In order to investigate the pathogenesis of p.Val27Ile
and p.Glu114Gly variants, Choi et al. used both an in vitro assay and
population study and revealed that the p.Glu114Gly variant was dele-
terious but p.Val27Ile; p.Glu114Gly was as a non-pathogenic variant.

Table 1
Identified GJB2 mutations, their frequencies and in silico analyses.

Mutations No(%) mutation type classification Functional effect

Isfahan Hamedan PolyPhen Prediction Mutation Taster SIFT SIFT Score PROVEAN PROVEAN Score

c.35delG 13 (16.25) 12(20) Deletion/
Nonsense

T NA Disease causing NA NA NA

c. 23_24insA 0 1(1.67) Frame Shift T NA Disease causing Damaging 0.008 NA NA
c.358_360delGAG 3(3.75) 0 In Frame Deletion NT NA Disease causing Damaging 0 NA NA
c.95G > A 2 (2.5) 0 Missense NT probably damaging Disease causing Damaging 0 Deleterious −4.88
c.130T > G 1(1.25) 0 Missense NT probably damaging Disease causing Damaging 0.008 Deleterious −12.81
c.100A > G 1(1.25) 0 Missense NT probably damaging Disease causing Damaging 0.008 Neutral −2.09
c.163A > G 1(1.25) 0 Missense NT benign Disease causing Damaging 0.09 Deleterious −4.58
c.178T > G 1(1.25) 0 Missense NT probably damaging Disease causing Damaging 0 Deleterious −11.93
c.79G > A 3(3.75) 0 Missense NT probably damaging polymorphism Tolerated 0.193 Neutral −0.66
c.314A > G 2(2.5) 0 Missense NT benign polymorphism Tolerated 0.227 Neutral 0.08
Normal 56 47
Total 80 60

NA: not available.

Fig. 1. Schematic structure, domains and distribution of mutations of the Cx-26 protein in
this study. Novel mutations reported for the first time are indicated in the box. M1-M4
denote transmembrane domains, E1-E2 denote extracellular domain, IC denotes cyto-
plasmic domain, NT denotes amino (NH2) terminus and CT denotes carboxyl (COOH)
terminus.

M. Koohiyan et al. International Journal of Pediatric Otorhinolaryngology 107 (2018) 121–126

123



They reported that only the homozygous p.Glu114Gly or its compound
heterozygote with other mutations may cause HL [35]. Based on the
above finding, the p.Val27Ile; p.Glu114Gly/wt genotype found in our
study is not related to the HL pathogenesis.

The c.100A > G (p.Met34Val) mutation has been reported from
Turkish families for the first time [36]. The p.Met34Val variant has also
been reported from several other populations [37]. The Met34 residue
is a conserved residue in the GJB2 protein and computational analyses

Fig. 2. A: Pedigree diagram and electropherogram of the patient (IV-2) from ISF-18 family shows the (c.130T > G/wt) variant of GJB2. B: Pedigree and electropherogram of the patient
(V-1) from ISF-10 family shows the (c.178T > G/wt) variant. C, D: Right and left ear audiograms in the (IV-2) and (V-1) patients from ISF-18 and ISF-10, respectively.

Table 2
GJB2 mutations in different provinces of Iran.

Genotype Description Gilan Ardebile Hamedan Isfahan Sistan & Baluchestan Ahvaz

(North) (Northwest) (West) (Center) (South-East) (South)

