
High-Performance Persistent Identification for
Research Data Management

Dissertation

zur Erlangung des Doktorgrades
Dr. rer. nat.

der Mathematisch-Naturwissenschaftlichen Fakultäten
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Abstract

Durable identification and access to datasets, especially to research datasets, become increasingly
important. This is mainly driven by the explosive dataset growth in the current age. Although
the Internet was originally founded as a large-scale end-to-end communication platform, in the
current era, it has developed to an information consumption medium with an overwhelming large
spreading.
However, the conception of the Internet against its original purpose aggravates an efficient data
consumption. This is particularly based on the address-based data access mechanism, in which
data is only consumable through a specific locator. Since, data mobility therefore leads to changing
locators, the concept of persistent identification has been developed to track these changes. Instead
of addressing data directly through its current valid locator, Persistent Identifiers (PIDs) enable
data retrieval by globally unique and durable identifiers. This in turn has led research datasets
to be increasingly assigned with PIDs. With the advent of massive research dataset generation,
also the load on PID systems has dramatically increased, which causes PID record management
to constitute a considerable performance problem.
Therefore, this thesis focuses on the performance aspects behind PIDs. The goal is to provide
solutions for high-performance PID management and resolution. Based on the established Handle
System, we provide approaches which enable an accelerated usage of PIDs for research datasets,
which are stored in sophisticated research data repositories.
Moreover, this thesis also provides contributions for the area of performance analysis based on
the queuing networks. The basic approach is to model a PID system as a multi-tier transactional
Internet system and to mathematically investigate improvements of the response time.
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Chapter1
Introduction

The digitalization of the world has heralded a new era, the Digital Era. This new era is charac-
terized by unimaginably huge amounts of digitalized datasets which are generated and put into
circulation. Likewise new technologies have emerged to ease the consumption of these massive
amounts of information. While at the beginnings of the Internet it was used as a medium to ex-
change textual information, in the Digital Era, the Internet has become the central information
distribution medium of our current civilization in which data of any shape and size is available.
These developments have led to a tremendous increase in value of data. The World Economic
Forum even compared data with oil [1], which is especially true for personal data.
As oil is controlled by a few companies, such a monopoly situation is also existing for personal
data. Companies like LinkedIn, Twitter, Google and Facebook own incredible large amounts of
personal data, which are sold to various other data broker companies. This is exactly why the
services offered by these companies are free of charge for individual users. Hence, individual
users make use of free services in exchange for personal data and often without the knowledge of
the sheer dimensions of personal data. On the other side, data brokers like Acxiom or Cambridge
Analytica are specialized in analyzing all these different datasets with the goal of understanding
human behavior. The analysis is for example then used to subject specific user groups with ad-
vertisements and offers which are tailored for their specific user profiles. This also overs offers
containing political content.

The new Digital Era has also begun to innovate the scientific area, it has even led to the establish-
ment of a new scientific paradigm: The Fourth Paradigm [2]. As scientific instruments become
more sophisticated and accurate, the data they produce, is growing torrential. Experimental, the-
oretical and computational science do not provide sufficient enough techniques for handling such
huge amounts of datasets originating from various different sources. Therefore, a fourth scientific
paradigm, also called data-driven science, has been introduced to fill this gap of techniques.
In contrast to the commercial area, the focus with scientific data is not to maximize the profits.
Instead, it is to ensure a sustainable exchange between diverse scientific disciplines. Therefore,
in order to enable data-driven science, the discipline of research data management is becoming
increasingly important and visible.
Research Data Management (RDM) covers different aspects for handling research datasets with
the aim to enable the exploitation of the maximum informational content in diverse research
datasets. Hence, a sustainable access to research datasets is one of the key aspects in RDM.
Research data repositories increasingly develop to highly complex systems which autonomously
exchange their content with other information systems. Another key aspect in RDM is to establish
global standards to enable global data exchange.

