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Chapter 1

Introduction

1.1 Motivation

The succinct term uncertainty principle was first characterized by Werner Heisenberg in the
early 20th century. It has become famous for being a characteristic feature of all quantum
mechanical systems, limiting the ability to measure physical properties of subatomic particles
without altering the system being measured. Heisenberg demonstrated, that position and velocity
of such particles cannot be measured with absolute precision, or to quote Heisenberg:

Any use of the words "position" and "velocity" with an accuracy exceeding that given
by [the uncertainty principle] is just as meaningless as the use of words whose sense
is not defined.

— W. Heisenberg, The Physical Principles of the Quantum Theory, 1930

The link to signal processing was closely associated in Heisenberg’s reasoning, since Fourier
analysis was essential in his interpretation (Aitchison et al., 2004). In Fourier analysis the
uncertainty relation states that a function and, simultaneously, its Fourier transform cannot be
sharply concentrated. The similarity between Heisenberg’s and this uncertainty relation is not
coincidental, as position and momentum are related via the Fourier transform. Since then,
various kinds of uncertainty inequalities have been derived based on Heisenberg’s fundamental
principle: the general Robertson-Schrödinger inequality, the Hirschman-Beckner entropic in-
equality, the Donoho-Stark inequalities or Lieb’s inequality which all differ in their concept of
measuring concentration or spread of a function, to name only a few examples mentioned by
Ricaud and Torrésani (2014).
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Chapter 1 Introduction

Current developments in signal processing still consider uncertainty principles at the core of
recent research interests. With ever growing amounts of data the efficiency of sophisticated signal
processing algorithms requires optimal localization properties of underlying function systems.
Finding appropriate localization measures in order to obtain functions with such properties and
deriving discretization schemes based on these functions has been one of the main challenges
of the research project UNLocX - Uncertainty principles versus localization properties, function
systems for efficient coding schemes funded by the European Commission (2010 - 2013). A
major part of the theoretical foundation of this project was based on the observation that in
particular situations the uncertainty principle can be circumvented (Maaß et al., 2010). This
does not imply, however, that meaningless words have been used. On the contrary, it had led
to a more detailed analysis of uncertainty principles, most importantly the affine uncertainty
principle associated to the wavelet transform, which is where the violation was first observed.

Since one of the first publications by Dahlke and Maaß (1995), various affine uncertainty
principles have been introduced (Flandrin, 2001). Each of them results in a different minimizing
waveform for the one-dimensional case: a general solution is given in (Dahlke and Maaß,
1995, Thm. 3.1) from which the Klauder wavelet is derived by Flandrin (2001, Prop. 10.2.1)
and using a slightly different localization measure leads to the Altes wavelet (Flandrin, 2001,
Prop. 10.2.3). Based on the shortcomings revealed by Maaß et al. (2010), Levie et al. (2014)
derived a general concept of the affine uncertainty principle. It resulted in yet another, not
minimizing, but equalizing waveform. As one of the latest results emerging from the UNLocX
project, specific discretization schemes based on this equalizing waveform are still inadequately
covered. In particular, the construction of wavelet frames, even tight wavelet frames, is either
restricted to compactly supported functions or lacking proper dual frames which are wavelet
frames themselves (Feichtinger et al., 2012).

Such frame discretizations, on the other hand, are needed in sophisticated signal processing
applications. For example, audio processing algorithms might benefit from better localized
function systems as important features can be represented more sparsely. This leads to an
increased robustness with respect to noise or missing audio samples. Applications in life sciences
may also benefit from frame constructions with optimal localization properties. Imaging mass
spectrometry provides a thorough analysis of metabolic patterns essential for pharmaceutical,
medical (especially pathological) and industrial research. Observing neuronal activity using
microelectrode arrays gives insights to intercellular communication of neuronal cells from which
many biomedical and pharmaceutical applications benefit. Although these two applications are
by far not the only ones, they may benefit from sparse and localized function systems alleviating
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1.2 Microelectrode Arrays

the distinction between important signal characteristics and noise. Sparsely localized signal
representations can improve separation, in particular if temporal signal features and noise
characteristics are similar in shape and amplitude. As the two life science approaches are
essential to this thesis, they are briefly introduced next.

1.2 Microelectrode Arrays

Electrophysiology is the part of neuroscience which analyzes electrochemical processes linking
neurons and muscle tissue. In the human body, for example, stimulating muscles, physical sen-
sations and even thoughts are based primarily on electrical signals called action potentials (Aach
et al., 2014). With clinically well established methods like electrocardiography (ECG/EKG),
electroencephalography (EEG) or electromyography (EMG), such signals are already used for
diagnostic purposes of heart, brain or muscle. However, not all electrophysiological issues
can be investigated on the human body, for example in the context of pharmaceutical and tox-
icological research. Instead, in vitro approaches are increasingly utilized to gain insights into
intracellular communication as well as cellular responses to chemical or physical stimuli. They
offer an alternative methodology to animal testing, which might be faster, more efficient and
morally acceptable (Daus et al., 2012).

An elaborated non-invasive method for cellular electrophysiological characterization of in
vitro models are microelectrode arrays (MEAs). MEAs are essentially just planar electrodes
arranged into a matrix with distances between electrodes in the sub-millimeter range onto which
immobilized cellular tissue such as neural networks are coupled. This allows a long-term and
spatially resolved analysis of neuronal activity by detecting voltage differences between cell and
electrode resulting from neuronal ion currents. Intensities of these action potentials are inversely
related to the gap between neurons and corresponding electrode (Liu and Wang, 2009). The
shape is further affected by the culture medium between electrode and cell so that transduced
voltages do not reflect transmembrane potentials anymore (Daus et al., 2012). Additionally,
recorded signals are superimposed by noise from biochemical processes and thermal or extrinsic
noise, which complicates exact localization of action potentials. These localizations, however,
are fundamental for subsequent spike and burst analysis. Bursts and burst rates are a common
feature of neuronal networks indicating synchronization or carrying information (Obien et al.,
2015). These can be triggered intrinsically by the network itself, or extrinsically provoked by
chemical stimulus. Hence, burst patterns might be directly related to treatments with specific
drugs (Chiappalone et al., 2003; El Hady et al., 2013; Martinoia et al., 2005).
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With advances in lithography the increasing number of electrodes per mm2 facilitates a more
detailed electrophysiological analysis (Lonardoni et al., 2015; Wark et al., 2013). Unfortu-
nately, these high-density MEAs also increases the noise contribution and reliably separating
action potentials from background noise becomes more and more challenging requiring efficient
algorithms based on localized function systems.

1.3 MALDI Imaging

Imaging mass spectrometry enables detailed analysis of tissue sections exposing DNA, proteins,
peptides, metabolites or lipids in a spatial and morphological context. The fields of application
is manifold: biomarker analysis, for example, to evaluate drug responses in pharmacological
drug development, tumor classification in pathological applications in order to identify cancer
subtypes or the origin of tumorous cells, identification of metabolites in forensic toxicology, or
even characterization of proteins in wine to analyze polyphenols responsible for taste and color
(Gross and Beifuss, 2012). One of the most used imaging mass spectrometry techniques is
MALDI imaging: Matrix-Assisted Laser Desorption/Ionization. It allows analyzing molecular
compositions of tissue while retaining spatial distributions.

Before a tissue section can be analyzed through MALDI imaging, it has to be prepared such
that analytes can be desorbed and ionized. This is done by applying a matrix solution onto the
tissue, which absorbs the main energy of laser pulses and protects the tissue from photolytic
decomposition while at the same time transferring necessary energy for ionization onto tissue
molecules (Karas and Hillenkamp, 1988). After ionization, individual singly charged molecules
are accelerated by a constant electrical field. At the end of the mass analyzer a detector counts
arriving molecules, which, depending on their masses, need a different amount of time to
cover the flight path. Instead of specifying the actual time of flight, however, the mass-to-
charge ratio m=z is used as it simplifies the interpretation of the measured data. This method is
called MALDI-TOF (time-of-flight). Currently, there are two different MALDI-TOF approaches
available, differing mainly in the flight path. In linear MALDI-TOF the flight path is straight:
after acceleration molecules drift to the detector on a straight trajectory. Ionized molecules
in MALDI-TOF instruments in reflection mode are at least once reflected on their way to the
detector, increasing mass resolution (Flensburg et al., 2004; Goodwin et al., 2008).

With a current minimum lateral resolution of 10 µm, laser pulses generate a single spectrum
for each spatial tissue spot (Ogrinc Potočnik et al., 2015). This procedure is visualized in
Figure 1.1. The hereby obtained number of spots is in the magnitude of 104 in the 2D case
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1.3 MALDI Imaging

Figure 1.1: Basic MALDI imaging principle displaying spatially resolved mass spectra of a rat
kidney (SCiLS GmbH, Bremen).

and 106 in 3D cases. In addition, each spectrum contains 103 - 105 data points depending
whether linear or reflector mode is used (Kobarg, 2014). Not only does this lead to considerable
amounts of MALDI data, but also visualization and analysis is challenging and requires efficient
algorithms extracting only the most important information. Spatial segmentation, for example,
can be used for unsupervised mining of large MALDI imaging data sets in order to reveal
prominent features. Hereby, spectra are grouped into different clusters based on hierarchical and
statistical similarities (Alexandrov and Kobarg, 2011; Alexandrov et al., 2010; Deininger et al.,
2008). These clusters can be visualized as a segmentation map with different colors for different
clusters and regions of interest can be easily associated with corresponding m=z values.

Another example requiring efficient algorithms is the co-localization of MALDI imaging
data with annotated regions. The distinction of different tissue types is of great interest in
histopathological research. Finding m=z-markers with high intensities in specific annotated
regions and low intensities in other regions (co-localization) helps discriminating healthy and
tumorous tissue sections (Alexandrov, 2012). Regardless whether MALDI imaging data is
spatially segmented or co-localized regions are estimated, a reliable separation of important
features and noise is of fundamental importance.
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1.4 Publications and Roadmap of this Thesis

During the course of this thesis, some parts presented in the following have already been
published or are submitted for publication:

� Levie, R., Stark, H.-G., Lieb, F. and Sochen, N. (2014). "Adjoint translation, adjoint obser-
vable and uncertainty principles". Advances in Computational Mathematics, 40(3):609-
627.

� Lieb, F. (2015). "Audio inpainting using M-frames". In: Current Trends in Analysis
and its Applications: Proceedings of the 9th ISAAC Congress, Kraków 2013, Springer
International Publishing, 705-713.

� Lieb, F., Stark, H.-G. and Thielemann, C. (2017). "A stationary wavelet transform and a
time-frequency based spike detection algorithm for extracellular recorded data". Journal
of Neural Engineering, 14(3):36013.

� Mayer, M., Arrizabalaga, O., Lieb, F., Ciba, M., Ritter, S. and Thielemann, C. (2018).
"Electrophysiological investigation of human embryonic stem cell derived neurospheres
using a novel spike detection algorithm". Biosensors and Bioelectronics, 100(Supplement
C):462-468.

� Lieb, F. and Stark, H.-G. (2018). "Audio inpainting: Evaluation of time-frequency
representations and structured sparsity approaches". Signal Processing, 153:291 – 299.

Additionally, the following European patent is pending:

� Lieb, F., Hochschule Aschaffenburg (2015). "Verfahren zur Analyse eines Datensatzes
einer Flugzeit-Massenspektrometrie-Messung", Deutsches Patentamt, 10 2015 010 602.3.

The thesis can be structured into the following parts. First, a brief preliminary introduction
summarizing the basic mathematical concepts which are used throughout the thesis is given.
Subsequently, a construction scheme of approximately tight wavelet frames based on non-
compactly supported windows is described in Chapter 3. This scheme relies on an extension of
nonstationary Gabor frames to frame systems without compact support. Sufficient conditions are
derived for which corresponding approximate dual frames lead to reconstruction errors within
machine precision. Moreover, fast algorithms for analysis and synthesis based on such wavelet
frames are introduced.

The following parts consider the application of such wavelet frame constructions to diverse
signal processing approaches. In Chapter 4, such frames are used to show that missing samples,
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either randomly or consecutively distributed, can be more efficiently recovered using these frame
constructions than with current time-frequency representations. This is numerically justified by
comparing various algorithms as well as certain sparse representations.

Chapter 5 is focused on spike detection in noisy extracellular recorded data. Current state-
of-the-art algorithms are compared with two newly proposed approaches based on different
simulated data. Furthermore, a novel spike detection approach is introduced which enables the
usage of the proposed algorithms on real MEA recordings.

In Chapter 6, a novel peak picking algorithm for noisy MALDI-TOF data is presented. It is
based on the sparse approximation of frame multipliers, with the additional option to include
spatial information in the peak picking process. Performance of this method is evaluated on
simulated as well as real data sets.

Finally, the last chapter concludes with summarizing the main results, illustrating the common
thread among all parts of this thesis and discussing open issues and possible future directions.
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Chapter 2

Preliminaries

In this chapter important mathematical notations used throughout this thesis are recalled. Whe-
never possible a continuous setting is used in order to avoid the heavy notation of a finite
dimensional setting. In such continuous settings functions are generally assumed to be square
integrable, i.e., f 2 L2.R/ with inner product

hf; gi D

Z
R
f .x/g.x/dx: (2.0.1)

The Fourier transform of a square integrable function is defined as follows.

Definition 2.0.1 (Fourier Transform). The Fourier transform on L2.R/ is defined by

.Ff /.�/ D Of .�/ D

Z
R
f .x/e�2�i�xdx; (2.0.2)

where F W L2.R/! L2.R/ denotes the Fourier operator. The operator F�1 denotes the inverse
Fourier transform defined as �

F�1 Of
�
.x/ D

Z
R
Of .�/e2�i�xd�: (2.0.3)

A fundamental property of the Fourier transform is given by Plancherel’s theorem, showing
that the Fourier operator F is unitary:

hf; gi D
D
Of ; Og

E
;8f; g 2 L2.R/: (2.0.4)

9
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Consequently, the Fourier transform preserves energy since kf k2 D kFf k2.
Apart from the Fourier operator, the following three linear operators are repeatedly used

throughout this thesis:

� The translation or time shift operator Ta W L2.R/! L2.R/

Taf .x/ D f .x � a/ ; (2.0.5)

for some time shift parameter a 2 R.

� The modulation or frequency shift operator Mb W L
2.R/! L2.R/

Mbf .x/ D e
2�ibxf .x/ ; (2.0.6)

for some frequency shift parameter b 2 R.

� The dilation or scaling operator Dd W L2.R/! L2.R/

Dd .x/ D
1
p
d
 
�x
d

�
; (2.0.7)

for some scaling parameter d > 1.

These operators satisfy the following relations (Christensen, 2016, Eq. 2.29):

FTa DM�aF ; FMb D TbF ; FDd D D 1
d
F : (2.0.8)

Another central concept in this thesis are frames, a generalization to orthonormal bases defined
as follows.

Definition 2.0.2 (Frames in Hilbert Spaces). A sequence fgkgk2Z of elements in a Hilbert space
H is a frame for H, if there exists constants A;B > 0 such that

A kf k22 �
X
k2Z

jhf; gkij
2
� B kf k22 ; (2.0.9)

for every f 2 H. A frame is said to be tight whenever the frame bounds are equal, that is
A D B . A tight frame with A D B D 1 is called a Parseval frame.

Closely associated to frames are corresponding analysis, synthesis and frame operators (Chris-
tensen, 2016; Gröchenig, 2001) defined by

10



� The analysis operator ˚ W H! `2.Z/ reads

˚f D fhf; gkigk2Z : (2.0.10)

� The synthesis operator ˚� W `2.Z/! H is defined by

˚� fckgk2Z D
X
k2Z

ckgk : (2.0.11)

� The composition of both operators results in the frame operator S W H! H

Sf D ˚�˚f D
X
k2Z

hf; gkigk : (2.0.12)

The notation Sg; D
P
k2Z hf; gki k is used whenever the frame operator results from

analysis and synthesis operators with frames fgkgk2Z and fkgk2Z.

The concept of frames also plays a significant role in time-frequency representations (Gröche-
nig, 2001, Ch. 5) as well as wavelet theory (Daubechies, 1992) when discretizing the short-time
Fourier and wavelet transform defined as follows.

Definition 2.0.3 (Short-Time Fourier Transform). The short-time Fourier transform (STFT) of
a function f 2 L2.R/ with respect to some window function g 2 L2.R/ is defined by

Vgf .a; b/ D hf; TaMbgi (2.0.13)

D

Z
R
f .x/g .x � a/ e�2�ibxdx; (2.0.14)

for a; b 2 R.

Definition 2.0.4 (Continuous Wavelet Transform). The continuous wavelet transform (CWT)
of a function f 2 L2.R/ with respect to some admissible function  2 L2.R/ is defined by

W f .a; d/ D hf; TaDd i (2.0.15)

D

Z
R
f .x/

1
p
d
 
�x � a

d

�
dx; (2.0.16)

11
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for a; d 2 R and d > 1. Admissibility is given whenever

C D

Z
R

ˇ̌̌
O .�/

ˇ̌̌2 d�
j�j

<1: (2.0.17)

Although basic mathematical principles in this thesis are described in a continuous setting, the
proposed algorithms and applications require a finite dimensional setting. When dealing with
such signals of finite length, difficulties may emerge at the boundaries. Strang and Nguyen (1996)
considered various possibilities how a signal might be extended beyond its boundary. Feichtinger
and Strohmer (1998, Ch. 8) argued that in most cases circular extensions are advantageous,
implying that a finite sequence f 2 CL is extended to an infinite one by periodization: f ŒnC
mL� D f Œn� for n D 0; 1; : : : ; L�1 andm 2 Z. This requires, however, that time and frequency
shift parameters a; b 2 N of the discrete translation and modulation operator, Takf Œn� D
f Œn � ak� and Mblf Œn� D e2�ibln=Lf Œn� for f 2 CL and k; l 2 Z, are integer factors of L.
These periodic signal extensions induce circular convolutions which can be efficiently evaluated
using a fast Fourier transform (fft) algorithm (Aldroubi and Unser, 1996, Ch. 2.2.3), with the
discrete Fourier transform defined as follows.

Definition 2.0.5 (Discrete Fourier Transform). Let f 2 CL. The L-dimensional discrete
Fourier transform (DFT) FL W CL ! CL, is defined as

.FLf /Œn� D
1
p
L

L�1X
lD0

f Œl�!nlL ; (2.0.18)

where !L D e�2�i=L is the L-th primitive root of unity.
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Chapter 3

Construction Schemes for Approximately
Tight Wavelet Frames

3.1 Introduction

In signal processing, uncertainty principles emanate from the need to determine certain features
of signals, e.g., position or frequency, with reasonable accuracy. With regard to position
and frequency, the corresponding uncertainty principle states that a signal can not be well
concentrated in time- and frequency domain simultaneously. Not only position and frequency
are desirable function properties, but also scale or orientation. By minimizing each of the
resulting uncertainty principles, explicit functions can be derived which are supposed to be
optimally localized in corresponding transform domains (Dahlke and Maaß, 1995; Dahlke
et al., 2008; Sagiv et al., 2006). Only recently, however, it has been shown that some of the
considered uncertainty principles might not attain a lower bound (Maaß et al., 2010, 2014),
misleading the concept of uncertainty minimizers. Therefore, Levie et al. (2014) introduced
a more general uncertainty principle remedying these flaws. Their results have lead to a new
uncertainty principle for the wavelet transform with a strict lower bound. This concept is
concisely summarized as follows.

A commonly used measure of spread or concentration is the variance (Ricaud and Torrésani,
2014). With expectation value ef .T / D hf; T f i for a self-adjoint operator T 2 H acting on
some state f 2 H, the variance vf .T / is defined by vf .T / D ef

�
T 2
�
� ef .T /2. Known

from quantum mechanics, the uncertainty principle for two self-adjoint operators T1 and T2 is

13



Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

then defined by the Robertson-Schrödinger inequality (Folland and Sitaram, 1997)

vf .T1/vf .T2/ �
1

4
jhf; ŒT1; T2�f ij2 ; (3.1.1)

for all suitably chosen f . The commutator ŒT1; T2� is given by ŒT1; T2� D T1T2 � T2T1. For
more information on the theory of commutators and involved operators, e.g., domain, range,
boundedness, it is referred to Putnam (1967).

Grossmann et al. (1985) associated the wavelet transform with the one-dimensional affine
group. Generators of this group are given by the infinitesimal operators of translation and
dilation Ta D i ddx and Td D i

�
1
2
C x d

dx

�
and lead to a minimizer for the uncertainty principle

in (3.1.1) derived by Dahlke and Maaß (1995). Levie et al. (2014) argued, however, that such an
approach is ambiguous since the generators would not measure position and scale. The approach
proposed instead, is based on so called adjoint translations (Lantzberg et al., 2012; Levie and
Sochen, 2017a,b).

Adjoint translation operators MT of some operator T satisfy the canonical commutation relationh
T ; MT

i
D i1; (3.1.2)

where 1 denotes the identity element. According to Levie et al. (2014, Prop. 11), a solution
to (3.1.2) is guaranteed, albeit it might not necessarily be unique: the sum of MT and any
self-adjoint operator which commutes with T also satisfies (3.1.2). The adjoint translation
operators for translation and dilation MTa and MTd are easily computed by MTaf .x/ D xf .x/

and F MTdF� Of .�/ D � ln � Of .�/, with ln denoting the natural logarithm. For a more rigorous
discussion about corresponding domains, existence and uniqueness of such adjoint translation
operators in general it is referred to (Levie et al., 2014).

In order to summarize the main result from Levie et al. (2014), let the spaceH 2
C
.R/ be defined

byH 2
C
.R/ D

n
f 2 L2.R/

ˇ̌̌
supp

�
Of .�/

�
� RC

o
. Then, Proposition 22 by Levie et al. (2014)

states that the uncertainty principle for the wavelet transform reads

v Of

�
�i

d

d�

�
v Of .ln �/ �

1

4

ˇ̌
Cf
ˇ̌2
; (3.1.3)

for some signal f 2 H 2
C
.R/ and admissibility constant Cf . It has been further shown that

equality of (3.1.3) can not be achieved. The resulting waveform which would satisfy (3.1.3) is

14



3.1 Introduction

explicitly given by
Of .�/ D Ce�..i˛C�.ˇC1�ln �//; (3.1.4)

for some C; ˛; ˇ 2 R and � > 0. This function, however, only satisfies the admissibility
condition for wavelets asymptotically as � ! 1, (Levie et al., 2014, Cor. 24). Despite this
shortcoming, with sufficiently large � (e.g. � D 25) this equalizing function can be used in a
finite dimensional setting for wavelet analysis as Of .0/ can be made sufficiently small. In the
following definition of the Equalizer as well as all subsequent evaluations, the parameters ˛ and
ˇ are set to 0.

Definition 3.1.1 (Wavelet Equalizer). For some � > 0 the uncertainty Equalizer for the wavelet
transform is defined in the frequency domain by

	Eq.�/ D Ce
��.1�ln �/; (3.1.5)

for all positive frequencies � 2 RC and normalization constant C 2 R. Possible choices for C
may be such that

	Eq

2
D 1 or C D e�� leading to a maximum value 	Eq.1/ D 1.

With this definition the question now arises if it is possible to construct a discretized version
of the continuous wavelet transform based on the Equalizer. Additionally, perfect reconstruction
is desirable. Construction schemes for wavelet frames as well as dual frames for perfect
reconstruction are presented by Bayram and Selesnick (2009) and Balazs et al. (2011) and are
implemented in the LTFAT toolbox (Průša et al., 2014). However, both approaches are based
on band-limited wavelets. Unfortunately, the Equalizer is neither band- nor time limited. The
existence of wavelet frames with non-compactly supported functions is shown by Christensen
(2016, Prop. 15.2.6). In a more general setting a similar result is proven by Dörfler and Matusiak
(2014) for so called nonstationary Gabor frames, a generalization of Gabor and wavelet frames
to irregular, and hence almost arbitrary, sampling schemes.

Although the existence of such frames has been investigated in the literature quite recently,
the analysis of dual frames for which perfect reconstruction is possible is rarely addressed.
Feichtinger et al. (2014) introduced approximate dual frames based on compactly supported
wavelets in order to reduce the complexity of computing the canonical dual frame elements.
A detailed analysis of dual wavelet frame pairs has been introduced by Chui and Shi (2000,
Thm. 1), where necessary conditions are only satisfied for band-limited wavelets (Christensen,
2016, p. 403). A more general result has been introduced by Liu and Sun (2009) and Li
and Sun (2012). They have proven that in the continuous case the wavelet frame operator

15



Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

with two arbitrary wavelets converges to the identity, whenever dilation parameters tend to 1 and
simultaneously shift parameters to 0, provided both wavelets satisfy proper decay and smoothness
conditions. In practical applications, however, such theoretical results are not feasible. Dörfler
and Matusiak (2015) have introduced approximate dual windows for nonstationary Gabor frames
which are based on non-compactly supported window functions. With the results presented
therein, it is possible to construct corresponding dual frames, but only in an approximate
manner such that perfect reconstruction is numerically not achievable.

In the following chapter, the diagonality of frame operator is characterized first with respect
to equidistantly spaced time- and frequency sampling points. The result is then generalized with
respect to a non-equidistantly spaced time- or frequency sampling. In contrast to Dörfler and
Matusiak’s (2015) results, these frame constructions and proposed dual frames lead to a frame
operator which is, at least within numerical precision, the identity operator in a finite dimensional
setting. Additionally, tight frames are characterized and fast algorithms for synthesis and analysis
are proposed. Finally, the results are applied to construct and evaluate wavelet frames with non-
compactly supported functions.

3.2 Gabor Frames

3.2.1 Preliminaries

Discretization of the short-time Fourier transform in (2.0.14) leads to the so called Gabor
transform. Instead of using all possible translations and modulations, it is sufficient to use only
a countable subset of time-frequency shifts. Thus, the Gabor expansion of a signal f can be
written as

f D
X
k2Z

X
l2Z

hf; TakMblgiTakMbl; (3.2.1)

for suitable windows g;  2 L2.R/ and time and frequency shift parameters a; b > 0. Fun-
damental results and definitions concerning such expansions are summarized in the following
from Feichtinger and Strohmer (1998, 2003) and Gröchenig (2001), starting with the definition
of a Gabor frame itself.

Definition 3.2.1 (Gabor Frame). Let g 2 L2.R/ be a window function. For some real numbers
a; b > 0 the collection

G .g; a; b/ D fTakMblg W k; l 2 Zg (3.2.2)
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3.2 Gabor Frames

with time and frequency shift parameters a and b is called a Gabor system. Whenever this
system satisfies the frame condition in (2.0.9), it is referred to as a Gabor frame for L2.R/.

