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Nomenclature

(e)cdf (empirical) cumulative distribution function

(p)FDR (positive) false discovery rate

ANOVA analysis of variance

FWER family-wise error rate

LFC least favorable configuration

MSE mean squared error

VaR value-at-risk

i.i.d. independent and identically distributed

w.l.o.g. without loss of generality

(Xn,F ⊗n, (P⊗n
ϑ,CX

: ϑ ∈ Θ)) statistical model

BK Bernstein operator

BK


ĈX,n


Bernstein copula of CX

C← quantile of u → C(u, . . .,u)

CX copula of X

FXj j-th marginal cumulative distribution function of X

H0 global null hypothesis
m

j=1 Hj

HX joint cumulative distribution function of X

I0(ϑ) index set of true null hypotheses under ϑ

K1, . . .,Km alternative hypotheses

P1, . . .,Pm p-values

E expectation with respect to P

E∗ expectation with respect to P∗

P probability measure on the elemental space Ω or probabil-
ity measure on the product space X∞
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P∗ bootstrap probability measure

PX distribution of X

α global significance level

αloc,1, . . ., αloc,m local significance levels

T = (T1, . . .,Tm)
⊤ vector of test statistics

X∗1, . . .,X
∗
n bootstrap resample of X1, . . .,Xn

X1, . . .,Xn i.i.d. sample of X

ϕ = (ϕ1, . . ., ϕm)
⊤ multiple test

ϑ parameter of interest

ϑ∗ least favorable parameter configuration

ĈX,n empirical copula of X

F̂Xj,n j-th marginal empirical cumulative distribution function of
X

ĤX,n joint empirical cumulative distribution function of X

π̂SS
0 Schweder-Spjøtvoll estimator

(C ([0,1]m), ∥·∥∞) space of uniformly continuous functions defined on [0,1]m

(ℓ∞ ([0,1]m), ∥·∥∞) space of uniformly bounded functions on [0,1]m

C limit process of Cn

Cn empirical copula process

H = {H1, . . .,Hm} set of null hypotheses

1A indicator function of the set A

π0 proportion of true null hypotheses

P
→ convergence in probability

d
→ convergence in distribution

m number of null hypotheses
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m0 number of true null hypotheses

m1 number of false null hypotheses

n sample size

o, O Landau symbols

Pϑ P⊗n
ϑ,CX

k/K


k1
K1
, . . ., km

Km

⊤
(−∞, x] (−∞, x1]× ...×(−∞, xm]

{0, . . .,K } {0, ...,K1} × . . .× {0, . . .,Km}K
k=0

K1
k1=0 · · ·

Km

km=0
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1 Synopsis

The key to multiple testing is to respect the dependencies between the marginal hypothe-

ses tests. Multiple tests can range from basically performing the same test multiple times

to tests with very complex interactions. Any dependency structure can be modeled by

so-called copula functions. This makes copulas an interesting tool in multiple testing.

In particular, multivariate multiple tests explicitly utilize the dependency structure of the

data. This leads to the sub-class of copula-based multiple tests.

In this synopsis, I give a general overview about multiple testing and copula theory with

emphasis on their connections to my own contributions. Furthermore, I present the ideas

and challenges behind my own research.

Der Schlüssel zum multiplen Testen liegt im Berücksichtigen der Abhängigkeiten zwis-

chen den Randtests. Multiple Tests können dabei von einem quasi mehrfach ausge-

führten Test bis hin zu komplex interagierenden Tests reichen. Jede Abhängigkeitsstruk-

tur kann durch sogenannte Copula-Funktionen beschrieben werden. Dies macht Copulas

zu einem interessanten Hilfsmittel im multiplen Testen. Insbesondere wird bei den mul-

tivariaten multiplen Tests die Abhängigkeitsstruktur der Daten explizit verwendet. Dies

führt zur Unterklasse der Copula-basierten multiplen Tests.

In meiner Synopsis gebe ich einen generellen Einblick in die Theorie der multiplen Tests

und der Copulas. Die Betonung liegt dabei auf der Einordnung meiner Resultate in diese

Theorien. Zudem gehe ich auf die Ideen und Herausforderungen ein, die hinter meinen

Forschungsarbeiten stecken.

1.1 Multiple testing

The problem of multiple testing arises when we have to answer two or more questions
considering only one data set. For example, in genetic association studies, one hypothesis
is tested for every genetic marker. It is important to respect the interactions between
genetic markers. Usually, these interactions are modeled as block dependency structures.
Such dependency structures play a crucial role in multiple testing. In Section 1.2, we
take a closer look how to model dependency structures and how to use them in multiple
testing.

To clarify, a multiple test is not a simple tool to make scientific studies cheaper by
testing more hypotheses on the same data. In order to successfully apply multiple testing
frameworks, one should ask as few questions as possible. For a large number of hypothe-
ses m, it is often helpful to reduce m. This can be achieved by applying selection or
filtering methods first. Statistical learning algorithms trained on past data sets is one pos-
sibility. Additionally, multiple tests for high-dimensional data can be applied. Still, model
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assumptions like sparsity of the data set are necessary to achieve sufficient performance.
Hence, we must carefully choose an appropriate model for each multiple test problem.

Mathematically, we test a set H = {H1, . . .,Hm} of m null hypotheses. Each null
hypothesis Hj is a (non-empty) subset of the parameter space Θ and is tested against an
alternative hypothesis K j := Θ\Hj . For convenience and consistency, the index j denotes
always a number in {1, . . .,m}. Likewise, the index i is always in {1, . . .,n}, where n is
the sample size. A multiple test ϕ = (ϕ1, . . ., ϕm)

⊤ : Xn→ {0,1}m is a function on the set
of data samples Xn, which maps the observed data sample x1, . . ., xn to a decision vector
in {0,1}m. ϕ j (x1, . . ., xn) = 1 means rejection of the null hypothesis Hj .

It is convenient to think of multiple tests in terms of test statistics T1, . . .,Tm, which tend
to larger values under alternatives, or p-values P1, . . .,Pm, which tend to smaller values
under alternatives. The p-value Pj is basically a transformation of the test statistic Tj to the
uniform scale [0,1]. Such transformations are easier to interpret in terms of significance.
For example, in contrast, a test statistic corresponding to the average height of some
peoples is (hopefully) much smaller than a test statistic corresponding to average their
income. However, this does not mean that their income is significant. Additionally, many
multiple tests can be easier described in detail using p-values. Nonetheless, test statistics
are important for understanding test procedures on a general level. Since p-values tend to
smaller values under alternatives, we are interested in the boundary values of significant
p-values for which a chosen error rate is controlled. These boundary values are called the
local significance levels αloc,1, . . ., αloc,m. In the remainder, we perform multiple tests by
means of p-values and local significance levels. Therefore, ϕ j (x1, . . ., xn) = 1 if and only
if Pj = Pj (x1, . . ., xn) < αloc, j .

The most common error rates in multiple testing are the family-wise error rate
(FWER) and the false discovery rate (FDR). The FWER is older than the FDR and much
stricter in terms of false rejections. A family-wise error occurs when at least one true null
hypothesis is rejected. The FDR was introduced by Benjamini and Hochberg (1995) in
order to relax this strict behavior and is defined as the expected proportion of false rejec-
tions. This means that not too many false rejections are acceptable for each multiple test.
Mathematically, we have FDRϑ (ϕ) ≤ FWERϑ (ϕ) for all parameter ϑ ∈ Θ. Therefore, the
FDR is used especially for high-dimensional problems.

Classification of multiple tests

The book of Dickhaus (2014) contains a wide and well organized classification of multiple
tests. Classifications are important to better understand the big picture and the starting
points of my own research. In this section, we follow essentially Section 3 of Dickhaus
(2014).
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There are three main classes, namely marginal-based multiple tests, multivariate mul-
tiple tests and closed test procedures. Marginal-based multiple test procedures do not
directly utilize the dependency structure. Instead, they work for a wide class of depen-
dency structures. For example, the Bonferroni procedure (see Bonferroni (1935, 1936))
is marginal-based and one of the earliest contributions in multiple testing. The so-called
Bonferroni correction sets each local significance level to αloc, j = α/m. We call it correc-
tion because for each local test we correct the global significance level α. The global level
α ∈ (0,1) is an upper bound for the chosen multiple test error rate and usually set to 0.05
(0.01 or 0.1). This procedure controls the FWER and works under arbitrary dependency
structures. Since this method is very easy to apply in practice, Bonferroni is still widely
used.

The so-called stepwise multiple tests are contained in this class as well. The basic
idea is to order the p-values and to compare each p-value Pj with a local significance
level depending on the rank of Pj . For simplicity, let us just consider two examples here.
The famous procedure of Benjamini and Hochberg (1995) sets the local significance level
to αloc,( j) = jα/m, where ( j) denotes the index in {1, . . .,m} of the j-th smallest p-value.
We search for the first p-value in descending order (say P(k)) which fails to be larger
than αloc,(k) and reject all null hypotheses H(1), . . .,H(k). This procedure controls the FDR
at level m0/m · α and works under a specific class of dependency structures (see Table
5.1 in Dickhaus (2014)). Another example is the method of Holm (1979), which sets
αloc,( j) = α/(m− j +1). In contrast to Benjamini and Hochberg (1995), we search for
the first p-value in ascending order (again P(k)) which fails to be smaller than or equal
to αloc,(k) and reject H(1), . . .,H(k−1). This procedure controls the FWER and generally
improves the Bonferroni method.

Contrarily to marginal-based multiple tests, multivariate multiple test procedures ex-
plicitly use the dependency structure of the data. Subclasses are resampling-based, central
limit theorem based and copula-based methods. Let us just consider an example for the
first subclass. The multivariate bootstrap (see Efron (1979)) creates resamples by draw-
ing from the original sample with replacement. Notice that it is important to sample with
replacement. Otherwise, test statistics like the sample mean would be constant. For each
resample, we evaluate the test statistics. Hence, we obtain a sample of the test statistics.
This allows us to empirically calibrate the local significance levels. The bootstrap works
well in one sample problems for various test statistics. In one sample problems, all ob-
served data originate from the same population. In these settings, the bootstrap procedure
asymptotically approximates the distribution of the test statistics. More specifically, this
approximation holds almost surely or in probability with respect to the distribution of the
data. In terms of copula theory, we implicitly utilize the empirical copula in this proce-
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dure. This means that there are connections between resampling-based and copula-based
multiple tests. We refer to Westfall and Young (1993) for an algorithm-focused book on
resampling-based multiple tests.

In central limit theorem based multiple tests, the test statistics are transformations
of an asymptotically normally distributed point estimator. In this way, the asymptotic
distribution of the test statistics can be derived. Examples are multiple linear regression
models and generalized linear models.

The emphasis of my work lies on copula-based methods. In copula-based methods,
we explicitly model the dependency structure in the most general framework possible.
There are two main applications. First, the FWER can be represented by the copula of the
test statistics. This will be discussed further in Section 1.2. Second, we can resample from
an estimated copula of the data. This falls in the category of resampling-based methods.

Closed test procedures (see Marcus et al. (1976)) cannot be exactly assigned to one
of the previous two classes. Under some assumptions, we can modify existing tests and
these tests can be of either class. Let us assume for now that the set of null hypothesesH
contains all intersection null hypotheses. Then, a multiple test ϕ′ forH can be constructed
by applying the so-called closure principle on a multiple test ϕ for H . Mathematically,
the test ϕ′ is defined by ϕ′j := minHi⊆Hj ϕi. Any (coherent) test ϕ with local significance
level set to αloc, j = α can be modified in this way to control the FWER at level α. Such
a modified multiple test ϕ′ is possibly more powerful than ϕ. Notice that we can always
construct an intersection-closed set H . Hence, the main restriction is that we need local
level α tests for all intersections.

Any of the mentioned classes above could be further refined by the used error rate
(FWER versus FDR) or data (low-dimensional versus high-dimensional). In my con-
tributions, we consider only the FWER and low-dimensional data in the sense that the
dimension m is fixed.

1.2 Copula theory in multiple testing

The word copula means link and was introduced by Sklar (1959). A copula function links
the marginal cumulative distribution functions (cdfs) together to a joint cdf. Therefore,
a copula C can be seen as the dependency structure between the marginal cdfs. Mathe-
matically, a copula C : [0,1]m ⊂ Rm→ [0,1] is a joint distribution function of a uniformly
distributed random vector with the domain restricted to [0,1]m. This restriction is unprob-
lematic because the probability mass of these random vectors is zero outside of [0,1]m.
Hence, there exists a one-to-one connection between copulas and joint cdfs of uniformly
distributed random vectors. Sklar’s theorem provides the relationship between the joint
cdf, the marginal cdfs and the copula. This theorem is the foundation of statistical mod-
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eling using copula functions.

Theorem 1.1 (Sklar (1959)). Let X = (X1, . . .,Xm)
⊤ be a random vector with values in

Rm and joint cdf HX . Further, let FX1, . . .,FXm denote the marginal cdfs of X . Then there

exists a copula CX such that

HX (x) = CX

FX1 (x1), . . .,FXm (xm)


for all x ∈ Rm. If all marginal cdfs are continuous, then the copula CX is unique.

Copula theory is focused mainly on the construction of suitable copula classes and
the analysis of their structure. A standard reference for a good overview of copulas is the
book of Nelsen (2006). For copula theory in the context of risk management, we refer to
the books of Embrechts et al. (2003) and McNeil et al. (2005).

Since we are in a more general setting, classical linear dependency structures in form
of correlations are contained as well. The Gaussian copula corresponds to the correlation
matrix of a normally distributed random vector. Likewise, the t-copula corresponds to
the dependency structure of a (standard) multivariate t-distribution. We could of course
exchange these copulas and think of marginal t-distributions combined with a Gaussian
copula. In this way, new multivariate distributions can be constructed. Therefore, copulas
are a very flexible and general way of modeling joint cdfs.

Some important non-parametric copulas are the empirical copula and Bernstein cop-
ulas. Strictly speaking, the empirical copula fails to be continuous and therefore, is not a
copula. Nonetheless, the empirical copula can be used, in particular, to construct proper
copulas. Bernstein copulas are such examples. They play a crucial role in our paper
Neumann et al. (forthcoming) about multiple testing based on non-parametric copula
estimation (see Section 1.3).

Connection to multiple testing

In multiple testing, we can use Sklar’s theorem to model the FWER. This enables us to
think of the FWER in terms of the test statistics copula.

Lemma 1.2 (Dickhaus and Gierl (2013)). Under some model assumptions, we have

FWERϑ,CX
(ϕ) ≤ 1−CT


1−αloc,1, . . .,1−αloc,m


,

where ϑ ∈Θ is any parameter vector and αloc,1, . . ., αloc,m are the local significance levels.

In our multiple testing setup, we are interested in an parameter vector ϑ ∈ Θ corre-
sponding to the marginal cdfs of the data. In this setting, the copula of the data CX is an
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infinite dimensional nuisance parameter and assumed to be independent of the parameter
vector ϑ. On the other hand, the copula of the test statistics can depend on the parameter
vector. Hence, the notation in Lemma 1.2 is somewhat imprecise. We assume that there
exists a least favorable parameters configuration in the global null hypothesis

m
j=1 Hj .

The notation CT corresponds to this worst case. Often, only linear dependencies in the
form of correlations are considered in multiple testing. We are interested in what we can
achieve with this more general setup.

1.3 My contributions

Multivariate multiple test procedures based on non-parametric copula estimation1

The starting point for this paper are mainly two contributions. The first one is the statis-
tical analysis of the so-called Bernstein copulas in Janssen et al. (2012) and the second
one is the analysis of the FWER for parametric copula models in Stange et al. (2015).
In this work, we have analyzed the FWER in a semi-parametric framework. More pre-
cisely, the hypotheses correspond to a finite dimensional parameter vector and the data
copula is understood as an infinite dimensional nuisance parameter. The argumenta-
tion is similar as in Stange et al. (2015), but dropping the continuous differentiability
assumption for the quantile C←T of the test statistics copula CT provided some extra chal-
lenges. To clarify, by quantile of a copula C I mean the quantile of the univariate function
u → C (u, . . .,u). An estimator of C←T is needed in order to estimate the local significance
levels αloc, j = αloc := 1−C←T (1−α).

This makes it necessary to extend the results of the used non-parametric copula esti-
mator to a suitable function space. In our theoretical analysis, we focused on Bernstein
copulas. These copulas are smoothed versions of the empirical copula with Bernstein
polynomials. In contrast to the empirical copula, Bernstein copulas are indeed copula
functions. Our analysis is based on the results of Segers (2012) about the empirical cop-
ula in the function space of bounded functions. Previous works on Bernstein copulas in
statistics have focused mainly on pointwise results for two-dimensional data (see, e.g.,
Janssen et al. (2012) and Belalia (2016)). Furthermore, we have extended these results
to (fixed) higher dimensions m > 2. A general analysis of Bernstein copulas in higher
dimensions has been done in Sancetta and Satchell (2004).