The current Internet is a network of nodes which store content of diverse types. To consume a
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specific content, it is first of all necessary to access it by the locator of its current node. Usually,
in addition to the locator, additional node-dependent parameters, like the name of the content, are
required to distinguish an individual content among others on the respective node.
While current Internet applications, such as research data repositories, are solely based on the
content itself, the current Internet protocol is based on the nodes rather than on the content. The
fundamental obstacle with the locator-based content retrieval methodology is that it is not sustain-
able. Even a minor modification in the node or a transfer of the content itself to another node,
could easily lead to the inaccessibility of the content, which is especially highly inappropriate for
research datasets, in particular for the purpose of reproducibility. To solve this issue caused by
volatile locators, for RDM the concept of Persistent Identification has been proposed [3].
Persistent Identifiers (PIDs) are globally unique and immutable identifiers, which are assigned to
research datasets to abstract away their current locators. As a consequence, research datasets are
increasingly retrieved by their globally unique PIDs instead of their actual locators. This in turn,
has led the concept of persistent identification to play a fundamental role in RDM. Although PIDs
are in use for more than twenty years now, the explosive research dataset growth has also a direct
impact on PID systems, which is particularly true for the performance of these systems.

In this thesis, we investigate the increasing importance of PIDs for RDM with emphasis on the per-
formance. Therefore, we provide contributions and solutions to meet the increased performance
requirements for administering and resolution of PIDs to finally enable a stable and efficient global
research data exchange.

1.1 Motivation

21.T11995/AEFB-2151
21.T11995/2121-2121
21.T11995/FFFF-CCC1
21.T11995/1357-9EFA
21.T11995/3333-0000

Research Data 
Repository 1

data:0000-000-0003
data:0000-000-0002

data:0000-000-0004
data:0000-000-0005
data:0000-000-0006data ingest

http://repo1.research.net/collection/{DATA_ID}

https://repo1.institute-abc.com/dsets/{DATA_ID}

old data access interface:

new data access interface:

(Naming Authority)
PID System
21.T11995

1 data:0000-000-0007
2

01010
01111

21.T11995/FFAC-11243

resolve PID to Locator

data:0000-000-0001 21.T11995/AEFB-0000

resolve(21.T11995/FFAC-1124) 4
PID

Resolver

t0t0

t1t1

register PID for data

Figure 1.1: Research data repository full of research datasets. The contained research datasets are
assigned with a PID at a specific PID system. PID systems are also denoted as Naming
Authorities, since they are often only responsible for a certain set of PIDs. In this
example, the PID system is the naming authority for (21.T11995)-PIDs.

An important solution for RDM is store research data in sophisticated research data repositories.
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At present there are various different research data repositories in the Internet, each with a distinct
architecture, functionality and internal data structure. To ingest or access datasets, each of these
repositories offers an individual set of interfaces. Furthermore, the datasets, which are stored in
research data repositories, become increasingly interlinked with each other. Hence, to be able to
fully process an individual dataset, often requires the retrieval of other datasets.
However, the interlinking or referencing of datasets requires stable links, which is not provided by
locators such as Uniform Resource Locators (URLs).

In Figure 1.1 we can see a fictive research data repository, which offers a particular data ingest and
access interface. Based on this example, the following explanation demonstrate the importance of
PIDs:

Suppose at time t0, the access interface of the repository to be:

http://repo1.research.net/collection/{DATA ID}.

Further, suppose that at time t1, this repository is subjected to modifications in its architecture
resulting in a new data access interface:

https://repo1.institute-abc.com/dsets/{DATA ID}.

Assume, that between t0 and t1, the repository is filled with a huge amount of datasets, where the
ingest workflow for each dataset is composed of three steps: 1 input, 2 internal processing and
storing and 3 PID assignment.

Further, assume that between t0 and t1, the datasets have been referenced from other datasets,
web sites, research papers etc. If the datasets would have been referenced through their current
locators, upon t1, all these links would become invalid resulting in the inaccessibility of all these
datasets, which is also known as the ”decay of web references” [4]. In contrast to that, the linkage
through the corresponding PIDs would still enable their accessibility.
Therefore, the datasets stored in research data repositories are increasingly referenced through
their corresponding PIDs, which provide stable links. However, a locator change always requires
also an update of the corresponding PID-to-locator binding at the PID system.
The access via the PID requires its resolution through a particular PID resolver (step 4 ), which
yields the current valid locator of the corresponding dataset.
Note that the problem of invalid links can also be caused by the migration of individual datasets
to different repositories.

