Матеріали XX наукової конференції ТНТУ ім. І. Пулюя, 2017

УДК 004.94

А. Я. Карвацкий, д-р. техн. наук, проф., А. Ю. Педченко

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», Украина

РЕШЕНИЕ НЕЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ ТЕПЛОЭЛЕКТРИЧЕСКОЙ ЗАДАЧИ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

A. Ya. Karvatskii, Dr., Prof., A. Yu. Pedchenko SOLVING NONLINEAR NONSTATIONARY THERMOELECTRIC PROBLEM BY FINITE ELEMENT METHOD

Для расчетов сложных теплоэлектрических технических систем получили особое распространение методы с применением мощной вычислительной используемое специальное программное обеспечение. Современные программные продукты для проведения инженерных расчетов основаны на различных числовых методах и алгоритмах решения дифференциальных уравнений. Поэтому разработка рациональных методик и алгоритмов численного решения нестационарных задач значительной температурной теплоэлектропроводности co зависимостью теплофизических свойств является чрезвычайно важной и актуальной проектирования современных промышленных объектов.

Систему уравнений связанной нелинейной нестационарной задачи тепло-электропроводности изотропной среды можно записать в виде

$$\begin{cases}
\frac{\partial h}{\partial \tau} = \nabla \cdot \left[\lambda(T) \nabla T(\mathbf{x}) \right] + \chi(T) |\nabla U|^2 + q_{\nu}(T), \tau > 0; \\
\nabla \cdot \left[\chi(T) \nabla U \right] = 0,
\end{cases} \mathbf{x} \in \Omega, \tag{1}$$

где
$$h(T) = \int_{T_{\rm ref}}^{T} c_p(T) \rho(T) dT$$
 — объемная энтальпия, Дж/м³; $T_{\rm ref}$ — абсолютная

температура отсчета, К; c_p — массовая изобарная теплоемкость, Дж/(кг·К); ρ — плотность, кг/м³; T — абсолютная температура, К; τ — время, c; $\nabla = \frac{\partial}{\partial x_i}$, i=1,2,3 — оператор Гамильтона, м⁻¹; x_i , i=1,2,3 — декартовые координаты, м; λ — коэффициент теплопроводности, $\mathrm{Bt/(M·K)}$; \mathbf{x} — радиус-вектор декартовой системы координат, м; χ — коэффициент электропроводности, См/м; U — электрический потенциал, B ; q_v — объемная плотность внутреннего источника теплоты неэлектрической природы, $\mathrm{Bt/m}^3$; $\Omega \in R^3$ — трехмерная расчетная область.

Начальные условия для (1) в момент времени $\tau = 0$ задаются только для нестационарного уравнения теплопроводности. Граничные условия (ГУ) для уравнения теплопроводности (1) в момент времени $\tau > 0$ могут быть:

- –I рода или Дирихле задана температура на границе $\Gamma_{T,1}$ части поверхности Ω ;
- $-{\rm II}$ рода или Неймана задана нормальная составляющая вектора плотности теплового потока на границе $\Gamma_{T~{\rm II}}$ части поверхности Ω ;
- –III рода заданы конвективные условия теплообмена на границе $\Gamma_{T \, {
 m III}}$ части поверхности Ω .

ГУ квазистационарного уравнения электропроводности (1) в момент времени $\tau > 0$ могут быть двух типов:

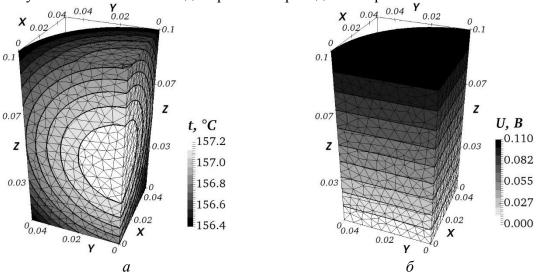
—Дирихле — задается нулевой электрический потенциал на границе $\Gamma_{U\, {
m I}}$ части поверхности Ω ;

—Неймана — задается нормальная составляющая вектора плотности электрического тока на границе $\Gamma_{U,\Pi}$ части поверхности Ω .

С помощью системы уравнений (1), методик и алгоритма численного решения нестационарных задач [1] разработано программное обеспечение для решения нелинейных нестационарных задач тепло-электропроводности изотропной среды.

Тестовая численная модель тепло-электропроводности представляет собой четвертую часть цилиндра, которая построена с помощью специального geo-файла в программе Gmsh и выполнено ее дискретизацию на тетраэдные конечные элементы. Геометрические размеры цилиндра: радиус 0,05 м, высота 0,1 м. Заданные нелинейные от температуры свойства материала (графит): коэффициент теплопроводности $\lambda(t) = 159,218e^{-1,116\times10^{-3}t} \ \text{Вт/(м·K)}, \text{массовая изобарная теплоемкость}$ $c_p(t) = 712,2+2,933\times10^{-7}t^3-1,444\times10^{-3}t^2+2,406t \ \text{Дж/(кг·K)}, \text{плотность}$ $\rho(t) = 1853-5,453\times10^{-5}t^2-0,127t \ \text{кг/м}^3 \text{ и электропроводность} \ \chi(t) = 73086,2 -7,032\cdot10^{-9}t^4+5,188\cdot10^{-5}t^3-1,381\cdot10^{-1}t^2+136,36t \ \text{См/м}. \ \text{Заданы ГУ I, II и III родов на торцах и боковой стороне для уравнений электропроводности и теплопроводности, соответственно: нижний торец <math>U=0$ В; верхний торец $J_n=10^5 \ \text{А/м}^2$; торцы и боковые стороны $\alpha=15 \ \text{Вт/(м}^2\cdot\text{K)},\ t_{n1}=35 \ \text{°C}.$ Начальная температура $t_0=35 \ \text{°C}.$

Результаты численного моделирования приведены на рис. 1.



a — поле температуры; δ — поле электрического потенциала Рис. 1. Результаты численного моделирования (τ = 4 ч)

Анализ сравнения результатов показывает, что данные моделирования с разработанным программным обеспечением совпадают с аналитическими точными решениями [2]. При этом максимальное значение погрешности определения температуры и электрического потенциала не превышает 1 %.

Література

- 1. Карвацький, А. Я. Метод скінченних елементів у задачах механіки суцільних середовищ. Програмна реалізація та візуалізація результатів [Текст]: навч. посіб. К.: НТУУ «КПІ» ВПІ ВПК «Політехніка», 2015. 392 с.
- 2. Исаченко, В. П. Теплопередача : учебник для вузов / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. М. : Энергоиздат, 1981. 416 с.