In order to deduce asymptotic normality for the FWER as n→∞, we have proven that
for the quantiles of Bernstein copulas hold pointwise asymptotic normality (at point 1−α).
Although this is a pointwise result, we utilize the uniform results for Bernstein copulas
in the space of continuous functions. On the other hand, the consistency of the FWER

1Neumann et al. (forthcoming)
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follows directly from the consistency of Bernstein copulas. The uniform consistency of
Bernstein copulas is already known in two dimensions. Additionally, the argumentation
is the same for fixed dimension m > 2. Hence, the core of our theoretical analysis is the
asymptotic normality.

As mentioned before, we have reduced the assumptions. However, we additionally
assume that the copula of the data can be transformed locally to the copula of the test
statistics on the diagonal set


(u, . . .,u)⊤ |u ∈ [0,1]


. In this setting, Bernstein copulas are

used to approximate only the data copula CX . Unfortunately, this assumption is hard to
verify and to exploit in practice. In Bodnar and Dickhaus (2014) and Stange et al. (2015),
the dependency structure among the test statistics or p-values is assumed to follow a para-
metric copula. Additionally, they utilize resampling methods to create an approximate
sample of the test statistics (or p-values). In our paper, the strategy is similar in practice.
However, we generate resamples by using a Bernstein copula of the data. After that, we
calibrate the multiple test empirically. In terms of copula theory, this means that we use
the empirical copula quantile of the resampled p-values for calibration.

Estimating the proportion of true null hypotheses under arbitrary dependency2

The idea for considering the proportion of true null hypotheses was to improve methods
like the Benjamini-Hochberg procedure. This procedure controls the FDR at level π0α ≤

α, where π0 := m0/m is the proportion of true null hypotheses and m0 is the number of
true null hypotheses. Of course, m0 is unknown and an estimator of π0 could be used
to improve this procedure such that the error rate is (approximately) controlled at level
α. However, in order to avoid confusion, we focused solely on this estimation problem.
Besides, it can be helpful on its own to know the value of π0. Some multiple testing
methods perform better for larger (or smaller) values of π0 than others. For example, our
Bernstein procedure works better for smaller values of π0. To clarify, in this manuscript,
we did not use the connection between multiple tests and copulas in the sense of Lemma
1.2. We have estimated π0 only in models where the dependency structure of the p-values
is modeled by copulas.

The basic estimator of π0 was introduced by Schweder and Spjøtvoll (1982). One
of the assumptions for this estimator is the independence of the p-values under true null
hypotheses. In multiple testing, such an assumption is often violated. There exists a
vast literature on this topic but not in the context of copula theory. In the existing liter-
ature, independent p-values are still often assumed or models with some specific depen-
dency structures are considered. For example, Tong et al. (2013) modified the Schweder-
Spjøtvoll estimator for various patterns of the p-value histogram. Implicitly, these patterns

2Neumann et al. (preprint)
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correspond to dependency structures among the p-values.
Our initial approach was to transform the p-values utilizing the copula directly. For

example, in Archimedean copula models, we constructed an algorithm based on using the
sampling procedure of Wu et al. (2007) backwards. Unfortunately, this only works under
very restrictive assumptions. Therefore, instead, we have constructed new p-values by
utilizing a marginal parametric bootstrap algorithm. This means that we split the original
data sample and apply the univariate bootstrap on every marginal sample x1, j, . . ., xn, j

given the estimated parameters. More specifically, the algorithm works as follows.

Algorithm 1.3 (Marginal parametric bootstrap).

1. Resample from the j-th marginal distribution function of the data given the esti-

mated parameters.

2. Estimate the p-value Pj by using this Bootstrap sample.

3. Apply step 2 and 3 to every margin j and then estimate the ratio π0.

4. Repeat the steps 2-4 B times.

5. Take the average over all B estimated values of π0 as π̂0.

The conditional nature (with respect to the observed data) of the bootstrap translates to
the conditional independence of these bootstrap p-values. Assumptions of the bootstrap
like suitable test statistics translate to our procedure as well. Additionally, we make a
model assumption on the parameters for the marginal cdfs. This is necessary in order to
split the sample without losing information about the parameters of interest. Fortunately,
these assumptions are not hard to check.

Under a specific (mild) assumption, we have proven that π̂0 is an consistent estimator.
If the assumption is not met, then the estimator is asymptotically positively biased. In
multiple testing, this could mean that procedures based on this estimator are more conser-
vative than in the unbiased case.
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2 Multivariate multiple test procedures based on non-
parametric copula estimation

André Neumann1, Taras Bodnar2, Dietmar Pfeifer3, and
Thorsten Dickhaus1

Multivariate multiple test procedures have received growing attention recently. This

is due to the fact that data generated by modern applications typically are high-

dimensional, but possess pronounced dependencies due to the technical mechanisms

involved in the experiments. Hence, it is possible and often necessary to exploit these

dependencies in order to achieve reasonable power. In the present paper, we express

dependency structures in the most general manner, namely, by means of copula func-

tions. One class of non-parametric copula estimators is constituted by Bernstein copu-

las. We extend previous statistical results regarding bivariate Bernstein copulas to the

multivariate case and study their impact on multiple tests. In particular, we utilize them

to derive asymptotic confidence regions for the FWER of multiple test procedures which

are empirically calibrated by making use of Bernstein copulas approximations of the de-

pendency structure among the test statistics. This extends a similar approach by Stange

et al. (2015) in the parametric case. A simulation study quantifies the gain in FWER

level exhaustion and, consequently, power which can be achieved by exploiting the de-

pendencies, in comparison with common threshold calibrations like the Bonferroni or

Šidák corrections. Finally, we demonstrate an application of the proposed methodology

to real-life data from insurance.

Key words: Asymptotic oscillation behavior; Family-wise error rate; p-Value; Risk

management

2.1 Introduction

Copula-based modeling of dependency structures has become a standard tool in applied
multivariate statistics and quantitative risk management (see, e.g., Nelsen (2006), Joe
(2014), Härdle and Okhrin (2010), Embrechts et al. (2003), and Chapter 5 of McNeil
et al. (2005)). The estimation of an unknown copula is key to a variety of modern mul-
tivariate statistical methods. In particular, applications of copulas to the calibration and
the analysis of multiple tests have been considered by Dickhaus and Gierl (2013), Bodnar
and Dickhaus (2014), Stange et al. (2015), Cerqueti et al. (2012), Schmidt et al. (2014),

1Institute for Statistics, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany.
2Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden.
3Institute of Mathematics, Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany.
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and Schmidt et al. (2015); see also Sections 2.2.4 and 4.4 of Dickhaus (2014). Specif-
ically, the copula-based construction of multiple test procedures developed by Dickhaus
and Gierl (2013) and Stange et al. (2015) under parametric assumptions regarding the
type of dependencies among test statistics considerably extends previous approaches as
in Hothorn et al. (2008) which are confined to asymptotic Gaussianity and, consequently,
linear dependencies.

In the case of a parametric copula, generic estimation techniques like the (generalized)
method of moments or maximum likelihood estimation are established notions (cf. Sec-
tion 3.2 of Stange et al. (2015) and references therein). The empirical copula as well as its
asymptotic properties as a non-parametric estimator have been studied, among others, by
Rüschendorf (1976), Deheuvels (1979), Stute (1984), and, more recently, by Bücher and
Dette (2010), and Bouzebda and Zari (2013), to mention only a few references. However,
similarly as multivariate histogram estimators, the empirical copula in dimension m has
some undesirable properties. For example, it is discontinuous, and it typically assigns
zero mass to large subsets of [0,1]m, even if the sample size n is large, due to the concen-
tration of measures phenomenon. One way to tackle these issues consists of smoothing
of the empirical copula. In particular, Sancetta and Satchell (2004) proposed smoothing
by Bernstein polynomials, leading to so-called Bernstein copulas. Approximation theory
for Bernstein copulas has been derived by Cottin and Pfeifer (2014), and asymptotic sta-
tistical properties of Bernstein copula estimators in the bivariate case (m = 2) have been
proven by Janssen et al. (2012) and Belalia (2016). Functional central limit theorems
for empirical copula processes have been established by Segers (2012). Applications of
Bernstein copulas to modeling dependencies in non-life insurance have been considered
by Diers et al. (2012).

In the present work, we contribute to theory and applications of Bernstein copulas
in the case of a general dimension m ≥ 2. In Section 2.2, we extend the asymptotic
theory regarding Bernstein copula estimators by proving its rate of convergence in infinity
norm as well as its asymptotic normality in a function space, for arbitrary m. Also, we
provide some justifications for the proposed smoothing approach. Section 2.3 is then
devoted to applications of Bernstein copulas for multiple test procedures with control of
the FWER, avoiding restrictive parametric dependency assumptions. The application of
the central limit theorem derived in Section 2.2 allows for a precise quantification of the
uncertainty about the realized FWER in the case that the copula of test statistics is pre-
estimated prior to calibrating the significance thresholds of the multiple test procedure.
This extends the results of Stange et al. (2015) to the case of non-parametric copula pre-
estimation. Section 2.4 demonstrates by means of a simulation study that the latter pre-
estimation approach leads to a better exhaustion of the FWER level and thus enhances the
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power of the multiple test procedure compared with traditional approaches which only
take univariate marginal distributions of test statistics into account. Finally, we apply the
proposed multiple testing methodology to real-life data from insurance in Section 2.5, and
we conclude with a discussion in Section 2.6. Lengthy proofs and some auxiliary results
are deferred to Section 2.7.

2.2 Oscillation behavior of Bernstein copulas

In this section, asymptotic properties of (empirical) Bernstein copulas are studied. The
main properties of Bernstein estimators are consistency (Theorem 2.1) and asymptotic
normality (Theorem 2.4). The auxiliary lemmas can be found in Section 2.7. Nonetheless,
the argumentation in this section is illustrated in some mathematical detail. More practi-
cally oriented readers might find Section 2.2.2 and the following sections more valuable.
In Section 2.3, the methodology how to use this estimator in multiple testing is discussed
and examples are given. The consistency of the realized FWER can be derived directly
from the consistency of the Bernstein estimator. The asymptotic normality of the realized
FWER follows indirectly from the asymptotic normality of the Bernstein estimator via
Lemma 2.18.

Let X = (X1, . . .,Xm)
⊤ be a random vector taking values in the probability space

(X,F ,PX ), where X ⊆ Rm, F is a σ-field over X, and PX denotes the (joint) distribu-
tion of X . The univariate marginal cdfs of X we denote by FXj , 1 ≤ j ≤ m, whereas CX

stands for the copula related to the distribution PX .
Assume that X1, . . .,Xn are stochastically independent and identically distributed (i.i.d.)

random vectors with X1 ∼ PX . Then, the marginal empirical cumulative distribution

function (ecdf) F̂Xj,n of

X1, j, . . .,Xn, j

⊤ is given by F̂Xj,n

x j


:=

1
n
n

i=11(−∞,xj]

Xi, j


,

1 ≤ j ≤ m, and the joint ecdf is defined as ĤX,n (x) := 1
n
n

i=11(−∞,x] (X i). The symbol
1A denotes the indicator function of set A and (−∞, x] = (−∞, x1] × ...× (−∞, xm]. We
will use an analogous bold-face notation for vectors throughout the remainder. Finally,
the empirical copula ĈX,n pertaining to X1, . . .,Xn is given by

ĈX,n (u) = ĤX,n


F̂←X1,n (u1), . . ., F̂←Xm,n (um)


, u ∈ [0,1]m .

In this, F̂←Xj,n
denotes the generalized inverse of the marginal ecdf in coordinate 1 ≤ j ≤ m.

2.2.1 Theoretical analysis

Denote the space of bounded functions on [0,1]m, equipped with the supremum norm,
by (ℓ∞ ([0,1]m), ∥·∥∞), and the space of continuous (and bounded) functions defined on
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[0,1]m by (C ([0,1]m), ∥·∥∞), where ∥·∥∞ again denotes the supremum norm. The Bern-
stein copula estimation is based on the Bernstein polynomial approximation, which for
a fixed copula CX is given by the operator BK : (ℓ∞ ([0,1]m), ∥·∥∞) → (C ([0,1]m), ∥·∥∞)
defined by

BK ( f ) (u) :=
K
k=0

f (k/K )
m

j=1
Pk j,Kj


u j


evaluated at the function f = CX , where

K
k=0 :=

K1
k1=0 · · ·

Km

km=0, k/K :=


k1
K1
, . . ., km

Km

⊤
,

Pk,K (u) :=

K
k


uk (1−u)K−k ,

and K1, . . .,Km are given positive integers. The Bernstein copula estimator for CX is then
defined by BK


ĈX,n


.

It is well known that continuous functions can be approximated using Bernstein poly-
nomials. There are results on the convergence rate for continuous functions with bounded
variation as well (see Chêng (1983)). For the special case of copula functions, it has
been proved in Corollary 3.1 of Cottin and Pfeifer (2014) that any copula function can be
approximated uniformly using Bernstein polynomials.

Theorem 2.1 establishes the consistency rate of Bernstein copula estimators for any
copula function CX . This result is known for the bivariate case (see Theorem 1 in Janssen
et al. (2012)).

Theorem 2.1 (Chung-Smirnov consistency rate). Let m be fixed. If K = K (n) is such

that
m

j=1 K−1/2
j =O


n−1/2 (log logn)1/2


, then it holds thatBK


ĈX,n


−CX


∞
=O


n−1/2 (log logn)1/2


almost surely,

where ∥g∥∞ := supu∈[0,1]m |g (u)| for g : [0,1]m −→ R.

Proof. The proof can be done analogously to the proof of the bivariate case considered in
Janssen et al. (2012). By the triangle inequality we split the convergence of the Bernstein
copula estimators into an inner and outer convergence. It holds thatBK


ĈX,n


−CX


∞
≤

BK


ĈX,n


−BK (CX )


∞
+ ∥BK (CX )−CX ∥∞ . (2.1)

For the outer convergence, we get from Lemma 2.17 and our assumption that

∥BK (CX )−CX ∥∞ =O

n−1/2 (log logn)1/2


.

The argumentation for the inner convergence is more complicated. For the first summand
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in (2.1), we getBK


ĈX,n


−BK (CX )


∞
≤ sup

u∈[0,1]m

K
k=0

��ĈX,n (k/K )−CX (k/K )
�� m

j=1
Pk j,Kj


u j


≤ max

k∈{0,...,K }

��ĈX,n (k/K )−CX (k/K )
��,

where {0, . . .,K } := {0, ...,K1} × . . .× {0, . . .,Km}. Let U1, . . .,Un be a sample of random
vectors defined by Ui, j := Fj


Xi, j


, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Application of the identity (see,

e.g., Section 3 of Swanepoel (1986)) F̂←Uj,n


u j


= FXj


F̂←Xj,n


u j

 
leads to ĈX,n (k/K ) =

ĤU,n


F̂←U1,n


k1
K1


, . . ., F̂←Um,n


km
Km


andBK


ĈX,n


−BK (CX )


∞
≤ max

k∈{0,...,K }

��ĈX,n (k/K )−CX (k/K )
��

≤ max
k∈{0,...,K }

����ĈX,n (k/K )−CX


F̂←U1,n


k1
K1


, . . ., F̂←Um,n


km

Km

����
(2.2)

+

m
j=1

max
k j∈{0,...,Kj}

����F̂←Uj,n


k j

K j


−

k j

K j

���� . (2.3)

From Theorem 2 of Kiefer (1961), we get that the summand in (2.2) is of order O

n−1/2

(log logn)1/2


as well as that each summand in (2.3) is of order O

n−1/2 (log logn)1/2


.

This completes the proof. �

Remark 2.2. If m is not fixed, then the convergence rate in the last step of previous proof
changes to O


mn−1/2 (log logn)1/2


. Hence, we get almost surelyBK


ĈX,n


−CX


∞
=O


mn−1/2 (log logn)1/2


.

The next theorem is taken from Whitt (2002) and will be useful in order to show
asymptotic normality of Bernstein copula estimators.

Theorem 2.3 (Generalized Continuous Mapping Theorem). Let g and gn, n ≥ 1, be

measurable functions mapping (S,d) into (S′,d′). Let the range (S′,d′) be separable. Fur-

ther, let E be the set of x in S such that gn (xn)→ g (x) fails for some sequence {xn : n ≥ 1}
with xn→ x in S. If Xn

d
→ X , n→∞, in (S,d) (

d
→ denotes the convergence in distribution)

and P [X ∈ E] = 0, then gn (Xn)
d
→ g (X), n→∞, in (S′,d′).