However, the registration or update (≡ administration 3 ) of a PID at a PID system usually also
constitutes an expensive operation within the overall ingest workflow. Thus, for a huge amount of
research datasets, step 3 often causes a significant performance degradation. On the other side,
since PID resolvers have only a little global widespread in the Internet, also step 4 often causes
a significant overhead in the access of research datasets.

As an example, the response time for the registration or update of a PID at the ePIC1 PID sys-
tem, offered by GWDG, is around 250ms. For a research data repository, which has to update
2,000,0000 PIDs associated with its individual research datasets, we have the following extrapo-
lation:

1http://www.pidconsortium.eu
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2,000,000 PIDs×250ms =̂ 500,000,000ms

=̂ 500,000s

=̂ 139h.

Therefore, the objective of this thesis is to provide solutions for research data repositories to:

(a) enable a high performant administration of PIDs ( 3 ), and
(b) enable a globally fast resolution of PIDs ( 4 ).

Note that in the reminder of this thesis, a single PID administration operation in step 3 is repre-
sented by an OP , such as depicted in Figure 1.2:

Research Data 
Repository

Naming 
Authority

(PID System)
{ OP, OP, OP, OP, OP, OP }

Figure 1.2: Research data repository administering PIDs at a PID system.

1.2 Scope of Thesis

Hence, our major hypothesis is that the performance of PID administration and resolution is highly
important for research data repositories. To achieve a performance improvement, in this thesis, the
respective research questions can be grouped into four approaches.
The first approach is to investigate the fundamental principles behind the concept of persistent
identification. The corresponding research questions are:

� RQ 1: Why is persistent identification performance relevant?

• RQ 1.1: What is the goal behind the concept of persistent identification?
• RQ 1.2: What is the origin of performance problem caused by the concept of persistent

identification?
• RQ 1.3: How to achieve a reduction of the overhead caused by PID administration?

In the second approach, a PID system is considered as an ordinary multi-tier transactional Internet
system. As these systems require continuous maintenance and improvement, appropriate research
questions to be investigated are as follows:

� RQ 2: How to support an efficient advancement of a multi-tier Internet system such as a
PID system?

• RQ 2.1: What is an appropriate performance model for a multi-tier system?
• RQ 2.2: What is the response time behavior of the MVA algorithm?
• RQ 2.3: What is the impact of an improvement at an individual tier onto the overall system’s

response time?
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• RQ 2.4: How the effect of an improvement endeavor can be described and estimated?
• RQ 2.5: Which effect have to be particularly taken care of after an improvement effort?

The common methodology of the following two approaches is a contrasting of a PID system
against the well-known DNS system.
The third approach emphasizes on a fast PID record management by the following research ques-
tions:

� RQ 3: How to achieve a high-performant PID record management protocol?

• RQ 3.1: What is the fundamental performance problem of the current Handle protocol in
conjunction with the specific workload Handle servers are subjected to?
• RQ 3.2: How to enable a high-performant PID record management with the Handle proto-

col?

Finally, in the fourth approach, the focus is on the resolution performance of PIDs. The relevant
research questions are the following:

� RQ 4: How to achieve a high-performant PID resolution?

• RQ 4.1: How is the PID resolution time composed?
• RQ 4.2: What is the cause of the current unsatisfactory performance of PID resolution?
• RQ 4.3: How to improve the current PID resolution?

1.3 Goals and Contributions

For the area of persistent identification, this thesis provides advancement of the state-of-the-art
through the following contributions:

Contribution 1: A high-performance persistent identification concept for identifying and ac-
cessing research datasets stored in a research data repository, which is equipped with an
internal naming component for assigning internal identifiers for its research datasets (Chap-
ter 3). This concept enables these internal identifiers to be globally resolvable without the
need to individually register them at a PID system.

Where the contribution includes the following sub-contributions:

• The Research Data Silo Identifier (DSID) (instead of a PID), which directly identifies a
research data repository to include the respective access interface for retrieving research
datasets stored within the research data repository (Section 3.2.4).
• The new HS RDS URL type, which is necessary to realize this DSID concept within the

Handle System (Section 3.3.2.2). The data part of this type is used to hold a particular
locator composition rule to enable a dynamic locator composition.

Contribution 2: A high-performance persistent identifier management protocol, which is
suitable for registering and managing large amounts of PID records (Chapter 5).