The frame operator associated with such Gabor frames is defined as follows:

Definition 3.2.2 (Gabor Frame Operator). For any f 2 L2.R/ and g;  2 L2.R/, the Gabor
frame operator S W L2.R/! L2.R/, associated to Gabor frames G .g; a; b/ and G .; a; b/, has
the form

Sg;f D
X
k2Z

X
l2Z

hf; TakMblgiTakMbl: (3.2.3)

For the special case when  D g, the Gabor frame operator Sg;g is simply denoted by S .

The Gabor frame operator commutes with time-frequency shifts, implying that STakMbl D

TakMblS as shown by Christensen (2016, Lem. 12.3.1). Further, the Gabor frame operator S
is bounded (cf. Gröchenig (2001, Cor. 6.2.3)) whenever the window function g is in the Wiener
space W.R/ defined as follows.

Definition 3.2.3 (Wiener Space). A function g 2 L1.R/ satisfying

kgkW D
X
k2Z

ess sup
x2Œ0;1�

jg.x C k/j <1; (3.2.4)

belongs to the Wiener space W.R/.

Walnut (1992, Prop. 2.4.) showed that the Gabor frame operator maps a function onto a sum
of weighted and translated copies of itself. It states that for g;  2 W.R/ and a; b > 0, the
Gabor frame operator Sg; in (3.2.3) can be written as

Sg;f D
1

b

X
l2Z

G
g;

l
T l
b
f; (3.2.5)

where the correlation Gg;
l

is defined as

G
g;

l
.x/ D

X
k2Z

g

�
x �

l

b
� ak

�
.x � ak/; l 2 Z: (3.2.6)

A formal proof of Walnut’s representation theorem is found in (Gröchenig, 2001, Thm. 6.3.2).
For l D 0 the term G

g;

l
represents the diagonal part of the Gabor frame operator and Gg;

l

with l ¤ 0 the side diagonal part.
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Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

The Gabor frame operator is diagonal whenever the side diagonals vanish, i.e., Gg;
l
D 0 for

all l ¤ 0. Daubechies et al. (1986) introduced the following theorem, which characterizes the
diagonality of the Gabor frame operator for compactly supported functions g.

Theorem 3.2.4 (Painless Non-Orthogonal Expansions (Gröchenig, 2001, Thm. 6.4.1)). Let
g 2 W.R/ be compactly supported on the interval Œ0; N � and choose time and frequency shift
steps a and b such that a � N and b � 1

N
. The frame operator Sg;g turns into a (pointwise)

multiplication operator

Sg;gf .x/ D
1

b
G
g;g
0 .x/f .x/ D

1

b

X
k2Z

jg.x � ak/j2 f .x/: (3.2.7)

Proof. The proof analogously follows Gröchenig’s (2001, Thm. 6.4.1) argumentation. Consider
the corresponding correlation function from (3.2.6)

G
g;g

l
.x/ D

X
k2Z

g

�
x �

l

b
� ak

�
g.x � ak/; l 2 Z: (3.2.8)

Assume l ¤ 0. The intersection of the supports of g.x � b�1l � ak/ and g.x � ak/ is either
empty or a set of measure zero iff b D N�1 for all k 2 Z. This implies thatGg;g

l
D 0whenever

l ¤ 0. For l D 0, Gg;g0 .x/ D
P
k2Z g.x � ak/g.x � ak/ and (3.2.7) follows from Walnuts

representation of the frame operator in (3.2.5).

Hence, whenever a window g has compact support and the frequency shift parameter b is
chosen appropriately, the resulting Gabor frame operator is diagonal. If the time shift parameter
a is chosen such that Gg;g0 is bounded from below and from above, the resulting collection of
time- and frequency shifted functions constitutes a Gabor frame. The canonical dual window
ı is then easily computed by inverting the diagonal frame operator

ı D S�1g D b
�
G
g;g
0

��1
g: (3.2.9)

Further, if Gg;g0 .x/ / 1 for all x 2 R the corresponding frame is tight and a Parseval frame
whenever Gg;g0 D 1.

3.2.2 Diagonality of the Gabor Frame Operator

Unfortunately, Daubechies non-orthogonal painless expansions only work for compactly sup-
ported functions. In general the frame operator is not diagonal and the estimation of canonical
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3.2 Gabor Frames

dual windows depends on the frame operator and its inverse. Computational aspects of estima-
ting canonical duals have been treated by Li (1995) and Janssen and Søndergaard (2007) and
non-canonical dual windows by Werther et al. (2005). In all those cases, a fixed Gabor frame
G .g; a; b/ leads to a dual window  such that the resulting frame operator Sg; is the identity.

A different approach would be to fix a window g and an appropriate choice of  and evaluate
for which parameters a and b the frame operator is diagonal. Obviously, the existence of these
parameters depends on the chosen  . Sun (2010) proved, that for  D g the frame operator
Sg; converges to the identity, whenever the sampling parameters a and b tend to zero. With a
more suitable choice for  , Sun’s result can be relaxed such that Sg; converges to the identity
for all suitable a > 0 if b tends to zero. The following theorem shows an upper bound for the
diagonality of the Gabor frame operator with respect to sampling parameters a and b.

Theorem 3.2.5 (Diagonality of the Gabor Frame Operator). Let g 2 W.R/. Let the time
sampling parameter a > 0 such that there exists positive constants A;B satisfying

0 < A � G
g;g
0 � B <1 .a:e:/: (3.2.10)

Define the dual window by

 D ı D b
�
G
g;g
0

��1
g; (3.2.11)

where b > 0 is the frequency shift parameter. With I being the identity operator, the recon-
struction error can now be bounded by

I � Sg;2 �
P

l2Znf0g

Gg;g
l


1

ess infGg;g0
: (3.2.12)

Furthermore,

lim
b!0

I � S .a;b/g;


2
D 0 (3.2.13)

where the notation of the frame operator is slightly changed to indicate its dependence on the
parameters a and b.

Proof. Due to (3.2.10) the dual window  is well-defined. To show that (3.2.12) holds, Walnuts
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representation of the Gabor frame operator gives

�I � S .a;b/g;

�
f

2
D

f � 1bX
l2Z

X
k2Z

g

�
� �

l

b
� ak

�
b

G
g;g
0

g.� � ak/f

�
� �

l

b

�
2

(3.2.14)

D

f � 1

G
g;g
0

"X
k2Z

jg.� � ak/j2 f

C

X
l2Znf0g

X
k2Z

g

�
� �

l

b
� ak

�
g.� � ak/f

�
� �

l

b

�35
2

(3.2.15)

D

 1

G
g;g
0

X
l2Znf0g

X
k2Z

g

�
� �

l

b
� ak

�
g.� � ak/f

�
� �

l

b

�
2

: (3.2.16)

This expression can be bounded by

�I � S .a;b/g;

�
f

2
� .ess infG0/�1

 X
l2Znf0g

G
g;g

l
f

�
� �

l

b

�
2

(3.2.17)

� .ess infG0/�1
X

l2Znf0g

Gg;g
l


1
kf k2 : (3.2.18)

Equation (3.2.13) follows immediately from (3.2.12) and (Gröchenig, 2001, Lemma 6.5.2),
which states that

lim
b!0

X
l2Znf0g

Gg;g
l


1
D 0; (3.2.19)

for any a > 0.

Theorem 3.2.5 states that the frame operator with g and dual window  according to (3.2.11)
is diagonal whenever the following two conditions hold: First, the time sampling parameter a is
chosen such that (3.2.10) holds, meaning sufficient overlap of neighboring copies ofg is required.
Secondly, the frequency sampling parameter b has to be chosen such that the side diagonals
of the Gabor frame operator vanish. For compactly supported functions g the corresponding
parameter choice is explicitly given by Daubechies painless non-orthogonal expansions. For
more general windows this is only true whenever b tends to 0.
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3.2 Gabor Frames

(a) Reconstruction error
I � S .a;b/g;


2

(b) Gabor frame operator S .a;b/ for a D 20 and
b D 10

Figure 3.1: Gabor frame operator for a Gaussian window in dependence of time and frequency
sampling parameter a and b. Both color bars are logarithmic.

In a finite dimensional setting, however, it is sufficient that the diagonality of the Gabor frame
operator is within machine precision. This mainly depends on the frequency sampling parameter
b and the decay behavior of windows g. Hence, the limiting process of (3.2.19) can be stopped
for b-values where the reconstruction error is within machine precision. In summary, the Gabor
frame operator is diagonal in a finite dimensional setting if g is decaying fast enough and b is
sufficiently small. This is illustrated in the following discrete example.

Example. Let g be the canonical Gaussian, which is invariant under Fourier transform, with
length L D 480. With this choice only integer divisors of L can be used for time and frequency
shift parameters a and b. The first 19 of these divisors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20,
24, 30, 32, 40, 48, 60 and 80 which can be easily verified. The Gabor frame operator S .a;b/g;

based on windows g and  as defined in (3.2.11) can then be explicitly computed, e.g., using
(Qiu and Feichtinger, 1995, Eq. (6)). According to the Balian-Low theorem, G .g; a; b/ is a
frame only if ab < L (Gröchenig, 2001, Thm. 7.5.3 and Cor. 8.4.4).

Figure 3.1a shows the reconstruction error in logarithmic representation of the Gabor frame
operator in dependence of parameters a and b. Parameter combinations which do not satisfy
the Balian-Low Theorem are excluded and corresponding rectangles remain white. According
to the figure, the reconstruction error is within machine precision for small values of b. The
time sampling parameter a does not directly influence the error. Large values, however, cause
insufficient overlap of Gaussian windows, resulting in large values of dual windows, since the
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Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

lower bound A in (3.2.10) is close to zero. The Gabor frame with a D 30 and b D 4 results in
a frame of redundancy 4 and a reconstruction error of

I � S30;4
2
D 7:3e�14.

Figure 3.1b illustrates the Gabor frame operator exemplarily for a D 20 and b D 10. Clearly
visible are the side diagonals responsible for a reconstruction error of 0.0008. Further, numerical
noise can be observed around the main diagonal, which arises from computing the frame operator
explicitly by ˚�˚ .

The aforementioned example shows, that it is possible to construct frames with predefined
dual windows, such that the approximation error

I � Sg;2 < " of the Gabor frame operator
is within machine precision by choosing a suitably small frequency sampling parameter b. Since
the approximation depends on the decay properties of g, and hence convergence is nonuniform,
it is difficult to derive a general rule which assigns for each " a corresponding b.

In the following section this extension of Daubechies non-orthogonal expansions is applied
to a generalization of Gabor frames.

3.3 Nonstationary Gabor Frames

3.3.1 Preliminaries

One of the main disadvantages of the Gabor transform is its fixed time-frequency resolution
resulting from inflexible time and frequency shift parameters a and b. Balazs et al. (2011)
proposed the concept of nonstationary Gabor frames, a generalization of Gabor frames and non-
orthogonal painless expansions, overcoming such rigid time-frequency discretizations. It has
been widely used for adaptive signal analysis in acoustics (Liuni et al., 2013; Ricaud et al., 2014;
Schörkhuber et al., 2013), in nonlinear approximation theory (Ottosen and Nielsen, 2017a,b)
and even data mining (Sattar et al., 2016). Formally, nonstationary Gabor frames are defined as
follows.

Definition 3.3.1 (Nonstationary Gabor Frames). Let the set G.gk; bk/ D fMbklgk W k; l 2 Zg
of window functions gk 2 W.R/ with corresponding frequency shift parameter bk be denoted
a nonstationary Gabor system. Whenever this set satisfies the frame condition in (2.0.9) it is
called a nonstationary Gabor frame.

Instead of fixed uniform translations a, windows gk can be non-uniformly distributed on the
time-axis. These windows can vary in shape or width, allowing adaptive and irregular sampling
schemes. Figure 3.2a schematically shows an example of such an irregular sampling of the

22



3.3 Nonstationary Gabor Frames

time

frequency

time

gk

bk

(a) Resolution changing over time

frequency

time

frequency

hl

al

(b) Resolution changing over frequency

Figure 3.2: Irregular sampling scheme resulting from nonstationary Gabor frames.

time-frequency plane with windows gk of varying width. Clearly, whenever gk D g.� � ak/

for some time shift parameter a > 0 and bk D b for all k 2 Z the resulting frame is a regular
Gabor frame.

Any function f 2 L2.R/ can be decomposed into analysis coefficients by taking inner
products of f with nonstationary Gabor frame elements, i.e.,

ck;l D
˝
f;Mbklgk

˛
k; l 2 Z: (3.3.1)

The corresponding nonstationary Gabor frame operator for frames G.gk; bk/ and G.k; bk/ is
given by

Sg;f D
X
k2Z

X
l2Z

˝
f;Mbklgk

˛
Mbklk : (3.3.2)

Its Walnut representation is due to Dörfler and Matusiak (2014, Prop. 3.3) and reads

Sg;f D
X
l2Z

G
g;

l
T l
bk

f; (3.3.3)

with
G
g;

l
D

X
k2Z

1

bk
gk

�
� �

l

bk

�
k.�/: (3.3.4)

for gk; k 2 W.R/.
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Balazs et al. (2011) introduced a generalization of Daubechies painless non-orthogonal ex-
pansions. The following theorem is one of their main results, albeit with an alternative version
of the proof:

Theorem 3.3.2 (Painless Nonstationary Expansions (Balazs et al., 2011, Thm. 1)). Let gk 2
W.R/ be compactly supported on Œpk; qk� for all k 2 Z. Let the frequency shift parameter
bk > 0 for each corresponding gk be such that bk � 1

qk�pk
. If there exists positive constants

A;B such that
0 < A �

X
k2Z

1

bk
jgkj

2
� B <1 .a:e:/; (3.3.5)

the collection G.gk; bk/ is a frame for L2.R/. Further, the frame operator Sg;g in Equation
(3.3.2) is the multiplication operator

Sg;gf D

 X
k2Z

1

bk
jgkj

2

!
f: (3.3.6)

Proof. With Walnuts representation of the nonstationary Gabor frame operator, the proof follows
Daubechies painless non-orthogonal expansions analogously. First, assume that l ¤ 0 and
consider the correlation Gg;g

l
in (3.3.4). For each k, intersecting the supports of gk

�
� � b�1

k
l
�

and gk.�/ results in either the empty set or a set of measure zero and henceGg;g
l¤0
D 0. Equation

(3.3.6) then follows immediately for l D 0 and Walnuts representation of the nonstationary
Gabor frame operator.

Corollary 3.3.3. Canonical dual windows ı
k

are given by

ık D
1P

k2Z

1
bk
jgkj

2
gk; (3.3.7)

for every k 2 Z.

An equivalent result to Theorem 3.3.2 can be formulated for compactly supported functions
in the Fourier domain, allowing adaptivity in the frequency domain. Figure 3.2b exemplarily
illustrates such an irregular sampling scheme where the resolution changes over frequency, as
windows can be placed at arbitrary locations on the frequency axis. The following Corollary is
an immediate result from Theorem 3.3.2.
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Corollary 3.3.4 (Painless Nonstationary Expansions in Frequency Domain (Balazs et al., 2011,
Cor. 2)). Let hl 2 W.R/ be such that Ohl is bandlimited on the interval Œpl ; ql � for all l 2 Z. The
corresponding nonstationary Gabor system is the set G.hl ; al/ D fTalkhl W k; l 2 Zg. If time
shift parameters al are chosen such that al � 1

ql�pl
, the corresponding nonstationary Gabor

frame operator Sh;h is the convolution operator

Sh;hf D F�1
 X
l2Z

1

al

ˇ̌̌
Ohl

ˇ̌̌2
� Of

!
; f 2 L2.R/: (3.3.8)

Thus, G.hl ; al/ is frame for L2.R/ if and only if there exist constants A;B > 0 satisfying the
inequality

0 < A �
X
l2Z

1

al

ˇ̌̌
Ohl

ˇ̌̌2
� B <1; (3.3.9)

almost everywhere.

Similar to Corollary 3.3.3, inverting the frame operator gives canonical dual windows Oı
l

in
frequency domain

Oıl D
OhlP

l2Z

1
al

ˇ̌̌
Ohl

ˇ̌̌2 ; 8l 2 Z: (3.3.10)

Corresponding analysis coefficients are then defined by

ck;l D
˝
f; Talkhl

˛
D

D
Of ;M�alk

Ohl

E
k; l 2 Z; (3.3.11)

showing that the results from Theorem 3.3.2 and above Corollary 3.3.4 are essentially the same
up to a Fourier transform. Hence, Sh;h also admits a Walnut representation.

Obviously, such painless constructions only work for windows with compact support, either
time- or bandlimited. More general windows which are neither time- nor bandlimited are
considered in the following.

3.3.2 Diagonality of the Nonstationary Gabor Frame Operator with
Non-Compactly Supported Functions

Dörfler and Matusiak (2014, Thm. 3.4 and Cor. 3.5) have proven the existence of nonstationary
Gabor frames with windows which are neither compactly supported nor bandlimited. In order
to summarize their results, it is necessary to assume that windows gk are localized around
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time-sampling points ak .

Definition 3.3.5 (ı-separated Set). A set of sampling points fak 2 R W k 2 Zg is ı-separated if
there exists ı > 0, such that

jak � amj > ı; 8k ¤ m: (3.3.12)

Dörfler and Matusiak then show that the nonstationary Gabor frame operator Sg;g is bounded
from above and below if for every k, gk 2 W.R/ and the set of windows fgkgk2Z satisfies the
following two conditions:

� for two constants A;B > 0

0 < A �
X
k2Z

jgk.x/j
2
� B <1; (3.3.13)

for all k 2 Z.

� for constants Ck > 0, windows gk have polynomial decay around a ı-separated set
fak 2 R W k 2 Zg such that

jgk.x/j � Ck .1C jx � akj/
��k ; 8x 2 R; (3.3.14)

where �k > 2 for all k 2 Z.

With these two conditions, Theorem 3.4 by Dörfler and Matusiak (2014) can be concisely
summarized as follows. If windows gk have polynomial decay and sufficient overlap, a sequence
fb0
k
gk2Z exists such that for bk � b0k for all k 2 Z, the system G.gk; bk/ constitutes a frame

for L2.R/. Thus, nonstationary Gabor frames can always be constructed for functions with
sufficient decay properties by choosing sufficiently dense frequency sampling parameters bk . For
the sake of completeness, an equivalent result holds for windows hl which decay polynomially
in frequency domain: with sufficient overlap of windows Ohl , there exists a sequence fa0

l
gl2Z

such that for all al � a0l the system G .hl ; al/ forms a frame for L2.R/.
In the regular Gabor case the frame operator commutes with time-frequency shifts. For

nonstationary Gabor frames the frame operator might not commute with modulations, i.e.,
S�1.Mbklgk/ ¤MbklS

�1gk . Holighaus (2014, Thm. 3) proved, that under certain conditions
the inverse frame operator of nonstationary Gabor frames possesses a similar structure as the
original frame operator. Further, these conditions also guarantee that the canonical dual frame
of G.gk; bk/ is again a nonstationary Gabor frame with the same modulation parameters bk
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(Holighaus, 2014, Cor. 5). Unfortunately, this only holds for compactly supported windows.
For functions which are neither time- nor bandlimited Dörfler and Matusiak (2015) propo-
sed construction schemes for approximately dual frames, where approximate dual frames are
characterized by the following definition adapted from Christensen and Laugesen (2010).

Definition 3.3.6 (Approximate Dual Frame). Two frames G .gk; bk/ and G .k; bk/ are said to
be approximate dual frames, wheneverI � Sg;2 < 1; (3.3.15)

for any frame operator S with windows g and  .

As stated by Christensen (2016, Ch. 6.5), an upper bound of 1 might not be sufficient to
guarantee that a function f is approximately close to Sg;f . In a finite dimensional setting this
would contradict the perfect reconstruction constraint. A more reasonable approach is given byI � Sg;2 � "r (3.3.16)

for some positive "r � 1. With the following lemmata it can be shown, that under certain
assumptions, this approximation can be made arbitrarily small, similar to Theorem 3.2.5 for
the regular Gabor case. This extends the results by Dörfler and Matusiak (2015) as they only
considered approximate dual frames as defined in (3.3.15). Starting point is a brief lemma about
an upper bound involving ı-separated sets, taken from Dörfler and Matusiak (2014).

Lemma 3.3.7 (Dörfler and Matusiak (2014, Lem. 2.2b)). Let fak 2 R W k 2 Zg be a ı-separated
set. For � > 1 the following inequality holds

ess sup
x2R

X
k2Z

.1C jx � akj/
��
� 2

�
1C .1C ı/��.ı�1 C �/.� � 1/�1

�
: (3.3.17)

The corresponding proof can be found in (Dörfler and Matusiak, 2014). The following
lemma characterizes the side diagonals of the nonstationary Gabor frame operator with respect
to frequency sampling parameters bk .

Lemma 3.3.8. Let gk have polynomial decay around a ı-separated set fak 2 R W k 2 Zg for
all k 2 Z, i.e., there exist constants Ck 2 ŒCL; CU � and �k 2 Œ�L; �U �, where the sets ŒCL; CU �
and Œ�L; �U � are positive and �L > 2, such that

jgk.x/j � Ck .1C jx � akj/
��k ; 8x 2 R; (3.3.18)
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for all windows gk .
Then

lim
bk!0

X
l2Znf0g

Gg;g
l


1
D 0; 8k 2 Z; (3.3.19)

where Gg;g
l

is defined according to (3.3.4).

Proof. The general idea of this proof is based on the proof of Theorem 3.4 by Dörfler and
Matusiak (2014) with minor modifications. First, let 0 < � < �L � 2. Using the polynomial
decay of gk givesˇ̌̌̌
1

bk
gk

�
x �

l

bk

�
gk.x/

ˇ̌̌̌
D

1

bk

ˇ̌̌̌
gk

�
x �

l

bk

�ˇ̌̌̌
jgk.x/j (3.3.20)

�
C 2
k

bk

�
1C

ˇ̌̌̌
x � ak �

l

bk

ˇ̌̌̌���k
.1C jx � akj/

��k (3.3.21)

�
C 2
k

bk

�
1C

ˇ̌̌̌
x � ak �

l

bk

ˇ̌̌̌���kC.1C�/
.1C jx � akj/

��k (3.3.22)

�
C 2
k

bk
.1C jx � akj/

�.1C�/

�
1C

ˇ̌̌̌
l

bk

ˇ̌̌̌���kC.1C�/
(3.3.23)

� C 2k .1C jx � akj/
�.1C�/

jl j��kC.1C�/ b
�k�.2C�/

k
; (3.3.24)

where the estimate from (3.3.22) to (3.3.23) results from the inequality

.1C jx C yj/�� � .1C jxj/�.1C jyj/��; (3.3.25)

for x; y 2 R and � � 0 (Dörfler and Matusiak, 2014). Now, choose " < CL and set bk D�
"
Ck

�1=�k
. Thus,

Gg;g
l


1
D ess sup

x2R

ˇ̌̌̌
ˇX
k2Z

1

bk
gk

�
x �

l

bk

�
gk.x/

ˇ̌̌̌
ˇ (3.3.26)

� ess sup
x2R

X
k2Z

C
1C.2C�/=�k
k

jl j��kC1C� "1�.2C�/=�k .1C jx � akj/
�.1C�/

� max
k2Z

Rk jl j
��LC1C� "1�.2C�/=�L ess sup

x2R

X
k2Z

.1C jx � akj/
�.1C�/; (3.3.27)
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where Rk D C
1C.2C�/=�k
k

. Using Lemma 3.3.7, the essential supremum on the right hand side
of (3.3.27) can then be bounded byGg;g

l


1
� max
k2Z

Rk jl j
�.�L�1��/ "1�.2C�/=�L2

�
1C .1C ı/�.1C�/.ı�1 C 1C �/��1

�
:

(3.3.28)
Hence, with � D 2

�
1C .1C ı/�.1C�/.ı�1 C 1C �/��1

�
X

l2Znf0g

Gg;g
l


1
� �max

k2Z
Rk"

1�.2C�/=�L
X

l2Znf0g

jl j�.�L�1��/ (3.3.29)

The summation of (3.3.29) over all l 2 Znf0g reduces to the Riemann zeta function and is
convergent as per definition �L � 1 � � > 1. Further, Equation (3.3.29) tends to 0 whenever
" ! 0 since the exponent of " satisfies 1 � .2C �/=�L > 0 and the claim in (3.3.19) follows
readily.

Now, analogously to Theorem 3.2.5 for Gabor frames, a similar result can be derived for
nonstationary Gabor frames. It is an adaption of Proposition 4.1 by Dörfler and Matusiak
(2015).

Theorem 3.3.9 (Diagonality of the Nonstationary Gabor Frame Operator). For every k 2 Z, let
gk have polynomial decay around a ı-separated set and let there exist positive constants A;B
such that

0 < A � G
g;g
0 D

X
k2Z

1

bk
jgk.x/j

2
� B <1; 8x 2 R: (3.3.30)

Define dual windows by
k D

�
G
g;g
0

��1
gk; (3.3.31)

for all k 2 Z. With identity operator I , the nonstationary Gabor frame operator satisfies

I � Sg;2 �
P

l2Znf0g

Gg;g
l


1

ess infGg;g0
: (3.3.32)

Furthermore, if bk ! 0 for every k 2 Z,

lim
bk!0

I � Sg;2 D 0; (3.3.33)

where Sg; depends on bk , see (3.3.3).
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Proof. The proof for estimating the upper bound in (3.3.32) follows similar arguments as in
Equations (3.2.14) to (3.2.18). Equation (3.3.33) follows then directly from Lemma 3.3.8 and
the lower bound of Gg;g0 .

This result shows that, quite similar to the Gabor case in a finite dimensional setting, the non-
stationary Gabor frame operator can be made diagonal within machine precision for sufficiently
small frequency shift parameters bk . Similarly, by duality of (3.3.11) and (3.3.1), all of the above
assumptions are also valid for functions Ohl with sufficient decay properties in frequency domain.
This can be summarized in the following Corollary, showing that the nonstationary Gabor frame
operator tends to the identity, whenever time sampling parameters al tend pointwise to zero.

Corollary 3.3.10. For every l 2 Z, let hl be such that Ohl has polynomial decay around a
separated set and let there exist positive constants A;B such that

0 < A � G
h;h
0 D

X
l2Z

1

al

ˇ̌̌
Ohl

ˇ̌̌2
� B <1: (3.3.34)

With identity operator I , the nonstationary Gabor frame operator satisfies

I � FSh;

2
�

P
k2Znf0g

Gh;hk 
1

ess infGh;h0
; (3.3.35)

where dual windows are defined by

Ol D
�
G
h;h
0

��1
Ohl (3.3.36)

for all l 2 Z. Furthermore, if al ! 0 for every l 2 Z,

lim
al!0

I � FSh;

2
D 0; (3.3.37)

where FSh; depends on al .