Furthermore, we need a result for the convergence of the empirical copula process
Cn := n1/2


ĈX,n−CX


. Let u → γ (u) be a CX -Brownian bridge, i.e., a zero mean Gaus-
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sian process with (almost surely) continuous paths and covariance function given by

Cov (γ (u), γ (v)) = CX (u∧ v)−CX (u)CX (v)

for all u, v ∈ [0,1]m. Denote γ j

u j


:= γ


1, . . .,1,u j,1, . . .,1


. Then under some assump-

tions, the process C (u) := γ (u)−
m

j=1 ∂jCX (u)γ j

u j


is the weak limit of the empirical

copula process Cn in (ℓ∞ ([0,1]m), ∥·∥∞) as shown in Proposition 3.1 of Segers (2012).
With these two arguments we can proof a functional central limit theorem for Bernstein
copula estimators.

Theorem 2.4 (Asymptotic normality). Let m be fixed. Assume that the first order partial

derivatives of CX exist and are continuous. If K = K (n) is such that n1/2 m
j=1 K−1/2

j → 0,

n→∞, then it holds that

n1/2 ·

BK


ĈX,n


−CX


d
−→ C as n→∞

in (C ([0,1]m), ∥·∥∞).

Remark 2.5. The assumption of the existence and continuity of the first order partial
derivatives on the boundaries can be weakened (see Condition 2.1 of Segers (2012)).

Proof. We split the Bernstein copula process n1/2 ·

BK


ĈX,n


−CX


into two parts. We

get

n1/2 ·

BK


ĈX,n


−CX


= BK


n1/2


ĈX,n−CX


+n1/2 (BK (CX )−CX )

= BK (Cn)+n1/2 (BK (CX )−CX ) .

The second summand converges uniformly to zero because of Lemma 2.17 and our as-
sumptions. The first summand is the empirical copula process Cn transformed by a family
of operators BK , where K = K (n).

We will use the Generalized Continuous Mapping Theorem 2.3. Let (S,d) :=
(ℓ∞([0,1]m), ∥·∥∞) and (S′,d′) := (C([0,1]m), ∥·∥∞). Then (S′,d′) is a separable space,
since the set of polynomials on [0,1]m with rational coefficients is a countable dense
subset of S′. Further, let gn : S → S′ be defined by gn := BK (n) and g : S → S′ be
the identity function on S′ and arbitrary on S\S′. Notice that it does not matter, how
g is defined on S\S′, since we are interested in g (C) and without loss of generality
(w.l.o.g.) C takes values in S′ (see Section 3 of Segers (2012)). Let E be the set of
f in S such that gn ( fn) → g ( f ) fails for some sequence { fn : n ≥ 1} with fn → f in S.
Then E ⊆ S\S′, since we can choose fn := f for f ∈ S′ and get uniform convergence
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by Bernstein’s theorem (or by using Corollary 3.1 of Cottin and Pfeifer (2014)). Hence,
P [C ∈ E] ≤ P [C ∈ S\S′] = 0.

The last thing we need to check is the weak convergence of the empirical copula
process Cn to C in (ℓ∞ ([0,1]m), ∥·∥∞). As already mentioned, Segers (2012) has shown
this convergence under assumptions only regarding the first order partial derivatives of
CX . Therefore, the proof is complete by using Proposition 3.1 of Segers (2012) and the
generalized continuous mapping theorem. �

This result extends the pointwise central limit theorems of Janssen et al. (2012) and
Belalia (2016) and works under weaker assumptions as well.

2.2.2 The effect of smoothing

This section is meant to be an addition to the simulation study of Omelka et al. (2009).
Conducting such an extensive study ourselves would go beyond the scope of this paper.
Nevertheless, it is an important question how precise the Bernstein estimator is compared
to other copula estimators, and this should be discussed at least to some extent.

There exists a wide variety of methods to estimate copula functions non-parametric-
ally. Usually, the empirical copula or some sort of smoothing method is used. Bernstein
estimators studied in Section 2.2.1 are only one specific smoothing method among many
others. Further examples comprise kernel (density) estimators (see Gijbels and Miel-
niczuk (1990)), and beta density estimators (see Chen (1999)). It is beyond the scope of
the present work to compare all these competing approaches in detail. Generally speak-
ing, the empirical copula is robust and universal, but it is not a copula in the strict sense,
because it lacks continuity and does not have uniform margins. Bernstein copulas are
differentiable estimators, but they converge rather slowly and cannot capture extreme tail
dependencies (see Sancetta and Satchell (2004)). Recently, families of non-parametric
copula estimators capable of modeling (positive) tail dependence have been studied by
Pfeifer et al. (2017). Kernel methods suffer from a boundary bias, although several mod-
ifications like the mirror approach by Schuster (1985) exist to address this problem. Beta
density estimators avoid the boundary bias, but the choice of their smoothing parameter
is not trivial.

Let us briefly provide some numerical justifications for smoothing of the empirical
copula. In Section 3 of Omelka et al. (2009) some kernel methods have been compared in
simulations under two prototypical models (Model 1 and Model 2). In Model 1, the data
follow a Frank copula with parameter corresponding to Kendall’s τ = 0.25. In Model 2, a
Clayton copula corresponding to Kendall’s τ = 0.75 is used.

We have applied our proposed Bernstein estimator to these models as well. Figure 1
displays the results of a simulation study under these two models. The box plots demon-
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Figure 1: Comparison of the Bernstein copula and the empirical copula in the setting of
Model 1 (left) and Model 2 (right) of Omelka et al. (2009) with respect to the supremum
norm (Kolmogorov-Smirnov distance).

strate that the estimation accuracy (measured in terms of the Kolmogorov-Smirnov dis-
tance) can be improved by smoothing. Here, we only considered smoothing by means of
Bernstein polynomials, but the simulation results for various kernel methods presented by
Omelka et al. (2009) are very similar. Hence, in practice it may not be most important
which smoothing method to choose, while it is recommendable to smooth at all. For a
more detailed overview on copula estimation methods, see Charpentier et al. (2007).

2.3 Calibration of multivariate multiple test procedures

In this section, we assume that we have uncertainty about the distribution of X. We thus
consider a statistical model of the form (X,F , (Pϑ,CX

: ϑ ∈ Θ,CX ∈ C)). The probability
measure Pϑ,CX

is indexed by two parameters. The parameter CX denotes the copula of X,
and ϑ is a vector of marginal parameters which refer to FX1, . . .,FXm . The model for the
i.i.d. sample X1, . . .,Xn consequently reads as (Xn,F ⊗n, (P⊗n

ϑ,CX
: ϑ ∈ Θ,CX ∈ C)).

Based on this model, we consider multiple test problems of the form (Xn,F ⊗n, (P⊗n
ϑ,CX

:
ϑ ∈ Θ,CX ∈ C),H), where H = {H1, . . .,Hm} with ∅ , Hj ⊂ Θ for all 1 ≤ j ≤ m denotes
a family of m null hypotheses regarding the parameter ϑ. For notational convenience, we
will write Pϑ,CX

for P⊗n
ϑ,CX

. The copula CX is not the primary target of statistical inference,
but a nuisance parameter in the sense that it does not depend on ϑ. This is a common
setup in multiple test theory. We will mainly consider a semi-parametric situation, where
Θ is of finite dimension, while C is a function space.

Remark 2.6. The assumption that the number of tests equals the dimension of X is only
made for notational convenience. The case that these two quantities differ can be treated



Copula-based multiple tests 24

with obvious modifications.

A multiple test for a given set of hypothesesH is a measurable mapping ϕ =(ϕ1, . . .,

ϕm)
⊤ :Xn→ {0,1}m, where ϕ j(x1, . . ., xn) = 1 for given data x1, . . ., xn means rejection of

the j-th null hypothesis Hj in favor of the alternative K j = Θ \Hj , 1 ≤ j ≤ m. We restrict
our attention to multiple tests ϕ which are such that the hypotheses are rejected if the re-
spective test statistics are large enough for given data, i.e., larger than their corresponding
critical values. Notationally, this mean that

ϕ j = 1(cj,∞)(Tj), 1 ≤ j ≤ m, (2.4)

where T = (T1, . . .,Tm)
⊤ : Xn → Rm denotes a vector of real-valued test statistics which

tend to larger values under alternatives, and c = (c1, . . .,cm)
⊤ are the critical values. In

many problems of practical interest, Tj will only use the marginal data (xi, j)1≤i≤n, for
every 1 ≤ j ≤ m. For example, this typically holds true if ϑ j only corresponds to FXj , and
Hj only concerns ϑ j , for every 1 ≤ j ≤ m.

For the calibration of c, we aim at controlling the FWER in the strong sense. Strictly
speaking, our procedure will only control the FWER under the global null hypothesis in
the first place. However, strong control follows directly under Assumption 2.7 (a). For
sufficient conditions of this assumption see Lemma 2.8.

For given ϑ ∈ Θ and CX ∈ C, the FWER is defined as the probability for at least one
false rejection (type I error) of ϕ under Pϑ,CX

, i.e.,

FWERϑ,CX
(ϕ) = Pϑ,CX




j∈I0(ϑ)


ϕ j = 1

 ,
where I0(ϑ) = {1 ≤ j ≤ m : ϑ ∈ Hj} denotes the index set of true null hypotheses under
ϑ. The multiple test ϕ is said to control the FWER at level α ∈ [0,1], if

sup
ϑ∈Θ,CX∈C

FWERϑ,CX
(ϕ) ≤ α.

Notice that, although the trueness of the null hypotheses is determined by ϑ alone, the
FWER depends on ϑ and CX , because the dependency structure in the data typically
influences the distribution of ϕ when regarded as a statistic with values in {0,1}m.

Throughout the remainder, we assume that the following set of conditions is fulfilled.

Assumption 2.7.

(a) Letting H0 =
m

j=1 Hj denote the global null hypothesis of H , there exists a least
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favorable configuration (LFC) ϑ∗ ∈ H0 such that

∀ϑ ∈ Θ∀CX ∈ C : FWERϑ,CX
(ϕ) ≤ FWERϑ∗,CX

(ϕ).

If this assumption is fulfilled, then weak FWER control implies strong FWER con-

trol. Notice that this assumption can be weakened by considering closed test proce-

dures, where our proposed methodology is applied to every non-empty intersection

hypothesis inH (cf. Remark 1 of Stange et al. (2016) for details). However, in such

a setting, the computation time for the multiple test can increase very fast with the

number of hypotheses.

(b) The vector of marginal cdfs of T = (T1, . . .,Tm)
⊤ depends on ϑ only, and is (at

least asymptotically as n→∞) known under any LFC ϑ∗. We denote the vector of

marginal cdfs of T = (T1, . . .,Tm)
⊤ under such an LFC ϑ∗ by FT = (FT1, . . .,FTm)

⊤.

(c) Letting CT = CT,ϑ∗ denote the copula of T under ϑ∗ from part (b), there exists

a continuously differentiable function h : [0,1] → [0,1] such that CT (u, . . .,u) =

h (CX (u, . . .,u)) for all u ∈ [0,1], where CX is the copula of X. The function h may

be unknown. Notice that, if Tj only uses the data (xi, j)1≤i≤n, for every 1 ≤ j ≤ m,

then the copula of T is independent of ϑ∗. The existence of h is guaranteed when-

ever plateaus of u → CX (u, . . .,u) occur on the same subset of [0,1] as plateaus

of u → CT (u, . . .,u). In particular, h exists if u → CX (u, . . .,u) is strictly increas-

ing. The more crucial part of the assumption is that h needs to be continuously

differentiable.

The following lemma is useful in order to verify assumption (a).

Lemma 2.8. Let Hj :

ϑ ∈ Θ

��ϑ j ∈ Θ j ⊆ R

, 1 ≤ j ≤ m, such that the global null hypoth-

esis H0 is not empty and let the marginal distributions of the data in coordinate j depend

on ϑ j only. Further, assume that every test statistic Tj only uses the data (xi, j)1≤i≤n. Then

for all ϑ ∈ Θ, CX ∈ C and any multiple test ϕ which is as in (2.4), we can construct a

parameter value ϑ∗ ∈ H0 with

FWERϑ,CX
(ϕ) ≤ FWERϑ∗,CX

(ϕ) .

In particular, this implies that the LFC is located in H0.

Proof. Choose ϑ∗ ∈ H0 , ∅ with ϑ∗j = ϑ j for j ∈ I0 (ϑ) . Then it holds that

Pϑ,CX




j∈I0(ϑ)


Tj > c j

 = Pϑ∗,CX




j∈I0(ϑ)


Tj > c j

 ,
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since it is assumed that the test statistics Tj , j ∈ I0 (ϑ), only utilize the data from that
coordinate j. Hence,

FWERϑ,CX
(ϕ) = Pϑ,CX




j∈I0(ϑ)


Tj > c j


= Pϑ∗,CX




j∈I0(ϑ)


Tj > c j


≤ Pϑ∗,CX


m

j=1


Tj > c j


= FWERϑ∗,CX

(ϕ) .

�

More generally, the previous lemma holds if the test statistics satisfy the so-called sub-
set pivotality condition (see Westfall and Young (1993) and Dickhaus and Stange (2013)).
Before we start to explain the proposed method for the calibration of c, let us illustrate
prototypical example applications of our general setup.

Example 2.9.

(a) Let Θ = Rm and assume that ϑ j ∈ R is the expected value of X j for every 1 ≤ j ≤ m.
The j-th null hypothesis may be the one-sided null hypothesis Hj = {ϑ j ≤ 0} with
corresponding alternative K j = {ϑ j > 0}. Assume that the variance of the marginal
distribution of each X j is known and w.l.o.g. equal to one. A suitable test statistic
Tj is then given by Tj (X1, . . .,Xn) =

n
i=1 Xi, j/

√
n. From Lemma 2.8 it follows that

the LFC lies in H0. Since the test statistics tend to get larger with increasing values
of ϑ, the LFC ϑ∗ equals 0. Under ϑ∗, we have that FTj = Φ (the cdf of the standard
normal law on R) is the cdf of the (asymptotic) null distribution of Tj for every
1 ≤ j ≤ m. If the considered copula family C consists of multivariate stable copulas
(meaning that the observables follow a multivariate stable distribution), then the
copula CT is of the same type as CX , hence all parts of Assumption 2.7 are fulfilled.

(b) Let X = [0,∞) and assume that the stochastic representations X j
d
= ϑ j Z j with ϑ j > 0

hold true for all 1 ≤ j ≤ m, where Z j is a random variable taking values in [0,1].
The parameter of interest in this problem is ϑ ∈ (0,∞)m. For each coordinate j,
we consider the pair of hypotheses Hj : {ϑ j ≤ ϑ

∗
j } versus K j : {ϑ j > ϑ

∗
j }, where

the LFC ϑ∗ ∈ (0,∞)m (same argumentation as in (a)) is identical to the hypoth-
esized upper bounds for the supports (or right end-points of the distributions) of
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the X j’s. This has applications in the context of stress testing in actuarial science
and financial mathematics (cf., e.g., Longin (2000)). Suitable test statistics are
given by the component-wise maxima of the observables, i.e., Tj (X1, . . .,Xn) =

max1≤i≤n Xi, j/ϑ
∗
j , 1 ≤ j ≤ m. Assuming that the tail behavior of each X j is known

such that the marginal (limiting) extreme value distribution of Tj under ϑ∗ can be
derived and letting C consist of max-stable copulas, all parts of Assumption 2.7 are
fulfilled here, too.

Let us remark here that these two examples have been treated under the restrictive
assumption of one-parametric copula families C by Stange et al. (2015). The following
lemma is taken from Dickhaus and Gierl (2013) and connects the FWER with the test
statistics copula CT .

Lemma 2.10. Let Assumption 2.7 be fulfilled. Then we have that

FWERϑ,CX
(ϕ) ≤ 1−CT


1−α(1)loc, . . .,1−α

(m)
loc


,

where α( j)loc = 1− FTj (c j(α)) denotes a local significance level for the j-th marginal test

problem. In practice, it is convenient to carry out the multiple test procedure in terms of

p-values Pj = 1−FTj (Tj) such that ϕ j = 1[0,α(j)
loc
)
(Pj).

Proof. The assertion follows from Assumption 2.7 (a) and Sklar’s Theorem, since it holds
that

FWERϑ,CX
(ϕ) ≤ FWERϑ∗,CX

(ϕ)

= 1−CT

FT1 (c1 (α)), . . .,FTm (cm (α))


= 1−CT


1−α(1)loc, . . .,1−α

(m)
loc


.