The overall contribution is composed of the following sub-contributions:

• Extension of the Handle protocol with the new OC CREATE HANDLES BULK operation, used
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to administer multiple Handle-PIDs records by a single request (Section 5.4.4). Whereas
the current Handle protocol only offers the OC CREATE HANDLE operation, which is used to
administer an individual Handle-PID record.
• The new HandleRecordsBulk data model for including multiple Handle-PID records con-

taining individual descriptive information about corresponding research datasets. This new
data container is then transmitted with the new OC CREATE HANDLES BULK operation as the
message body (Section 5.4.4.1). In contrast to that, the current data model (Handle Record)
only supports the inclusion of descriptive information for a single Handle-PID.
• An algorithm implemented into Handle servers to process the new OC CREATE HANDLES BULK

operation and its message body (Section 5.4.4.3). This algorithm defines the internal pro-
cessing workflow for the new operation within a receiving Handle server.
• A comprehensive performance evaluation of the Handle servers, which reveals the per-

formance of the current and extended Handle server implementation (Section 5.5).

Contribution 3: A high-performance persistent identifier resolution concept, which enables
an accelerated resolution of PIDs through the well-established DNS system (Chapter 6).

This contribution in turn, is composed of the following sub-contributions:

• A mapping algorithm, which maps the Handle System data model (Handle Record) into
a DNS Resource Record (Section 6.4.3). Since our idea is to resolve Handle-PIDs through
DNS traffic, it is required to transform Handle Records into Resource Records.
• A transformation algorithm, which transforms Handle-PIDs into DNS domain names

(Section 6.4.4). This is necessary, because the DNS system only supports the resolution
of domain names, wherefore Handle-PIDs have to be transformed into DNS domain names
at the resolution through DNS resolvers.
• An appropriate DNS request processing algorithm implemented into Handle servers for

embedding them into the global DNS system. This algorithm is used to map incoming DNS
resolution requests into corresponding internal native Handle protocol resolution operations
to yield corresponding Handle Records (Section 6.4.6).

This thesis also advances the state-of-the-art of multi-tier Internet system performance analysis by
the following contributions:

Contribution 4: An approach to investigate the effects of a response time speedup of multi-tier
Internet systems (Chapter 4).

The following sub-contributions compose the above mentioned overall contribution:

• An investigation of the response time decomposition for increasing concurrency level
calculated by the MVA algorithm (Section 4.2.2.1: Theorem 1). This theorem provides an
understanding of the general composition structure of the overall response time calculated
by means of the MVA algorithm.
• An analysis of the response time behavior for increasing concurrency level of the MVA

algorithm (Section 4.2.3: Theorem 2). This theorem constitutes the core key for the deriva-
tion of the remaining mathematical results. More specifically, this theorem provides a de-
scription of the internal load distribution within a multi-tier system for increasing request
population.
• Response time boundaries of the MVA algorithm (Section 4.2.3: Theorem 3). This theo-

rem enables to quickly estimate the boundaries of the overall response time for increasing
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concurrency level.
• A mathematical description of the response time speedup (Section 4.3.2: Lemma 1).

This lemma provides insight into the impact of an individual speedup factor achieved at an
individual tier onto overall response time speedup factor.
• A mathematical description of the load redistribution effect occurring after an improve-

ment at an individual tier of the overall multi-tier system (Section 4.3.3: Theorem 4, Corol-
lary 1). Theorem 4 basically reveals how an improvement at an individual tier mathemati-
cally impacts the remaining tiers.
• Boundaries to estimate the overall response time speedup after improving an individual

tier (Section 4.3.4.1: Lemma 2). This lemma provides a tool, to quickly estimate the limits
for the expected overall response time speedup factor, after improving an individual tier.
• Boundaries to estimate the load at individual tiers after an improvement effort in a spe-

cific tier (Section 4.3.4.2: Corollary 2, Corollary 3). These corollaries basically incorporate
all aforementioned mathematical results. In principle, they provide insight into the expected
load at the tiers after an improvement of a particular tier. Whereas Theorem 4 provides an
exact mathematical description of the load redistribution effect consisting of several com-
plex mathematical terms, these two corollaries provide approximations for these complex
terms for different cases. Hence, these corollaries are applicable in practical situations,
when only quantitative measures are available.