In order to put the results from Theorem 3.3.9 and Corollary 3.3.10 into more practical terms,
consider the following definition, similar to the "-concentration proposed by Donoho and Stark
(1989):

Definition 3.3.11 (Essential Support). Let f 2 L2.R/ be a function with kf k2 D 1. For any
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", with 0 < " < 1, there exists an interval ŒN1; N2� � R with N1 < N2, such that

f � f�ŒN1;N2�22 D Z
R

ˇ̌
f .x/ � f .x/�ŒN1;N2�

ˇ̌2
dx < "; (3.3.38)

where � is the characteristic function of the specified set. The essential support of f is then
denoted by the interval U " D ŒN1; N2�.

With this definition, so called almost painless nonstationary Gabor frames can be constructed,
similar to (Dörfler and Matusiak, 2015, Def. 4). For some ", let

zk D gk�U "
k
; (3.3.39)

be the painless approximation of windows gk without compact support. Whenever frequency-
shift parameters bk are chosen such that G.zk; bk/ satisfies Theorem 3.3.2, G.gk; bk/ is called an
almost painless nonstationary Gabor frame. Obviously, the smaller " the smaller the difference
between painless and almost painless nonstationary Gabor frame. This implies the following
discrete construction scheme for nonstationary Gabor framesG.gk; bk/with windowsgk without
compact support:

1. Choose arbitrary gk with sufficient decay properties (e.g., Gaussians with different vari-
ances) localized at different time locations such that Equations (3.3.13) and (3.3.14) are
satisfied.

2. Choose bk by considering the corresponding painless approximation frame zk D gk�U "
k

for a specific ", such that G.zk; bk/ is a frame according to Theorem 3.3.2.

The resulting nonstationary Gabor frame G.gk; bk/ with non-compactly supported gk can then
be related to Theorem 3.3.9 as follows. With decreasing " the frequency shift parameter bk will
also decrease according to Theorem 3.3.2 and therefore, the limiting case of " ! 0 implies
bk ! 0 for all k 2 Z. Theorem 3.3.9 then states that the nonstationary Gabor frame operator is
the identity, if dual frames are chosen according to (3.3.31). In a finite dimensional setting the
resulting frame operator is diagonal within machine precision for sufficiently small choices of
". Hence, no computational expensive inverting of the frame operator is required, resulting in
fast algorithms to compute dual frames.
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3.3.3 Partitions of Unity

Whenever the smallest and largest eigenvalue of the frame operator are equal, the frame is said to
be tight. In the previous cases of painless nonstationary Gabor frames as well as nonstationary
Gabor frames based on non-compactly supported functions gk which lead to a diagonal frame
operator this implies X

k2Z

jgkj
2
D const: (3.3.40)

Clearly, whenever two adjacent windows gk and gkC1 are not related anymore, e.g., by a simple
shift, it is quite difficult to derive conditions such that (3.3.40) holds. For the construction of
approximately tight wavelet frames, however, it is sufficient to consider the following problemX

j2Z

f .x � j�T / D const; 8x 2 R: (3.3.41)

If there exists an f and a corresponding �T such that (3.3.41) holds, then f is said to form a
partition of unity. The simplification is justified by assuming that all windows gk result from a
single positive function which is appropriately shifted. The following Proposition characterizes
the conditions for�T such that f forms a partition of unity. The result is similar to the general
version of the Poisson summation formula (Benedetto and Zimmermann, 1997; Castaneda et al.,
2011).

Proposition 3.3.12 (Characterization of Partitions of Unity). Let f 2 L2.R/ be a real-valued
and positive function. Further, let �T be a positive constant. Then

X
j2Z

f .x � j�T / D
1

�T

0@ Of .0/C X
j2NC

Of

�
j

�T

�
cos

�
2�x

j

�T

�1A ; (3.3.42)

is constant for all x 2 R whenever the Fourier transform Of
�
j
�T

�
D 0 for all j 2 NC.

Proof. Rewrite the left hand side of (3.3.42) as the convolution of f with the Dirac comb
d.x/ D

P
j2Z ı.x � j�T /, X

j2Z

f .x � j�T / D f .x/ � d.x/: (3.3.43)
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The Fourier transform of the Dirac comb is again a Dirac comb (Mallat, 2008, Thm. 2.4)

Fd D Od.�/ D
1

�T

X
j2Z

ı

�
� �

j

�T

�
: (3.3.44)

This givesX
j2Z

f .x � j�T / D F�1. Of � Od/

D
1

�T

�
: : :C

Z
R
Of .�/ı

�
� C

1

�T

�
e2�i�xd� C

Z
R
Of .�/ı .�/ e2�i�xd�

C

Z
R
Of .�/ı

�
� �

1

�T

�
e2�i�xd� C : : :

�
D

1

�T

�
: : :C Of

�
�
1

�T

�
e�2�i

1�x
�T C Of .0/C Of

�
1

�T

�
e2�i

1�x
�T C : : :

�

D
1

�T

0@X
j2Z

Of

�
j

�T

�
e2�i

j �x
�T

1A : (3.3.45)

Equation (3.3.42) then follows from simplifying the last expression using Euler’s formula and
the fact that Of is an even function.

Proposition 3.3.12 can be illustrated by considering the following finite dimensional examples,
which are also useful when constructing tight wavelet frames later on: the Hann and the Gaussian
window as well as the Equalizer.

Example (Hann Window). Let g be the Hann window defined by

g.x/ D

(
1
2
C

1
2

cos.�x/ �1 � x � 1
0 else

; (3.3.46)

with the Fourier transform of the squared Hann window f .x/ D .g.x//2

Of .�/ D
3 sin.2��/

8�
�
4�5 � 5�3 C �

� : (3.3.47)

Since g.x/, and thus .g.x//2, is compactly supported, its Fourier transform is continuous.
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Proposition 3.3.12 states that f forms a partition of unity whenever �T is chosen such that
sin.2�j=�T / D 0 for all j 2 NC. This leads to

�T D
2

k
(3.3.48)

for k 2 Znf0g. For a discrete Hann window of length L

gŒn� D
1

2
�
1

2
cos

�
2�
n

L

�
; 0 � n � L � 1; (3.3.49)

this result implies that gŒn� forms a partition of unity if �T is an integer divisor of L.

Example (Gaussian Window). For a positive parameter ˛, let g be the Gaussian such that

Og.�/ D F.g.x// D F
�r

�

˛
e�

.�x/2

˛

�
D e�˛�

2

; (3.3.50)

where the Fourier transform of the Gaussian distribution is explicitly given by Abramowitz and
Stegun (2012, p. 302, Eq. 7.4.6). Unfortunately, Og.�/ ¤ 0 for all � 2 R and hence, a Gaussian
cannot form an exact partition of unity according to Proposition 3.3.12. With sufficiently small
�T , however, Og.1=�T / can be made arbitrarily small, which leads to a partition of unity in a
finite dimensional setting. The summation properties for the squared Gaussian .g.�//2 are also
easily derived by substituting ˛ appropriately, simply resulting in smaller�T values in order to
form a partition of unity.

Example (Uncertainty Equalizer). From its definition in (3.1.5) and the corresponding derivation,
the uncertainty Equalizer is square integrable. It can be used to construct partitions of unity
whenever Proposition 3.3.12 is satisfied. In frequency domain the Equalizer is positive and
real-valued, however, a closed form of its Fourier transform does not exist. However, the Fourier
transform of 	Eq can be characterized as follows. It can be verified that 	Eq 2 L

1.R/, e.g. for
� D 25

1Z
0

1

e�
e��.1�ln �/d� D 0:5005; (3.3.51)

using numerical methods (Shampine, 2008). As a consequence of the Riemann-Lebesgue
Lemma it follows that the Fourier transform satisfies O	Eq.�/ ! 0 as j�j ! 1 (Rudin, 1987,
p. 103). This shows that, similar to the Gaussian case, the Equalizer forms a partition of unity for
sufficiently small �T in a finite dimensional setting. Similarly, squaring the Equalizer .	Eq/

2
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(a) squared Hann window (b) squared Gaussian and squared Equalizer

Figure 3.3: Summation property with respect to the shift parameter �T for the three example
functions.

just results in doubling the parameter � and the same arguments as above apply.

Figure 3.3 illustrates the deviation R from the constant Og.0/
�T

defined by

R D

 Og.0/�T
�

X
j2Z

g.� � j�T /


2

D

 1

�T

X
j2NC

Og

�
j

�T

�
cos

�
2�

j

�T
�

�
2

; (3.3.52)

for all three examples in finite dimensions. The squared Hann window of length L D 1680

forms a partition of unity whenever�T is an integer divisor of L as can be verified in Fig. 3.3a.
The first 24 integer divisors of 1680 are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28,
30, 35 40, 42, 48, 56 and 60. The squared Gaussian window in Figure 3.3b is based on (3.3.50)
with ˛ D 1 and the squared Equalizer as defined in (3.1.5) with � D 25. It can further be
deduced, that the Gaussian decays slightly faster to zero than the Equalizer, since the error R is
less for the same�T value. The resulting plot shows, that the Gaussian as well as the Equalizer
forms a partition of unity within machine precision, whenever �T is sufficiently small.

3.3.4 Algorithms for Analysis and Synthesis

For subsequent usages, it is advantageous to consider nonstationary Gabor frames with adaptivity
in frequency domain. The following algorithms are therefore based on computational aspects
of (3.3.11) but can be easily transferred to (3.3.1). Starting from (3.3.11), analysis coefficients
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Figure 3.4: Computation time for the subsampled DFT (sub. DFT) and the full DFT with
subsequent downsampling (DFT+DS) for b D 2 and b D 1250.

ck;l can be efficiently computed by considering

ck;l D
˝
f; Talkhl

˛
(3.3.53)

D

D
Of ;M�alk

Ohl

E
(3.3.54)

D F�1
�
Of � Ohl

�
.alk/; (3.3.55)

where the last equation is derived by writing the inner product and modulation in (3.3.54) as
an inverse Fourier transform. Based on (3.3.55), the algorithm for computing time-frequency
coefficients in a finite dimensional setting is straight forward. However, it might be favorable to
further improve the computation of the finite dimensional inverse Fourier transform. Depending
on al , only a subset of the inverse Fourier transform output is needed. For large al only a few
coefficients remain after downsampling, leading to the question if such a subsampled Fourier
transform can be more efficiently computed. In order to answer this, the following operator is
considered:

Definition 3.3.13 (Discrete Projection Operator). For N < L being an integer divisor of L, let
the discrete projection operator QN W CL ! CN be defined by

.QNy/Œn� D
L=N�1X
jD0

yŒnC jN �; (3.3.56)
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where y 2 CL, n D 0; 1; 2; : : : ; N � 1.

Based on this projection operator, the succeeding theorem states an equivalent computation
for a subsampled discrete Fourier transform, which is quite similar to (Søndergaard, 2007,
Eq. (4.8)).

Proposition 3.3.14 (Subsampled DFT). Let y 2 CL and let b;N 2 N such thatNb D L. Then
the following holds

.FLy/Œbk� D
1
p
b
FN .QNy/ Œk�; (3.3.57)

where k D 0; 1; 2; : : : ; N � 1.

Proof. The above statement can be proved by a simple rearrangement of the summation order
in the definition of the DFT in (2.0.18):

.FLy/Œbk� D
1
p
L

L�1X
lD0

yŒl�!kblL (3.3.58)

D
1
p
L

N�1X
ˇD0

b�1X
˛D0

yŒˇ C ˛N �!
.ˇC˛N/kb
L (3.3.59)

D
1
p
L

N�1X
ˇD0

b�1X
˛D0

yŒˇ C ˛N �!
ˇk
N (3.3.60)

D

p
N
p
L
FN

0@b�1X
˛D0

yŒˇ C ˛N �

1A Œk� (3.3.61)

D
1
p
b
FN .Qny/ Œk�: (3.3.62)

An equivalent calculation leads to a corresponding result for the inverse discrete Fourier
transform. Figure 3.4 illustrates that Proposition 3.3.14 is useful even for small downsampling
factors. It compares computation times using the subsampled DFT (r.h.s. of (3.3.57)) and a
DFT with subsequent downsampling (l.h.s. of (3.3.57)) for signals with increasing length L.
The figure illustrates that even for the smallest downsampling factor b D 2, the subsampled
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Algorithm 1: Nonstationary Gabor Analysis

Input : f - function of length L
L - signal length
Ohl - set of K window functions in frequency domain
al - set of K modulation parameters

Output: cl - analysis coefficients

1 F  � FLf
2 for l  1 to K do
3 T  � Q L

al

�
F � Ohl

�
4 cl  � F�1L

al

T

5 end

DFT yields a gain of factor 2. With larger downsampling factors this increases to a speedup of
factor 10. The resulting algorithm for computing nonstationary Gabor coefficients for a signal
f 2 CL of length L can now be summarized in Algorithm 1.

Synthesis follows by reversing the steps of analysis in (3.3.55), provided the dual windows l
are given. This is best formulated in the continuous case as

Sf D F�1F
 X
k2Z

X
l2Z

ck;lTalkl

!
(3.3.63)

D F�1
 X
k2Z

X
l2Z

ck;lM�alk Ol

!
(3.3.64)

D F�1
 X
l2Z

F .cl/ Ol

!
(3.3.65)

Before the synthesis algorithm in a finite dimensional setting can be stated, however, the following
definition is needed.

Definition 3.3.15 (Discrete Periodization Operator). Let PN W CN ! CL, with N < L and
L=N 2 Z, be defined as

.PNy/Œj � D yŒj mod N�; (3.3.66)

where y 2 CN and j D 0; 1; 2; : : : ; L � 1.
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3.3 Nonstationary Gabor Frames

Algorithm 2: Nonstationary Gabor Synthesis

Input : cl - wavelet coefficients
L - length of transform
l - set of K dual window functions in frequency domain
al - set of K modulations

Output: f - reconstructed signal

1 f  � 0

2 for l  1 to K do

3 T  � P L
al

�
F L
al

cl

�
4 f  � f C l � T

5 end
6 f  � F�1L f

With this definition, Algorithm 2 summarizes the computation of the inverse nonstationary
Gabor transform based on (3.3.65). The purpose of using the periodization operator PN in line
3 of Algorithm 2 needs some justification. When reversing the analysis steps of Algorithm 1
an inverse of the projection operator QN is needed to recover y from QNy. In general this is
not possible, since QN is not invertible. If, however, the essential support of y is smaller than
N , PNQNy leads to a periodized version of QNy with period N . Since y is assumed to be
concentrated in an interval smaller than N only one of these periods coincides with y. The
subsequent pointwise multiplication of PNQNy with the dual window l weighs the periodized
signal such that the desired period remains, provided that the window Ohl and its dual l have the
same localization properties.

It is easily verified that both assumptions are satisfied for painless constructions. The para-
meter al is always chosen such that the support of corresponding windows Ohl is smaller than
N D L

al
. Furthermore, the corresponding dual windows l have the same compact support as

Ohl since the frame operator is diagonal. As a result, Algorithm 1 and 2 can be simplified in the
painless case by utilizing the exact positions where windows Ohl and l are localized.

In the case of non-compactly supported window functions Ohl both assumptions are still valid,
albeit only approximately. By choosing an appropriate ", the corresponding al -values are small
enough such that Ohl is sufficiently small outside its essential support of size N D L

al
. Further,
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Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

with sufficient overlap, lower and upper bound in (3.3.13) are reasonably close to each other such
that dual windows have approximately the same localization properties as the original windows.

Analysis and synthesis procedures are already implemented in the LTFAT toolbox for painless
nonstationary Gabor frames (Průša et al., 2014). The algorithms above extend these procedures
to non-compactly supported window functions.

3.4 Wavelet Frames Based on Nonstationary Gabor Frames

3.4.1 Preliminaries

In the following the connection of wavelet and nonstationary Gabor frames is shown. The
discretization of the dilation operator in (2.0.7) will be given for l 2 Z and d > 1 by

Dd l .x/ D
p
d l  

�
d lx

�
: (3.4.1)

The resulting discretized wavelet transform of a function f with wavelet  reads

W
a;d
 f .k; l/ D hf;Dd lTak i D hf; Tad lkDd l i D

D
Of ;M�ad lkDd�l	

E
; (3.4.2)

where 	 D O denotes the Fourier transform of  in the following.
Setting hl D Dd l and al D ad l the collectionG .hl ; al/ is a nonstationary Gabor system. It

is a nonstationary Gabor frame, whenever the conditions of Theorem 3.3.2 are satisfied for band
limited wavelets 	 . Similarly, whenever non band limited wavelets 	 have polynomial decay
around ı-separated sets in frequency domain, the system G .hl ; al/ is also a frame, provided
that corresponding time sampling is sufficiently dense. In fact, all of the previously made
assumptions on nonstationary Gabor frames as well as Theorem 3.3.9 also apply to the wavelet
case. This implies that the wavelet frame operator with wavelets hl and corresponding dual
wavelets ı

l
computed according to (3.3.10) converges to the identity whenever shift parameters

al tend to zero for all l 2 Z. Additionally, the wavelet  has to satisfy proper decay conditions
and the dilation parameter d is chosen such that (3.3.9) holds.

The dual wavelets defined by (3.3.10) are scaled versions of itself, whenever corresponding
frames are tight. Therefore, dilates of a function 	 have to satisfyX

l2Z

jDd�l	 j
2
D const: (3.4.3)
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3.4 Wavelet Frames Based on Nonstationary Gabor Frames

Daubechies et al. (1986, Sec. C) introduced logarithmic warping in order to obtain tight wavelet
frames generated from a system of translates instead of dilates. Such logarithmic warping is also
used in a group theoretical approach about the uncertainty principle of the wavelet transform
(Levie et al., 2014). Therefore, two important properties resulting from logarithmic warping
can be summarized in the following Proposition.

Proposition 3.4.1. Let W W RC ! R be the warping function W D logd for some d > 0.
Denote by 	.�/ the function composition 	.�/ D .� ıW /.�/ for any function � defined in the
warped frequency domain. Then, the following statements hold:

i) If � 2 L2.R/, then 	 is an admissible wavelet.

ii) Dilates of the function 	 turn into translates of �.

Proof. The first statement follows from

C	 D

1Z
0

j	.�/j2

j�j
d� D

1Z
0

j�.logd �/j
2

�
d� D

Z
R

ln d j�.�/j2 d� D ln d k�k22 ; (3.4.4)

the second from

Dd�l	.�/ D
1
p

d l
	
�
d�l�

�
D

1
p

d l
� .logd � � l/ : (3.4.5)

Equation (3.4.5) shows how dilates can form a partition of unity. Assuming

X
l2Z

ˇ̌̌
Ohl

ˇ̌̌2
D

X
l2Z

jDd�l	.�/j
2
D

X
l2Z

ˇ̌̌̌
1
p

d l
� .logd � � l/

ˇ̌̌̌2
D const; (3.4.6)

partitions of unity can be computed according the results from the previous section. Nevertheless,
there are a few aspects in the finite dimensional setting which require careful considerations.
For example, dilates with small l will result in an infinite number of window functions in the
neighborhood of the zero frequency. Furthermore, since the whole frequency axis needs to
be covered, some functions have to be placed on the negative frequency axis as well. Before
these aspects are addressed in the next section, general parameters for the construction of
wavelet frames are introduced. These parameters are chosen to be consistent with the painless
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Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

nonstationary Gabor construction in the LTFAT toolbox (Průša et al., 2014). The discrete and
finite set of dilations is mainly characterized by the following parameters:

� f min: the location in Hz of the first window on the frequency axis,

� bw: the bandwidth in Hz of the first window on the frequency axis,

� bins: the number of windows per frequency bin, i.e., d
l

bins with l 2 Z.

The construction schemes presented in the following section extends the functionality of the met-
hods already implemented in the LTFAT toolbox, including non-compactly supported functions
on one hand, and a more flexible construction of tight wavelet frames for compactly supported
functions on the other hand.

3.4.2 Tight Wavelet Frames with Compactly Supported Functions

As a representative for all compactly supported functions, the construction of wavelet frames
G.hl ; al/ is described with Hann windows. It is possible, however, to generalize the results of
this section to any compactly supported window in the finite dimensional case.

In the following let � be the Hann window defined in (3.3.46). The warping function is given
by W D � logd , where � > 0 is a fixed constant. The resulting warped Hann window 	 is then
defined as

	d;l;� .�/ D Dd�l	.�/ D

(
1p
d l

�
1
2
C

1
2

cos .��.logd � � l//
�
d l�

1
� � � � d lC

1
�

0 else
;

(3.4.7)
for �; d 2 RC and l 2 Œl1; l2 D l1C�l; l3 D l1C 2�l; : : : ; ln D l1C .n� 1/�l�. Hence, the
parameter � serves for adjusting the bandwidth bw of the first warped Hann window.

If the first wavelet is supposed to be specified at f min it follows by a simple computation that

l1 D logd f min: (3.4.8)

For a given bandwidth bw the parameter � is computed by

� D
ln.d/

ln
�
1
2

�
bw � d�l1 C

q�
bw � d�l1

�2
C 4

�� ; (3.4.9)
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3.4 Wavelet Frames Based on Nonstationary Gabor Frames

Algorithm 3: Tight Wavelet Frames with Hann Windows

Input : L - signal length
sf - sampling frequency
d - scaling base
f min - location of first window
bw - bandwidth of first window
bins - number of frequency bins

Output: Ohl - set of window functions
al - set of corresponding time sampling steps

1 compute initial parameters l1, � and �l according to Equations (3.4.8) - (3.4.10)
2 l  l1

3 while d lC 1� < sf
2

do
4 Ohl  	d;l;� .�/

5 Oh�l  	d;l;� .��/

6 a�l;l  L
�
d lC

1
� � d l�

1
�

��1
7 l  l C�l

8 end
9 add two cover functions at zero and Nyquist frequency

which results from setting bw D d l1C
1
� � d l1�

1
� and solving for � . If the difference between

two consecutive l’s satisfies
�l D

2

� � bins
; (3.4.10)

with bins > 2 being an integer, the translated versions of the warped Hann windows will sum up
to a constant, cf. (3.3.48). This procedure can be repeated, progressively covering the positive
frequency axis until the support of a scaled window reaches the Nyquist frequency. The time
sampling parameter al for each corresponding window Ohl is chosen according to Corollary
3.3.4. Since it is assumed that all input signals f are real valued, it is sufficient to cover
negative frequencies by mirroring corresponding wavelets, i.e., 	d;l;� .��/. Furthermore, two
additional windows have to be added covering the zero and Nyquist frequency. Usually, wavelet
coefficients resulting from these two windows do not contain any useful information and can
therefore be neglected (Balazs et al., 2011). For frames, however, the windows are needed
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Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

(a) bins D 4 (b) bins D 7

Figure 3.5: Two examples of window functions with warped Hann windows, each constituting
a tight wavelet frame with corresponding al , differing only in the number of bins.

to preserve the structure of the partition of unity. The construction scheme is summarized in
Algorithm 3.

Two examples of tight wavelet frames based on the warped Hann window can be seen in
Figure 3.5. Signal length is L D 1800 at a sampling frequency of sf D 1800Hz. Furthermore,
d D 2, f min D 150Hz and bw D 150Hz. Figure 3.5a and 3.5b show windows Ohl for bins D 4
and bins D 7, resulting in tight wavelet frames G .hl ; al/ with bounds A D 1:5 and A D 2:625
and redundancies 2.76 and 4.18, respectively. For convenient plotting, each window is normed
such that

 Ohl
2
D 1. The frequency axis in Fig. 3.5 is adapted to match the frequency domain

representation of MATLAB ’s fft-routine, where the second half with frequencies larger than the
Nyquist frequency corresponds to negative frequencies.

3.4.3 Approximately Tight Wavelet Frames with Non-Compactly
Supported Functions

General Construction

In this section a general framework to construct wavelet frames from non-compactly supported
mother wavelets is presented. In order to be consistent with the construction of frames with
compactly supported functions, the same characteristic parameters f min, bw and bins are used.
The position of the first wavelet f min and the number of bins can be adapted without further
consideration. The bandwidth bw of the first wavelet, however, needs to be defined for functions
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3.4 Wavelet Frames Based on Nonstationary Gabor Frames

without compact support. A common approach would be to define the bandwidth as the width
where the function drops below a certain point, e.g. the 3 dB bandwidth. Similar to this approach,
the bandwidth bw can be defined by utilizing the essential support in Definition 3.3.11. Hence,

bw D N "bw
2 �N

"bw
1 ; (3.4.11)

where the bandwidth depends on the chosen "bw.
As a starting point of the construction scheme, let� be a continuous square integrable function,

which attains its maximum at zero. Similar to the painless construction in the previous section,
the warping function is given by W D � logd for some parameter � > 0. The scaled versions
of � can be written as

	d;l;� D Dd�l	.�/ D �.� logd � � �l/; (3.4.12)

where d; � > 0 and l 2 Œl1; l2 D l1 C�l; l3 D l1 C 2�l; : : : ; ln D l1 C .n � 1/�l�.
Initial parameters l1, � and �l can then be computed in the following manner. The position

of the first wavelet immediately yields

l1 D logd f min; (3.4.13)

since the maximum value of � is located at zero. The parameter � can be computed by
considering the bandwidth of the first wavelet

� logd � � �l1 2 U "bw (3.4.14)

� 2

"
d l1C

N
"bw
1
� ; d l1C

N
"bw
2
�

#
; (3.4.15)

for some "bw. Hence

bw D d l1C
N
"bw
2
� � d l1C

N
"bw
1
� : (3.4.16)

The nonlinear expression in (3.4.16) is guaranteed to have a solution for � 2 .0;1/, which can
be seen from the following Lemma.

Lemma 3.4.2. Let bw; l1 > 0 and d > 1, be positive real numbers. Further let, N1; N2 2 RC

such that N2 > N1. Then, the nonlinear expression �.�/

�.�/ D d
N2
� � d

N1
� � d�l1bw; (3.4.17)

45



Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

has exactly one zero in the interval .0;1/.

Proof. Obviously, lim�!1�.�/ D �d�l1bw < 0. On the other hand, dN2 > dN1 sinceN2 >
N1 and therefore �.�/ is strictly monotonic decreasing with lim�!0�.�/ D C1 > 0.