�

Lemma 2.10 shows that the problem of calibrating the local significance levels corre-
sponding to c is equivalent to the problem of estimating the contour line of CT at contour
level 1−α. Any point on that contour line defines a valid set of local significance levels.
Thus, one may weight the m hypotheses for importance by choosing particular points on
the contour line. If all m hypotheses are equally important it is natural to choose equal
local levels α( j)loc ≡ αloc for all 1 ≤ j ≤ m. This amounts to finding the point of inter-
section of the contour line of CT at contour level 1−α and the “main diagonal” in the
m-dimensional unit hypercube. Assumption 2.7 (c) is tailored towards this strategy and
should be modified accordingly if a different weighting scheme is used.
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Recall that we assume that CX and, consequently, CT are unknown. Based on our
investigations in Section 2.2 and making use of Assumption 2.7 (c), we thus propose to
calibrate ϕ empirically. If h is known, this can be done by solving the equation

h

BK


ĈX,n


(1−αloc, . . .,1−αloc)


= 1−α (2.5)

for αloc. Note that this assumption is formulated for equally important hypotheses and has
to be modified for different situations. If for a given α the solution of (2.5) is not unique,
one should choose the smallest set of local significance levels such that (2.5) holds. We
denote the solution of (2.5) by α̂loc,n. This leads to the representation

α̂loc,n = 1−BK


ĈX,n

←
(h← (1−α)),

where BK


ĈX,n

←
is the quantile of u → BK


ĈX,n


(u, . . .,u). Since BK


ĈX,n


depends

on the data, α̂loc,n is a random variable and

�FWERϑ∗,CX
(ϕ) = 1−CT


1− α̂loc,n, . . .,1− α̂loc,n


is a random variable, too, which is distributed around the target FWER level α. The
following theorem is the main result of this section and quantifies the uncertainty about
the realized FWER if the empirical calibration of ϕ is performed via (2.5).

Theorem 2.11. Let Assumption 2.7 be fulfilled. Then the realized FWER has the following

properties.

a) Consistency:

∀CX ∈ C : �FWERϑ∗,CX
(ϕ) → α almost surely as n→∞.

b) Asymptotic Normality:

∀CX ∈ C :
√

n
�FWERϑ∗,CX

(ϕ)−α


d
→N(0,σ2

α) as n→∞,

where

σ2
α =
σ2 (CT (1−α), . . .,CT (1−α))

C′X (CT (1−α))
2 ·


C′T (CT (1−α))

2
,

σ2 (u) := V [C (u)], and C′X , C′T denotes the first derivative of the univariate func-

tions u → CX (u, . . .,u), u → CT (u, . . .,u), respectively.
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c) Asymptotic Confidence Region:

∀δ ∈ (0,1)∀CX ∈ C : lim
n→∞
Pϑ∗,CX


√

n
�FWERϑ∗,CX

(ϕ)−α

σ̂n
≤ z1−δ


= 1− δ,

where σ̂2
n : Xn→ (0,∞) is a consistent estimator of the asymptotic variance σ2

α. In

this, zβ = Φ−1(β) denotes the β-quantile of the standard normal distribution on R.

Proof.

a) Let CX ∈ C be arbitrary, but fixed. Since h is continuously differentiable, h is also
Lipschitz-continuous with Lipschitz constant L > 0. Therefore, with Theorem 2.1
we get����FWERϑ∗,CX

(ϕ)−α
���

=
��1−α−CT


1− α̂loc,n, . . .,1− α̂loc,n

 ��
=

���h 
BK


ĈX,n

 
1− α̂loc,n, . . .,1− α̂loc,n

 
− h


CX


1− α̂loc,n, . . .,1− α̂loc,n

  ���
≤

h

BK


ĈX,n


− h (CX )


∞

≤ L ·
BK


ĈX,n


−CX


∞

=O

n−1/2 (log logn)1/2


almost surely.

b) Letting p := h← (1−α), Lemma 2.18 yields that

√
n

1− α̂loc,n−C←X (p)


=
√

n

BK


ĈX,n

←
(p)−C←X (p)


d
−→N


0,
σ2 

C←X (p), . . .,C
←
X (p)


C′X


C←X (p)

 2


.

Therefore, applying the Delta Method to u → CT (u, . . .,u), we have that

√
n
 �FWERϑ∗,CX

(ϕ)−α


= −
√

n

CT


1− α̂loc,n, . . .,1− α̂loc,n


−(1−α)


= −
√

n

CT


1− α̂loc,n, . . .,1− α̂loc,n


−CT


C←X (p), . . .,C

←
X (p)

 
d
−→N


0,
σ2 

C←X (p), . . .,C
←
X (p)


C′X


C←X (p)

 2 ·

C′T


C←X (p)

 2

.

The result follows from the definition of p.



Copula-based multiple tests 30

c) Since σ̂n→ σα almost surely and particularly, in distribution for n→∞, the asser-
tion follows directly from part b) using Slutsky’s Theorem.

�

If the function h is unknown, one may approximate the value of α̂loc,n with high pre-
cision by a Monte Carlo simulation for a given number M of Monte Carlo repetitions.
To this end, generate M × n pseudo-random vectors which follow the estimated (joint)
distribution of X under ϑ∗, by combining BK


ĈX,n


and the marginal cdfs FX1, . . .,FXm

of X1, . . .,Xm under the global null hypothesis. From these, calculate a pseudo-sample
T 1, . . .,TM from the distribution of T under ϑ∗. Then, FT 1(T 1), . . .,FTM (TM) constitutes
a pseudo-random sample from the estimator of CT , and the empirical equi-coordinate (1−
α)-quantile of this pseudo-sample approximates α̂loc,n. Since the number M of pseudo-
random vectors to be generated is in principle unlimited, Theorem 2.11 continues to hold
true if this strategy is pursued. We will make use of this approach in the more involved
examples studied in Section 2.4 and Section 2.5.

2.4 Simulation study

In this section we report the results of a simulation study regarding the FWER and the
power of multiple tests which are empirically calibrated as proposed in Section 2.3. As-
sume w.l.o.g. that I0 (ϑ) := {1, ...,m0} and let m1 :=m−m0. The empirical FWER is given
by the relative frequency over the L simulation runs of the occurrence of at least one false
rejection, i.e.,

eFWER (ϕ) := L−1
L
ℓ=1

1m0
j=1


ϕ
(ℓ)
j =1

 
x(ℓ)1 , . . ., x

(ℓ)
n


.

Likewise, the empirical power is defined as the average proportion of true rejections, i.e.,

ePower (ϕ) := L−1
L
ℓ=1

©«m−1
1

m
j=m0+1

1
ϕ
(ℓ)
j =1

 
x(ℓ)1 , . . ., x

(ℓ)
n

ª®¬,
where


x(ℓ)1 , . . ., x

(ℓ)
n


∈ Xn denotes the pseudo-sample in the ℓ-th simulation run.

The setting is as follows. We simulate from various one-parametric copula models
(namely, Frank, Clayton, Gumbel, Student’s t with four degrees of freedom, and the
product copula) with parameters corresponding to weak (Kendall’s τ ≈ 0.25) and strong
dependence (Kendall’s τ ≈ 0.75), respectively. In the case of t4-copulas we restrict our
attention to the case of equi-correlation, and the parameter is the equi-correlation coeffi-
cient. For convenience (and without loss of generality), the data are marginally normally
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distributed with all marginal variances equal to one. In the inference procedures, how-
ever, we assume these variances to be unknown, leading to Studentized test statistics. For
each 1 ≤ j ≤ m, we let ϑ j be the mean in coordinate j. In all simulation settings, ϑ j is
set to 0.4 under alternatives. The null hypotheses are given by Hj : {ϑ j = ϑ

∗
j = 0}, with

two-sided alternatives. Hence, marginal two-sided t-tests are performed with multiplicity
corrected local significance level. Our Bernstein procedure is compared with the widely
used Bonferroni and Šidák methods.

Notice that Assumption 2.7 is fulfilled. From Lemma 2.8 we get that the LFC is
indeed ϑ∗ = (0, . . .,0)⊤. Further, the marginal distribution functions of the test statistics
are known (even for finite n) and the function h exists, since u → CX (u, . . .,u) is strictly
increasing for the choices of CX in this simulation study. However, the function h is
unknown in contrast to the examples in Section 2.3.

The calculation of the Bernstein copula has been performed as in Example 4.2 of
Cottin and Pfeifer (2014), which uses K j := n for all j ∈ {1, . . .,m}. This choice fulfills
the assumption of Theorem 2.1. In order to meet the assumptions of Theorem 2.4 it
would be necessary to choose K j slightly larger. Notice, however, that we consider small
sample sizes n ∈ {20,100} in our simulations, such that asymptotic considerations do
not apply here. Instead, some preliminary simulations indicated that the choice K j ≡

n is appropriate. The choice of n was motivated by the purpose to demonstrate how
accurately the Bernstein estimator performs in a small sample scenario. For instance, the
real data example that we will present in Section 2.5 has a sample size of n = 20. With the
simulations presented here, we can thus evaluate the appropriateness of the application of
the proposed methodology in this real data example.

Since the function h is assumed unknown here, we calibrate the proposed multiple test
with the following algorithm which was outlined at the end of Section 2.3.

Algorithm 2.12.

1. Choose a number M of Monte Carlo repetitions.

2. For each b = 1, . . .,M draw a sample U#b
1 , . . .,U

#b
n of BK


ĈX,n


and calculate

X#b
i, j = σ̂j ·Φ

−1
j


U#b

i, j


+ϑ∗j , 1 ≤ i ≤ n,1 ≤ j ≤ m,

where σ̂j is the sample standard deviation of X1, j, . . .,Xn, j .

3. For all 1 ≤ j ≤ m, compute

T#b
j = Tj


X#b

1 , . . .,X
#b
n


=

�����√n ·
1
n
n

i=1 X#b
i, j −ϑ

∗
j

σ̂#b
j

�����
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and obtain the pseudo-sample

V#b
j = 2Ftn−1


T#b

j


−1

from the copula of T .

4. Finally, calibrate α̂loc,n =

α̂
(1)
loc,n, . . ., α̂

(m)
loc,n

⊤
by solving

#

b
���V#b

j ≤ 1− α̂( j)loc,n for all 1 ≤ j ≤ m

= ⌈(1−α)M⌉ . (2.6)

Notice that in (2.6), we implicitly weight the hypotheses. This means that the weights
corresponding to the obtained α̂loc,n depend on the simulation data, for convenience of
implementation. In comparison, the classical Bonferroni and Šidák corrected local sig-
nificance levels are given by

α
( j)
loc =

α

m
and α( j)loc = 1−(1−α)1/m , 1 ≤ j ≤ m,

respectively.
The results are displayed in Table 1 (weak dependence with Kendall’s τ ≈ 0.25) and

Table 2 (strong dependence with Kendall’s τ ≈ 0.75). They reveal that in this simulation
study the Bernstein method performs best in the case that M is large and the proportion of
true null hypotheses π0 is not too large, i.e., in these cases its empirical FWER is closer
to α and its empirical power is higher than those of the generic calibrations. Under strong
dependence the power of the Bernstein method increases even further. On the other hand,
if all hypotheses are true then the empirical FWER for the Bernstein method can be above
α = 5% and M needs to be large in order to improve the empirical FWER. Surprisingly,
the sample size n does not have a clear positive impact in this simulation study.

2.5 Real data analysis

In this section, we analyze insurance claim data from m = 19 adjacent geographical re-
gions (see Table 5). For every region j ∈ {1, . . .,19} these claims have, for confidentiality
reasons, been adjusted to a neutral monetary scale. The claim amounts and types have
been aggregated to full years, such that temporal dependencies are considered negligi-
ble. However, strong non-linear spatial dependencies are likely to be present in the data.
Hence, we treat each of the n = 20 rows in Table 5 as an independent repetition X i = xi

of an m-dimensional random vector X = (X1, . . .,Xm)
⊤, where 1 ≤ i ≤ 20 is the time index

in years and m = 19 refers to the regions.



Copula-based multiple tests 33

Table 1: Comparison of empirical FWER and power regarding Bonferroni, Šidák and
Bernstein corrections under various weak dependency structures with m = 20, π0 =
m0/m ∈ {0.5,1}, α = 0.05, L = 1000, M ∈ {200,1000}, and n ∈ {20,100}.

Family π0 M n
eFWER ePower

Bonferroni Šidák Bernstein Bonferroni Šidák Bernstein

Frank (2)

0.5
200

20 1.8% 1.8% 6.1% 7.5% 7.7% 14.7%
100 1.6% 1.8% 6.9% 81.4% 81.7% 86.1%

1000
20 2.6% 2.6% 4.2% 7.8% 8.0% 10.6%

100 2.6% 2.6% 4.0% 82.0% 82.2% 84.6%

1
200

20 5.2% 5.2% 14.6%
100 3.0% 3.1% 13.1%

1000
20 5.5% 5.5% 7.8%

100 4.6% 4.9% 6.6%

Gumbel (2)

0.5
200

20 2.5% 2.5% 6.4% 8.4% 8.6% 19.4%
100 1.3% 1.5% 6.0% 80.5% 80.7% 89.9%

1000
20 1.3% 1.3% 3.8% 7.1% 7.2% 12.7%

100 2.1% 2.2% 4.8% 80.6% 80.9% 88.1%

1
200

20 1.9% 1.9% 9.8%
100 2.6% 2.6% 10.0%

1000
20 2.7% 2.7% 5.3%

100 2.2% 2.2% 6.4%

Clayton (1)

0.5
200

20 2.2% 2.2% 7.0% 7.0% 7.1% 14.3%
100 2.1% 2.1% 6.0% 81.3% 81.5% 88.0%

1000
20 2.4% 2.4% 4.3% 7.0% 7.1% 9.6%

100 1.8% 1.8% 3.9% 81.3% 81.5% 86.4%

1
200

20 3.3% 3.4% 12.6%
100 4.6% 4.6% 14.7%

1000
20 3.5% 3.7% 5.6%

100 3.6% 3.7% 7.4%

t4 (0.4)

0.5
200

20 2.8% 2.8% 7.6% 6.7% 6.8% 13.4%
100 2.0% 2.1% 8.0% 81.7% 82.0% 87.4%

1000
20 2.3% 2.3% 3.6% 7.3% 7.5% 10.2%

100 2.9% 3.0% 4.0% 81.3% 81.5% 85.0%

1
200

20 5.1% 5.1% 15.0%
100 4.1% 4.1% 12.8%

1000
20 4.4% 4.5% 7.6%

100 3.3% 3.3% 6.9%

Independence

0.5
200

20 2.5% 2.6% 8.2% 7.4% 7.6% 13.5%
100 3.4% 3.4% 7.6% 81.8% 81.9% 86.0%

1000
20 2.9% 2.9% 3.9% 7.0% 7.2% 8.8%

100 2.1% 2.2% 3.6% 81.4% 81.6% 82.8%

1
200

20 5.3% 5.3% 14.3%
100 5.7% 5.8% 15.5%

1000
20 4.0% 4.1% 6.9%

100 4.2% 4.2% 7.6%
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Table 2: Comparison of empirical FWER and power regarding Bonferroni, Šidák and
Bernstein corrections under various strong dependency structures with m = 20, π0 =
m0/m ∈ {0.5,1}, α = 0.05, L = 1000, M ∈ {200,1000}, and n ∈ {20,100}.

Family π0 M n
eFWER ePower

Bonferroni Šidák Bernstein Bonferroni Šidák Bernstein

Frank (14)

0.5
200

20 0.8% 0.8% 6.8% 8.1% 8.2% 22.5%
100 0.6% 0.6% 7.0% 81.7% 81.9% 94.4%

1000
20 1.0% 1.0% 3.2% 7.9% 8.0% 18.3%

100 0.9% 0.9% 4.1% 81.2% 81.4% 92.3%

1
200

20 0.9% 1.0% 7.5%
100 1.0% 1.0% 8.8%

1000
20 1.4% 1.4% 5.2%

100 1.1% 1.1% 5.3%

Gumbel (4)

0.5
200

20 1.5% 1.6% 7.1% 7.7% 7.8% 23.3%
100 0.6% 0.6% 6.2% 81.6% 81.8% 94.9%

1000
20 0.5% 0.5% 2.2% 7.6% 7.7% 18.1%

100 1.1% 1.1% 4.3% 80.9% 81.1% 93.6%

1
200

20 1.3% 1.3% 6.2%
100 0.9% 0.9% 7.9%

1000
20 1.5% 1.5% 4.1%

100 1.4% 1.4% 6.3%

Clayton (6)

0.5
200

20 0.9% 0.9% 4.8% 7.2% 7.3% 22.0%
100 1.2% 1.3% 7.6% 81.3% 81.5% 94.9%

1000
20 0.8% 0.8% 3.5% 7.0% 7.1% 15.9%

100 0.9% 0.9% 4.2% 80.8% 81.0% 93.0%

1
200

20 1.3% 1.5% 5.9%
100 1.3% 1.3% 8.7%

1000
20 1.4% 1.4% 4.1%

100 1.0% 1.0% 5.0%

t4 (0.9)

0.5
200

20 1.6% 1.6% 6.9% 8.3% 8.4% 22.2%
100 0.7% 0.8% 6.8% 80.9% 81.1% 94.3%

1000
20 1.0% 1.0% 2.3% 7.4% 7.6% 16.1%

100 1.0% 1.0% 4.8% 81.4% 81.5% 93.0%

1
200

20 1.8% 1.8% 7.8%
100 0.9% 1.0% 9.1%

1000
20 1.5% 1.6% 4.1%

100 1.4% 1.4% 5.7%
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An important quantity for regulators and risk managers is the region-specific value-at-
risk (VaR). The VaR at level p for region j is defined as the p-quantile of the (marginal)
distribution of X j , i.e.,

VaR j (p) := F←Xj
(p) .