studied subjects 75 50 30 40 100 73
c.35delG p.Gly12Valfs*2 47/150(31.3) 18/100 (18) 12/60 (20) 16/80 (20) 0 9/146 (6.2)
c.23_24insA p.Ile9Aspfs*39 0 0 1/60 (1.6) 0 0 0
c.358_360delGAG p.delGlu120 0 2/100 (2) 0 2/80 (2.5) 0 0
c.95G > A p.Arg32His 0 0 0 2/80 (2.5) 0 0
c.130T > G (NEW) p.Trp44Gly 0 0 0 1/80 (1.25) 0 0
c.100A > G p.Met34Val 0 0 0 1/1/80 (1.25) 0 0
c.163A > G p.Thr55Ala 0 0 0 1/1/80 (1.25) 0 0
c.178T > G (NEW) p.Cys60Gly 0 0 0 1/80 (1.25) 0 0
c.463-464delT p.Tyr155Metfs*13 0 4/100 (4) 0 0 0 0
c.299-300delAT p. His100Argfs*14 0 2/100 (2) 0 0 0 0
c.79G > A p.Val27Ile 1/(1.2) 0 0 3/80 (3.75) 0 0
c.457G > A p.Va153Ile 4 (4.6) 0 0 0 0 0
c.314A > G p.Glu114Gly 0 1/100 (1) 0 2/80(2.5) 0 1/146 (0.64)
c.511G > A p.Ala171Thr 0 1/100 (1) 0 0 0 0
c.475G > C p.Asp159His 0 0 0 0 0 1/146 (0.64)
c.71G > A p.Trp24fs* 0 0 0 0 10/200 (5) 0
c.380G > A p.Arg127His 0 0 0 0 4/200 (2) 0
c.167delT p.Lys56Argfs*26 0 0 0 0 2/200 (1) 0
Reference Hashemzadeh et al. [43] Davarnia et al. [29] present study present study Naghavi et al. [28] Hosseinipouret et al. [13]
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show that Met to Val substitution (p.Met34Val) is a damaging variant
(Table 1). Functional experiments have shown that p.Met34Val is a
damaging variant. In addition, as derived from the structure of the Cx26
channel at 3.5 A resolution, Met34 residue is essential for the gating
process [38].

The two novel variants we found in this study including
c.130T > G and c.178T > G have not been reported in the population
databases. The c.130T > G variant in exon 2 of the GJB2 gene was
identified in the heterozygous state in a patient with profound HL. This
T to G nucleotide change at position 130 of the GJB2 gene converts the
amino acid Trp at codon 44 to glycine. The Trp44 residue, which is
located in the first extracellular domain (E1), is highly conserved in all
species studied, and among different connexions (Fig. 3) [39]. The
substitution of the residues with a residue which has different physi-
cochemical properties might result in damaging effects. Trp is a highly
hydrophobic amino acid with aromatic structure, while Gly is a small
and non-charged amino acid [40]. This substitution would affect its
contacts with the neighboring residues, thereby influencing the folding
of the Cx26 protein with the mutated residue [41]. The MutationTaster
and SIFT tools indicates that this variant could be damaging. The other
novel variant, c.178T > G changes the Gly to Cys in the N-terminal
domain of Cx26. Cys is a hydrophobic amino acid with the nonpolar
structure which is highly conserved across species (Fig. 3). Cys60 can be
linked by other Cys residue at position 174 of the GJB2 gene to form a
disulphide bond [42]. Its substitution by Gly may influence the for-
mation of this interaction in the protein, resulting in the wrong folding
of the protein. Our in silico analysis suggests that c.178T > G and
c.130T > G variants would probably be damaging to the protein
function (Table 1) [16]. The PolyPhen prediction tool indicates that
c.178T > G and c.130T > G variants could be probably damaging for
the protein conformation, SIFT and PROVEAN software tools identified
them as a damaging and deleterious variants (Table 1) [17]. Future in
vitro functional studies are needed to fully understand the pathogenic
mechanism of c.178T > G and c.130T > G in the GJB2 gene.

As the second allele was not found in exon 1 of GJB2 or GJB6 gene
for the monoallelic carriers in the related family, it is much likely that
another causal gene is responsible for HL in these patients.

5. Conclusions

In the Iranian populations, no del(GJB6-D13S1830) or del(GJB6-
D13S1854) have been detected so far. This is in agreement with the
finding of this study and suggests that they probably have no role in
etiology of ARNSHL in the Iranian population. Our data support the
view that different profile of GJB2 variants is found in different popu-
lations and that c.35delG is the major pathogenic mutation in the GJB2
gene in the Iranian population.
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