The parameter � can then be estimated using numerical methods for finding real roots, e.g.,
as proposed by Forsythe et al. (1977, p. 161). After computing the parameters for the initial
wavelet, dilates can be constructed with

�l D
1

� � bins
: (3.4.18)

By subsequently increasing l with�l the functions	d;l;� cover the positive frequency axis up
to the Nyquist frequency. Similar to the painless construction, negative frequencies are covered
by using mirrored versions of the corresponding windows. Again, two additional windows are
needed to cover zero and Nyquist frequency explicitly. The time sampling parameter al is
computed as described in Section 3.3.2: for each scaled wavelet Ohl the time sampling step al is
chosen such that

al � L
��
N
"a
2

�
l
�
�
N
"a
1

�
l

��1
; (3.4.19)

where
�
N
"a
1=2

�
l

denotes the bounds of the essential support of corresponding wavelets Ohl
based on parameter "a. Note the difference between "a and "bw: the former is a measure
responsible for the redundancy of the frame, the latter only affecting the bandwidth of the first
wavelet. According to the results in Section 3.3.2, the corresponding wavelet frame operator
is numerically diagonal for suitable small "a and the canonical dual frame of the painless
approximation. The general construction scheme is summarized in Algorithm 4.

Examples of Tight Wavelet Frames

In the following finite dimensional examples let L D 1800 and the sampling frequency sf D
1800Hz be fixed. Further, the first wavelet should be located at f min D 150Hz with a bandwidth
bw D 150Hz for "bw D 1e�6. Different generating functions � might lead to different total
numbers of windows for the same bins parameter, depending on the decay behavior. Thus, the
number of bins is adjusted for each function such that the total number of wavelets K D 38 is
constant. In the case of tight frame constructions the function

Z D

KX
lD1

ˇ̌̌
Ohl

ˇ̌̌2
; (3.4.20)
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3.4 Wavelet Frames Based on Nonstationary Gabor Frames

Algorithm 4: Wavelet Frames with Non-Compactly Supported Functions

Input : � - generating wavelet
L - signal length
sf - sampling frequency
d - scaling base
f min - location of first window
bw - bandwidth of first window
"bw - bandwidth parameter for essential support
bins - number of frequency bins
"a - parameter for choosing time sampling steps

Output: Ohl - set of window functions
al - set of corresponding time sampling steps

1 compute initial parameters l1, � (based on "bw) and �l according to Equations (3.4.8),
(3.4.16) and (3.4.18)

2 l  l1

3 while d lC
N2
� < sf

2
do

4 Ohl  	d;l;�

5 Oh�l  mirrored version of 	d;l;�
6 a�l;l  L

�
N
"a
2 �N

"a
1

��1
7 l  � l C�l

8 end
9 add the two cover functions at zero and Nyquist frequency

should be, at least within numerical precision, a constant. As shown in Section 3.3.3, this
depends on the chosen number of bins.

First, consider � to be the Gaussian. The resulting set of warped Gaussian wavelets Ohl is
illustrated in Figure 3.6a. Figure 3.6b illustrates the set of wavelets, where � is chosen such that
	 is the Equalizer with � D 25, i.e., �.�/ D 	Eq.d

�/ and � D 0 for negative frequencies. This
substitution is justified since the domain of the Equalizer is restricted to RC. The singularity
at � D 0 introduced by setting function values to zero for negative frequencies is in a finite
dimensional setting close to machine precision. Corresponding values Z for the partition of
unity are given by Z D 3:18 with absolute numerical error max.Z/ � min.Z/ D 3:6e�15 for
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(a) Warped Gaussian (b) Equalizer

Figure 3.6: Examples of non-compactly supported wavelet functions forming a partition of
unity.

the warped Gaussian andZ D 3:25with max.Z/�min.Z/ D 3:1e�15 for the Equalizer. Each
set of wavelet functions would constitute a tight frame, at least within numerical precision, if
parameters "a are chosen sufficiently small. A more detailed evaluation follows in the subsequent
section.

3.4.4 Evaluation of Wavelet Frames

After presenting the construction schemes for wavelet frames in the preceding section, in the
following these frames are evaluated more closely. The main result in Section 3.3.2 states that
the wavelet frame operator is the identity for sufficiently dense time-sampling parameters al ,
given that consecutive window functions have adequate overlap. In the case of non-compactly
supported and strictly positive generating functions�, e.g., Gaussians, the last condition is always
satisfied in a finite dimensional setting. As a consequence, the diagonality of the frame operator
remains unaffected by the total number K of chosen wavelets. This result is also reflected
by Corollary 3.3.10, indicating that primarily the choice of sufficiently small time-sampling
parameters al ensures that the frame operator is approximating the identity operator.

Now, the question might be asked how diagonality of the wavelet frame operator affects
redundancy, and hence density of time sampling parameters, of the frame. Obviously, if the
required redundancy is too large such frame constructions might not be a great advantage
from a computational perspective. There is no trivial way to directly connect redundancy and
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(a) Gaussian (b) Equalizer

(c) Gaussian (d) Equalizer

Figure 3.7: Approximation error
I � S Oh; O2 in dependence of the frame redundancy and the

parameter "al for the Gaussian and the Equalizer.

diagonality of the frame operator though. This is best motivated by the following example.

For computational convenience, fix L D 480, sf D 480Hz, f min D 40Hz, d D 2 and a
bandwidth bw D 20Hz for "bw D 1e�6. For each � adjust the number of bins such that the total
number of wavelets K is identical. Corresponding dual windows O are computed according to
(3.3.36). With a fixedK the approximation error

I � S Oh; O2 can then be estimated depending
on the parameter "al , which is directly related to the redundancy of the frame. The smaller
"al is chosen, the larger the essential support of corresponding Ohl . Consequently, the density
of the time sampling increases according to (3.4.19). Figure 3.7 illustrates the approximation
error for the Gaussian and the Equalizer for different K in dependance of the redundancy and
the parameter "al . Figures 3.7a and 3.7b show the approximation error as the redundancy

49



Chapter 3 Construction Schemes for Approximately Tight Wavelet Frames

increases for different total numbers of wavelets. It can be seen, that once a certain redundancy
is reached, the frame operator is close to the identity operator (within machine precision) and
the approximation error stagnates with further increasing redundancy. Furthermore, since the
Equalizer does not decay as fast as the Gaussian, the redundancy is larger before the error reaches
its saturation value. In terms of the parameter "al , Figures 3.7c and 3.7d illustrate nicely that
the total number of wavelets K is irrelevant concerning the diagonality of the wavelet frame
operator. The value of "al for which the approximation error reaches its saturation depends, as
expected, on the decay behavior of the generating wavelet. In the Gaussian case it is around
1e�14 and for the Equalizer around 1e�19. In both cases numerical experiments have shown,
that this value is independent of the chosen f min and bw.

Comparing the above results with the ones from Feichtinger et al. (2014) shows the flexibility
of the proposed approach. Feichtinger et al. approximated canonical dual frame elements by
inverting the wavelet frame operator using its thresholded pseudoinverse. They show that this
is, however, only possible for certain dilation parameters d , else the frame operator would not
commute with time shifts anymore, which is also discussed by Chui and Shi (2000). Furthermore,
in their numerical experiments the constructed frame has redundancy between 1.5 and 2, and
dual windows can be approximated within an error of 0.007 compared to the original canonical
dual window (Feichtinger et al., 2014, Fig. 2). This leads to reconstruction errors of the same
magnitude when doing synthesis based on these approximated dual frames.

3.5 Conclusion

Based on the results of Dörfler and Matusiak (2014, 2015) explicit construction schemes for ap-
proximately tight wavelet frames with non-compactly supported functions have been introduced
in this section. Sufficient conditions are derived, for which a wavelet frame G.hl ; al/ leads to
a diagonal frame operator. This allows the numerical construction of wavelet transforms with
perfect reconstruction. Wavelets can be based on non-compactly supported functions in fre-
quency domain, extending the constructions presented by Bayram and Selesnick (2009, Eq. (42)
on p. 2964) and Balazs et al. (2011). While at first glance obviously not very convenient, the
usage of non-compactly supported functions in frequency domain allows wavelet transforms
with compactly supported wavelets in time domain. Thus, real-time implementations of the
continuous wavelet transform are possible, similar to the proposed approach by Holighaus et al.
(2013). Furthermore, the algorithm presented by Balazs et al. (2011) is extended by a more
flexible construction scheme for tight wavelet frames with compactly supported wavelets.
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3.5 Conclusion

The proposed construction is based on computing dual frame elements without inverting
the actual frame operator. Since canonical dual wavelet frames may not be wavelet frames
itself, see for example (Bownik and Lemvig, 2007; Christensen, 2006; Daubechies and Han,
2002), the structure and localization properties of canonical dual atoms might be lost. Defining
dual windows as proposed in (3.3.10) for compactly supported functions, the structure can be
controlled fairly easily by assuming adequate overlap of Ohl . Additionally, with sufficient overlap
the dual windows in a finite dimensional setting satisfy Ol D c Ohl up to machine precision for
some constant c > 0. Hence, with certain redundancy of the frame it can be guaranteed that the
approximate dual frame is again a wavelet frame.

The increased redundancy, however, might cause higher computational complexities if, for
example, analysis and synthesis algorithms are invoked repeatedly. In this case it may be
beneficial to choose a single time sampling parameter al D a for all l . The frame operator then
commutes with time shifts and canonical dual frames can be computed using the inverse of the
frame operator. This way, the redundancy can be reduced by choosing a larger time sampling
parameter, while still retaining perfect reconstruction. Existing algorithms like (Janssen and
Søndergaard, 2007) can then be used to efficiently invert the frame operator. Obviously, such an
approach increases computation time of the dual frame elements, but might reduce complexity
of computationally demanding applications, where the dual frame is frequently needed.

51





Chapter 4

Audio Inpainting: Evaluation of
Time-Frequency Representations and
Structured Sparsity Approaches

This chapter is based on (Lieb, 2015) and is a slightly amended version of the publication (Lieb
and Stark, 2018); therefore, most passages have been quoted verbatim.

4.1 Introduction

The term inpainting originally refers to filling in blanks or gaps in images in an indistinguishable
way. It is a well known problem, resulting form restoring damaged paintings and artwork
(Bertalmío et al., 2000). Whenever spots of paint are missing, they have to be filled in a
meaningful way, depending on the neighborhood of the spot. Therefore, surrounding textures are
used to estimate the original color of the spot. Clearly, this leaves a lot of room for interpretation
and inpainting becomes highly subjective, as there might be more than one plausible solution
to how lost information can be restored. In modern ages inpainting images is still important as
digital images can be distorted by missing pixels, overlaid text or unwanted structures.

Besides images, missing information can also be a problem in audio signals. It can arise from
impulsive noise like clicks, from clipping where the signal is truncated at a certain threshold
or simply from lost bits in signal transmission (Godsill and Rayner, 1998). Adler et al. (2012)
denoted the problem of filling in missing audio data as audio inpainting. Similar to image
inpainting, many different approaches for inpainting audio signals have been proposed. There
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are algorithms based on interpolation and autoregressive models (Etter, 1996; Janssen et al.,
1986; Lagrange et al., 2005), extrapolation (Maher, 1993), imputation (Gemmeke et al., 2010;
Smaragdis et al., 2009), concealment (Ofir et al., 2007) or sparsity based approaches (Adler
et al., 2012; Perraudin et al., 2014; Siedenburg et al., 2014). When the number of missing
samples is large, in particular approaches based on sparse signal representations recently have
been successfully employed (Mach, 2016; Mach and Ozdobinski, 2013).

Sparse representations of audio signals are even more important in the context of audio coding
(Plumbley et al., 2010). Usually, sound or audio signals exhibit only few important frequencies.
Assuming that missing information in time domain will not drastically affect this property, it is
plausible that sparsity in frequency domain is a useful guide to reconstruct the original. In fact,
sparsity in time-frequency representations has been successfully applied to denoise (Siedenburg
and Dörfler, 2012, 2013; Yu et al., 2008) as well as to inpaint audio data (Mach, 2016).

Mathematically, the audio inpainting problem is formulated as proposed by Adler et al. (2012).
Let s 2 RL be an observed audio signal with partially missing information and let these positions
in the signal be known. Consider a masking operator M W RL ! RM which selects the reliable
part of s. In other words, M is a rectangular matrix whose elements are obtained by taking the
rows of an L � L identity matrix which correspond to the non-missing samples of s. In the
following let y D Ms. Further, denote by ˚� W CN ! RL the synthesis operator of some
sparsity inducing linear operator ˚ W RL ! CN such that ˚�˚ D I . Examples are the Gabor
transform or more adaptive time-frequency representations like wavelets or ERBlets (Necciari
et al., 2013). Audio inpainting then describes the problem of finding missing segments of a
signal such that the time-frequency representation is sparse, while at the same time staying close
to the original samples. This is reflected by the following minimization problem

min
x2CN

kxk0 subject to y DM˚�x: (4.1.1)

However, the above equation is NP-hard. In signal processing a convex relaxation has been
introduced by Chen et al. (1998) as Basis Pursuit Denoising and independently by Tibshirani
(1996) which he denoted LASSO (Least Absolute Shrinkage and Selection Operator). In both
cases the `0-norm is replaced by a `1-norm. It is obvious that (4.1.1) depends crucially on the
choice of ˚ . Adler et al. (2012) have used a regular Gabor transform and in the following the
potential of more flexible representations, in particular wavelets and ERBlets, is explored.

Another point to consider is the structure of time-frequency coefficients of audio signals. It is
known that audio signals consist mostly of tonal and transient parts (Daudet et al., 2001). Thus,
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a single large coefficient among a neighborhood of small values might be discarded, whereas,
on the other hand, a single small value in a neighborhood of large values should be kept. It
has been shown that this concept, denoted social or structured sparsity, improves denoising and
declipping of audio signals in similar inverse problems (Dörfler et al., 2013; Kowalski et al.,
2013; Siedenburg et al., 2014).

Recent audio inpainting results published are based almost exclusively on declipping, where
the proposed algorithms exploit the fact that missing information is assumed to attain values
larger than or equal to the clipping threshold (Bilen et al., 2015a,b; Kitić et al., 2013, 2015;
Siedenburg et al., 2014). In more general inpainting problems, as considered in the following,
such assumptions do not apply and related algorithms have to be adapted. Steps in this direction
have been undertaken by Adler et al. (2012) and Kereliuk and Pasquier (2013) for gap lengths of
up to 10 ms. The combination of suitable sparse signal representations with structured sparsity
approaches, however, has not been investigated for such general inpainting problems.

With the tools mentioned above, inpainting procedures are introduced working well for
increased gap lengths of up to 30 ms. Numerical results indicate that the proposed methods favor
non-stationary signal transforms as compared to the Gabor transform and clearly outperform the
current state-of-the-art approach used by Adler et al. (2012) and Kereliuk and Pasquier (2013).
It can be further shown that exploiting time-frequency structures is beneficial for inpainting
missing audio data, in terms of signal-to-noise ratio and, even more importantly, in terms
of perceived audio quality. This provides a useful complement to the literature and extends
a previously described approach applying social sparsity operators to declipping (Siedenburg
et al., 2014) to much more general inpainting problems.

4.2 Mathematical Framework

4.2.1 Inverse Problems and Convex Optimization Algorithms

A general convex relaxation of (4.1.1) can be written in Lagrangian form by

min
x

1

2
kFx � yk22 C � .Ax/; (4.2.1)

for suitable linear operators F and A. In fact, (4.1.1) may be relaxed to (4.2.1) when choosing
F D M˚� and replacing the `0-norm with � .Ax/ D � kxk1 for some � > 0. In this case
the operator A is the identity operator. In general, the convex constraint � can be any sparsity
enforcing penalty.
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Algorithm 5: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

Input : x0 2 CN , z0 D x0,  > 0, �0 D 1

Output: xkC1

1 for k D 0; 1; 2; : : : do
2 zkC1  prox�

�
xk � F �

�
Fxk � y

��
3 �kC1  1

2

�
1C

q
1C 4

�
�k
�2�

4 xkC1  zkC1 C �k�1
�kC1

�
zkC1 � zk

�
5 end

Before algorithms solving (4.2.1) can be summarized, however, some terminology of convex
optimization needs to be introduced. Moreau (1965) introduced so called proximity operators,
extending projection operators onto closed convex sets by substituting indicator functions with
arbitrary non-smooth functions. Such proximity operators are defined following the notation by
Combettes and Pesquet (2011).

Definition 4.2.1 (Proximity Operator). Let � W CN ! R[ fC1g be a lower semi-continuous,
convex function. The proximity operator prox� W CN ! CN is uniquely defined by

prox� .x/ D arg min
z2CN

� .z/C
1

2
kx � zk22 ; (4.2.2)

for all x 2 CN .

For � .Ax/ D � kxk1 with � 2 RC as before, the resulting proximity operator is the LASSO
soft-thresholding operator SL defined by

SL
�.xj / D prox�k�k1.xj / D xj

 
1 �

�ˇ̌
xj
ˇ̌!C ; (4.2.3)

where x 2 CN is indexed by j D 0; 1; : : : ; N � 1 and the notation .�/C D max.�; 0/ denotes
the pointwise maximum with zero (Tibshirani, 1996). This can be shown by a straight forward
calculation using subgradients (Hastie et al., 2015, Ch. 2). Proximity operators can be combined
with bounded linear operators as follows. Let A be a bounded linear operator such that AA� D
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Algorithm 6: Douglas-Rachford (DR) Algorithm

Input : x0 2 CN ,  > 0 and �k 2 �0; 2Œ

Output: xkC1

1 for k D 0; 1; 2; : : : do
2 zk  proxh

�
xk
�

3 xkC1  xk C �k
�
prox�

�
2zk � xk

�
� zk

�
4 end

I . The corresponding proximity operator prox� ıA is given by Fadili and Starck (2009, Lemma
2) as

prox� ıA.x/ D x C
1


A�

�
prox� .Ax/ � Ax

�
; (4.2.4)

where ı denotes composition. Whenever A is a frame, then � ı A is always lower semi-
continuous and convex (Fadili and Starck, 2009).

The audio inpainting problem of the form (4.2.1) can then be solved using proximal splitting
algorithms summarized by Combettes and Pesquet (2011). One of such algorithms is the
accelerated forward-backward algorithm (Starck et al., 2015, Eq. (7.40)) also known as the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) by Beck and Teboulle (2009) outlined in
Algorithm 5. Convergence of the iterates in the accelerated forward-backward algorithm has
been recently proved by Chambolle and Dossal (2015). FISTA has been successfully used for
declipping (Siedenburg et al., 2014) and denoising (Siedenburg and Dörfler, 2013) audio signals
as well as decomposing them into transients and tonals (Bayram and Akyıldız, 2014).

Apart from FISTA, the other proximal splitting algorithm which recently has received con-
siderable attention (see, for example, (Combettes and Pesquet, 2011) and references therein)
is the Douglas-Rachford (DR) splitting algorithm first introduced by Combettes and Pesquet
(2007). Whereas FISTA requires one of the two summands to be Lipschitz-differentiable, this
assumption is relaxed in the Douglas-Rachford algorithm at the cost of an additional proximal
step. Although this might increase the computational complexity, Combettes and Pesquet (2011)
stated, however, that in general it is not clear a priori which algorithm may be more efficient.
Denoting the data fidelity term in (4.2.1) by

h.x/ D
1

2
kFx � yk22 ; (4.2.5)
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the DR algorithm is summarized in Algorithm 6 (Combettes and Pesquet, 2011, Alg. 4.2).

Depending on the choice of F and A in (4.2.1) the audio inpainting problem can be divided
into synthesis and analysis approach (Elad et al., 2007). First, with F DM˚� and A D I the
synthesis approach is given by

min
x2CN

1

2

M˚�x � y
2
2
C � .x/: (4.2.6)

The analysis approach, on the other hand, defines the inpainting problem by assuming F DM
and A D ˚ , i.e.,

min
x2CL

1

2
kMx � yk22 C � .˚x/: (4.2.7)

Both approaches differ from each other by formulating the reconstruction problem in the signal
or the transform domain. Consequently, solutions in the synthesis approach have to be in the
range of ˚ , whereas the solution can be any vector in RL in the analysis case (Starck et al.,
2010, Ch. 7.5.1). Synthesis and analysis approach are equivalent whenever the operator ˚ is
orthonormal (Elad et al., 2007, Thm. 1). There has been an increased interest in the analysis
approach recently, reporting results where it outperforms the synthesis approach (Almeida et al.,
2016; Cleju et al., 2012; Selesnick and Figueiredo, 2009). However, it is still not clear a priori
which of the two approaches gives better results (Elad et al., 2007; Starck et al., 2010).

The synthesis as well as the analysis inpainting formulation in (4.2.6) and (4.2.7) can be solved
using the splitting algorithms introduced above, provided the proximity operator of h is given
for the DR-algorithm. This operator can be derived as follows. Justified by assuming a noiseless
approximation of x at the non-missing coefficients of s, the proximity operator of h proxh can
be defined as the projection onto the set Fx D y. The projection of a vector x onto the affine
subspace C D fxjFx D yg is given by

PCx D x � F
�
�
FF �

��1
.F x � y/ ; (4.2.8)

assuming that FF � is invertible (Bauschke and Combettes, 2017, Ex. 28.14 (iii)). The resulting
proximity operator in the synthesis approach can be obtained by

proxh.x/ D PCx D x � ˚M�
�
M˚�x � y

�
(4.2.9)

D ˚˚�x � ˚M�M˚�x C ˚M�y (4.2.10)

D ˚
��
I �M�M

�
˚�x CM�Ms

�
; (4.2.11)
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with I denoting the L � L identity matrix in (4.2.11). This follows readily since FF � D
M˚�˚M� D I , where in this case I denotes the M �M identity matrix. Note that M�M
is a L � L matrix whose elements are the Kronecker delta at the non-missing parts of s and
zero otherwise. The proximity operator of h in the analysis case can be derived similarly and is
given by proxh.x/ D .I �M�M/ x CM�Ms. Corresponding proximity operators for � in
the analysis case can be constructed using (4.2.4).

4.2.2 Structured Sparsity

A main disadvantage of the soft-thresholding operator in (4.2.3) is, that there is a global threshold
for each coefficient value. As mentioned before, audio signals possess a certain structure in
the time-frequency domain which is not utilized in this approach. Harmonics, for example,
extend over a certain period of time, and hence consecutive coefficients in time direction should
have higher energy. Noise, on the other hand, resulting from missing samples in time domain
introduces a persistent spread of large energy coefficients over a large frequency range at a
given time instance. Thus, the idea pursued here is to enforce persistence in time direction
by local thresholding in order to improve reconstruction quality in inpainting problems. The
concept of structured or social sparsity, which has been elaborated extensively (Dörfler et al.,
2013; Kowalski, 2009; Kowalski and Torrésani, 2009a,b; Kowalski et al., 2013; Siedenburg and
Dörfler, 2011; Siedenburg and Dörfler, 2012, 2013; Siedenburg et al., 2014) is useful in this
context.

Kowalski (2009) considered inverse problems of the form (4.2.6) with � being a mixed norm.
Such a norm is defined as follows.

Definition 4.2.2 (Weighted Mixed Norm). Let x 2 CN be indexed by disjoint groups g 2
Œ1; 2; 3; : : : ; K� and members inside groups mg 2 Œ1; 2; 3; : : : ; Kg � such that N D

PK
gD1Kg .

Further, let wg;mg 2 RN
C

be a positive weights and p; q � 1. Then, the weighted mixed norm
of x is defined as

kxkwIp;q D

0B@ KX
gD1

0@ KgX
mgD1

wg;mg
ˇ̌
xg;mg

ˇ̌p1A q
p

1CA
1
q

: (4.2.12)

For p D1 or q D1 the corresponding sums are replaced by the supremum.

The combination of intra-group-norm p̀ and inter-group-norm `q immediately leads to the
behavior for the case p D 2 and q D 1. Sparsity is enforced between groups, meaning only
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Figure 4.1: Overlapping group structure in time-frequency domain (adapted from Kowalski and
Torrésani, 2009b, Fig. 1).

the most energetic groups (in the `2-sense) remain. The proximity operator of the `21-norm is
known as Group LASSO and is given by Kowalski (2009, Prop. 2.2) as

SGL
� .xg/ D prox�k�kwI2;1xg D xg

 
1 �

�
p
wgxg2

!C
; (4.2.13)

where weights wg;mg are chosen such that wg;mg D wg for all g;mg . It is a generalization
of the soft-threshold operator in (4.2.3) and enforces sparsity between disjoint groups of time-
frequency coefficients. As there is no dependence on the member index anymore, entire groups
are either retained or discarded. This might be too restrictive, for example, whenever groups
are large. Additionally, the choice of groups is quite difficult if the structure of time-frequency
representations is not known a priori. Therefore, a neighborhood based selection of coefficients is
proposed by introducing overlapping groups (Kowalski and Torrésani, 2009b). Each coefficient
is evaluated based on the magnitude of its surrounding coefficients: a single large coefficient
surrounded by only small coefficients can be discarded, whereas a small coefficient among a
neighborhood of large coefficients is retained.

This thresholding operator is defined following the notation of Kowalski et al. (2013). Let x
be indexed by j 2 N and denote by N .j / a set of indices as the weighted neighborhood. For
each k 2 N .j / the weights wk > 0 satisfy

P
k2N .j /w

2
k
D 1. The Windowed Group LASSO
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(WGL) is defined by

SWGL
� .xj / D xj

0B@1 � �qP
k2N .j /wk jxkj

2

1CA
C

; (4.2.14)

as a generalization of the Group LASSO: whenever neighborhoods are disjoint the WGL reduces
to the Group LASSO. Figure 4.1 shows such overlapping group structures for time-frequency
sampling points j1 and j2 and corresponding 3 � 3 neighborhoods N .j1/ and N .j2/. As
a consequence of the desired overlap of groups, the thresholding operator does not directly
correspond to a variational problem anymore (Kowalski and Torrésani, 2009a). Nonetheless,
Kowalski et al. (2013) derived a proximity operator for the WGL thresholding operator. Although
the convergence of proximal splitting algorithms with such an proximity operator has not been
proven (Kowalski et al., 2013, Conjecture 1), several numerical experiments indicate convergence
(Kowalski et al., 2013; Siedenburg and Dörfler, 2013; Siedenburg et al., 2014).

Siedenburg et al. (2014) successfully used empirical Wiener thresholding operators inside
a proximal splitting algorithm to inpaint missing audio data resulting from clipped samples.
The Empirical Wiener (EW) thresholding is closely related to the soft-thresholding operator by
squaring the weighted threshold. It is also known as the Non-Negative Garrotte introduced by
Antoniadis (2007) and is defined as

SEW
� .xj / D xj

 
1 �

�2ˇ̌
xj
ˇ̌2
!C

: (4.2.15)

Such a construction exists similarly for the WGL threshold operator. Siedenburg (2012)
introduced the Persistent Empirical Wiener (PEW) thresholding operator as

SPEW
� .xj / D xj

 
1 �

�2P
k2N .j /wk jxkj

2

!C
: (4.2.16)

The main difference of the empirical Wiener approaches compared to LASSO and WGL is the
reduced energy loss of remaining coefficients.