In insurance mathematics, typically considered values of p are close to one. Here, we
chose p = 0.995. Our goal is to derive multiplicity-corrected confidence intervals for
ϑ j =VaR j (0.995), 1 ≤ j ≤m= 19 which are compatible with (i.e., dual to) the Bonferroni,
Šidák and Bernstein copula-based correction methods discussed before. To this end, let
auxiliary point hypotheses be defined as Hϑ∗j :


ϑ j = ϑ

∗
j


for fixed ϑ∗j > 0. According to the

Extended Correspondence Theorem (see Section 1.3 of Dickhaus (2014)), the set of all
values ϑ∗j for which Hϑ∗j is retained by a multiple test at FWER level α (leading to a local

significance level α( j)loc in coordinate j) constitutes a confidence region at simultaneous
confidence level 1−α for ϑ j , 1 ≤ j ≤ m. We set α = 5%.

These model assumptions are analogous to those from the examples in the previous
sections. It can be shown (cf. our argumentation in Example 2.9 (a)) that Assumption 2.7
(a) and (b) are fulfilled. On the other hand, it is difficult to check Assumption 2.7 (c) in
many applications. For example, in the simulation study reported in Section 2.4 we used
the fact that the data were simulated under some suitable copula families.

In quantitative risk management, it is common practice to model the excess distribu-
tion of X j over some given threshold u j by a generalized Pareto distribution (GPD) (cf.,
e.g., Section 7.2.2 of McNeil et al. (2005)).

Definition 2.13 (Definition 7.16 of McNeil et al. (2005)). For shape parameter ξ ∈ R and
scale parameter β > 0, the cdf of the GPD is given by

Gξ,β (x) =


1−(1+ ξx/β)−1/ξ , ξ , 0,

1− exp (−x/β) , ξ = 0,

where x ≥ 0 if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ if ξ < 0.

In the remainder, we make the following assumption.

Assumption 2.14. For every 1 ≤ j ≤ m = 19 there exists a threshold u j and parameter

values ξ j and β j such that

P

X j −u j ≤ x

��X j > u j

≈ Gξj,βj (x)

for all x ≥ 0.
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Under Assumption 2.14, an approximation of the VaR at level p for region j is given
by

VaRξj,βj (p) ≈ u j +
β j

ξ j

©«


1− p
1−FXj


u j

 −ξj −1ª®¬ =: q j

ξ j, β j


,

provided that p ≥ FXj


u j


. For ease of notation, we let ϑ j = q j


ξ j, β j


in the sequel.

For computational convenience, we carried out the test for Hϑ∗j as a confidence-region
test in the sense of Aitchison (1964) based on the family

Hξ∗j ,β∗j :

ξ j = ξ

∗
j , β j = β

∗
j

 ���β∗j > 0, ξ∗j ∈ R


(2.7)

of point hypotheses. Namely, the test procedure works as follows.

Algorithm 2.15.

1. Test each Hξ∗j ,β∗j by an arbitrary level α( j)loc test, where α( j)loc denotes a multiplicity-

corrected significance level based on the Bonferroni, Šidák or Bernstein copula

calibration, respectively.

2. Let a confidence region Cξj,βj (x1, . . ., xn) at confidence level 1−α( j)loc for (ξ j, β j) be

defined as the set of all parameter values (ξ∗j , β
∗
j ) for which Hξ∗j ,β∗j is retained.

3. Reject Hϑ∗j at level α( j)loc, if the set {(ξ∗j , β
∗
j ) : q j


ξ∗j , β

∗
j


= ϑ∗j } has an empty intersec-

tion with Cξj,βj (x1, . . ., xn).

Due to Algorithm 2.15, it suffices to construct point hypothesis tests for (2.7). A stan-
dard technique for testing parametric hypotheses is to perform a likelihood ratio test. In
the risk management context, this method is described in Appendix A.3.5 of McNeil et al.
(2005). Define the random variable Nu j := #


1 ≤ i ≤ n

��Xi, j > u j


and let X̃1, j, . . ., X̃Nuj
, j

denote the corresponding sub-sample for region j. Then the excesses Y1, j, . . .,YNuj
, j over

u j are defined by
Yi, j := X̃i, j −u j .

The test statistic for testing Hξ∗j ,β∗j is then given by

Tj


Y1, j,, . . .,YNuj

, j ;ξ∗j , β
∗
j


:= −2logΛ


Y1, j,, . . .,YNuj

, j ;ξ∗j , β
∗
j


,

where the likelihood ratio Λ is defined by

Λ


Y1, j,, . . .,YNuj

, j ;ξ∗j , β
∗
j


:=

L

Y1, j,, . . .,YNuj

, j ;ξ∗j , β
∗
j


sup(ξ,β) L


Y1, j,, . . .,YNuj

, j ;ξ, β
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with log-likelihood function

log L

Y1, j,, . . .,YNuj

, j ;ξ, β

= −Nu j log β−


1+

1
ξ

 Nuj
i=1

log

1+ ξ

Yi, j

β


.

Under Hξ∗j ,β∗j , Tj is asymptotically χ2-distributed with two degrees-of-freedom. This
means that the (asymptotic) confidence interval Cξj,βj (x1, . . ., xn) in the second step of
Algorithm 2.15 is given by

Cξj,βj (X1, . . .,Xn) =

ξ∗j , β

∗
j


: Tj


Y1, j,, . . .,YNuj

, j ;ξ∗j , β
∗
j


≤ F−1

χ2
2


1−α( j)loc


. (2.8)

Utilizing (2.8), the confidence region [ϑlower
j , ϑ

upper

j ] for ϑ j based on the third step of Algo-
rithm 2.15 is constructed by finding the minimum value ϑlower

j = min q j(ξ
∗
j , β
∗
j ) and the

maximum value ϑupper

j = max q j(ξ
∗
j , β
∗
j ), where (ξ∗j , β

∗
j ) are located on the boundary of

Cξj,βj (x1, . . ., xn).
A graphical method for the determination of a suitable threshold u j is based on the

mean excess plot in coordinate j (cf. Section 7.2.2 of McNeil et al. (2005) for de-
tails). Namely, all possible values u of u j are plotted against the mean of the values
of Y1, j, . . .,YNu, j . If the GPD model is appropriate, the plot should yield an approximately
linear graph for arguments exceeding u j . Usually the few largest values of u are ignored,
because they lead to very small values of Nu.

For example, Figure 2 shows the mean excess plots for the two regions 2 and 4. The
mean excess plot for region 2 is approximately linear when ignoring the three smallest
and the four largest values of u. This means that a suitable threshold u2 would be between
18.815 and 28.316. Similarly, the mean excess plot for region 4 is approximately linear
when ignoring the two largest values of u, hence u4 < 0.321. Based on such considera-
tions, we chose the thresholds u = (u1, . . .,u19)

⊤ given by

u := (1.0,28.0,9.0,0.3,0.2,0.4,2.6,1.2,0.4,1.1,0.1,0.2,22.5,1.6,3.2,0.2,12.5,1.2,0.5)⊤ .

Finally, it remains to determine the local significance levels

α
( j)
loc


1≤ j≤19

. In the case of

the Bonferroni or the Šidák method, this is trivial. To calibrate the local significance lev-
els with the Bernstein method, we employed a modified version of Algorithm 2.12 based
on the empirical excess distribution. Algorithm 2.16 yields a resampling-based approxi-
mation of the copula of the vector T = (T1, . . .,Tm)

⊤ of the region-specific likelihood ratio
test statistics.

Algorithm 2.16.

1. For every 1 ≤ j ≤ m, estimate the parameters ξ j and β j of the excess distribution of
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Figure 2: Raw data and mean excess plots for regions 2 and 4. The graphs in the upper
panel display the data from Table 5 for j ∈ {2,4}, respectively. The graphs in the lower
panel show the corresponding mean excess plots.
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Table 3: Estimated parameters ξ̂ j , β̂ j , 1 ≤ j ≤ 19, for the region-specific GPD models.
Estimation has been performed via maximum likelihood.

ξ̂ j
0.41 1.17 0.75 1.43 0.87 1.51 1.10 0.30 0.49 0.79
0.56 0.98 1.00 0.73 0.47 0.81 1.08 0.60 0.89

β̂ j
19.59 22.21 18.41 0.82 1.10 1.56 4.57 9.75 2.91 6.46
0.64 0.99 5.12 3.42 20.34 4.52 6.98 1.96 1.64

X j via maximum likelihood and calculate Nu j .

2. Choose a number M of Monte Carlo repetitions.

3. For each 1 ≤ b ≤ M draw a pseudo sample U#b
1 , . . .,U

#b
n from the (empirical) Bern-

stein copula BK


ĈX,n


and calculate the corresponding GPD excesses

Y#b
i, j = G←

ξ̂j,β̂j


U#b
(i), j


,1 ≤ i ≤ Nu j,1 ≤ j ≤ m,

where U#b
(i), j denotes the i-th reverse order statistic of


U#b

i, j


1≤i≤n

.

4. For each 1 ≤ j ≤ m, compute T#b
j =Tj


Y#b

1, j , . . .,Y
#b
Nuj
, j ; ξ̂ j, β̂ j


, and obtain the pseudo-

sample

V#b
j = Ĝ j,M


T#b

j


,1 ≤ j ≤ m

from the copula of T .

5. Finally, calibrate α̂loc,n =

α̂
(1)
loc,n, . . ., α̂

(m)
loc,n

⊤
by solving

#

b
���V#b

j ≤ 1− α̂( j)loc,n for all 1 ≤ j ≤ m

= ⌈(1−α)M⌉ .

Table 3 displays the parameter estimates for the region-specific GPD models, and
Table 4 displays the lower bounds


ϑlower

j


1≤ j≤m

of the region-specific confidence intervals

for the 99.5% VaR obtained by the Bonferroni, Šidák and Bernstein copula calibration,
respectively.

Similarly as in Algorithm 2.12, an implicit weighting has been employed for the de-
termination of the local significance levels


α
( j)
loc


1≤ j≤m

in Algorithm 2.16. Therefore,

the confidence bounds obtained with the Bernstein copula method are not guaranteed to
be more informative (i.e., larger) than the ones obtained by the Bonferroni or the Šidák
methods for all regions. However, we observe improvements in almost all regions j. It is
remarkable that this expected behavior of the Bernstein copula calibration can already be
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Table 4: Lower confidence bounds ϑlower
j for the 99.5% VaR, 1 ≤ j ≤ 19, obtained by the

Bonferroni, the Šidák and the Bernstein copula method, respectively. The results for the
Bernstein method rely on M = 1,000 Monte Carlo repetitions in Algorithm 2.16.

Bonferroni
89.08 283.30 126.20 19.41 10.00 36.68 62.57 39.45 14.62 51.14
3.74 10.13 53.74 25.43 101.62 37.11 84.99 12.79 14.80

Šidák
89.22 284.03 126.46 19.48 10.03 36.81 62.75 39.51 14.64 51.25
3.75 10.15 53.82 25.47 101.78 37.20 85.20 12.81 14.83

Bernstein
91.59 287.32 127.61 19.81 10.13 37.37 63.54 38.82 14.73 51.74
3.78 10.25 52.89 26.27 99.90 37.58 82.71 12.91 14.98

verified for the rather moderate sample size of n = 20, because the likelihood ratio tests
and the Bernstein copula calibration are both based on asymptotic considerations.

We omitted the values of

ϑupper

j


1≤ j≤m

, because they are uninformative (extremely

large). This is in line with the fact that all scale parameter estimates ξ̂ j in Table 3 are
positive. For ξ ≥ 0, the GPD has infinite support, thus the modeled 99.5% VaR tends to
be very large.

2.6 Discussion

We have derived a non-parametric approach to the calibration of multiple test procedures
which take the joint distribution of test statistics into account. In contrast to previous
approaches which were restricted to cases with low-dimensional copula parameters, the
Bernstein copula-based approximation of the local significance levels proposed in the
present work can be applied under almost no assumptions regarding the dependency struc-
tures among test statistics or p-values, respectively. This makes the proposed methodol-
ogy an attractive choice for data the dependency structure of which has not been explicitly
modeled prior to the statistical analysis. Furthermore, our empirical results on simulated
as well as on real-life data indicate the gain in power which is possible by the consider-
ation of the dependency structure among test statistics in the calibration of the multiple
test. This is particularly important for modern applications with high dimensionality of,
but also pronounced dependencies in the data.

On the other hand, Theorem 2.11 provides a precise asymptotic performance guar-
antee for the empirically calibrated multiple test, meaning that a sharp upper bound for
its realized FWER can be obtained, at least asymptotically for large sample sizes. This
is in contrast to most of the existing resampling-based multiple test procedures like the
’max T’ and ’min P’ tests proposed by Westfall and Young (1993), which are obvious
competitors of our approach.

Future work shall explore the case that some qualitative assumptions regarding the
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Table 5: Insurance claim data from 19 adjacent geographical regions over 20 years.
Raw data xi, j region j

1 2 3 4 5 6 7 8
1 23.664 154.664 40.569 14.504 10.468 7.464 22.202 17.682
2 1.080 59.545 3.297 1.344 1.859 0.477 6.107 7.196
3 21.731 31.049 55.973 5.816 14.869 20.771 3.580 14.509
4 28.990 31.052 30.328 4.709 0.717 3.530 6.032 6.512
5 53.616 62.027 57.639 1.804 2.073 4.361 46.018 22.612
6 29.950 41.722 12.964 1.127 1.063 4.873 6.571 11.966
7 3.474 14.429 10.869 0.945 2.198 1.484 4.547 2.556
8 10.020 31.283 21.116 1.663 2.153 0.932 25.163 3.222
9 5.816 14.804 128.072 0.523 0.324 0.477 3.049 7.791

year i 10 170.725 576.767 108.361 41.599 20.253 35.412 126.698 71.079
11 21.423 50.595 4.360 0.327 1.566 64.621 5.650 1.258
12 6.380 28.316 3.740 0.442 0.736 0.470 3.406 7.859
13 124.665 33.359 14.712 0.321 0.975 2.005 3.981 4.769
14 20.165 49.948 17.658 0.595 0.548 29.350 6.782 4.873
15 78.106 41.681 13.753 0.585 0.259 0.765 7.013 9.426
16 11.067 444.712 365.351 99.366 8.856 28.654 10.589 13.621
17 6.704 81.895 14.266 0.972 0.519 0.644 8.057 18.071
18 15.550 277.643 26.564 0.788 0.225 1.230 26.800 64.538
19 10.099 18.815 9.352 2.051 1.089 6.102 2.678 4.064
20 8.492 138.708 46.708 3.680 1.132 1.698 165.600 7.926

9 10 11 12 13 14 15 16 17 18 19
12.395 18.551 1.842 4.100 46.135 14.698 44.441 7.981 35.833 10.689 7.299
1.436 3.720 0.429 1.026 7.469 7.058 4.512 0.762 14.474 9.337 0.740

17.175 87.307 0.209 2.344 22.651 4.117 26.586 3.920 13.804 2.683 3.026
0.682 3.115 0.521 0.696 31.126 1.878 29.423 6.394 18.064 1.201 0.894
1.581 11.179 2.715 1.327 40.156 4.655 104.691 28.579 17.832 1.618 3.402

15.676 24.263 4.832 0.701 16.712 11.852 29.234 7.098 17.866 5.206 5.664
0.456 1.137 0.268 0.580 11.851 2.057 11.605 0.282 16.925 2.082 1.008
1.581 5.477 0.741 0.369 3.814 1.869 8.126 1.032 14.985 1.390 1.703
4.079 7.002 0.524 6.554 5.459 3.007 8.528 1.920 5.638 2.149 2.908

21.762 64.582 9.882 6.401 106.197 44.912 191.809 90.559 154.492 36.626 36.276
0.626 3.556 1.052 8.277 22.564 8.961 19.817 16.437 25.990 2.364 6.434
0.894 3.591 0.136 0.364 28.000 7.574 3.213 1.749 12.735 1.744 0.558
2.006 1.973 1.990 15.176 57.235 23.686 110.035 17.373 7.276 2.494 0.525
2.921 6.394 0.630 0.762 25.897 3.439 8.161 3.327 24.733 2.807 1.618
2.180 3.769 0.770 15.024 36.068 1.613 6.127 8.103 12.596 4.894 0.822
9.589 19.485 0.287 0.464 24.211 38.616 51.889 1.316 173.080 3.557 11.627
5.515 13.163 0.590 2.745 16.124 2.398 20.997 2.515 5.161 2.840 3.002
2.637 80.711 0.245 0.217 12.416 4.972 59.417 3.762 24.603 7.404 19.107
2.373 2.057 0.415 0.351 10.707 2.468 10.673 1.743 27.266 1.368 0.644
2.972 5.237 0.566 0.708 22.646 6.652 14.437 63.692 113.231 7.218 2.548
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dependency structure are at hand. For example, it will be interesting to quantify the
uncertainty of the FWER of a multiple test procedure which is calibrated by assuming
an Archimedean p-value copula as in Bodnar and Dickhaus (2014). In this case, non-
parametric estimation of the copula generator function as for instance proposed by Lam-
bert (2007) will lead to an empirical calibration of the multiple test.

2.7 Auxiliary results

In this section two auxiliary lemmas are formulated and proved. The first lemma is used
in the proofs of Theorem 2.1 and Theorem 2.4. The second lemma follows from Theorem
2.4 and is used in Theorem 2.11.

Lemma 2.17. It holds that

∥BK (CX )−CX ∥∞ ≤
1
2

m
j=1

K−1/2
j ,

where ∥g∥∞ := supu∈[0,1]m |g (u)| for g : [0,1]m −→ R.

Proof. We get

∥BK (CX )−CX ∥∞ ≤ sup
u∈[0,1]m

K
k=0
|CX (k/K )−CX (u)|

m
j=1

Pk j,Kj


u j


≤ sup

u∈[0,1]m

K
k=0

m
j1=1

���� k j1

K j1
−u j1

���� · m
j2=1

Pk j2,Kj2


u j2


≤

1
2

m
j=1

K−1/2
j ,

where the second inequality follows from the Lipschitz property of multivariate copula
(see Section 2 of Sancetta and Satchell (2004)). For the last inequality we use the fact that
Pk j,Kj


u j


is the probability function of the binomial distribution for each u j ∈ [0,1] and
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1 ≤ j ≤ m. Therefore, by the Jensen inequality it follows that

sup
u∈[0,1]m

K
k=0

m
j1=1

���� k j1

K j1
−u j1

���� · m
j2=1

Pk j2,Kj2


u j2


=

m
j=1

sup
u j∈[0,1]

Kj
k j=0

���� k j

K j
−u j

����Pk j,Kj


u j


≤

m
j=1

sup
u j∈[0,1]

©«
Kj

k j=0


k j

K j
−u j

2
Pk j,Kj


u j

ª®¬
1/2

=

m
j=1

sup
u j∈[0,1]


u j


1−u j


K j

1/2

=
1
2

m
j=1

K−1/2
j .

�

Lemma 2.18. Let p ∈ (0,1). Suppose that C′X

C←X (p)


> 0 exists, then

n1/2

BK


ĈX,n

←
(p)−C←X (p)


d
−→N


0,
σ2 

C←X (p), . . .,C
←
X (p)


C′X


C←X (p)

 2


,

whereσ2 (u)=V [C (u)], C′X is the first derivative of u →CX (u, . . .,u), and C←X , BK


ĈX,n

←
is the quantile of u → CX (u, . . .,u), u → BK


ĈX,n


(u, . . .,u), respectively.

Remark 2.19. In order to prove this lemma, we need a slightly extended version of Theo-
rem 2.4. Let u ∈ [0,1]m and un := u± ϵn, where ϵn→ 0 for n→∞, such that un ∈ [0,1]m

for all n ∈ N. Then under the assumptions of Theorem 2.4 it holds that

n1/2 ·

BK


ĈX,n


(· ± ϵn)−CX (· ± ϵn)


d
→ C

in (C ([0,1]m), ∥·∥∞).

The proof is essentially the same. Notice that Lemma 2.17 and Bernstein’s theorem
hold uniformly. This means that we can use Lemma 2.17 directly again and Bernstein’s
theorem with an additional argument. We used Bernstein’s theorem to show the uniform
convergence of gn ( f ) → g ( f ) for n→∞ and all f ∈ S′. Recall that f is any continuous
function on the compact set [0,1]m. We need to show that gn ( f ) → g ( f ) for n→∞ still
holds uniformly when we transform the argument u of gn ( f ) to un. We get that

sup
u∈[0,1]m

|gn ( f ) (un)−g ( f ) (u)| = sup
u∈[0,1]m

��BK (n) ( f ) (un)− f (u)
��

≤
BK (n) ( f )− f


∞
+ sup

u∈[0,1]m
| f (un)− f (u)| .
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The first summand again converges to zero because of Bernstein’s theorem. The second
summand converges to zero because of the uniform continuity of f . The function g′n de-
fined by g′n ( f ) (u) := gn ( f ) (un)= BK (n) ( f ) (un) is then used in the generalized continuous
mapping theorem instead of gn.

Proof. We argue similarly to the proof of Theorem A in Section 2.3.3 of Serfling (1980).
Fix p ∈ (0,1) and let

Gn (t) := P


n1/2


BK


ĈX,n

←
(p)−C←X (p)


σ̃

≤ t

 ,
where σ̃ := σ(C

←
X (p),...,C

←
X (p))

C ′X(C
←
X (p))

. Let un := tσ̃n−1/2+C←X (p). We have

Gn (t) = P

BK


ĈX,n

←
(p) ≤ un


= P


p ≤ BK


ĈX,n


(un, . . .,un)


Put cnt := n1/2(CX (un,...,un)−p)

σ(un,...,un)
. Then it holds that

Gn (t) = P [−cnt ≤ Zn],

where Zn := n1/2(BK(ĈX,n)(un,...,un)−CX (un,...,un))
σ(un,...,un)

. Furthermore, we get

Φ (t)−Gn (t) = P [Zn < −cnt]− (1−Φ (t))

= P [Zn < −cnt]−Φ (−cnt)+Φ (t)−Φ (cnt) (1)

Since CX and ∂jCX , 1 ≤ j ≤ m, are continuous, we have

lim
n→∞

cnt = lim
n→∞


t ·

σ̃

σ (un, . . .,un)
·
CX (un, . . .,un)−CX


C←X (p), . . .,C

←
X (p)


tσ̃n−1/2


= t ·

σ̃

σ

C←X (p), . . .,C

←
X (p)

 ·C′X 
C←X (p)


= t .

Next, we utilize Remark 2.19 (restricted to the point u :=

C←X (p), . . .,C

←
X (p)


with un :=

(un, . . .,un)) and Polya’s Theorem (see Section 1.5.3 of Serfling (1980)) to show uniform
convergence of the distribution function of Zn to the standard normal distribution function.
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Since Φ is continuous, we have

lim
n→∞

sup
x∈R
|P [Zn ≤ x]−Φ (x)| = 0.

Using these two properties, (1) results in

lim
n→∞
|Φ (t)−Gn (t)| ≤ lim

n→∞
sup
x∈R
|P [Zn < x]−Φ (x)|+ lim

n→∞
|Φ (t)−Φ (cnt)|

= 0.

�
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3 Estimating the proportion of true null hypotheses un-
der arbitrary dependency

André Neumann1, Taras Bodnar2, and Thorsten Dickhaus1

It is a well known result in multiple hypothesis testing that the proportion π0 of
true null hypotheses is not identified under general dependencies. However, it is
possible to estimate π0 if structural information about the dependency structure
among the test statistics or p-values, respectively, is available. We demonstrate
these points, and propose a marginal parametric bootstrap method. A pseudo-
sample of bootstrap p-values is generated, which still carry information about
π0, but behave like realizations of stochastically independent random variables.
Theoretical properties of resulting estimation procedures for π0 are analyzed and
their usage is illustrated on synthetic and real data.

Key words: Bootstrap; Copula; Family-wise error rate; p-Value; Schweder-Spjøtvoll

estimator.

3.1 Introduction

Under the multiple testing framework, estimating the proportion π0 of true null hypothe-
ses is informative for various reasons. On the one hand, in applications like quality control
or anomaly detection, the presence of a certain number of untypical data points already
indicates the necessity for an intervention, no matter which of the data points are respon-
sible for that. On the other hand, data-adaptive multiple test procedures (see Section 3.1.3
in Dickhaus (2014)) incorporate an estimate π̂0 into their decision rules in order to opti-
mize power (see Langaas et al. (2005), Finner and Gontscharuk (2009), Celisse and Robin
(2010) and Dickhaus et al. (2012)).
Throughout the remainder, we assume that m null hypotheses, which relate to the (main)
parameter ϑ of one and the same statistical model, are simultaneously under considera-
tion. We let m0 = m0(ϑ) denote the number of true nulls, hence π0 := m0/m. The number
of false null hypotheses is denoted by m1 = m1(ϑ) := m−m0. Furthermore, we assume
that test statistics T1, . . .,Tm and corresponding p-values P1, . . .,Pm are at hand. Without
loss of generality, we will assume throughout that the p-values P1, . . .,Pm0 correspond to
true null hypotheses, while Pm0+1, . . .,Pm correspond to false null hypotheses. Under in-
dependence assumptions regarding the joint distribution of the p-values, the very popular

1Institute for Statistics, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany.
2Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden.
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Schweder-Spjøtvoll estimator π̂SS
0 for π0 has originally been proposed by Schweder and

Spjøtvoll (1982). Theoretical properties of π̂SS
0 and slightly modified versions of it have

been investigated by Storey et al. (2004), Langaas et al. (2005), Finner and Gontscharuk
(2009), Dickhaus et al. (2012), Dickhaus (2013), and Cheng et al. (2015). Based on the
EM algorithm, a novel estimation procedure for π0 has recently been proposed by Oyeni-
ran and Chen (2016), also under independence assumptions. Competing estimators have
been compared by Hwang et al. (2014) and Nguyen and Matias (2014).

To our knowledge, the case of dependent test statistics or p-values, respectively, has
not been treated yet in depth in the literature. Under the assumption of a linear factor
model, Friguet and Causeur (2011) proposed an adjustment procedure prior to the ap-
plication of π̂SS

0 . Under monotonicity and convexity constraints regarding the mixture
density of the p-values, Ostrovnaya and Nicolae (2012) worked out a (maximum likeli-
hood) estimator based on a multinomial model. However, in many applications in modern
life sciences, where the involved technical and biological mechanisms of data generation
typically lead to involved temporal, spatial, or spatio-temporal dependencies (see Stange
et al. (2016)), it is hard to verify such explicit model assumptions. Therefore, we express
dependency structures in this work in the most general manner by means of copula func-
tions (see Sklar (1996)). Unfortunately, as we will demonstrate in Example 3.1 below,
π0 is not identified under general dependencies. This seems to be a well known fact in
multiple test theory. Meinshausen and Bühlmann (2005) established an upper bound for
π0 based on a bounding function approach. However, the choice of an appropriate bound-
ing function is only straightforward in the case of a multi-sample problem. Wang et al.
(2011) employed a sliding linear model (SLIM) approach which is based on the ecdf of
all m marginal p-values.

The estimator π̂SS
0 also relies on the ecdf of P1, . . .,Pm and on a tuning parameter λ ∈

(0,1), where the typical default value is λ = 1/2. The tuning parameter is chosen such
that all p-values under alternatives are presumably smaller than λ. Denoting the ecdf of
P1, . . .,Pm by F̂m, π̂SS

0 is given by

π̂SS
0 := π̂SS

0 (λ) :=
1− F̂m(λ)

1−λ
.

This form of the Schweder-Spjøtvoll estimator has been mentioned by Storey (2002);
Storey et al. (2004). There exist several heuristic motivations for the usage of π̂SS

0 . The
simplest one considers a histogram of the marginal p-values with exactly two bins, namely
[0, λ] and (λ,1]. Then, the height of the bin associated with (λ,1] equals π̂SS

0 (λ) (see Figure
3.2 (a) in Dickhaus (2014)). A graphical algorithm for computing π̂SS

0 connects the point
(λ, F̂m(λ)) with the point (1,1). The offset of the resulting straight line at t = 0 equals
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Figure 3: Computer simulations of the behavior of π̂SS
0 under a Gumbel-Hougaard copula

with copula parameter η = 100. In the left graph, the p-values corresponding to true null
hypotheses cluster around a value smaller than λ, while in the right graph they cluster
around a value larger than λ.

π̂SS
1 := π̂SS

1 (λ) := 1− π̂SS
0 (λ) (see Figure 3.2 (b) in Dickhaus (2014)). Both of these heuristic

motivations implicitly assume that the ecdf of the p-values corresponding to true null
hypotheses is close to the main diagonal in the unit square. However, under dependency
this assumption is prone to be violated, because the p-values have the tendency to cluster.
A worst case example of this behavior can be used to demonstrate that it is impossible to
estimate π0 based on F̂m under arbitrary dependencies, even if the sample size tends to
infinity. For a more realistic setups see Section 3.4.

Example 3.1. Assume that the copula of P = (P1, . . .,Pm)
⊤ is a Gumbel-Hougaard copula

with copula parameter η ≥ 1 (cf. Stange et al. (2015) for justifications of this type of cop-
ula in the context of multiple tests related to extreme value theory). The value η = 1 corre-
sponds to joint independence of all m p-values, while the strength of dependency among
P1, . . .,Pm increases with η > 1. Furthermore, assume that the p-values corresponding to
true null hypotheses are marginally uniformly distributed on [0,1], while each Pj , j > m0,
is marginally uniformly distributed on


0, γ j


for uniformly selected values γ j < 1.

In Figure 3, we present two computer simulations for m = 100, m0 = 50, η = 100,
and λ = 1/2. In both graphs displayed in Figure 3, the clustering of the p-values which
is due to the large value of η can clearly be observed. The ecdf of P1, . . .,Pm exhibits a
large step at the realized value of the first p-value P1, because all m0 “true p-values” are
almost totally dependent so that they take with very high probability essentially all the
same value.

Under this model, the behavior of π̂SS
0 (indicated by the straight lines) can be char-
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acterized as follows. If P1 takes a value smaller than λ (as in the left graph), the main
step of F̂m is at a value smaller than λ, hence the estimated proportion of false hypotheses
equals 1, meaning that we estimate m0 to be equal to zero. On the other hand, if P1 takes
a value larger than λ (as in the right graph), the main step of F̂m is at a value larger than
λ, hence the estimated proportion of false hypotheses is less than or equal 0, meaning that
we estimate m0 to be larger than or equal to m. In practice, one may truncate the estimator
at m0 = m. In summary, the truncated Schweder-Spjøtvoll estimator for π0 follows under
very strong dependency a two-point distribution with two point masses in zero and one.
It may be true that the point mass in one is large enough to make the (truncated) estimator
mean conservative (i.e., upwardly biased), but its usage is inappropriate in practice. In
particular, it is not consistent if π0 ∈ (0,1). Finally, notice that the behavior of π̂SS

0 would
remain exactly the same for a different value of m0. Whether π̂SS

0 takes the value zero or
the value one only depends on the realization of P1, and this value is independent of the
true value of m0. In this sense, π0 is not identified.

Example 3.1 demonstrates that some structural information about the dependency
structure among the test statistics or p-values, respectively, is inevitable for the estimation
of π0. In this work, we assume that the dependency structure among P1, . . .,Pm can be
separated from the information that P1, . . .,Pm carry about ϑ. Based on this structural
assumption, we develop a marginal parametric bootstrap method for the estimation of
π0. We transform a bootstrap sample of the data into p-values P∗1, . . .,P

∗
m, which approx-

imately behave like realizations of jointly stochastically independent random variables.
These p-values can then be used in π̂SS

0 instead of the original p-values. Applying this
methodology to the situation considered in Example 3.1 leads to an accurate estimate of
π0, see Example 3.5 below. In contrast, the other approaches from the literature men-
tioned before are not suitable in this context. Namely, the model assumptions of Friguet
and Causeur (2011) or Ostrovnaya and Nicolae (2012), respectively, are not fulfilled here.
Application of the bounding function approach by Meinshausen and Bühlmann (2005) is
difficult, because the p-values originated from one-sample problems. When applying the
SLIM approach by Wang et al. (2011) with the recommended number of ten segments
(i.e., subintervals of [0,1]), we essentially encountered the same problems as for π̂SS

0 , be-
cause their approach also relies on the ecdf F̂m. In every of the ten segments, we either
obtained an estimated value for π0 which exceeded one or which was equal to zero. It is
to be expected that any ecdf-based estimator will suffer from the clustering effect of the
p-values under null hypotheses.