In summary, four thresholding operators are introduced: LASSO, WGL, EW and PEW,
which might be used inside proximal splitting algorithms. Convergence has been proved only
for the LASSO, the remaining generalized thresholding procedures empirically converge in the
experiments below, yet a convergence proof is still lacking.
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4.2.3 Time-Frequency Representations

Gabor Transform

As stated in (3.2.1), the Gabor transform, denoted in the following by ˚GAB, admits signal
expansions by

f D ˚�GAB˚GABf D
X
k;l2Z

hf; TakMblgiTakMblg; (4.2.17)

for suitable choices of g and time and frequency sampling parameters a and b. In the following
it is assumed that the corresponding Gabor frame G .g; a; b/ is a Parseval frame. Therefore, for
a given window function g sampling parameters a and b are chosen according to Theorem 3.2.4
and such thatGg;g0 D

1
b

P
k2Z jg.x � ak/j

2
D 1 holds for all x 2 R (cf. Proposition 3.3.12 and

the following examples). The choice of the window function g also affects the resolution in the
time-frequency domain. A spatially concentrated window corresponds to a good time-resolution
at a less localized frequency resolution and vice versa for concentrated windows in the frequency
domain. Efficient algorithms to compute the Gabor transform based on Gabor frames can be
found in the LTFAT toolbox (Průša et al., 2014).

Wavelet Transform

Tight wavelet frames based on nonstationary Gabor frames have been covered in Section 3.4.
Signals f can be expanded with such tight frames by

f D ˚�WAV˚WAVf D
X
k;l2Z

hf;Dd lTak iDd lTak D
X
k;l2Z

˝
f; Talkhl

˛
Talkhl ; (4.2.18)

for suitable choices of wavelets  . Analysis and synthesis algorithms are summarized in
Algorithms 1 and 2, respectively. Construction schemes for compactly supported wavelets are
outlined in Algorithm 3. Tight wavelet frames based on non-compactly supported functions as
outlined in Algorithm 4 are not used in the context of audio inpainting as computation time of
wavelet coefficients increases significantly. Considered wavelet frames are characterized by the
parameters f min, bw and bins as described in Section 3.4.1.

ERBlet Transform

The ERB (Equivalent Rectangular Bandwidth) frequency scale is adapted to human auditory
perception and is introduced by Glasberg and Moore (1990). It can be seen as a hybrid model
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k

l al N .k; l/
.k; l/

Figure 4.2: Irregular sampling scheme resulting from nonstationary Gabor frames. Neighbor-
hoods N can only be defined in time (k) direction.

of the Gabor and wavelet discretization scheme: the frequency sampling is approximately linear
for low frequencies and logarithmic for large frequencies. According to Glasberg and Moore
(1990), the bandwidth bw in Hertz of the filter centered at frequency � satisfies

bw.�/ D 24:7C
�

9:265
: (4.2.19)

Necciari et al. (2013) introduced the ERBlet transform with perfect reconstruction based on the
concept of nonstationary Gabor frames. Again, signals can be expanded by

f D ˚�ERB˚ERBf D
X
k;l2Z

˝
f; Talkgl

˛
Talkgl ; (4.2.20)

where for each window function gl centered at corresponding frequency �l Equation (4.2.19)
holds. A fast implementation of the ERBlet transform can also be found in the LTFAT toolbox.
The parametrization of the ERBlet transform consists of the following two parameters: bins the
number of bins per frequency channel and qvar the bandwidth variation factor, which accounts
for the resolution of the time-frequency representation. Larger values result in better time-
resolution and smaller values in better frequency-resolution. For more detailed information on
computational aspects it is referred to (Necciari et al., 2013).

Structured Sparsity for ERBlets and Wavelets

Since both, ERBlet and wavelet transform in (4.2.18) and (4.2.20) are derived from nonstationary
Gabor frames, each window gl or, respectively, hl has a specific time-shift parameter al . An
example of such an irregular sampling scheme can be seen in Figure 4.2. This irregularity
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allows to define social sparsity with horizontal neighborhoods N , enforcing persistence in time
direction only. Instead of defining an absolute number of neighbor coefficients, it is more suitable
to define persistence in seconds or milliseconds. Then, for smaller values l the neighborhood
consists of more coefficients and decreases with increasing scale (see Fig. 4.2). If for some l the
chosen persistence is smaller than the time-shift parameter al , the neighborhood consists only
of the point itself.

4.3 Experimental Setup

4.3.1 Performance Measures

A widely used measure to evaluate overall quality of reconstructed audio signals is the signal-
to-noise ratio (SNR) defined on the missing samples

SNRM .s; Qs/ D 20 log10
� .s.IM//

� .s.IM/ � Qs.IM//
; (4.3.1)

where s is the original signal, Qs the reconstructed signal, � the standard deviation and IM the
set of indices marking the missing samples (Perraudin et al., 2014).

By definition the SNR can only measure energy differences, hence favoring low energy
residuals. Such residuals, even though their energy is low, might be audible and affect perceived
audio quality (You et al., 2010). A standardized perceptual quality measure for audio data is the
widely used PEAQ measure (Perceived Audio Quality). However, it has been shown that it can
lead to unreliable results (Creusere et al., 2008; Siedenburg and Dörfler, 2013; You et al., 2010).
Therefore, the evaluation of inpainted audio signals will be focused on SNR based methods only.
For subjectively evaluating perceived audio quality, however, reconstructed signals can be found
in the GitHub repository https://github.com/flieb/AudioInpainting.

4.3.2 Test Signals

Siedenburg and Dörfler (2013) provided a set of test signals with different tonal content for de-
noising audio signals based on the same structured sparsity thresholding operators as introduced
in Sec. 4.2.2. What makes the usage of these test signals appealing is the fact, that Siedenburg
and Dörfler provided an extensive comparison of different neighborhood choices N for their
signals. Their results can be used similarly in the proposed case of audio inpainting. It can be
argued, that inpainting of missing audio data performs best if the neighborhood is adapted to
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Table 4.1: Properties of the four audio signals used for inpainting, summarized from Siedenburg
and Dörfler (2013, Table 1 and 2).

Index Description sf (kHz) Duration (s) Orientation of N Extension of N

1 Strings 44.1 2.3 horizontal 72 ms

2 Piano 44.1 2.3 horizontal 48 ms

3 Percussion 44.1 2.3 rectangular 24 ms and 172 Hz

4 Jazz-Quintet 44.1 2.3 horizontal 48 ms

the signals time-frequency characteristic. According to Siedenburg and Dörfler (2013), a neigh-
borhood N is characterized by its orientation and extension. Horizontal orientation induces
persistence in time direction, vertical in frequency direction and rectangular in both directions.
The extension specifies the corresponding size of the neighborhood. The parameters for these
signals are summarized in Table 4.1 according to Siedenburg and Dörfler (2013, Table 1 and 2),
however, in milliseconds and Hertz rather than number of coefficients.

In case of the percussion signal a rectangular neighborhood choice is not possible for nonsta-
tionary Gabor frame approaches due to irregular sampling in frequency direction (cf. Fig. 4.2).
Neighborhoods are therefore chosen to be horizontal for wavelet and ERBlet time-frequency
representations.

4.3.3 Parameter Settings

Time-Frequency Representation Parameters

In the following numerical evaluations the Gabor transform ˚GAB is used with a Hann window
of length 23 ms and time sampling parameter a D 3:6ms. Parameters for the ERBlet transform
˚ERB are qvar D 0:08 and bins D 18. The window is chosen to be a compactly supported Hann
window in frequency domain. The wavelet transform ˚WAV is based on a warped Hann window
and parameters f min D 100Hz, bw D 3Hz and bins D 120.

Spatial Structure of Missing Samples

Generally, there are two choices for the mask M. First, the mask M is chosen such that the
retaining samples are uniformly distributed. In the following experiments 80% of the total
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number of samples are deleted. On the other hand, an alternative choice of M results in
consecutive missing samples. Obviously, position and length of such gaps play a crucial role
for inpainting missing data. A gap in a tonal section of the signal might be easier to reconstruct
than during a transient part. Therefore, gaps of a certain length are generated periodically every
300 ms, as proposed by Adler et al. (2012). The gap length is varied between 5 and 30 ms,
which corresponds to 221 up to 1323 data points at a sampling rate of 44.1 kHz, in contrast
to a maximum proposed gap length of 10 ms by Adler et al. (2012) and Kereliuk and Pasquier
(2013).

Algorithm Specific Parameters

The FISTA as well as the Douglas-Rachford algorithm have a maximum iteration number of
200. However, if the relative norm kxkrel between two solutions xk and xk�1 from consecutive
iterations drops below a tolerance "rel the iteration stops before reaching the maximum iteration
number. This relative norm is defined by

kxkrel D

xk � xk�1
2xk

2

: (4.3.2)

For all subsequent experiments the tolerance is set to "rel D 1e�4. Since all corresponding
frames are tight with bound 1, the operator norm of ˚ is given by  D k˚�˚k D 1 and for the
DR-algorithm �k D 1 for all k as proposed by Perraudin et al. (2014).

4.3.4 Comparison Algorithm

The inpainting results from Adler et al. (2012, Fig. 2) clearly show, that Janssen et al.’s (1986)
approach is superior to their orthogonal matching pursuit. A recent contribution for inpainting
missing audio samples by Oudre (2015) is also based on Janssen’s method and demonstrates
that it is still considered a state-of-the-art algorithm for interpolating audio data. A MATLAB

implementation is provided by Adler et al. (2012), and is used as a comparison approach in the
following numerical evaluations with parameters as suggested by Adler et al. (2012) and Oudre
(2015). Unfortunately, whenever the binary mask M is chosen such that the missing samples
are randomly distributed, Janssen’s approach can not be applied. With 80% missing samples,
the algorithm requires about 60 GB of memory.
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Table 4.2: SNR (dB) for the two proposed algorithms and analysis and synthesis approach. Test
signals are reconstructed from 20% remaining samples based on the soft-thresholding
operator SL and the proposed time-frequency representations.

FISTA DR-Algorithm

Test Signal ˚GAB ˚WAV ˚ERB ˚GAB ˚WAV ˚ERB

1
Synthesis 15.5 25.5 25.9 18.7 26.0 26.4

Analysis 18.6 25.2 25.6 16.9 25.9 26.3

2
Synthesis 16.8 25.1 25.2 20.1 25.9 25.9

Analysis 19.7 25.1 25.2 18.3 25.7 25.6

3
Synthesis 17.4 18.9 19.1 18.6 19.2 19.3

Analysis 18.5 19.2 19.2 17.9 19.2 19.3

4
Synthesis 13.6 19.3 20.1 16.2 19.8 20.4

Analysis 16.1 19.7 20.4 15.1 19.7 20.4

4.4 Results

The results presented in this section are based on a parametrization of the regularization para-
meter �. The values for � are taken from the interval Œ1e�5; 10�, for each thresholding operator.
For small values, the thresholding operator removes only very few time-frequency coefficients
in each iteration which in return leads to small SNR values. Large � values, on the other hand,
ensures that all coefficients are removed and, hence, again results in a small SNR. For values
in between, the signal-to-noise ratio attains a maximum for a specific � value. This parameter
sweep of � is repeated for each time-frequency representation and each thresholding operator
and the maximum SNR value is selected in the following evaluations.

4.4.1 Analysis versus Synthesis and FISTA versus DR-Algorithm

As mentioned earlier, the synthesis approach in (4.2.6) is to be compared to the analysis one
(4.2.7) and, moreover, FISTA to the DR-algorithm. SNR-values of the reconstructed audio
signals are shown in Table 4.2 based on depleted audio signals with only 20% remaining sam-
ples. The time-frequency representations described in Sec. 4.2.3 and the LASSO thresholding
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Figure 4.3: Convergence rate for the four approaches based on a Gabor transform with LASSO
thresholding operator and regularization parameter � D 0:05.

operator are used. Only the splitting algorithms based on the Gabor transform show significant
differences. FISTA favors the analysis approach, whereas, the DR-algorithm yields better results
for the synthesis method.

In terms of convergence rates, it is known from Chambolle and Dossal (2015) that FISTA con-
verges with O

�
1=k2

�
and the Douglas-Rachford algorithm converges generally with O .1=k/

(He and Yuan, 2012). Therefore, it could be assumed, that FISTA would be the better choice.
Numerical results for synthesis and analysis inpainting cases, however, show that the conver-
gence rate for FISTA with the analysis approach and the DR-algorithm are quite similar. FISTA
based on the synthesis approach shows the slowest convergence. This is visualized in Fig. 4.3 for
test signal 4 (jazz-quintet) and the LASSO approach based on the Gabor transform but similar
results can be observed for the other test signals as well.

Since the DR-algorithm based on the synthesis model results in slightly better SNR-values
compared to FISTA and convergence is only slightly slower, it is chosen for all subsequent
numerical evaluations.

4.4.2 Results for Randomly Distributed Missing Samples

The mask M is fixed to retain 20% of the audio samples. For each regularization parameter
� the DR-algorithm approximates a corresponding solution for the inpainting problem. Of all
solutions, the ones with the largest SNR are summarized in Table 4.3.

SNR values associated with the Gabor transform confirm the assumption made in the intro-
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Table 4.3: Signal-to-noise ratios in dB for the four thresholding operators. The test signals are
reconstructed from 20% remaining samples based on the proposed time-frequency
(TF) representations.

Test Signal

TF Repr. Threshold Op. 1 2 3 4

˚GAB

SL 18.7 20.1 18.6 16.2

SEW 22.6 24.4 18.1 18.5

SWGL 20.6 21.5 18.6 17.6

SPEW 24.1 25.9 18.6 19.6

˚WAV

SL 26.0 25.9 19.2 19.8

SEW 25.2 25.6 17.8 18.5

SWGL 25.9 26.0 19.4 19.7

SPEW 25.4 26.9 18.5 19.5

˚ERB

SL 26.4 25.9 19.3 20.4

SEW 25.3 25.5 17.5 18.8

SWGL 26.4 26.0 19.4 20.4

SPEW 26.4 26.5 18.3 19.8

duction: the PEW operator improves inpainting of audio data significantly in most cases compa-
red to LASSO. This is in accordance with the results from Siedenburg et al. (2014, Fig. 4) as well
as the results from Siedenburg and Dörfler (2013, Fig. 5) where the PEW operator performed best
when declipping and denoising audio data. Wavelets and ERBlets, on the other hand, improve the
Gabor-PEW based signal-to-noise ratios even further. Although SNR values for the jazz quintet
signal (test signal 4) are close for the GAB-PEW, ERB-LASSO and ERB-PEW approaches,
the perceptual quality of the reconstructions differs significantly. The neighborhood approach
eliminates many audible artifacts when listening to the reconstructions of GAB-LASSO and
GAB-PEW approaches. The ERBlet approach, on the other hand, further reduces the musical
noise introduced by Gabor representations. This can be verified by listening to the reconstructi-
ons in the GitHub repository https://github.com/flieb/AudioInpainting/tree/master/Results.
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(a) Test signal 1 (b) Test signal 2

(c) Test signal 3 (d) Test signal 4

Figure 4.4: SNR with increasing number of missing samples for all four test signals.

In Figure 4.4 it can be observed how performance evolves in the range of 30 up to 95%
of missing samples for all four test signals. Only Gabor and ERBlet time-frequency repre-
sentations with LASSO and PEW thresholding operators are illustrated such that the figures
remain discernible. Except for low percentages of missing audio samples in the first two test
signals, the ERBlet based time-frequency representation gives an overall better signal-to-noise
ratio. Whereas there are significant differences between the LASSO and PEW thresholding for
Gabor time-frequency representations, the differences for ERBlets are only marginal. Figure
4.4 hence reflects the results observed in Table 4.3 for large percentages of missing samples.
For smaller percentages missing samples are much more scattered throughout the data, since
they are uniformly distributed. Consequently, perceptual quality between different thresholding
operators and time-frequency representations does not differ much.
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(a) Test signal 1 (b) Test signal 2

(c) Test signal 3 (d) Test signal 4

Figure 4.5: Signal-to-noise ratios as a function of gap size for all four test signals.

4.4.3 Results for Consecutive Missing Samples

Here, M is chosen such that a gap with specified length is repeated every 300 ms. In favor of
illustrational convenience, the succeeding results also feature only Gabor and ERBlet transforms
with thresholding operators LASSO and PEW. In order to avoid that the DR-algorithm amplifies
high-frequency noise at the edge of gaps, instead of reducing it, minor parameter settings need
to be adapted. Firstly, increasing the width of the Gabor window improves the inpainting
performance, since wider windows fill gaps with information from surrounding samples. A
Hann window of length 150 ms leads to reasonable results and is therefore used for subsequent
evaluations. Additionally, for test signal 3 the qvar parameter of the ERBlet transform is changed
to qvar D 0:2 with bins D 8, increasing the window width in order to obtain reasonable results.
The remaining transform parameters remain as before. Since the structure of gaps generates

71



Chapter 4 Audio Inpainting

Figure 4.6: Inpainting solutions for the jazz quintet signal with gap length 22.5 ms.

noise with persistence in frequency direction, it is disadvantageous to consider rectangular neigh-
borhoods since this would enforce noise coefficients. Instead, only horizontal neighborhoods of
length 48 ms are used in this approach.

Figure 4.5 shows maximum signal-to-noise ratios (where the maximum is taken over all �
values) of the four reconstructed test signals as well as Janssen’s algorithm with increasing gap
length. In nearly all cases, Janssen’s approach as well as the Gabor-LASSO results in the lowest
SNR compared to the remaining methods. For large gap sizes the PEW approaches show the
best performance for ERBlets as compared to the Gabor transform.

Figure 4.6 illustrates the inpainted solutions for the jazz quintet signal (test signal 4) with
gap size 22.5 ms based on PEW threshold operators for Gabor and ERBlet transform. It clearly
shows that the ERB-PEW approach provides more accurate results, resembling features of the
original signal more closely than the GAB-PEW approach.

4.5 Conclusion

Several sparsity constraints for the problem in (4.2.6) are considered for inpainting missing audio
samples based on a set of time-frequency representations. These constraints promote sparsity
similar to the well known soft-thresholding by either reducing the loss of energy for remaining
coefficients (EW), introducing neighborhoods (WGL) or the combination of both (PEW).

The results for randomly distributed missing samples clearly favor ERBlet and wavelet time-
frequency representations. SNR values indicate, that the reconstruction is quite good, despite
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the loss of 80% of the original data. This might improve reconstruction of packets lost during
audio streaming. If the audio data to be streamed is interleaved in different packets as suggested
by Ciaramella et al. (2016, Fig. 1 and Fig. 2), missing samples are randomly distributed. Hence,
the results from Section 4.4.2 can be directly applied. Since timing is crucial in streaming
applications, a more detailed convergence analysis as well as fast implementations are required
to ensure a quick reconstruction of missing audio samples. Furthermore, acceleration methods
as proposed by Rajmic et al. (2015) can further speed up the reconstruction process.

The performance for consecutive missing samples is also dominated by usage of the ERBlet
transform. The PEW threshold operator has shown to approximate the original signal better
than the Gabor transform based PEW, especially for large gaps. For Gabor based time-frequency
representations, it obviously is advantageous to use window functions with a longer duration
than 20 ms as proposed in (Kowalski and Torrésani, 2009a; Siedenburg, 2012; Siedenburg and
Dörfler, 2013; Siedenburg et al., 2014). They extent signal information from the borders of a gap
into the gap itself, improving inpainting substantially. In case of the proposed non-stationary
time-frequency representations the window length is not fixed, instead it adaptively scales with
respect to frequency. Further, Janssen’s algorithm which has shown good performance in (Adler
et al., 2012) for gap sizes up to 10 ms, mostly can not keep up with the performance of PEW
threshold operators. Additionally, for large numbers of missing samples Janssen’s algorithm is
computationally not feasible.

Clearly, the SNR results favor ERB- or wavelet approaches, yet the perceptual quality of the
reconstructions is most important. Example files for the jazz quintet signal can be found in
the GitHub repository. The listener will notice that both LASSO approaches (Gabor as well
as ERBlet transform) feature clearly audible artifacts, whereas PEW thresholding operators
perform much better in this respect. In summary, based on subjective observations the ERB-
PEW approach leads to a better perceptual quality with less prominent artifacts compared to the
Gabor-PEW approach.

Comparing analysis and synthesis approaches, it can moreover be concluded that in com-
bination with a Gabor transform, the analysis approach yields an improvement for iterative
thresholding type algorithms like FISTA. Interestingly, the synthesis approach performs better
while used in combination with the Douglas-Rachford algorithm. Whereas this leads to signi-
ficantly different signal-to-noise ratios for the Gabor transform, differences are only minor for
ERB- and wavelet like time-frequency representations. The denoising results from Siedenburg
and Dörfler (2013) as well as the declipping results from Siedenburg et al. (2014) might be furt-
her improved by using analysis models, instead of the proposed synthesis ones. In addition, the
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declipping results in (Siedenburg et al., 2014) also benefit from using longer window functions
for the Gabor transform.

The neighborhood choice for numerical evaluations has been based on results from Sie-
denburg and Dörfler (2013) where the underlying time-frequency representation is the Gabor
transform. As can be seen for test signal 3 in Table 4.3 this might not be the best choice for
inpainting problems. Hence, a more detailed analysis of neighborhood structures is required.
Neighborhoods which are better adapted to the problem of inpainting as well as better adapted
to the time-frequency representation might further improve reconstruction results. Especially
for consecutive missing samples, neighborhoods can easily be constructed such that they match
the surrounding time-frequency coefficients more adaptively.

So far only audio signals have been used for inpainting. Whether similar conclusions can be
transferred to speech signals has not been investigated and leaves room for future contributions.
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Chapter 5

Spike Detection Algorithms for
Extracellular Recorded Data

This chapter is an amended version of the results published by Lieb et al. (2017), with Section
5.5 focusing on the novel spike detection algorithm introduced by Mayer et al. (2018).

5.1 Introduction

A detailed analysis of intercellular communication, either spontaneous or stimulated, is faci-
litated by cultivating neuronal cells on microelectrode arrays (MEAs) and recording the elec-
trophysiological activity of resulting neuronal networks. In recent years this in vitro method
has emerged as an effective technique for neurotoxicological screenings, see for example (Hon-
debrink et al., 2016; Johnstone et al., 2010; McConnell et al., 2012; Tukker et al., 2016).
Extracellular recordings are based on rapid changes of the cell membrane potential caused by
biological ion displacement. The amplitude of the resulting voltage difference strongly depends
on the coupling quality and the distance between cell and electrode (Daus et al., 2012; Obeid
and Wolf, 2004). The larger the distance between firing neuron and recording electrode, the
smaller the recorded amplitude. This might lead to recordings where spike amplitudes are not
necessarily larger than noise. In general, this noise is characterized by colored 1/f noise as a
superposition of electrochemically induced noise, thermal noise, noise induced by stochastic
fluctuation of electrolytic and conducting resistors as well as extrinsic noise like 50 Hz net
frequency or biological background noise (Obien et al., 2015).
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In the past, the majority of neurons cultivated on MEAs are based on two-dimensional neural
networks (Frega et al., 2014). Only recently, Smith et al. (2015) succeeded in cultivating diffe-
rentiated human embryonic stem cells (hESCs) on MEAs to form functional three-dimensional
networks allowing more detailed electrophysiological investigations. However, 3D cell models
result in smaller spike amplitudes and an even worse signal-to-noise ratio. Unfortunately, this
turns detection of spikes with small amplitudes in large background noise into a nontrivial task.
Separating spikes reliably from noise, however, is the basis for all subsequent processing steps
like clustering and analyzing spike trains (Rossant et al., 2016), making highly accurate spike
detection algorithms indispensable.

Several algorithms for spike detection have already been published (Azami and Escudero,
2016; Azami and Sanei, 2014; Azami et al., 2015; Choi and Kim, 2002; Choi et al., 2006; Kim
and McNames, 2007; Liu et al., 2012; Maccione et al., 2009; Nabar and Rajgopal, 2009; Natora
et al., 2010; Nenadic and Burdick, 2005; Obeid and Wolf, 2004; Quiroga et al., 2004; Salmasi
et al., 2016; Shahid et al., 2010; Shalchyan et al., 2012). Based on their methodological concept
most of them can be divided into three categories, as suggested in (Obeid and Wolf, 2004):

A. Simple Thresholding
Spike detection algorithms of the first category rely on the most prominent feature of the
spike shape, its amplitude. It is assumed that the amplitude of a spike is larger or has
a larger peak-to-peak value than noise and can hence be detected by a simple threshold.
Related algorithms are published, e.g., by Maccione et al. (2009); Obeid and Wolf (2004)
or Quiroga et al. (2004). Clearly, whenever the amplitude of the temporal noise is larger
than the spike’s amplitude this approach might fail and is easily susceptible to errors.

B. Template Based Correlation
The second category is based on actual spike shapes, whereby signal segments are correla-
ted with template waveforms. Whenever the resulting similarity is larger than a predefined
threshold the corresponding segment is considered a spike. Obviously, the main challenge
is to find reasonable templates in the first place. This either requires knowledge of the
spike’s waveform or generic approaches to find suitable templates. Such algorithms are
described by Kim and McNames (2007); Liu et al. (2012); Natora et al. (2010) and Shahid
et al. (2010).

C. Transient Energy
Spike detection algorithms of the third category exploit the transient behavior of spikes,
i.e., abrupt amplitude changes. Such transients introduce a frequency pattern with distinct
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Original Signal f

Time (s)

Indicator Signal y

Thresholded Output z

Figure 5.1: Basic scheme of spike detection algorithms based on algorithms from categories A,
B and C. The simulated test signal has noise level � D 5, see (5.3.2).

characteristics, different from noise. For example, the methods based on nonlinear Teager
energy operators introduced by Azami and Sanei (2014); Choi and Kim (2002); Choi et al.
(2006) and Nabar and Rajgopal (2009) fall into this category, as well as the wavelet based
approaches from Nenadic and Burdick (2005) and Shalchyan et al. (2012).

More recent algorithms which are entropy based (Azami and Escudero, 2016) or based on
fractal dimensions (Azami et al., 2015; Salmasi et al., 2016) cannot be classified to any of these
categories. Despite this diversity, almost all spike detection algorithms mentioned above follow

77



Chapter 5 Spike Detection Algorithms for Extracellular Recorded Data

a two-step-procedure. First, from the raw input signal f an indicator signal y is computed.
This computation is specific for the respective algorithm and should not be sensitive to noise.
Subsequently, y is thresholded in order to localize spike occurrences and associate corresponding
time stamps. For example, putting y D jf j and thresholding this indicator signal results in one
of the simplest representative of a spike detection algorithm belonging to category A.