The rest of the manuscript is structured as follows. In Section 3.2, we introduce the
proposed bootstrap procedure. Theoretical properties of this procedure are analyzed in
Section 3.3. The sensitivity of this procedure is discussed for a simulation study in Section
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3.4. A real data example from cancer research is presented in Section 3.5. We conclude
with a discussion in Section 3.6.

3.2 Estimation of π0 via marginal parametric bootstrap

We consider multiple test problems of the form as in Section 2.3. Additionally, we assume
that hypotheses have the structure Hj =


ϑ ∈ Θ

��ϑ j = θ j

, where (θ1, . . ., θm)

⊤ is a fixed
element of Θ. This type of null hypotheses typically leads to uniformly distributed p-
values under the null, while the latter is not fulfilled for general composite hypotheses
(see Dickhaus (2013)).

Our proposed bootstrap method for estimating π0 under arbitrary copula CX of X is
formalized in Algorithm 3.2.

Algorithm 3.2. For all 1 ≤ j ≤ m, let ϑ̂ j,n be a consistent estimator of ϑ j , x1, . . ., xn be the

observed data sample and k (n) ∈ N the size of the bootstrap pseudo samples, where k (n)

is usually equal to n. We assume that for testing Hj a real-valued test statistic Tj = Tj,n is

at hand which tends to larger values under the alternative K j , 1 ≤ j ≤ m.

1. For every 1 ≤ b ≤ B and 1 ≤ j ≤ m

(a) draw a bootstrap sample X∗(b)1, j , . . .,X
∗(b)
k(n), j of size k (n) from the marginal dis-

tribution of X j with estimated parameters ϑ̂ j,n (x1, . . ., xn).

(b) calculate the bootstrap test statistics T∗j = T∗(b)j,n := Tj,k(n)


X∗(b)1, j , . . .,X

∗(b)
k(n), j


.

(c) calculate the bootstrap p-values P∗j = P∗(b)j,n := 1−FTj,k(n) |θ j


T∗(b)j,n


.

2. For every 1 ≤ b ≤ B calculate the Schweder-Spjøtvoll estimator

π̂
∗(b)
0,n (λ) =

1− F̂∗(b)m (λ)

1−λ
,

where F̂∗(b)m is the empirical distribution function of P∗(b)1,n , . . .,P
∗(b)
m,n .

3. Take the average π̂
∗

0 = π̂
∗

0,n,B := 1
B
B

b=1 π̂
∗(b)
0,n .

In the first step, we generate for every 1 ≤ j ≤ m independently a bootstrap pseudo
sample with the same marginal cdf as X j under the estimated value of ϑ j . Then, we calcu-
late the test statistics and p-values based on these pseudo samples instead of the original
data. In steps 2 and 3, we finally compute the Schweder-Spjøtvoll estimator. We will show
in Lemma 3.6 that the resulting bootstrap p-values are indeed conditionally independent
given the data. Therefore, in contrast to Figure 3 we can expect the Schweder-Spjøtvoll
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estimator, applied to the bootstrapped p-values, to behave as in the case of joint inde-
pendence of X1, . . .,Xm. Hence, it is important to perform the bootstrap marginally. If
one would use a multivariate bootstrap procedure instead, then the estimator would still
suffer under dependency. For example, Lu and Perkins (2007) observed this for strong
correlation in microarray data.

The following assumptions regarding the test statistics T1, . . .,Tm are made throughout
the remainder.

Assumption 3.3.

(a) The marginal parametric bootstrap works for the chosen test statistics, i.e., under

true null hypotheses the differences between the marginal cdfs of the test statistics

and the marginal cdfs of the bootstrap test statistics converge to zero uniformly, in

probability.

(b) The marginal cdf of Tj only depends on ϑ j and is continuous under true null hy-

potheses for all 1 ≤ j ≤ m.

Assumption (a) refers to the validity of the parametric bootstrap in a generic manner.
Parametric bootstrap procedures have been considered in many fields, for example in gene
expression analysis (see Van Der Laan and Bryan (2001)), in the analysis of variance
(ANOVA) (see Krishnamoorthy et al. (2007)), for goodness-of-fit statistics (Cramér-von
Mises, Kolmogorov-Smirnov) (see Genest and Rémillard (2008)), and for Wald statistics
in dynamic factor models (see Dickhaus and Pauly (2016)). Assumption (b) formalizes
the separation of the dependency structure in the data and their information about ϑ which
we have mentioned in the introduction. Continuity of the marginal cdfs is necessary for
uniformly distributed p-values under true hypotheses. This property is essential for a
reasonable behavior of the Schweder-Spjøtvoll estimator.

Remark 3.4. The marginal bootstrap is not suitable to approximate the null distribution
of statistics like max1≤ j≤m Tj , which depend on the joint distribution of X . For example,
the ’max T’ procedure of Westfall and Young (1993) for testing the global hypothesis
H0 =

m
j=1 Hj uses the maximum of the test statistics to define adjusted p-values.

Before we analyze the theoretical properties of the proposed estimator π̂
∗

0 in Section
3.3, the following example illustrates the applicability of Algorithm 3.2 in extreme situa-
tions like in Example 3.1. In Section 3.4 we take a look at more realistic settings.

Example 3.5 (Example 3.1 continued.). We consider the setup of Example 3.1, but now
assume that the test statistics (instead of the p-values) are strongly dependent and possess
a Gumbel-Hougaard copula with parameter η. Thus, the p-values cluster for large val-
ues of η, as in Example 3.1. Let 1 ≤ j ≤ m and assume that the sample X1, j, . . .,Xn, j
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possesses the stochastic representation Xi, j
d
= ϑ j · Zi, j , where ϑ j > 0 is unknown and

Z1, j, . . ., Zn, j follow a beta distribution with fixed shape parameters α = 1 and β > 2. For
each 1 ≤ j ≤ m we want to test the null hypothesis Hj =


ϑ ∈ (0,∞)m

��ϑ j = θ j


versus
the (one-sided) alternative K j :=


ϑ ∈ (0,∞)m

��ϑ j > θ j

, where θ j > 0 is given. Assume

that the dependence structure among X1, . . .,Xm is given by a Gumbel-Hougaard cop-
ula with parameter η. According to Section 4.2 in Stange et al. (2015), suitable test
statistics are given by T̃j = max1≤i≤n Xi, j/θ j , 1 ≤ j ≤ m, and possess the same copula
function. In order to get a non-degenerate limiting distribution function, we transform
these test statistics to Tj :=


T̃j − bn


/an, where an = 1−F−1

Z1,1


1−n−1 and bn ≡ 1. Since

an and bn are deterministic quantities, the transformed test statistics follow the same
Gumbel-Hougaard copula as well. The p-values for the one-sided hypotheses are given
by Pj := 1− FT̃j |θ j


T̃j


= 1− Fn

Beta(α,β)(T̃j). Since the random variables Zi, j are beta dis-
tributed, the expected value of X1, j is equal to ϑ jα/(α+ β). Hence, a consistent (method
of moments) estimator ϑ̂ j,n of ϑ j is given by ϑ̂ j,n


X1, j, . . .,Xn, j


= X̄ j (α+ β)/α.

The plug-in rule of Algorithm 3.2 now yields bootstrap variates X∗i, j
d
= ϑ̂ j,n(x1, j, . . .,

xn, j) · Zi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, for observed data x1, . . ., xn, with corresponding test
statistics and p-values.

The validity of part (a) of Assumption 3.3 can be shown as follows. First, utilizing
techniques from extreme value theory, we obtain that the marginal cdf of each original
test statistic Tj converges under Hj to the (continuous) Weibull cdf with parameter β > 0,
i.e.,

lim
n→∞

FTj,n (x) = lim
n→∞

Fn
Z1,1
(anx+ bn) = G (x) :=


exp


−(−x)β


, x < 0,

1, x ≥ 0.

In order to establish the limiting law of the bootstrapped test statistics, notice first that
Tj

d
=


max1≤i≤n Zi, j − bn


/an under Hj . Let a′n := anϑ̂ j,n/θ j and b′n := bnϑ̂ j,n/θ j . We get

that a−1
n a′n converges to 1 almost surely for n→∞. Now, assume for the moment that

a−1
n


b′n− bn


converges to 0 almost surely for n→∞. Then we get for all 1 ≤ j ≤ m0 and

x ∈ R that���F∗T∗j,n (x)−G (x)
��� = �����Fn

Z1,1


θ j

ϑ̂ j,n
(anx+ bn)


−G (x)

�����
=

���Fn
Z1,1


a′nx+ b′n


−G (x)

���
=

���FTj,n


a−1

n a′nx+ a−1
n


b′n− bn

 
−G (x)

���
≤

FTj,n −G

∞
+

���G 
a−1

n a′nx+ a−1
n


b′n− bn

 
−G (x)

���
→ 0 almost surely for n→∞.
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Figure 4: Computer simulation of π̂
∗

0 in the setting of Example 3.5 with α = 1, β = 4,
n = 100, m = 100, m0 = 50 and η = 100. The parameter values ϑm0+1, . . ., ϑ100 ∈ (1.5,2.5)
have been chosen uniformly. The right graph displays one of the B Schweder-Spjøtvoll
estimates based on the bootstrapped p-values P∗1, . . .,P

∗
m. The left graph displays the his-

togram of all estimates π̂∗(1)0,n , . . ., π̂
∗(B)
0,n with B = 10,000. In this simulation the bootstrap

estimate of π0 = 0.5 is π̂
∗

0 = B−1 B
b=1 π̂

∗(b)
0,n ≈ 0.62.

It remains to show that a−1
n


b′n− bn


→ 0 almost surely as n→∞. To this end, notice

that the convergence rate of ϑ̂ j,n/θ j −1 is arbitrarily close to o

n−1/2


almost surely (see

Theorem 2.5.8 in Durrett (2010)). For the chosen parameter values α = 1 and β > 2, we
get that an = n−1/β and n(1/2−ϵ)−1/β→∞ for any ϵ > 0 which is small enough. This means
that a−1

n

b′n− bn


= o (1)/


n(1/2−ϵ)−1/β


indeed converges to 0 almost surely for n→∞.

Finally, Pólya’s uniform convergence theorem yields thatFTj −F∗T∗j


∞
→ 0

almost surely for n→∞ and all 1 ≤ j ≤ m0, since the limiting cdf G is continuous.
Figure 4 displays the results of a computer simulation employing Algorithm 3.2 in

this example, where η = 100. One may compare the right graph in Figure 4 with Figure
3 for a demonstration of the improvement of estimation accuracy obtained by applying
Algorithm 3.2.

3.3 Theoretical analysis

In this section, we analyze the theoretical properties of our bootstrap estimator π̂
∗

0. For
the ease of notation, let P = P⊗∞

ϑ,CX
denote the true distribution of the data sample and

let (Ω∗,F ∗,P∗) denote the probability space related to the bootstrap random variables for
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fixed data.
First, we prove that the bootstrap p-values are indeed independent.

Lemma 3.6. Let m,n ∈ N and the observed data sample be fixed. Then the following

assertions hold true.

1. The bootstrapped p-values P∗(b)1,n , . . .,P
∗(b)
m,n are stochastically independent with re-

spect to P∗ for every 1 ≤ b ≤ B.

2. The estimators π̂∗(1)0,n , . . ., π̂
∗(B)
0,n are i.i.d. with respect to P∗.

Proof. For fixed data our bootstrap sample X∗(b)1 , . . .,X
∗(b)
n consists of random variables

X∗(b)i, j , which are independent in i, j and b by construction. They are also identically

distributed in i and b. In Algorithm 3.2 we just transform this sample to T∗(b)j,n , P∗(b)j,n and

π̂
∗(b)
0,n (λ) for every 1 ≤ b ≤ B. These measurable transformations depend on j, but not on

b. Therefore, the assertions follow. �

Remark 3.7. Under the assumptions of Lemma 3.6 we get by the strong law of large
numbers that

π̂
∗

0→ E
∗

π̂
∗(1)
0,n


P∗-almost surely for B→∞.

Lemma 3.8. Let b ∈ {1, . . .,B} and m ∈ N be fixed. ThenFPj,n −F∗
P∗(b)j,n


∞

P
−→ 0 as n→∞

for all 1 ≤ j ≤ m0.

Proof. From part (a) of Assumption 3.3 we get thatFTj,n −F∗
T∗(b)j,n


∞

P
−→ 0 as n→∞

for each 1 ≤ j ≤ m0. Since the p-values are measurable transformations of the test statis-
tics, the assertion follows. �

The following theorem is the main result of this section. Note that we can choose
B as large as we want, if we have enough computing power. Therefore, the assertion of
Theorem 3.9 is mainly an asymptotic property with respect to the sample size n→∞.

Theorem 3.9. Let m ∈ N be fixed. We have

lim
n→∞

lim
B→∞
π̂
∗

0,n,B ≥ π0

P∗-almost surely and in probability with respect to P.
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Proof. To proof this theorem, we combine Remark 3.7 with Lemma 3.8. Let (nk)k∈N =
nℓk


k∈N be an arbitrary subsequence of a subsequence (nℓ)ℓ∈N of integers. Remark 3.7

yields that for every observed data sample it holds P∗-almost surely that

lim
B→∞
π̂
∗

0,nk,B = E
∗

π̂
∗(1)
0,nk


= E∗


1− F̂∗(1)m (λ)

1−λ



=
1− 1

m
m

j=1P
∗

P∗j,nk ≤ λ


1−λ

.

Furthermore, from Lemma 3.8 it follows that

∀1 ≤ j ≤ m0 : P∗

P∗j,nk ≤ λ


→ Prob(U ≤ λ) = λ as nk →∞

P-almost surely, where U denotes a standard uniform variate.
Hence, we get P-almost surely that

lim
nk→∞

1−m−1 m
j=1P

∗

P∗j,nk ≤ λ


1−λ

= lim
nk→∞

1− π0λ−m−1 m
j=m0+1P

∗

P∗j,nk ≤ λ


1−λ

≥
1− π0λ−(1− π0)

1−λ
(3.1)

= π0.

Thus, the assertion follows by the subsequence principle. �

Theorem 3.9 shows that the bootstrap estimator π̂
∗

0 is asymptotically non-negatively
biased (i.e., mean conservative).

Corollary 3.10. Theorem 3.9 also shows that we achieve an asymptotically unbiased es-

timator of π0 whenever P∗

P∗j,n ≤ λ


tends to one for n→∞ under alternatives, because

in such cases inequality (3.1) becomes an equality. This means that for example every

consistent multiple test (see Troendle (2000)) leads to an asymptotically unbiased estima-

tor.

Let us demonstrate the assertion of Corollary 3.10 in a small simulation. Assume a
multivariate normal model with equi-correlation coefficient ρ = 0.7 and known variances
equal to 1. The marginal means are tested against zero and take absolute values between
0.5 and 2 under alternatives; see Section 3.4 for a detailed description of this model.
The assumption of consistency of the marginal tests is fulfilled here. The number of
hypotheses m is equal to 100 and π0 is set to 0.5. We only present results for B = 100
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Table 6: Bias and MSE of the marginal bootstrap procedure for fixed B = 100 and varying
values of n.

n bias MSE
10 0.069 0.00661
30 0.039 0.00214
50 0.020 0.00082
100 0.005 0.00032

1000 -0.006 0.00013
10000 -0.002 0.00006

here. For larger values of B, simulation results were similar. In Table 6, the performance
of the proposed estimator is displayed in terms of its bias and its mean squared error
(MSE), where the sample size n takes values from 10 to 10,000. It is clearly visible
that bias and MSE approach zero for n→∞ when B is large enough. Throughout the
remainder, we will evaluate the performance of concurring estimators by means of bias
and MSE.

3.4 Simulation study

In this section, we present the results of a simulation study in order to (i) investigate the
performance of the proposed marginal bootstrap procedure for finite n, and (ii) compare
the proposed procedure with existing approaches for estimating π0 taken from the litera-
ture.

To this end, we consider an equi-correlated multivariate normal model. In order to
analyze the sensitivity of the procedures with respect to varying parameters, we used
various values for the equi-correlation ρ, the number of hypotheses m, the ratio of true
null hypotheses π0 and the sample size n. There exist several methods for estimating π0,
which are implemented in R. The container method estim.pi0 in the package cp4p was
used, which includes methods from the packages limma and qvalue.

Since our bootstrap algorithm is a strategy to deal with dependencies, it can easily be
combined with all of these methods. Most of them assume independent p-values. In total
nine methods, all relying on p-values P1, . . .,Pm, were compared with their respective
marginal bootstrap version. Namely, the methods from Schweder and Spjøtvoll (1982),
Storey and Tibshirani (2003), Storey et al. (2004), Langaas et al. (2005), Nettleton et al.
(2006), Pounds and Cheng (2006), Jiang and Doerge (2008), Wang et al. (2011) and
Phipson (2013) have been taken into account.

The model is as follows. Assume that X1, . . .,Xn, n ∈ {10,30,50,100}, is a sample
of normally distributed random vectors in Rm, m ∈ {10,50,100}, with covariance matrix
Σ = (1−ρ)Im+ρ1m1⊤m of X1, with equi-correlation coefficient ρ ∈ {0,0.1,0.3,0.5,0.7,0.9}.
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In the data analysis, the marginal variances have been assumed to be unknown. The pro-
portion of true null hypotheses π0 takes values in {0.1,0.3,0.5,0.7,0.9}. The parameters
of interest are the marginal expectations ϑ1, . . ., ϑm of X1 and we carry out two-sided t-
tests for the marginal hypotheses Hj =


ϑ ∈ Rm

��ϑ j = θ j

, 1 ≤ j ≤ m, where θ1, . . ., θm are

set to zero. Under alternatives the θ j have been drawn from a uniform distribution, with
absolute values between 0.5 and 2. The marginal p-values have been computed utilizing
Student’s t-distribution with n−1 degrees of freedom.

Under this model, Assumption 3.3 can be checked as follows. Notice that part (b)
of the assumption is fulfilled by construction. With respect to part (a), notice that taking
k(n) = n in Algorithm 3.2 would lead to a violation of the assumption. Namely, the
numerator


k (n)


X̄∗j − θ j


of the j-th bootstrap test statistic is conditionally (given the

data) normally distributed with variance σ̂j,n and expectation


k (n) ·

ϑ̂ j,n− θ j


. For

the validity of part (a) of Assumption 3.3, the latter expectation needs to converge to
zero in probability when regarded as a random variable. However, this is not the case
if k(n) = n, because

√
n ·


ϑ̂ j,n− θ j


has a non-degenerate limit distribution. However,

taking k(n) = n1−ε for arbitrary ε > 0 leads to convergence of


k (n) ·

ϑ̂ j,n− θ j


to zero in

probability as n→∞. On the basis of preliminary simulations, we chose ε = 1/2, meaning
that we set k (n) to the nearest integer smaller than or equal to

√
n. For k (n) =

√
n


every bootstrap test statistic conditionally follows a t-distribution with k (n)−1 degrees of
freedom under Hj . Since the t-distribution converges to the standard normal distribution
for n→∞, the bootstrap distribution functions converge pointwise to the true distribution
functions under Hj . This convergence holds uniformly by Pólya’s uniform convergence
theorem (see Section 1.5.3 in Serfling (1980)) and therefore, assumption (a) is fulfilled.
The downside of this choice of k (n) is that the convergence of our method is much slower
and a larger sample size is required to get the same precision.

Table 7 and Table 8 show a small part of the comparison. Due to space constraints we
restrict ourselves in these tables to the Schweder-Spjøtvoll estimate with tuning param-
eter λ = 0.5 (SS), the proposed bootstrap version of it (BSS), and the standard methods
of the packages limma (Phipson, P) and qvalue (Storey-Tibshirani, ST). The complete
simulation results can be found in the supplementary material. In order to complete this
large-scale simulation study within a reasonable amount of time, we had to restrict the
number of Monte Carlo repetitions per simulation setting to 100.

The Schweder-Spjøtvoll estimator maintains a small bias for almost all settings, but
the MSE increases considerably with stronger dependencies and larger π0. In comparison,
our bootstrap version maintains a very small MSE in all settings. On the other hand, its
bias can be considerably larger for small π0 and moderate values of n. For large π0

the bootstrap estimates can be negatively biased, but this bias gets closer to zero with
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increasing n. This confirms what we have shown in Theorem 3.9 and observed in the
small simulation at the end of the last section. Overall, the estimate is conservative in
most cases and can be favorable even for moderate sample sizes. If one can choose larger
values for k (n) for different test statistics, then our method can even be applied for small
sample sizes. The Phipson estimate is often not conservative and underestimates the true
π0, but it has a small bias and MSE in most cases. The method gets worse with stronger
dependencies and larger π0. The Storey-Tibshirani estimate has a large bias and MSE. It
is by far the most conservative estimate for weaker dependencies here. But this estimate
considerably underestimate the true π0 for stronger dependencies and larger π0 as well.

This simulation shows that our method can be applied in all settings, leading to mostly
conservative estimates. It is clearly favorable to use the marginal bootstrap for stronger
dependencies, since the other methods lead to a large bias or MSE in these situations.

Remark 3.11. To confirm our theoretical reasoning, we also performed some simulations
in the case of k(n) = n, which are not presented here. These simulations confirmed bad
results, i.e., much larger bias.

3.5 Real data analysis

One application of the estimation of π0 is the calculation of posterior probabilities for the
validity of null hypotheses in an empirical Bayes model. In the context of control of the
positive false discovery rate (pFDR), such posterior probabilities have been referred to
as q-values by Storey (2003). The (p)FDR is nowadays a standard type I error criterion
for large-scale multiple test problems. The estimation of π0 in this context has been
treated, e.g., by Lai (2007), Lu and Perkins (2007), Tong and Zhao (2008), Hunt et al.
(2009), Tong et al. (2013), Cheng et al. (2015), and Singh et al. (2015). Most of the latter
references consider methods for estimating π0 which are specifically targeted towards
microarray data.

In this section, we compare different estimators of π0 on the basis of the gene expres-
sion dataset from Alon et al. (1999), which has been analyzed by Tong and Zhao (2008).
As mentioned by Tong et al. (2013), for example, the independence assumption is often
not justified in microarray gene expression data due to co-regulation. We include in our
comparison the methods from Section 3.4, and additionally the method SamS from Lu and
Perkins (2007), because an implementation thereof is publicly available, in contrast to the
other methods mentioned before.

The data are available in various R packages, for example in the package plsgenomics
using the command data(Colon). The dataset contains n1 = 22 normal colon samples
and n2 = 40 colon tumor samples for m = 2000 genes. The aim of this study was to
identify genes, which exhibit significant differential expression between the groups. Fol-
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Table 7: b = bias, M = MSE, SS = Schweder-Spjøtvoll, BSS = bootstrap Schweder-
Spjøtvoll, P = Phipson, ST = Storey-Tibshirani. The (mean) bias and MSE are calculated
over 100 repetitions and the bootstrap repetitions are set to B = 100.
ρ m n π0 b(SS) M(SS) b(BSS) M(BSS) b(P) M(P) b(ST) M(ST)
0 50 30 0.1 0.000 0.002 0.119 0.014 0.002 0.001 0.227 0.064
0 50 30 0.3 0.003 0.005 0.109 0.012 0.005 0.002 0.226 0.098
0 50 30 0.5 -0.009 0.011 0.036 0.002 -0.013 0.003 0.202 0.096
0 50 30 0.7 -0.002 0.014 0.015 0.001 -0.014 0.004 0.091 0.056
0 50 30 0.9 0.026 0.016 -0.039 0.002 -0.013 0.003 0.026 0.016
0 50 100 0.1 -0.002 0.002 0.036 0.001 -0.003 0.001 0.232 0.068
0 50 100 0.3 -0.007 0.006 0.031 0.001 -0.007 0.002 0.201 0.075
0 50 100 0.5 0.003 0.011 0.003 0.000 -0.011 0.003 0.191 0.084
0 50 100 0.7 -0.010 0.013 -0.006 0.000 -0.026 0.005 0.079 0.054
0 50 100 0.9 -0.003 0.017 -0.028 0.001 -0.028 0.005 0.002 0.026
0 100 30 0.1 0.001 0.001 0.123 0.015 0.008 0.000 0.120 0.023
0 100 30 0.3 -0.005 0.002 0.093 0.009 0.004 0.001 0.094 0.034
0 100 30 0.5 -0.001 0.005 0.023 0.001 -0.005 0.001 0.096 0.046
0 100 30 0.7 0.005 0.006 0.007 0.000 0.000 0.002 0.082 0.034
0 100 30 0.9 -0.003 0.010 -0.051 0.003 -0.018 0.003 -0.009 0.019
0 100 100 0.1 0.002 0.001 0.040 0.002 0.001 0.000 0.128 0.023
0 100 100 0.3 0.001 0.003 0.030 0.001 0.002 0.001 0.123 0.045
0 100 100 0.5 0.002 0.005 -0.004 0.000 -0.002 0.002 0.113 0.054
0 100 100 0.7 -0.003 0.008 -0.011 0.000 -0.008 0.002 0.070 0.040
0 100 100 0.9 -0.022 0.009 -0.034 0.001 -0.024 0.003 0.004 0.019

0.3 50 30 0.1 0.006 0.002 0.084 0.007 0.007 0.001 0.216 0.058
0.3 50 30 0.3 -0.023 0.010 0.125 0.016 -0.012 0.004 0.175 0.072
0.3 50 30 0.5 -0.013 0.020 0.059 0.004 -0.010 0.009 0.200 0.098
0.3 50 30 0.7 0.016 0.034 -0.008 0.001 -0.008 0.012 0.141 0.061
0.3 50 30 0.9 0.005 0.045 -0.050 0.004 -0.039 0.016 -0.025 0.036
0.3 50 100 0.1 -0.003 0.003 0.022 0.001 -0.004 0.001 0.207 0.057
0.3 50 100 0.3 0.006 0.008 0.049 0.003 0.002 0.003 0.252 0.112
0.3 50 100 0.5 0.012 0.013 0.020 0.001 0.007 0.005 0.210 0.098
0.3 50 100 0.7 0.018 0.028 -0.013 0.001 -0.002 0.010 0.115 0.054
0.3 50 100 0.9 -0.030 0.048 -0.038 0.002 -0.041 0.020 -0.045 0.050
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Table 8: b = bias, M = MSE, SS = Schweder-Spjøtvoll, BSS = bootstrap Schweder-
Spjøtvoll, P = Phipson, ST = Storey-Tibshirani. The (mean) bias and MSE are calculated
over 100 repetitions and the bootstrap repetitions are set to B = 100.
ρ m n π0 b(SS) M(SS) b(BSS) M(BSS) b(P) M(P) b(ST) M(ST)

0.3 100 30 0.1 0.004 0.001 0.120 0.015 0.007 0.001 0.119 0.026
0.3 100 30 0.3 -0.006 0.006 0.074 0.006 0.001 0.003 0.134 0.050
0.3 100 30 0.5 -0.019 0.014 0.042 0.002 -0.010 0.006 0.075 0.051
0.3 100 30 0.7 0.022 0.021 0.012 0.000 0.007 0.009 0.076 0.063
0.3 100 30 0.9 0.027 0.034 -0.037 0.002 -0.006 0.011 -0.021 0.035
0.3 100 100 0.1 -0.004 0.001 0.040 0.002 -0.002 0.000 0.110 0.020
0.3 100 100 0.3 -0.012 0.006 0.018 0.000 -0.010 0.003 0.086 0.033
0.3 100 100 0.5 0.011 0.013 0.008 0.000 0.002 0.006 0.114 0.072
0.3 100 100 0.7 -0.015 0.024 -0.010 0.000 -0.019 0.011 0.063 0.054
0.3 100 100 0.9 -0.013 0.042 -0.030 0.001 -0.030 0.016 -0.035 0.039
0.7 50 30 0.1 0.002 0.004 0.096 0.010 0.003 0.001 0.222 0.062
0.7 50 30 0.3 -0.009 0.026 0.080 0.007 -0.003 0.010 0.196 0.101
0.7 50 30 0.5 -0.020 0.063 0.022 0.002 -0.017 0.029 0.168 0.125
0.7 50 30 0.7 -0.048 0.129 -0.014 0.002 -0.056 0.057 0.000 0.096
0.7 50 30 0.9 -0.040 0.246 -0.052 0.007 -0.128 0.090 -0.122 0.102
0.7 50 100 0.1 0.005 0.004 0.026 0.001 0.001 0.002 0.256 0.086
0.7 50 100 0.3 0.006 0.022 0.026 0.001 0.001 0.009 0.256 0.120
0.7 50 100 0.5 -0.008 0.064 -0.002 0.000 -0.013 0.027 0.165 0.112
0.7 50 100 0.7 0.004 0.145 -0.017 0.001 -0.029 0.057 0.046 0.088
0.7 50 100 0.9 0.011 0.234 -0.035 0.003 -0.098 0.086 -0.102 0.096
0.7 100 30 0.1 0.010 0.003 0.122 0.016 0.012 0.001 0.143 0.033
0.7 100 30 0.3 0.027 0.021 0.082 0.007 0.018 0.009 0.140 0.085
0.7 100 30 0.5 0.017 0.065 0.058 0.005 0.012 0.028 0.115 0.129
0.7 100 30 0.7 -0.011 0.125 -0.007 0.001 -0.023 0.050 -0.036 0.116
0.7 100 30 0.9 -0.027 0.214 -0.049 0.004 -0.091 0.062 -0.185 0.151
0.7 100 100 0.1 -0.005 0.003 0.038 0.002 -0.004 0.001 0.113 0.021
0.7 100 100 0.3 0.005 0.023 0.021 0.001 0.003 0.010 0.123 0.065
0.7 100 100 0.5 -0.011 0.074 0.013 0.001 -0.016 0.035 0.091 0.117
0.7 100 100 0.7 -0.102 0.156 -0.026 0.002 -0.091 0.077 -0.093 0.141
0.7 100 100 0.9 -0.011 0.207 -0.035 0.003 -0.094 0.075 -0.183 0.152
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Table 9: Estimation of π0 for different methods. The number of bootstrap repetitions has
been set to B = 100.

Original Bootstrap version
Schweder-Spjøtvoll 0.616 0.819

Phipson 0.612 0.809
Storey-Tibshirani 0.472 0.759

Storey et al. 0.514 0.754
Jiang-Doerge 0.531 0.767

Nettleton et al. 0.572 0.770
Langaas et al. 0.502 0.754
Pounds-Cheng 0.613 0.810

Wang et al. 0.735 0.876
Lu-Perkins 0.651 0.911

lowing the steps of Section 3.6 in Tong and Zhao (2008), we perform for every gene
an unbalanced two-sample t-test with equal variances on the normalized dataset. Tong
and Zhao (2008) mention that equal variances are only assumed for convenience. The p-
values are approximated using the standard normal distribution and the tuning parameter
λ of the Schweder-Spjøtvoll estimator and its variants is set to the median of the observed
p-values, for the sake of comparability with the initial data analysis by Tong and Zhao
(2008), where the Schweder-Spjøtvoll estimate π̂SS

0 ≈ 0.616 was used.
Table 9 displays the different estimation results for π0. The original estimates range

from 0.47 to 0.74. The bootstrap estimates are much more conservative in this dataset and
range from 0.75 to 0.91. Notice that the range of these values is much smaller compared
to the range of the values obtained with the original methods.

3.6 Discussion

We have presented a method for estimating the proportion of true null hypotheses under
arbitrary copula dependence. In contrast to multivariate multiple test procedures which
explicitly exploit the dependencies in the data in order to relax the multiplicity adjustment
in comparison with the independent case (see Dickhaus and Stange (2013)), addressing
the estimation problem considered in this work profits from neglecting the dependencies,
meaning that in the proposed marginal bootstrap procedure the true copula of the data is
replaced by the independence copula.

There are a couple of potential modifications and extensions of the present statistical
model which can be treated in an analogous manner. For example, consider the problem
of “all pairs” comparisons (Tukey contrasts) in the balanced one-factorial ANOVA with
k groups and n observational units per group. Here, the multiplicity of the multiple test
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problem equals m = k(k + 1)/2, such that the dimension of ϑ and the multiplicity m do
not coincide. Furthermore, we do not observe dependent data, but the dependencies in
the test statistics are induced by utilizing the same data points in several of the test statis-
tics (which are the scaled group-specific mean differences). However, this problem can
easily be converted to our setup by re-organizing the data. Namely, one may construct a
matrix (X j,i) : 1 ≤ j ≤ m,1 ≤ i ≤ 2n, where every row contains the data for exactly two
of the k groups. With this construction, Algorithm 3.2 may readily be applied, and the
dependency-inducing issue that data from one and the same group appear repeatedly (i.e.,
in more than one row) in the constructed matrix is addressed by our proposed marginal
bootstrap method which only utilizes the estimated mean differences.

The obvious limitation of our approach is that only marginal parameters can be tested.
We do not see any way of getting rid of part (b) of Assumption 3.3 in the case of a
completely unspecified copula CX . One could, however, consider special (parametric)
model classes for CX and design whitening procedures which exploit these parametric
assumptions regarding the dependencies.
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