Figure 5.1 on the previous page illustrates this two-step-procedure with one representative
algorithm per Category A, B or C respectively. The input signal f is constructed from known
spikes, whose locations are marked in Fig. 5.1 with black triangles. This signal is superimposed
with noise reflecting the characteristics of MEA recordings. On this basis the indicator signal y
is computed based on an representative algorithm from each category. Category A is represented
by the absolute value procedure (ABS) described above. Categories B and C are represented
by the HBBSD-algorithm (Natora et al., 2010) and the SWTTEO algorithm proposed later
on. From the resulting spike locations in the output signal z it can be deduced that there are
differences in the precision of the algorithms and apparently, the performance of the algorithms
is based on the accuracy of the indicator signal y.

Despite the diversity of already proposed spike detection algorithms, the performance whe-
never signal-to-noise ratios are low still leaves room for further improvement. In the following,
two new spike detection algorithms are introduced. The first one is based on the characteristic
time-frequency pattern of spikes, the other relies on energy distributions of stationary wavelet
coefficients. The performance of both algorithms is first compared with current state-of-the-art
algorithms based on two different simulated data sets before a novel spike detection approach
for real MEA data is introduced.

5.2 New Spike Detection Algorithms

5.2.1 Preliminaries

Modified Gabor Transform

Fast algorithms for computing the Gabor transform are publicly available in the LTFAT toolbox
(Průša et al., 2014). However, these algorithms lack fast implementations whenever only a small
subset of the full frequency range is required for further analysis. Instead of computing a full
Gabor transform with a subsequent selection of desired frequency bins, the following approach
introduces a modified Gabor transform which only computes time-frequency coefficients in a
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Algorithm 7: Discrete Gabor Transform with Specified Frequency Range (DGTSF)

Input : f 2 RN - input signal
g - window function in frequency domain
Œ f min; f max� - frequency interval
M - number of frequency bins
a - time shift parameter

Output: c 2 CN=a�M - time-frequency coefficients

1 F  FNf
2 g Tfming

3 b  . f max � f min/=.M � 1/

4 for l D 0; 1; 2; : : : ;M � 1 do
5 cl  Tblg � F

6 end
7 ck;l  e�2�inakbl=NF�1N

a

QN
a
cl // see Prop. 3.3.14 for the subsampled DFT

specified frequency range.

In a finite dimensional setting, the Gabor transform as defined in a continuous setting in
(4.2.17), decomposes every signal f 2 RN into its time-frequency coefficients cŒk; l� by

cŒk; l� D

N�1X
nD0

f Œn�gŒn � ak�e�2�inbl=N ; (5.2.1)

for some window function g and k 2 Œ0; 1; : : : ; K � 1�, l 2 Œ0; 1; : : : ; L � 1�. The frequency
and time shift parameters a and b satisfy aK D bL D N . With some modifications it is
possible to specify only a certain frequency range. In general, the frequency index l takes
values from the integer interval Œ0; L � 1� corresponding to L frequency bins, ranging from
zero to twice the Nyquist frequency (Průša et al., 2014). Considering for l a suitable subset of
Œ0; L�1� unwanted frequencies can be omitted. For example, if l 2 Œb.L � 1/=8c ; b.L � 1/=4c�,
only frequencies from a quarter of the Nyquist frequency up to half the Nyquist frequency are
regarded. Hence, time-frequency coefficients can be computed for specific frequency ranges and
undesirable frequency contributions, e.g., in lower frequency ranges resulting from 1/f noise,
are disregarded.
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(a) Single DWT decomposition step

f

c1A c1D

c2A c2D

Level j D 1

Level j D 2

(b) Recursive tree structure for a 2-level DWT

Figure 5.2: Block diagram and tree structure of the DWT.

As indicated by Søndergaard (2012, Eq. (4.2)), Equation (5.2.1) can be rewritten as

c Œk; l� D hf;MblTakgi (5.2.2)

D hFNf; TblM�akFNgi (5.2.3)

D e�2�inakbl=NF�1N
�
FNf � TblFNg

�
Œak�: (5.2.4)

The phase factor can be ignored in cases where only the magnitude of time-frequency coefficients
is relevant. By shifting the analyzing window g only to specified frequencies in the interval
Œ f min; f max� the restriction of the frequency index l to a subset of Œ0; L � 1� in (5.2.1) can
be efficiently implemented. The algorithm for computing the discrete Gabor transform with
specified frequency range (DGTSF) is summarized in Algorithm 7. Note that the subsampledN -
point inverse DFT in (5.2.4) can be efficiently computed by utilizing the result from Proposition
3.3.14.

Discrete and Stationary Wavelet Transform

Introduced by Mallat (1989), the fast algorithm for the discrete wavelet transform (DWT) is
nowadays a common tool in signal processing. The DWT basically consists of high- and low-
pass filtering with filters  D and  A and a subsequent dyadic down sampling resulting in detail
and approximation coefficients, cD and cA, respectively. A schematic block diagram of a single
level wavelet decomposition is depicted in Figure 5.2a. This procedure may be recursively
iterated j times, by replacing the input f with the approximation coefficients cA of the previous
decomposition. The resulting decomposition is called a j -level wavelet decomposition and is
visualized for two levels in Figure 5.2b.
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One main disadvantage of the discrete wavelet transform is its lack of time-invariance. This
means that a shifted version of any input signal does not necessarily result in a shifted version
of wavelet coefficients, due to downsampling after applying the wavelet filter. The stationary
wavelet transform (SWT) introduced by Nason and Silverman (1995) consists only of filtering
with no subsequent downsampling. Instead, the filter coefficients are dyadically upsampled by
padding them with zeroes at even- or odd-indexed positions. In contrast to the DWT, where
the number of DWT coefficients is equal to the number of data points of f , this results in a
redundant signal representation.

Teager Energy Operator

The fundamentals of the Teager energy operator (TEO) were originally derived by Kaiser (1993).
In the continuous case the operator reads

BTEO.f .t// D

�
d

dt
f .t/

�2
� f .t/

d2

dt2
f .t/: (5.2.5)

The term ’energy operator’ is motivated by an analogy to a classical harmonic oscillator of mass
m. In this case f .t/ D A cos.!t C �/ and the total energy reads E D 1

2
m!2A2, (Tipler and

Mosca, 2015, p. 421). It is then easy to verify that BTEO.f .t// D !
2A2. Thus, in fact BTEO.f .t//

is proportional to the energy associated with oscillatory motion.
For discrete signals the Teager energy operator is defined as

BTEO.f Œn�/ D f
2Œn� � f Œn � 1�f ŒnC 1�: (5.2.6)

Again, a similar calculation shows that BTEO.A cosŒ˝nC ��/ D A2 sin2.˝/. Here, ˝ denotes
the discrete frequency ˝ D 2�!=sf , with sampling frequency sf . For small ˝ it holds that
sin.˝/ � ˝ and the Teager energy operator is approximately proportional to the systems energy
as in the continuous case.

5.2.2 Time-Frequency based Convolution Spike Detection Algorithm
(TIFCO)

The time-frequency based convolution spike detection algorithm, denoted TIFCO in the follo-
wing, assumes that action potentials exhibit a certain time-frequency behavior which can be
detected even in noisy measurements. For example, they exhibit prominent features in the range
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Figure 5.3: Characteristic time-frequency pattern of spikes embedded in colored noise. The
colorscale is logarithmic with yellow indicating large and blue small coefficients.

of 500 Hz up to 3500 Hz, as visualized in Figure 5.3. These patterns of large coefficients spread
over several frequency bins at the occurrence of a spike and distinguish spikes from 1/f noise.
Therefore, the DGTSF with an appropriate choice of the frequency range can be used to compute
corresponding time-frequency coefficients cŒk; l�. Subsequently, the time-frequency coefficients
are filtered in order to emphasize spike specific patterns in the time-frequency plane. Generally,
such a filter can be defined as follows. Letting � 2 RK0�L0 be the kernel of a two-dimensional
convolution, the filtered time-frequency coefficients vŒk; l� can be defined by

vŒk; l� D
�
jcj2 � �

�
Œk; l� (5.2.7)

D

X
k0

X
l 0

ˇ̌
cŒk � k0; l � l 0�

ˇ̌2
�
�
k0; l 0

�
; (5.2.8)

where k0; l 0 are the corresponding indices for the filter kernel �. The choice of the filter should be
motivated by enforcing spike specific structures. Gaussian filters or more advanced filters from
image processing, for example, are conceivable. Alternatively, a moving average filter of size
K 0 � L0 introduces persistence in the desired frequency and time range, while simultaneously
lessens the influence of large isolated noise coefficients.

Finally, a decision variable y is computed by summing over all frequency bins, i.e.,

yŒk� D

L�1X
lD0

vŒk; l�: (5.2.9)
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Algorithm 8: Time-Frequency based Convolution Spike Detection Algorithm (TIFCO)

input : f 2 RN - input signal
g - window function for DGTSF
Œ f min; f max� - frequency interval

M - number of frequency bins
a - time shift parameter
� 2 RK0�L0 - 2D filter kernel

output: y 2 RN=a - indicator signal

1 c  DGTSF .f; g; Œ f min; f max�;M; a/

2 c  jcj2 � �

3 y  
P
l cŒk; l�

Thus, whenever a spike is present at a time instance k, the decision variable y yields a larger
value compared to a time instance where only noise is present. This decision variable y can
then be thresholded in order to extract exact spike locations as indicated in Fig. 5.1. The TIFCO
algorithm is summarized in Algorithm 8.

5.2.3 Stationary Wavelet Transform based TEO Spike Detection Algorithm
(SWTTEO)

This newly proposed algorithm is based on a further development of the wavelet TEO algorithm
(WTEO) from Nabar and Rajgopal (2009). Their spike detection algorithm is based on a low-
pass filter using the first and second level approximation coefficients of the DWT. The Teager
energy operator is then applied to each sub-band with a subsequent thresholding, followed by
expanding the corresponding decimated coefficients to the length of the original data.

The SWT based TEO spike detection algorithm (SWTTEO) adopts the following changes
to improve the WTEO algorithm. The discrete wavelet transform used by Nabar and Rajgopal
(2009) is substituted by the stationary wavelet transform. Hence, no down sampling of wavelet
approximation coefficients is applied, superseding the need to expand decimated coefficients.
For each low-pass sub-band the TEO is computed and subsequently convolved with a smoothing
window w. The indicator signal y is then derived by adding these smoothed TEO sub-bands.
Since it is assumed that each sub-band contains spike information the summation of smoothed
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Algorithm 9: Stationary Wavelet based TEO Spike Detection Algorithm (SWTTEO)

input : f 2 RN - input signal
 - discrete wavelet
j - decomposition level of SWT
w - smoothing window

output: y 2 RN - indicator signal

1 cj  j -level SWT of f with wavelet  
2 y  

P
j

�
BTEO.cj / � w

�

TEO outputs is preferable to the maximum filter suggested by Nabar and Rajgopal (2009).
Finally, the thresholding is applied to the indicator signal y instead of thresholding individual
sub-bands proposed by Nabar and Rajgopal. The complete algorithm for the SWTTEO spike
detection is outlined in Algorithm 9.

The number of levels for the wavelet decomposition depends on the frequency content of the
spike shapes itself. Figure 5.3, for example, shows spike specific frequencies in the range from
500 up to approximately 3500 Hz for a signal sampled at 10 kHz. Hence a decomposition level
of 2 or 3 would be reasonable for this example. The first level approximation coefficients would
then cover frequencies from zero up to half the sampling frequency, the second level would
contain frequencies from zero to a quarter of the sampling frequency and so on. Choosing a
decomposition level larger than 3 would only cover lower frequency bands, where no useful spike
information is present. This coincides with the results from Nabar and Rajgopal where the best
wavelet decomposition level is also found to be 2 for signals sampled at 10 kHz. However, for
some signals it might be useful to consider only a subset of the decomposition level. For example,
if noise is predominately associated with high frequencies, the performance of the algorithm
may improve by ignoring the first or even the first two levels of approximation coefficients. This
restrains the influence of high frequency induced errors.

Furthermore, Choi et al. (2006) have shown that especially when signal-to-noise ratios are
low, peaks resulting from noise can be efficiently removed by smoothing the TEO output with
a Hamming window. Typically, this window is chosen such that its length corresponds to the
range of a spike duration. As shown later, smoothing the TEO output also reduces the chance
of falsely detected spikes if the input signal consists of stationary wavelet coefficients.
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Figure 5.4: Spike templates extracted from real MEA recordings (sampled at 10 kHz), serving
as basis spikes for generating test signals.

5.3 Experimental Setup

5.3.1 Simulated Data Set (HAB Data Set)

The evaluation of spike detection algorithms is biased towards the data sets used. The usage
of real MEA recordings is not practicable due to the lack of reliably annotated spike locations.
On the other hand, generating signals with prior information on the location of action potentials
should also closely resemble original recorded MEA data. A frequently used model describes
the signal as a linear combination of template spikes and modeled noise (Choi et al., 2006; Nabar
and Rajgopal, 2009; Natora et al., 2010; Shalchyan et al., 2012). The model introduced in the
following additionally includes the reciprocal relationship between the distance of the neuron
itself and the electrode as stated by Martinez et al. (2009). This implies that neurons residing in
close proximity of the electrode have a higher amplitude than more distant neurons.

In order to get realistic template spike shapes, three action potentials from a MEA recording
with sampling frequency of 10 kHz are extracted. The used cells are human embryonic stem
cells (hESC, line WA09) which have been differentiated into three dimensional neurospheres.
The recordings result from measuring electrical activity of these neurospheres, 24 hours after
plating on MEA chips. The three spikes are visualized in Figure 5.4 and differ in shape and
polarity. In the following, these three spike templates  i are labeled by the index i 2 f1; 2; 3g.
Maccione et al. (2009) assume that there are only a few neurons in the local proximity of a
microelectrode. Spikes from neurons further away are not recognizable in noise anymore and

85



Chapter 5 Spike Detection Algorithms for Extracellular Recorded Data

are neglected in this model. Therefore, each of the three spike templates corresponds to a single
neuron and is scaled with a fixed parameter �i < 1. This parameter reflects the distance from
the neuron to the electrode. The simulated data is now constructed by randomly picking one
of the three scaled action potentials �i i and positioning it at a random chosen time � in the
test signal such that there are no overlapping spikes (overlap is considered in the following data
set). This procedure is repeated until the desired number of spikesNsp is reached. The resulting
signal s0 can be written as

s0Œn� D

NspX
ˇD1

�i i.ˇ/ Œn � �Œˇ�� ; (5.3.1)

where �Œˇ� contains the time stamps for Nsp spikes and i .ˇ/ is the index of the ˇ-th spike form.
Additive background noise can be modeled by an autoregressive model as described by Hayes
(1996, Ch. 8.5.1). The model parameters are chosen such that the characteristic noise of actual
MEA recordings is approximated best. Using Gaussian white noise as input to the model, noise
vectors pŒn� are generated and corresponding amplitudes are modeled by a noise level parameter
� > 0. The resulting data model then reads

sŒn� D s0 C �pŒn� D

NspX
ˇD1

�i iˇ Œn � �Œˇ��C �pŒn�: (5.3.2)

As the maximum amplitude of the spike templates are constant, the parameter � is directly
related to the signal-to-noise ratio of generated test signals. For large values of � the spikes are
buried in noise, whereas for small values spikes are clearly discernible. By keeping the amount
of noise � as well as the number of spikes Nsp fixed, uncorrelated test signals with the same
noise amplitude can be generated. Each signal then differs in the positions of spikes and noise
characteristics p which are both based on normally distributed pseudorandom numbers. This
allows an unbiased performance evaluation independent of absolute spike positions for each
noise amplitude.

5.3.2 University of Leicester Data Set (UL Data Set)

In addition to the data set proposed above, the performance of the algorithms are also evaluated
on a publicly available data set. This data set is provided by the University of Leicester (Quiroga,
2017) and the corresponding data model described by Quiroga et al. (2004) is closely related
to (5.3.2). MEA recordings are similarly simulated by superimposing modeled background
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noise with randomly placed spikes. These spikes have distinct amplitudes, shapes and durations
(Quiroga et al., 2004, Fig. 4a). Additionally, no spike of the same class can occur within a
refractory period of 2 ms, whereas overlap of spikes from different classes is possible (Quiroga
et al., 2004, Fig. 4c). The data is simulated at a sampling rate of 96 kHz and subsequently
down-sampled to 24 kHz to account for quantization effects resulting from analog-to-digital
conversions. The data set comprises 8 simulated signals with differing noise level, ranging from
0.05 up to 0.4, where this number denotes the standard deviation of the noise relative to the
spike’s amplitude (Quiroga et al., 2004, Ch. 4). Each test signal has a duration of 60 seconds
and contains approximately 3400 spikes.

5.3.3 Performance Measures

The most common measure to verify the performance of spike detection algorithms are Receiver
Operating Characteristic (ROC) graphs (Fawcett, 2006). These ROC curves plot the True Positive
Rate (TPR) against the False Positive Rate (FPR), defined as

TPR D
Number of True Positives
Number of inserted Spikes

; FPR D
Number of False Positives
Number of detected Spikes

: (5.3.3)

The ROC graphs show the relative tradeoff between the number of true positives and the number
of false positives. The closer a graph approximates the optimal classification value (zero false
positives and 100 percent true positives) the better the performance of the algorithm. The
ROC curves are obtained as follows: Each algorithm leads to an indicator signal y, which is
thresholded in order to indicate peak locations. The threshold is varied such that desired FPRs
are obtained and corresponding TPRs are recorded.

A different frequently used performance measure is the Detection Rate (DR), defined as the
percentage of correctly identified spikes, i.e., the true positive rate (TPR). In order to obtain the
DR, the threshold for the indicator signal y must be chosen such that the number of detected
spikes equals the number of inserted spikes in the test signal. Thus, the performance of all
algorithms can be analyzed with respect to the noise level parameter � of the test signal.
Averaging over several detection rates for one specific � leads to more reliable results whenever
test signals are independently generated. Taking the mean value of the DR (mDR) over all noise
levels gives a reasonable number on the performance of a spike detection algorithm,

mDR D
1

R

RX
rD1

DRr : (5.3.4)
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Here r enumerates R different noise levels.
Due to noise, a tolerance of˙0:2ms is introduced, wherein a spike was classified as correctly

detected. At a sampling rate of 10 kHz this equals˙2 samples.

5.3.4 Current State-of-the-Art Methods

In this section common state-of-the-art-algorithms are briefly summarized, which serve as com-
parison algorithms when benchmarking both proposed methods. Not all algorithms mentioned
in Sec. 5.1 are considered in this context. For some algorithms it has already been shown that
they are inferior to other algorithms. Thus, it is sufficient to compare the proposed algorithms to
the superior ones only. The fractal detector from Salmasi et al. (2016) is not easily applicable for
signals with a sampling rate of 10 kHz, due to missing data points for the boxcounting method
as investigated by Pissulla (2016). The implementation of Azami et al.’s (2015) algorithm
shows poor performance in the simulated data set and has also been excluded (see supplemental
material on the GitHub repository https://github.com/flieb/SpikeDetection-Toolbox/ ). Since the
performance of the algorithm described by Azami and Escudero (2016, Table 2 and 3) is quite
similar to (Azami et al., 2015) this algorithm is also excluded. The algorithm proposed by Liu
et al. (2012) uses the same public data set and hence results can be easily compared. Finally, the
HBBSD algorithm outperforms Shahid et al.’s (2010) cepstrum of bispectrum approach (Natora
et al., 2010, Fig. 5). Categorized into the three groups from Section 5.1 this leaves the following
state-of-the-art algorithms to be considered:

Absolute Thresholding Spike Detection Algorithm (ABS)

Spikes are detected by checking whether the input signal is above or below a certain threshold. In
the case of symmetric thresholds, the resulting indicator signal is given by y D jf j (cf. Section
5.1). The ABS method is simple and easy to implement, but very sensitive to noise. This
algorithm from Category A is included since it is well-known and still used extensively for
spike detection, see for example (Daus et al., 2011; Karkare et al., 2013; Takekawa et al., 2010;
Wallace et al., 2008).

Precision Timing Spike Detection Algorithm (PTSD)

A more advanced algorithm of Category A is described by Maccione et al. (2009). The indicator
signal y is based on absolute voltage differences between local minima and maxima within a
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predefined time-period denoted peak lifetime period. Whenever such a difference is greater than
the threshold, the corresponding signal segment is classified as a spike.

Hybrid Blind Beamforming Spike Detection Algorithm (HBBSD)

The HBB spike detection algorithm is the only representative from Category B and is described
by Natora et al. (2010). First, template spike forms are computed by utilizing higher order
statistics. Second, the indicator signal y results from convolving these templates with the
original signal. No prior knowledge of spike forms are needed and the algorithm also takes into
account that there can be more than just one spike template.

Multiresolution TEO Spike Detection Algorithm (MTEO)

The multiresolution Teager energy operator (MTEO) is defined by Choi and Kim (2002) as

BqTEO.f Œn�/ D f
2Œn� � f Œn � q�f ŒnC q�; (5.3.5)

where q 2 NC denotes a resolution parameter. Since it is easy to show that BTEO.A cos.˝nC
�// ' A2 sin2.q˝/ (cf. Eq. (5.2.6)), the parameter q is related to the frequency of action
potentials. As the optimal value of q depends on the width of action potentials, the simultaneous
use of different values is advantageous (Choi and Kim, 2002). Choi et al. (2006) have shown,
that values 1, 3 and 5 lead to reasonable results in the context of spike detection. Additionally,
Hamming windows of length 4q C 1 are normalized by the noise power for each value q (Choi
et al., 2006, Eq. (13)). Thus, each q-channel contributes with an equal weight to the indicator
signal y, which is composed by a maximum filter picking for every time instance the maximum
from the three smoothed TEO outputs.

Stationary Wavelet Transform based Spike Detection Algorithm (SWT)

This spike detection algorithm is based on the stationary wavelet transform and is introduced by
Shalchyan et al. (2012). The input signal is decomposed into five levels of a stationary wavelet
transform, in the following denoted withWj , with j denoting the corresponding decomposition
level. These detail coefficients are then thresholded by the following level dependent threshold
�j D 0:8

p
2 log.N /MAD.Wj /=0:6745, where N is the signal length and MAD denotes the

median absolute deviation operator (Shalchyan et al., 2012, Eq. (5)). This gives W�j and the
energy of each thresholded scale j is computed according to EWj D

P
n.W�j Œn� �W�j Œn�/

2,
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K 0 D 1 K 0 D 5 K 0 D 9

L0 D 1 80:6 80:6 80:4

L0 D 33 81:0 80:9 80:6

L0 D 67 81:4 81:4 81:2

L0 D 101 81:9 81:8 81:5

Figure 5.5 & Table 5.1: Performance of the TIFCO algorithm with Hann windows of various
lengths and with averaging kernels � of different size.

where the overline denotes the mean. The absolute values of the three scales with the largest
energy are summed up and the resulting function is smoothed by a Bartlett window. Why only
80% of the threshold is used is not justified and might be the reason why this algorithm does not
yield good performance in the simulated data sets proposed here. Note that the SWT algorithm
is the only algorithm which does not follow the basic scheme in Figure 5.1. Individual sub-bands
of the SWT are thresholded before a decision variable is accumulated.

5.3.5 Parameter Evaluation

The following parameter evaluation for both proposed algorithms are based on the HAB data set
with noise level � 2 Œ1; 2; : : : ; 11�. For each noise level 20 independent test signals are averaged,
before the mean value of all noise levels leads to the mDR as defined in (5.3.4).

Parameter Choice for the TIFCO Algorithm

The time sampling parameter a and the number of frequency bins M do not directly influence
the performance, but rather the run time of the algorithm. Hence, these parameters are fixed to
a D 1 andM D 101 in the following. Further, the frequency interval is adapted to spike specific
time-frequency patterns as depicted in Figure 5.3, i.e., f min D 500Hz and f max D 3500Hz.
This leaves the choice of the window function g and the filter kernel �.

Firstly, windows g are chosen to be compactly supported in frequency domain such that the
width can be properly specified. Figure 5.5 shows the performance of the TIFCO algorithm
based on Hann windows with increasing length. The best performance is found for a length of
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Wavelet mDR Wavelet mDR

db1 80:8 sym7 80:9

db4 79:5 coif1 81:7

sym4 81:9 bior3.9 81:6

sym5 82:1 rbio3.9 80:8

Figure 5.6 & Table 5.2: Performance of the SWTTEO algorithm using smoothing windows of
various lengths and different wavelets.

1750 Hz, corresponding approximately to a window size of 2.3 ms, which seems a reasonable
result. The window width is larger than a spike duration, but not too large in order to avoid
multiple spikes in a single data segment.

Secondly, the choice of the 2-D filter kernel � is motivated by the characteristic time-frequency
pattern of spikes. This implies a kernel which puts emphasis on a few consecutive large
coefficients in time direction as well as sequential large coefficients over several frequencies.
In order to emphasize this spike pattern a moving average kernel is chosen, but other choices
like Gaussian or sharpening filters as well as nonlinear approaches such as median filters are
possible. The average kernel � 2 RK0�L0 is defined by

�Œk0; l 0� D
1

K 0 � L0
; (5.3.6)

for all k0 and l 0. If K 0 D L0 D 1 no filtering is done. The results in Table 5.1 show that
averaging over all frequency coefficients yields the best performance rate as the influence of 1/f
noise is attenuated.

Parameter Choice for the SWTTEO Algorithm

It can be empirically verified that a decomposition level of 2 for the SWT leads to the best
performance, which also confirms the results of Nabar and Rajgopal (2009). Further, the
performance of the SWTTEO algorithm based on a selection of different wavelets can be seen
in Table 5.2, where the naming convention of wavelets follows the MATLAB notation (see the
MATLAB routine wfilters and references therein). With a decomposition level of 2 and a
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smoothing window of length 1.3 ms, the sym5-wavelet gives the best mDR.
Figure 5.6 illustrates the performance of the SWTTEO algorithm with respect to smoothing

windows of increasing lengths. Obviously, smoothing the output of the energy operator indeed
increases the accuracy of the SWTTEO algorithm (a window length of 0 ms in Fig. 5.6 indicates
no smoothing). The best performance is achieved for window lengths which are close to the
spike duration. Further, the results in Figure 5.6 indicate that the performance is robust even if
spike durations are not known explicitly a priori, as within the range of 1 to 2 ms the performance
decrease is only marginal.

Parameter Choice for Current State-of-the-Art Algorithms

The choice of parameters for the comparison algorithms described in Section 5.3.4 is crucial
for a fair comparison. Therefore, recommended values according the respective literature are
empirically adjusted for optimal performance based on the HAB and the UL data set. This
results in the following parameters.

The WTEO algorithm is based on the sym5 wavelet and a decomposition level of 2. Originally,
the db4 wavelet is suggested by Nabar and Rajgopal (2009), however, the sym5 wavelet leads to
a better performance. The SWT algorithm uses a decomposition level of 5 with the same sym5
wavelet. For the HBBSD algorithm the filter length is set to 1.4 ms and the remaining parameters
are chosen as proposed by Natora et al. (2010, Sec. III.C). The PTSD algorithm requires a peak
lifetime period and a refractory period, which were set to 0.5 ms and 1.2 ms respectively. The
MTEO as well as the ABS algorithm do not have additional parameters.

5.4 Results

5.4.1 HAB Data Set

In the following numerical evaluations, test signals of length 6 s are generated with 100 randomly
inserted spikes at a sampling frequency of 10 kHz. The noise level is varied by choosing � from
the interval Œ1; 2; : : : ; 11� and for each noise level the resulting performance is averaged over 20
independent test signals.

First, the performance of all considered algorithms is evaluated based on the detection rate
(DR) illustrated in Figure 5.7. The resulting DR and corresponding standard deviation are shown
in Figures 5.7a and 5.7b. It shows that both proposed algorithms achieve a higher detection
rate compared to all current state-of-the-art algorithms, regardless of the noise level. The
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(a) Detection rate (b) Standard deviation

Figure 5.7: Detection rate and corresponding standard deviation depending on different signal-
to-noise ratios for the HAB data set.

mean detection rate (mDR) for the SWTTEO and the TIFCO methods are 82.285 and 82.094
respectively, followed by the HBBSD algorithm with 80.503, the PTSD with 78.76 and the
MTEO with 77.48. The poor performance of the WTEO algorithm results from not smoothing
the TEO output as well as expanding decimated wavelet coefficients. Both accentuate noisy
spikes.

Second, Figure 5.8 shows ROC curves for noise levels � 2 Œ4; 6; 8; 10�. For each algorithm,
the TPR is computed by thresholding the indicator signal y to yield the desired false positive
rate (FPR). Apart from the WTEO, SWT and ABS algorithm, the majority of the algorithms
perform quite similar for small noise levels �. The performance gap between both proposed
algorithms and current state-of-the-art algorithms emerges with increasing � and emphasizes
the superiority of the TIFCO and SWTTEO algorithm.

5.4.2 UL Data Set

The data set from the University of Leicester has been simulated at a sampling rate of 24 kHz,
requiring adjustments for minimum and maximum frequency of the TIFCO algorithm. There-
fore, the parameters f min and f max are changed to 1 kHz and 8 kHz respectively. All other
parameters remain as previously described, as empirically adjusting these parameters does not
lead to significant performance improvements. Further, in order to separate overlapping spikes
the analyzing window function for the Gabor transform needs to be more narrow. But, this short
window may cause spikes with longer durations to be detected twice: the positive and negative
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(a) � D 4 (b) � D 6

(c) � D 8 (d) � D 10

Figure 5.8: ROC curves for all tested algorithms with four different noise levels � based on the
HAB data set.

part separately. Choosing a wider window in contrast reduces the chance to detect overlapping
spikes. A reasonable tradeoff can be achieved by setting the window width for the DGTSF to
3000 Hz.

Figure 5.9 shows for each algorithm the percentage of correctly identified spikes depending
on the eight different noise levels of the UL data set. The HBBSD algorithm is not included
since reasonable spike templates could not be found. For small as well as large noise levels both
proposed methods outperform all other spike detection algorithms. At the largest noise level,
both proposed methods still achieve a detection rate of approximately 80% in contrast to only
44% correctly detected spikes by the ABS algorithm. The tradeoff of the window length is the
main reason why the TIFCO algorithm shows a slightly inferior performance to the SWTTEO
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Figure 5.9: Detection rate of spike detection algorithms in dependance on the noise level based
on the UL data set.

algorithm. Here, the length of the smoothing window for the SWTTEO algorithm does not
influence the detection of overlapping spikes. As mentioned before, the results in Fig. 5.9 can be
directly compared with the piecewise optimal morphological filter approach by Liu et al. (2012,
Table 1). Liu et al. based their evaluations on the same data set, but only up to a noise level of
0.2. Their algorithm achieved a corresponding detection rate of 95.18%, whereas the SWTTEO
approach obtains 98.56% and the TIFCO 98.27% for the same noise level (0.2). Unfortunately,
there are no results for larger noise levels, but based on the detection rates it can be concluded
that the performance will be inferior to both proposed approaches.

5.4.3 Runtime

The future development of microelectrode arrays with higher density require fast algorithms
for spike detection. Therefore, a basic run time evaluation of both proposed spike detection
algorithms is visualized in Figure 5.10. The run time is compared with the ABS algorithm which
has the lowest computational complexity. For each signal length, Figure 5.10 shows the mean
and standard deviation of 10 independent runs. It is not surprising that the TIFCO approach
performs worst, as it has the most computational expensive steps. The SWTTEO algorithm is
in the best case one order of magnitude slower than the ABS algorithm. Nonetheless, it is still
feasible to use the SWTTEO algorithm whenever online spike detection (during acquisition) is
required (Franke et al., 2012).
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Figure 5.10: Run time comparison of both proposed algorithms and the ABS algorithm.

5.5 Application to MEA Recordings

In real MEA recordings the number of spikes present is in general unknown. This requires an
appropriate choice of the threshold to extract spike locations from the indicator signal y. A
widely used method is based on choosing the threshold to be a multiple of the noise level in
the recording. This noise level can be estimated either statically or dynamically as the standard
deviation of the signal’s noise (Daus et al., 2012). In combination with the simple thresholding
algorithm (ABS), multiplication factors ˛ typically range between 4 and 6 (Karkare et al., 2013;
Nick et al., 2014; Regalia et al., 2016). Such approaches, however, are not easily applicable to the
proposed algorithms SWTTEO and TIFCO, since a reasonable choice of multiplication factors
is difficult. The range of the indicator signal y does not depend on the noise level anymore and
might differ for different electrodes. Therefore, a novel approach has been introduced by Mayer
et al. (2018), which combines the well established simple thresholding with the more reliable
SWTTEO approach.

The proposed spike detection algorithm for MEA recordings can be described as follows.
First, the noise level �est in a recording is estimated using methods described in (Biffi et al.,
2010; Nick et al., 2014). Both methods are essentially based on windowing the recording
with a subsequent estimation of either the root-mean-square or some percentiles of the voltage
distribution. The threshold �est then results by multiplying the estimated noise level with some
fixed factor ˛. All positions where the recording exceeds�est D ˛�est are considered as potential
spike candidates. The resulting number of potentially detected spikes is then used to detect the
same number of candidate spikes using the SWTTEO algorithm. This results in two independent
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(a) Test signal with indicated thresholds for multi-
plication factors ˛ D 4 (black) and ˛ D 6 (red).

(b) False positive rate with standard deviation

Figure 5.11: False positive rate (FPR) for the proposed algorithm based on different multipli-
cation factors ˛.

spike candidate lists of equal length. In the last step both lists are intersected and only those
spikes which have been detected by both algorithms remain. This obviously reduces the number
of detected spikes, but it also reduces the false positive rate (FPR).

Results based on the simulated HAB data set can be seen in Figure 5.11. On the left side
Fig. 5.11a shows a simulated MEA signal with � D 5, where 100 spikes are present. The
threshold threst is indicated by black and red horizontal lines for multiplication factors ˛ D 4

and ˛ D 6. The proposed algorithm then gives the false positive rate illustrated in Fig. 5.11b
with respect to different values for ˛. For comparison the FPR for the ABS algorithm as well
as the SWTTEO algorithm are included. For each multiplication factor ˛ the FPR is averaged
over 20 independent simulations and the mean and standard deviation are visualized.

The simulated results justify the combination of the two spike detection algorithms for a more
sensitive analysis of electrophysiological processes of human embryonic stem cells. At the same
time, the approach can be based on well known concepts for unsupervised spike detection. This
will be useful in order to determine the influence of antiepileptic drugs and ionized radiation on
electrophysiological properties of 3D neuronal networks (Mayer et al., 2018).

5.6 Conclusion

Two novel spike detection algorithms have been introduced, one exploiting spike specific fre-
quency patterns and the other analyzing energy of stationary wavelet coefficients. The per-
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formance of both algorithms is compared to current state-of-the-art methods based on two
simulated data sets. Regardless of the used data set, both proposed approaches show superior
performance. This is also visualized in Fig. 5.1, where only the SWTTEO algorithms detects all
spikes correctly. Furthermore, a straightforward application to real MEA recordings has been
introduced, combining a well-established method for threshold selection with the sensitivity of
the SWTTEO approach.

The marginal superiority of SWTTEO over TIFCO might lead to the question what the
advantage of the TIFCO algorithm is. Other than the SWTTEO, the TIFCO algorithm is a basic
framework with a simple moving average filter to emphasize spike features. More sophisticated
algorithms originating from image processing can be considered to further accentuate spike-
specific frequency patterns. Further improvement may also be drawn from evaluating the phase
of complex time-frequency coefficients. So far, only the magnitude is utilized to extract spike
features. More advanced algorithms from the field of audio processing like reassigning the time-
frequency plane (Auger et al., 2013) are based on the phase and may improve the performance of
the TIFCO algorithm. Additionally, it is noted that using a time-frequency representation based
on wavelet frames as introduced in Section 3.4 does not lead to an improved performance. This
is not surprising, since spike durations are usually within a certain range, which makes fixed
length windows more appropriate rather than scaled ones.

Both proposed algorithms perform reasonably well in the case of overlapping spikes without
any further adjustments. However, for the TIFCO approach the length of the window function
directly influences the separability of overlapping spikes, leaving room for further improvement.
For instance, the DGTSF can be computed with two windows of different length. A short one
to distinguish overlapping spikes and a longer one to reduce the chance of detecting the same
spike twice. The SWTTEO algorithm also does not explicitly handle overlapping spikes. Here,
an additional feature extraction of corresponding wavelet coefficients as proposed by Song and
Li (2015) can enhance the detection of overlapping spikes even further.

In MEA recordings the absolute number of spikes present is usually unknown. This com-
plicates the sole usage of one of the proposed methods, since an appropriate threshold needs
to be estimated. This threshold can be based on the amount of noise present in the original
signal f , but can also depend on noise present in the decision variable y. Further, approaches
independent of noise levels, like evaluating the energy of spike indicators in the decision variable
y might lead to better threshold estimates. Only if these threshold estimates are reliable, the
spike detection algorithms TIFCO and SWTTEO can be evaluated on real data-sets.
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Chapter 6

Peak Detection for MALDI Mass
Spectrometry Using Frame Multipliers

6.1 Introduction

Matrix assisted laser desorption ionization (MALDI) is a widely used form of imaging mass
spectrometry, analyzing molecular compositions of tissue sections as described in more detail
in Section 1.3. Following these introductory remarks, the processing of MALDI imaging data
can be structured as shown in the schematic diagram in Figure 6.1. This pipeline is proposed by
Alexandrov et al. (2010) and has been modified to include all preprocessing steps.

First, initial preprocessing includes baseline removal, spectra smoothing and normalization.
Obtained spectra exhibit an intensity offset for lowerm=z values which originate from resulting
clusters of the applied matrix during ionization (Sun and Markey, 2011). This offset is called
baseline and might differ for each spectrum. Sophisticated algorithms for baseline removal are
based on asymmetric least squares (de Noo et al., 2006), wavelets (Sun and Markey, 2011) or
top hat filters (Sauve and Speed, 2004). After removing the baseline, Deininger et al. (2011)
illustrated the advantages of normalizing MALDI imaging data spectra wise. A frequently used
normalization procedure is the total ion count (TIC) normalization, which is shown to reduce
artifacts resulting from matrix inhomogeneities. Spectra smoothing is also a quite commonly
used preprocessing approach (Bauer et al., 2011; Du et al., 2006; Shin et al., 2010; Sun and
Markey, 2011; Wijetunge et al., 2015; Yang et al., 2009). Such methods include wavelet based
denoising (Coombes et al., 2005b; Kwon et al., 2008; Shin et al., 2010) and Savitzky-Golay or
Gaussian filters (Yang et al., 2009).
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Spectra Preprocessing

Peak Picking

Edge-Preserving Denoising

Further Analysis like
Segmentation or Clustering

Baseline Removal
Normalization
Spectra Smoothing

Selection of Relevant Peaks

Smoothing m=z Images

Grouping Spectra

Figure 6.1: MALDI processing pipeline (adapted from Alexandrov et al., 2010, Scheme 1).

After preprocessing peak picking algorithms detect prominent peaks in mass spectra, se-
parating peaks corresponding to molecules from noise. This noise might arise from varying
thickness of the applied matrix, artifacts resulting from ion suppression or from electronic noise
(Deininger et al., 2011). Shin et al. (2010) showed that the variance of the noise is larger in lower
mass regions and decreases with increasingm=z values. This makes accurate peak picking quite
challenging, since any further analysis like spatial segmentation or clustering groups of similar
spectra are based upon the detected peaks. After selecting prominent peaks, Alexandrov et al.
(2010) demonstrated that smoothing m=z images greatly enhances segmentation results. This
is also confirmed and further improved by Kobarg (2014).

The number of proposed peak picking algorithms is quite large with highly diverse approaches.
Early MALDI peak picking approaches are based on simple local maxima (Breen et al., 2000) or
fitting Gaussian distributions to mass peaks (Kempka et al., 2004). More advanced algorithms
make use of the continuous wavelet transform (CWT) (Antoniadis et al., 2010; Du et al., 2006;
Lange et al., 2006) or the discrete wavelet transform (Alexandrov et al., 2009; Coombes et al.,
2005b; Kwon et al., 2008). Especially the CWT approach based on ridges and zero-crossings
of wavelet coefficients have gained recent popularity (Antoniadis et al., 2010; Du et al., 2006;
Zhang et al., 2015). Two independent comparisons of MALDI peak picking algorithms favor
wavelet approaches over other conventional methods (Bauer et al., 2011; Yang et al., 2009).

Wijetunge et al. (2015) recently introduced a new peak detection algorithm. Their approach
has shown superior performance compared to the ridge line wavelet approach from Du et al.
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(2006), the discrete wavelet transform based algorithm from Coombes et al. (2005b) and a
Bayesian approach based on adaptive regression kernels (House et al., 2011). Simulations
were performed on a publicly available data set, mimicking the features of real MALDI-TOF
data. This makes the Wijetunge approach an ideal candidate to verify performance of the newly
proposed peak picking algorithm.

The peak picking algorithms described above are all based on spectra wise peak picking.
Spatial information, however, might improve the peak picking process. Large peaks which are
spatially surrounded by small peaks might be more likely to be ignored. In contrast, a relative
small peak in a neighborhood of larger peaks might be relevant. Alexandrov and Bartels (2013)
introduced an algorithm which detects peaks not spectra wise, but in correspondingm=z images.
This is shown to evidently improve the sensitivity of peak picking algorithms compared to other
classical spectra wise methods (Alexandrov and Bartels, 2013, Fig. 5).

The algorithm proposed in the following is also based on spectra wise peak detection, but can
be modified to include spatial information. The combination of spectra wise peak picking and
spatial awareness reduces the second and third steps in Figure 6.1 into a single step. This implies,
that the proposed algorithm edge-preservingly smooths m=z images while detecting peaks.
Furthermore, the algorithm is designed such that preprocessing spectra becomes obsolete. By
dividing spectra into small sections baseline effects, for example, can be sufficiently suppressed
by the algorithm. Essentially, the proposed algorithm inherently combines the first three pipeline
steps in Fig. 6.1 into a single step, reducing computational complexity significantly.

6.2 Algorithm Description

The peak picking algorithm introduced in the following can be split into two variants. The basic
approach is a spectra wise algorithm, whereas the modified version also utilizes neighboring
spectra. Both methods are described in detail in the following sections, after defining some
required mathematical concepts first.

6.2.1 Frame Multiplier

The proposed approach is based on an adapted and further improved audio processing algorithm
tracing sound objects in nonstationary background noise based on Gabor multipliers (Dörfler and
Matusiak, 2013, 2014). Especially the time-varying noise behavior justifies such an approach for
detecting peaks in MALDI-TOF data, since the noise level of spectra decreases with increasing
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mass-to-charge ratio (Kwon et al., 2008; Shin et al., 2010; Wu et al., 2010). A key concept for
the proposed peak picking algorithm are frame multipliers (Balazs, 2007), where the involved
frame elements depend on two parameters, e.g., time and frequency.

Definition 6.2.1 (Frame Multiplier). Let gk;l and k;l be a frame and its dual and denote by ˚g
and ˚� the analysis and synthesis operators of the corresponding frames. Further, let Im be a
diagonal operator in the corresponding transform domain. Thus, for any suitable f 2 L2.R/
the operator Mm W L

2.R/! L2.R/ defined by

Mmf D ˚
�
 Im˚gf D

X
k;l2Z

mk;l
˝
f; gk;l

˛
k;l ; (6.2.1)

is called a frame multiplier with frame mask mk;l 2 L1
�
R2
�
.

Essentially, the frame multiplier acts in the transform domain of frame g by a pointwise
multiplication with mask m and a subsequent inverse transform based on  . Balazs (2007)
showed that the frame multiplier is bounded whenever m 2 L1.R/. The easiest example of a
frame multiplier is given, with a slight abuse of notation, by settinggk;l and k;l to be the complex
exponential gk;l.�/ D e2�ik� and its complex conjugate: a convolution operator. Whenever gk;l
and k;l are Gabor frames as defined in Definition 3.2.1, the multiplier Mm is known as a
Gabor multiplier first introduced by Feichtinger and Nowak (2003). Such Gabor multipliers
are usually used with a known mask m to filter time-frequency coefficients by enforcing certain
structures and suppressing unwanted time-frequency components (Balazs et al., 2010). The
mask m, however, can also be used to measure similarity between two signals f1 and f2 by
considering the following equation

f2 D
X
k;l2Z

mk;l
˝
f1; gk;l

˛
k;l : (6.2.2)

Assuming that f1 has non-vanishing coefficients
˝
f1; gk;l

˛
, the frame mask m describes the

transition of f1 to f2 in the corresponding domain. Depalle et al. (2007), Kronland-Martinet
et al. (2010) and Olivero et al. (2013) utilized this concept in order to morph one sound signal
into another. For example, Kronland-Martinet et al. (2010) morphed a clarinet tone into a
saxophone tone by estimating masks m with specific characteristics. On the other hand, this
approach can also be used to identify differences between two signals. If f1 D f2 then the mask
is m D 1 for all k; l 2 Z. Otherwise, the mask m indicates how much, and, in particular, at
which spatial locations both signals differ.
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6.2.2 Multiplier Estimation with Sparsity Constraints

Given two signals f1 and f2, similarity between these two signals can be measured by estimating
the mask m in (6.2.2). Obviously, a simple approach would be to set

mk;l D

˝
f2; gk;l

˛˝
f1; gk;l

˛ ; (6.2.3)

which might be unbounded in general. Using some appropriate regularization term d.m/

depending on the mask m and a regularization parameter � > 0, similarity can be estimated by
the following minimization problem

min
m

1

2
kf2 �Mmf1k

2
2 C �d.m/: (6.2.4)

A reasonable choice for the regularization term d.m/ is given by d.m/ D kjmj � 1k1, intro-
ducing sparse frame masks (Dörfler and Matusiak, 2014; Kronland-Martinet et al., 2010). It
is further shown that considering only the magnitude of masks reduces spurious noise artifacts
whenever transform coefficients are complex valued, e.g., for Gabor frames (Kronland-Martinet
et al., 2010).

The sensitivity can be adjusted with the regularization parameter�. For relatively small values
any difference between the transform coefficients of f1 and f2 is captured by the mask. With
increasing � small deviations between the transform coefficients are ignored and the resulting
mask is set to 1. This way, only the most prominent differences between f1 and f2 can be
detected.

Unfortunately, the inverse problem in (6.2.4) does not admit a closed form solution. Rewriting
this equation gives

min
m

1

2

˚� �˚gf2 �m � ˚gf1�22 C �d.m/: (6.2.5)

Minimizing this expression is not easy, since the operator ˚� is not injective. As suggested by
Dörfler and Matusiak (2014) and Olivero et al. (2013) it is sufficient, however, to formulate the
problem in the transform domain. For notational convenience let the transform coefficients be
denoted by

c1 D ˚gf1 D
˝
f1; gk;l

˛
; c2 D ˚gf2 D

˝
f2; gk;l

˛
; (6.2.6)
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where the dependence on k and l is implicit from now on. The resulting inverse problem

m D arg min
m

1

2
kc2 �mc1k

2
2 C � kjmj � 1k1 ; (6.2.7)

then admits a closed form solution. For the purpose of detecting peaks this expression can be
further simplified. Whenever the coefficients c1 and c2 are complex valued, e.g., for Gabor
frames only the magnitude contains valuable information. Replacing c1 and c2 with its magni-
tude, the absolute value of the mask in the regularization term can be omitted. The following
Theorem 6.2.2 derives the closed form solution of the simplified inverse problem stated in
(6.2.7).

Theorem 6.2.2. Let c1 and c2 be the transform coefficients of f1 and f2 with corresponding
frame gk;l as defined in (6.2.6). The simplified minimization problem of (6.2.7)

m D arg min
m

1

2
kjc2j �m jc1jk

2
2 C � km � 1k1 ; (6.2.8)

has the following closed form solution

m D

�
jc2j

jc1j
� 1

�0@1 � �

jc1j
2
ˇ̌̌
jc2j
jc1j
� 1

ˇ̌̌1AC C 1; (6.2.9)

where .�/C D max.0; �/ denotes the maximum with zero.

Proof. Obviously, m D 1 whenever jc1j is trivial. Assuming that jc1j is non-trivial leads to

0 2 rm

�
1

2
kjc2j �m jc1jk

2
2

�
C �@ .km � 1k1/

, 0 2 m jc1j
2
� jc2j jc1j C �@ .km � 1k1/

, m 2
jc2j

jc1j
�

�

jc1j
2
@ .km � 1k1/ : (6.2.10)

The subdifferential of the `1-norm consists of the following subgradients, which can be evaluated
for each coefficient separately

@ jm � 1j D

8̂<̂
:
f1g if m > 1

f�1g if m < 1

Œ�1; 1� if m D 1
: (6.2.11)
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Considering all three cases in (6.2.10) leads to the closed form solution

m D

8̂̂̂̂
<̂
ˆ̂̂:
jc2jjc1j��

jc1j
2 if jc2j

jc1j
� 1 > �

jc1j
2

jc2jjc1jC�

jc1j
2 if jc2j

jc1j
� 1 < � �

jc1j
2

1 if � �

jc1j
2 �

jc2j
jc1j
� 1 � �

jc1j
2

: (6.2.12)

With y D jc2j jc1j�1, the equivalence of (6.2.12) and (6.2.9) follows directly: assuming
1 � � jc1j

�2
jy � 1j�1 � 0 in (6.2.9) is equivalent to the third row in (6.2.12). On the other

hand, 1 � � jc1j�2 jy � 1j�1 > 0 leads to the first and second row of (6.2.12) by considering
the cases y � 1 > 0 and y � 1 < 0, respectively.

6.2.3 Peak Picking Algorithm

Basic Algorithm

Based on Theorem 6.2.2 the peak picking algorithm can now be defined in a finite dimensional
setting as follows. Let f 2 RL be a single raw MALDI spectrum of length L. This signal is
divided into overlapping slices fi of length� and overlap o 2 .0; 1/. An overlap between slices
is required, otherwise peaks might be unintentionally separated into two consecutive slices. For
both slices the transform coefficients based on the given frame gk;l can be computed in the next
step. Frames, which might be interesting to consider are Gabor and wavelet frames, resulting in
either time-frequency or time-scale coefficients. From these coefficients the mask m can now
be estimated using (6.2.9) for a given regularization parameter �.

Once the mask is estimated, it indicates at the most prominent differences between two
consecutive and overlapping transform coefficients ci and ciC1 for corresponding fi and fiC1.
If both slices are similar with respect to �, the mask is constant and supposedly no peak is
present. Otherwise, if the mask takes values different from 1, a closer inspection might indicate
possible peak locations. Generally, there are three possible cases to consider:

� There is a peak present in fi and no peak at the same position in fiC1, resulting in values
smaller than one in the maskmi , in order to lessen the influence of large coefficients in ci
compared to ciC1.

� A peak in fiC1 and no peak at the same location in fi yields a mask with coefficients
larger than one.
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� There are peaks in fi and fiC1 at the same location, meaning that these two peaks are
located exactly .1 � o/� apart in the original spectrum f . Both transform coefficients
might not differ significantly enough for the mask mi to deviate from a constant one.

From the first two cases, peak locations can be easily estimated by considering the values of
mi � 1. Resulting negative values, denoted in the following by .�/neg, are accumulated directly
by summing the absolute mask coefficients over all frequency/scale indices,

zik D
X
l

ˇ̌̌̌�
mik;l � 1

�
neg

ˇ̌̌̌
: (6.2.13)

With every slice fi the signal zi
k

then accumulates to an indicator signal for peaks. On the other
hand, positive entries inmi � 1, indicating at a peak in fiC1, can be used in the subsequent step
when the difference between fiC1 and fiC2 is estimated as an additional source of information.
Obviously, when analyzing miC1 negative coefficients are expected at the positions where in
the preceding step positive coefficients occurred. If this is the case, it can be proceeded with
(6.2.13). If, however, m � 1 is zero, where negative coefficients are expected it can only be
due to the third case mentioned above. In such cases, the information of preceding as well as
subsequent masks can be used to circumvent that peaks are getting ignored, whenever peaks
are present in two subsequent slices fi and fiC1 at the same relative location. The mask for
fi�1 and fi should lead to positive values and negative values for fiC1 and fiC2, provided all
peaks in the spectrum are not periodically spaced. In MALDI data such regular patterns can be
neglected though.

In general, Equation (6.2.9) tends to be more sensitive for peaks in fi instead of fiC1, since
the regularization parameter � gets weighted with jci j2. Consequently, the first case of the three
mentioned above is usually the one occurring most. A summary of the proposed peak picking
approach can be found in Algorithm 10. Note that the inner products in line 3 and 4 are finite
dimensional with respect to the frame length �. Additionally, the computation for N spectra
can be done using an additional loop or, as implicitly indicated in Algorithm 10, a vectorized
approach.

Slicing spectra into smaller parts has several advantages. First, a raw spectrum could be
analyzed without preprocessing the baseline. If the slice length � is chosen small enough,
the influence of baseline effects of two consecutive slices can be made negligibly small. A
second advantage is that the algorithm’s sensitivity can be adjusted to the noise level. Based on
time-frequency or time-scale coefficients for both slices, the amount of noise present in these
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Algorithm 10: MALDI Peak Picking Algorithm

Input : f 2 RN�L - Raw MALDI data,
� 2 RC - Regularization parameter,
� - Length of slices,
o - Overlap between slices,
gk;l - Frame of length �,

Output: z 2 RN�L

1 M  Total number of slices with length � and overlap o dividing L
2 for i D 0; 1; 2; : : : ;M � 1 do
3 c1  

˝
fi ; gk;l

˛
4 c2  

˝
fiC1; gk;l

˛
5 y  jc2j jc1j

�1

6 mi  .y � 1/
�
1 � �

jc1j
2
jy�1j

�C
C 1;

7 zi  
P
l

ˇ̌̌̌�
mi
k;l
� 1

�
neg

ˇ̌̌̌
8 end
9 z  

P
i zi

slices can be estimated, e.g., using the noise variance estimation proposed by Mallat (2008,
Eq. (11.85) on p. 565). The regularization parameter � can then be weighted according to the
noise level. Hence, the sensitivity increases whenever the noise variance decreases within a
single spectrum.

Modified Algorithm with Spatial Awareness

The algorithm described in the previous section can be modified to allow spatial awareness. In
the context of MALDI, this means the peak picking process depends on neighboring spectra.
The possibility of a peak being detected is larger if the spectra of neighboring spots also contain
peaks at approximately the same m=z ratio. Whereas a peak surrounded by noise in the spatial
neighborhood might be more likely to be ignored.

The spatial awareness can be included in the closed form solution of the mask m similar to
the Windowed Group LASSO approach in (4.2.14), with the remaining algorithm as described
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in Algorithm 10. To formulate the spatial awareness mathematically, let for every spectrum the
set N be its neighboring spectra, including the actual spectrum itself. Further, denote by wj ,
j 2 N , a weight corresponding to each neighbor such that

P
j2N wj D 1. By defining

Qy D
X
j2N

wj

ˇ̌
c2;j

ˇ̌ˇ̌
c1;j

ˇ̌ : (6.2.14)

and
Qc1 D

X
j2N

wj c1;j ; (6.2.15)

based on transform coefficients c1 and c2 of neighboring spectra, the estimation of the mask m
can be formulated as

m D

�
jc2j

jc1j
� 1

��
1 �

�

j Qc1j
2
j Qy � 1j

�C
C 1: (6.2.16)

This scales the regularization parameter � for each coefficient depending on the characteristics
of neighboring spectra. The weights w can, for example, be a simple average kernel, where
each element is defined by wj D 1

jN j8j 2 N and jN j denotes the cardinality of N . Other
choices of weights could include Gaussian kernels with different variances or circular average
filters. Non-linear approaches such as median filters (Lim, 1990, Ch. 8.2.2) or edge-preserving
Kuwahara filters (Bartyzel, 2016; Kuwahara et al., 1976) are also possible.

6.3 Results Simulated Data

6.3.1 Data Set

The performance of the proposed peak picking algorithm is evaluated based on the same simu-
lated data set, which is used by Wijetunge et al. (2015). This data set is introduced by Coombes
et al. (2005a) and is based on the physical principles of time-of-flight mass spectrometry, emu-
lating characteristics of real MALDI-TOF data. In total, the data set consists of 2500 individual
spectra with annotated peak locations each having a length of 15,000 up to 30,000 samples.
Each spectrum is independent, which implies that the spatial awareness approach can not be
utilized in the simulated data set. For more detailed information on the model and computation
of the simulated data set it is referred to (Coombes et al., 2005a; Morris et al., 2005).
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6.3.2 Performance Measures

The following performance measures for evaluating the proposed algorithm are essentially
identical with the ones in (5.3.3). However, the naming convention is adapted to be consistent
with the measures mentioned by Wijetunge et al. (2015) and Yang et al. (2009), allowing a direct
comparability of results. For a single spectrum, the Sensitivity is defined as

Sensitivity D
Number of correctly identified peaks

Number of reference peaks
: (6.3.1)

The False Discovery Rate (FDR) is defined as

FDR D
Number of falsely identified peaks

Number of total peaks detected
: (6.3.2)

Ideally, an optimal peak picking algorithm has a Sensitivity of 1 and a FDR of 0. The larger the
Sensitivity and at the same time the lower the FDR, the better the performance of the algorithm.
Both values can be combined into a single performance measure, denoted by F1-score (Wijetunge
et al., 2015; Yang et al., 2009), defined by

F1-score D
2 � .1 � FDR/ � Sensitivity
1 � FDRC Sensitivity

: (6.3.3)

This gives a single performance value, taking the Sensitivity as well as the FDR into account.
In the following numerical evaluation, a peak is classified as correctly identified, if it is within
1% of the expected m=z value as proposed by Wijetunge et al. (2015) and Yang et al. (2009).

6.3.3 Parameter Settings

The following parameters for the peak picking algorithm are proposed. The length of slices is
set to 60 samples with an overlap of 0.5. The frame is set to be either a Gabor or a wavelet
frame as defined in Chapter 3, resulting in two distinct algorithms. The Gabor frame is based
on a Hann window with a width of 20 samples and a time- and frequency-sampling step size of
1 each, i.e., a D 1 and b D 1. The wavelet frame is based on the concept introduced in Section
3.4. The frame parameters have been chosen, such that the lower frequency range is oppressed
in order to reduce baseline effects. The parameters f min and bw are set to 1000 Hz each and the
number of bins is set to 30. The generating waveform is the Equalizer defined in (3.1.5). The
regularization parameter � controls the number of detected peaks and is chosen such that the
number of detected spikes equals the number of inserted spikes.
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Table 6.1: Performance of the proposed peak picking algorithms, showing mean and standard
error over all 2500 spectra.

Sensitivity (%) FDR (%) F1-score (%)

Wijetunge et al. (2015) 86:86˙ 0:18 28:89˙ 0:22 77:29˙ 0:14

Proposed algorithm (Gabor) 87:89˙ 0:08 20:70˙ 0:12 83:23˙ 0:09

- with baseline removed 94:26˙ 0:07 12:20˙ 0:14 90:76˙ 0:09

Proposed algorithm (Wavelet) 92:13˙ 0:07 19:81˙ 0:14 85:59˙ 0:10

- with baseline removed 92:14˙ 0:07 19:65˙ 0:14 85:70˙ 0:10

6.3.4 Results

The performance of the newly proposed algorithm is compared to the recently introduced peak
picking algorithm by Wijetunge et al. (2015). The algorithms are applied to all 2500 spectra
and the resulting mean Sensitivity, FDR and F1-score can be seen in Table 6.1. The proposed
algorithm is once evaluated without baseline correction and once with baseline correction using
the MATLAB routine msbackadj (Andrade and Manolakos, 2003). The results presented by
Wijetunge et al. (2015, Table 3) are reproducible, but are outperformed by the proposed peak
picking algorithm even with no baseline removed: the sensitivity is higher with a lower false
discovery rate. Using wavelet frames, the influence of the baseline can be completely disregarded
by an appropriate frame parametrization. The sensitivity of the proposed algorithm yields the
best performance at the lowest FDR for Gabor frames and a prior baseline removal.

The run time of Wijetunge’s algorithm is approximately 60 seconds for a single spectrum on
a 2.9 GHz i7 QuadCore processor, resulting in a computation time of more than 41 hours for all
2500 spectra. The proposed algorithm, however, takes roughly 5 minutes to process all 2500
spectra in a vectorized implementation of Algorithm 10.

6.4 Results Real Data

It is almost impossible to verify the performance of the proposed peak picking algorithm on
real MALDI data, since peak locations are generally not known. Nonetheless, it is possible
to apply the peak picking approach to MALDI data sets resulting in two possible applications:
peak picking and denoising. Treating the output z primarily as an indicator variable for possible
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Figure 6.2: Basic anatomical annotation of the rat brain data set (adapted from Alexandrov
et al., 2010, Fig. 5C).

peak locations leads to a classical peak picking application (similar as described in Chapter
5). Considering the output z, on the other hand, as actual ’spectra’ itself results in a strongly
denoised MALDI spectrum. It is important to note, that in this case, peak intensities in z do
not have any relation to peak intensities in the original spectrum and the term ’spectra’ is only
used to indicate the intended usage. Despite this drawback, it might be beneficial for revealing
certain structures in m=z images, which might be challenging to detect otherwise.

6.4.1 Data Sets

Linear TOF - Coronal Rat Brain Data Set

The rat brain data set has been used in quite a few publications (Alexandrov, 2012; Alexandrov
and Bartels, 2013; Alexandrov and Kobarg, 2011; Alexandrov et al., 2010; Jones et al., 2012).
A 10 µm tissue section of a rat brain was prepared for MALDI imaging using sinapinic acid
as a matrix. With a lateral resolution of 80 µm 20,185 spectra were acquired, each containing
6,618 m=z bins. The spectra are preprocessed by removing the baseline using a top hat filter
and TIC normalization before applying the peak picking algorithm. No spectra smoothing has
been applied. Figure 6.2 shows the schematically annotated rat brain atlas.

Reflector TOF - FFPE Lung Data Set

MALDI imaging based on formalin-fixed and paraffin-embedded (FFPE) tissue samples is
gaining increased interest in pathological applications (Aichler and Walch, 2015; Buck et al.,
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2015; Ly et al., 2016; Norris and Caprioli, 2013). Sample preparation and acquisition of the
following FFPE data set is similar as described in more detail by Boskamp et al. (2017). Briefly
summarized, MALDI imaging data of a human lung FFPE tissue sample was obtained in positive
ion reflector mode on a MALDI-TOF instrument by Bruker Daltonics (Autoflex Speed). The
data set consists of 3567 spectra, each containing 20992 samples in the mass range of 700 -
4000 m=z. The baseline has been removed prior to TIC normalization. Unfortunately, the lung
data set is not annotated.

6.4.2 Results Coronal Rat Brain Data Set

The peak picking approach based on Algorithm 10 is applied to the entire rat brain data set
with the following input parameters: the slice length and overlap remain as previously defined
(� D 60 and o D 0:5. The Gabor frame is based on a Hann window of width 15 samples. The
regularization parameter is fixed to � D 1:5e�3.

The resulting sparse output z then contains only nonzero values where a peak is detected.
The mean spectrum z over all spots is depicted in Fig. 6.3. Hereby, Figure 6.3a shows the mean
spectrum of the original rat brain data set. In comparison, the mean spectrum after peak picking
is visualized below in Fig. 6.3b. It shows the same prominent features as the original data set.
However, only 48% of all m=z images contain non-trivial coefficients. This means, that for
the remaining 52% of m=z values no peak is detected in any of the 20,185 spots. Clearly, this
procedure is sensitive to the choice of the regularization parameter �. Smaller values increase
the sensitivity, resulting in more detected peaks per single spectrum. Larger values, on the other
hand, increase the denoising effect by choosing less peaks. Recall from (6.2.13) that z, and
hence the mean spectrum of z, does not reflect original intensities anymore, but rather significant
changes between Gabor coefficients of two consecutive slices. This means the larger a peak in
z, the larger the difference between two slices. Despite this drawback, it might still be useful to
analyze m=z images after peak picking.

In the following, let the original approach as summarized in Algorithm 10 be denoted as the
basic approach. The modified approach proposed in (6.2.16) is based on an average filter for
a 3 � 3 neighborhood N . Hence, the filter coefficients are wj D 1

9
for all j 2 N . The basic

as well as the average approach are applied to the rat brain data set with the same parameter
settings as previously defined. Four selected m=z images are shown in Figure 6.4, where
corresponding m=z-values are indicated with a red triangle in the mean spectrum of Fig. 6.3.
The denoising effect of the proposed algorithm is clearly visible when comparing raw data with
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(a) Original mean spectrum

(b) Mean spectrum after peak picking

Figure 6.3: Mean spectra of the original rat brain data set and after peak picking. Red triangles
indicate m=z locations for Fig. 6.4

the basic or average approach. Additionally, the neighborhood based approach smooths peak
areas in m=z images, while preserving edges. This can be nicely seen, for example, in Figures
6.4c and 6.4d. The sensitivity of the proposed peak picking approach is large enough to also
detect low intensity peaks. Alexandrov and Bartels (2013) showed that the low intensity peak
at m=z D 4385:9, depicted in Fig. 6.4a, is not detected by other spectrum-wise peak picking
approaches. Nonetheless, detecting peaks which are present in a small number of spectra is
substantial in order to distinguish between matrix and actual protein peaks (Alexandrov and
Bartels, 2013, Fig. 5).

Detection of Overlapping Peaks

The detection of overlapping peaks is crucial whenever the sampling rate is low and isotopes are
not clearly separated. Figure 6.5 shows part of a rat brain spectrum with overlapping peaks and
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(a) m=z D 4385:8525

(b) m=z D 6223:2627

(c) m=z D 6717:3877

(d) m=z D 7060:0215

Figure 6.4: Four m=z images of the rat brain data set showing the raw data, data after basic
peak picking and data after spatially aware peak picking using an average filter.
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Figure 6.5: Detection of overlapping peaks in the rat brain data set. Local maxima in z are
indicated by dashed lines.

the output of the proposed peak picking algorithm z. Local maxima in z indicate the correct
positions of overlapping peaks in the original spectrum.

Whenever the proposed algorithm is based on Gabor frames, the capability of separating
overlapping peaks strongly depends on the chosen window width of the frame itself. If the
window function is too wide, two overlapping peaks might be detected as a single peak. On the
other hand, narrower windows might fail to correctly detect wider peaks in the spectrum. One
solution to overcome this shortcoming is to use so called multi-window Gabor frames (Zeevi
et al., 1998). Such frames consist of multiple single frames, where the window width varies
from frame to frame. This allows the combination of estimated masks from different frame
multipliers in order to improve the detection of overlapping peaks.

Using wavelet frames, on the other hand, the scaling of the window function simplifies the
detection of overlapping peaks. Additional steps, however, have to be taken in order to correctly
identify overlapping spikes from noise. If a peak is detected, wavelet coefficients corresponding
to scaling factors resulting in narrow wavelets reveal information whether this peak is a single
peak or consists of overlapping peaks. This is similar as proposed in the previous Chapter (Song
and Li, 2015).

Comparison with Edge-Preserving Denoising

Kobarg (2014) showed that smoothing m=z images enhances segmentation maps. The hereby
used bilateral filter preserves edges and local structures inm=z images. This bilateral smoothing
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(a) Original (b) Bilateral filtered

(c) Proposed algorithm (d) Proposed algorithm bilateral
filtered

Figure 6.6: Comparison of bilateral filtering and the proposed algorithm based on the spatially
aware approach with an average filter (m=z D 6223:2627).

filter has been introduced by Tomasi and Manduchi (1998) and can be summarized as follows.
A Gaussian low-pass filter with standard deviation �b smooths pixels in a w �w neighborhood.
Additionally, intensity differences of pixels inside this neighborhood are also weighted with a
separate Gaussian filter with standard deviation �b . Hence, sharp transitions between intensities
inside a neighborhood remain, whereas similar intensities are smoothed.

Figure 6.6 demonstrates the effects of a bilateral smoothing filter on the same data as shown by
Kobarg (2014, Fig. 5.2) with similar parameters (w D 3, �b D 1:5 and �b D 5=16). Compared
to the original image, bilateral filtering spatially smooths the image while preserving local
structures as illustrated in Figures 6.6a and 6.6b. Kobarg (2014) improved segmentation maps
by clustering spectra with K-means based on the bilateral filtered rat brain data set. It can be
assumed that using m=z images based on the proposed spatially aware peak picking method
might further improve segmentation results. Comparing Figures 6.6b and 6.6c demonstrates
the advantages of the proposed algorithm. Noise is removed, while preserving edges and local
structures. The bilateral filtered image after spatially aware peak picking is shown in Figure
6.6d for illustrational purpose only.

116



6.4 Results Real Data

(a) Original mean spectrum

(b) Mean spectrum after peak picking.

Figure 6.7: Part of the mean spectrum of the lung data set before and after peak picking. Red
triangles mark positions of m=z values in Figure 6.8.

6.4.3 Results FFPE Lung Data Set

The proposed peak picking approach is applied to the lung data set with similar parameter
settings as previously used: � D 60, o D 0:5, a Gabor frame of length � based on a Hann
window of length 8 and a regularization parameter � D 3e�3. The mean spectrum of the
resulting denoised data z retains only 15% all 20992m=z images with non-zero information. A
small section of the resulting mean spectrum is depicted in Figure 6.7, showing the similarity
of the data set after peak picking with the original one. Again, note that peak intensities of both
spectra are not correlated anymore. Nonetheless, considering m=z images based on denoised
data z may reveal structures which would remain hidden in the original data set.

In order to show this, m=z images after basic and average peak picking are visualized in
Figure 6.8. Corresponding mass-to-charge values are indicated in the mean spectrum in Fig. 6.7
by red triangles. Figures 6.8a and 6.8c show m=z images corresponding to small intensities
in the mean spectrum, which are sparsely localized. On the other hand, Figures 6.8b and 6.8d
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(a) m=z D 788:3945

(b) m=z D 842:4932

(c) m=z D 941:5156

(d) m=z D 1235:6282

Figure 6.8: Four m=z images of the lung data set showing the raw data, data after basic peak
picking and data after spatially aware peak picking using an average filter.
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Figure 6.9: Detection of isotopic distributions or envelopes based on Gabor frames with different
sized window functions.

reveal certain structures which are not readily visible in the original data, even with hotspot
removal applied. So-called hotspots are removed by setting a certain percentage of the largest
peak intensities to the lowest intensity among them. Especially the band structure of localized
dots on the left hand side of the lung tissue in Fig. 6.8b becomes visible only when using the
average based neighborhood approach.

Detection of Isotope Patterns

With the increased mass resolution of the reflector mode TOF, isotope patterns are well separated.
The proposed approach based on Gabor frames with short windows is capable of detecting each
isotopic peak separately. This is crucial for accurate protein identification (Spraggins et al.,
2015). On the other hand, wider window functions can be used to find entire isotope patterns
without resolving isotopic distributions, which may help to detect isotopic envelopes (Robinson
et al., 2006). Both approaches are illustrated in Fig. 6.9 by showing part of an original spectrum
and the same spectrum after applying the peak picking algorithm with a narrow and a wide
window. It can be seen that even the isotope pattern which is buried in noise (m=z � 1586) can
be reliably detected.
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6.5 Conclusion

A novel spatially aware peak picking algorithm for MALDI imaging data has been introduced.
It is based on sparse estimations of frame multiplier masks, detecting peaks spectra wise
by measuring similarity between overlapping parts of a spectrum. A slight modification of
the algorithm also allows for incorporating spatial information into the peak picking process.
This combines the usual three preprocessing steps in Figure 6.1 into a single step, reducing
computational complexity and simplifying parameter choices.

On simulated data the accuracy of the peak picking algorithm shows a significant increase,
while at the same time reducing false discovery rates by more than 50% compared to the
recently introduced algorithm by Wijetunge et al. (2015). Furthermore, the proposed algorithm
is applied to two real MALDI-TOF data sets in order to highlight the advantages of including
spatial information in the peak picking process. Although the denoised data does not correspond
to original intensities anymore, the visualization can be advantageous in order to detect spatial
patterns which would remain unnoticed otherwise. Hence, the algorithm can either be used
as an actual peak picking approach indicating at peak locations or as a denoising approach
exposing hidden peptide structures. This might be advantageous as a preprocessing step prior
to segmentation or clustering algorithms (Kobarg, 2014).

Results from simulated data show, that baseline effects are successfully suppressed using
the wavelet frame construction from Chapter 3. For Gabor frames this has not been observed.
Using Gabor frames based on the DGTSF described in Algorithm 7 in the previous chapter
might also lead to negligible baseline affects by suppressing lower frequency contributions.
Additionally, emphasizing characteristic peak features in estimated masks as proposed in the
TIFCO algorithm (Algorithm 8) might also further improve peak detection. Furthermore,
estimating peak parameters such as peak area or peak width has not been addressed so far.
Wijetunge et al. (2015) stated that the peak area is more important than actual peak intensity when
estimating molecular abundances. As demonstrated by Zhang et al. (2015) these parameters
can be easily extracted from corresponding wavelet coefficients. For Gabor frames such a
quantization of peaks is still an open topic and leaves room for further improvement.

As the sampling of the m=z axis is not equidistant, the peak width changes with increasing
mass-to-charge ratio. To overcome this problem, the proposed peak picking approach can be
utilized with Gabor frames where the window size increases with correspondingm=z sampling
distance, e.g., the multi window Gabor frames (Zeevi et al., 1998). For wavelet frames, a similar
behavior can be realized by adapting discrete scales of the frame to corresponding m=z values.
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With increasing mass resolution, for example using MALDI-Fourier transform ion cyclotron
resonance (FT-ICR), the reliability to discriminate metabolites significantly improves to the
range of millidaltons (Palmer et al., 2017). However, FT-ICR spectroscopy with high spectral
resolution also results in larger noise (Liu and Xiao, 2014). Additionally, the data set size can
reach up to 500GB (Buck et al., 2015). The proposed algorithm is capable of reliably detecting
spectral patterns in noisy data while at the same time reducing the size of large data sets, making
it also a good approach for analyzing MALDI-FT-ICR data. To further compress data sets it is
possible to retain coefficients only when the approximated mask differs from 1. For example,
using zi D

mi � 1
2

instead of (6.2.13) results in a reduction of spectral resolution depending
on the size of the slice length �. Instead of extracting the exact location of a spike in the mask,
zi then just gives a non-trivial value whenever a spike is present in the current mask mi . The
compressed data set zi allows an initial examination of main global features of the data set,
while keeping details hidden in the mask of the frame multiplier for later usages.
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Chapter 7

Conclusion

The main part of this thesis describes sophisticated signal processing applications in audio pro-
cessing and life science which are based on sparse signal representations. These representations
are mostly determined by nonstationary Gabor frames, a generalization of Gabor and wavelet
frames to irregular and arbitrary sampling schemes. The theory of nonstationary Gabor frames
is well established for compactly supported functions (Balazs et al., 2011; Holighaus, 2014), but
lacks explicit construction schemes whenever underlying functions do not have compact support.
Furthermore, the construction of tight frames with compactly supported functions was unflex-
ible and confined to certain parameter settings. So initially the question was addressed how a
non-compactly supported function, such as the minimizing function for the wavelet uncertainty
principle in (3.1.5), can be used to construct frames and possibly dual frames.

In the first part of the thesis, conditions motivated by results from Dörfler and Matusiak
(2014, 2015) have been derived for which the nonstationary Gabor frame operator tends towards
the identity operator. This has lead to a characterization of nonstationary Gabor frames with
non-compactly supported functions and corresponding dual frames. The main result can be
summarized as follows: for non-compactly supported window functions with proper decay the
nonstationary Gabor frame operator converges to the identity whenever corresponding frequency
and time sampling is sufficiently dense. It has been further shown, that in a finite dimensional
setting this leads to frames inducing reasonable redundancies and a diagonal frame operator.
Furthermore, corresponding dual frames are well defined, although in general the dual frame
of a nonstationary Gabor frame is not necessarily a nonstationary Gabor frame (Dörfler and
Matusiak, 2015). The algorithms derived in this part allow the construction of approximately
tight wavelet frames based on non-compactly supported functions in frequency domain such as
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the Equalizer in (3.1.5). In the remaining part of this thesis these frame constructions have been
exploited in signal processing applications.

In Chapter 4 different audio inpainting approaches have been evaluated based on various time-
frequency representations in order to reconstruct missing audio samples. It has been shown, that
reconstruction results favor adaptive nonstationary over conventional Gabor frame approaches,
not only quantitatively but also audibly. Including additional information from surrounding time-
frequency neighborhoods further reduce audible artifacts. The usage of wavelet frames with
non-compactly supported functions such as the minimizing waveform, however, does not yield
significantly better reconstructions. It just increases computational complexity, since analysis
and synthesis operator are repeatedly applied in corresponding proximal splitting algorithms.

Two spike detection algorithms for extracellular recorded data have been introduced in Chapter
5 which are capable of detecting spikes even in prominent noise. Both algorithms are based on
sparse representations of spike features and have been demonstrated to perform superior with
respect to all current state-of-the art methods on simulated data. On real data, a novel approach
has been proposed which links a well-established but error-prone spike detection algorithm with
the sensitivity of one of the proposed algorithms. The sparse representation did not favor the
wavelet frame construction described in Chapter 3, instead Gabor frames with fixed window
sizes have lead to more reasonable results.

In Chapter 6 a different problem in life sciences applications is addressed: peak detection
in MALDI imaging. A novel algorithm has been proposed based on Gabor or wavelet frame
multipliers which leads to a better detection rate at a lower false discovery rate with respect
to a recently introduced peak detection algorithm. The wavelet frame construction using the
minimizing function can be directly applied and leads to negligible baseline effects. Additionally,
including spatial information has shown to smooth correspondingm=z images edge-preservingly
and might lead to a better detection of biomarker structures.

Retrospectively it appears, at least for audio inpainting and MALDI peak detection, that
the performance is not dominated by localization properties of underlying function systems.
This means, whether a compactly supported function or the uncertainty minimizer is used for
constructing wavelet frames only leads to marginal differences. The same can be observed
for Gabor frames: whether Gaussian windows, which minimize the corresponding uncertainty
principle, significantly change the performance of algorithms based on sparse representations just
because underlying function systems are optimally localized is not confirmed. Using Gaussians
is supposed to ease the readability of spectrograms as side lobes disappear (Pfander, 2013).
Hence, the choice of a window function is more biased towards computational complexity,
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where compactly supported functions have a major advantage.
Whether other symmetries between Gabor and wavelet frames can be found is still an open

issue. For example the estimation of optimal window functions by Feichtinger et al. (2012)
is based on Gabor frame multipliers and corresponding eigenvectors. With the construction
schemes derived in Chapter 3 and wavelet frame multipliers from Chapter 6, a similar approach
for wavelet frames may lead to similar sets of eigenvectors as indicated by Lieb (2012).

The results presented in this thesis might also be applicable in other areas where signal
information needs to be separated from noise. Such areas may include speech enhancement and
recognition (Mak and Yu, 2014), anomaly detection in data mining approaches (Agrawal and
Agrawal, 2015), peak detection in social media, e.g., Twitter data (Ranco et al., 2015) or wavelet
analysis of big financial data (Sun et al., 2015). The MALDI frame multiplier approach might
be suitable for all signals with time-varying noise characteristics. The framework presented for
spike detection in MEA data, on the other hand, might be better suited for detecting anomalies
in large static background noise.

Going from one-dimensional signal expansions to higher dimensional transforms, similar
uncertainty principles also lead to minimizing waveforms, for example the minimizer corre-
sponding to the shearlet transform (Levie et al., 2014, Fig. 4). Uncertainty principles of other
higher dimensional signal transforms are stated by Stark and Sochen (2011) and might also lead
to minimizing functions. Explicit frame constructions based on these functions, however, are
still an open topic.
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