1.4 Impact

This thesis is based on intermediate results, which have been published in the following peer-
reviewed conference proceedings:

� F. Berber, P. Wieder, R. Yahyapour, ”A High-Performance Pesistent Identification Con-
cept”, Proceedings of the 11th IEEE International Conference on Network, Architecture
and Storage (NAS2016), Long Beach, USA, Aug. 2016. DOI: 10.1109/NAS.2016.7549387
URL: http://ieeexplore.ieee.org/document/7549387/

� F. Berber and R. Yahyapour, ”A High-Performance Persistent Identifier Management Pro-
tocol”, Proceedings of the 12th IEEE International Conference on Network, Architecture
and Storage (NAS2017), Shenzhen, China, Aug. 2017. DOI: 10.1109/NAS.2017.8026839
URL: http://ieeexplore.ieee.org/document/8026839/

� F. Berber and R. Yahyapour, ”DNS as Resolution Infrastructure for Persistent Identi-
fiers”, Proceedings of the Federated Conference on Computer Science and Information
Systems (FedCSIS2017), pp. 1085-1094, Prague, Czech Republic, Sep. 2017. DOI:
10.15439/2017F114
URL: http://ieeexplore.ieee.org/document/8104688/

� F. Berber and R. Yahyapour, ”Response Time Speedup of Multi-tier Internet Systems”, Pro-
ceedings of the 36th IEEE International Conference on Performance Computing and Com-
munications (IPCCC), San Diego, USA, Dec. 2017. DOI: 10.1109/PCCC.2017.8280469
URL: http://ieeexplore.ieee.org/document/8280469/

Furthermore, the following result is currently under review at the peer-reviewed journal:

• SUBMITTED:

� F. Berber and R. Yahyapour, ”High-Performance Persistent Identifier Resolution”, in
IEEE/ACM Transactions on Networking.
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1.5 Thesis Overview

This thesis is organized as follows:

In Chapter 2, by reviewing the related research efforts, we provide the context and background for
our contributions.
In Chapter 3, we investigate the realization of the concept of persistent identification and reveal
its relevance for performance. In addition, we provide solutions, which reduce the administration
overhead entailed with the usage of PIDs.
Chapter 4 emphasizes on the improvement of the response time of a PID system, which is usually
composed as a multi-tier transactional Internet system. For this, we derive mathematical estima-
tion formulas, which can support an improvement endeavor.
Chapter 5 investigates the specific workload a PID system is typically subjected to. This is fol-
lowed by an appropriate approach to optimize the processing performance for such a workload.
In contrast to the previous chapters, Chapter 6 particularly captures the acceleration of the resolu-
tion time of PIDs.
In Chapter 7, we provide a discussion, which evaluates our research questions against the achieve-
ments of this thesis. Moreover, we also discuss the limitations of our deduced approaches.
Finally, with Chapter 8 we conclude this thesis and for the outlook, we provide indications for
future research endeavors.



Chapter2
Related Work

2.1 Research Data Management

In principle, research data management is originated in the discipline of digital preservation. The
focus here is to preserve digital information over long time periods. Moore [5] therefore even des-
ignates digital preservation as the communication with the future. Furthermore, Moore proposes
the Integrated Rule-Oriented Data System (iRODS) as a preservation environment, which enables
digital datasets to be preserved for the future. iRODS can be thought as a software middleware,
which abstracts the underlying storage systems, which in turn are subjected to technological evo-
lution. However, the distinctive feature of iRODS is provided by the so-called micro-services.
A micro-service defines a set of operations, which are applied to the incoming datasets. Each
micro-service is executed whenever the corresponding rule applies to an individual dataset. As an
example for such an micro-service is the computation of the checksum of a dataset to ensure its
integrity. Another example is the registration of a dataset at a particular PID system. In principle,
iRODS constitutes one of the early sophisticated research data repositories.
Staples, Wayland and Payette [6] introduce another research data repository system: Fedora. To
some extend, it is similar to iRODS. However, in contrast to iRODS, Fedora focuses more on
the management of the datasets, while in iRODS the primary focus is on the abstraction of the
underlying storage medium and data replication. In addition, Fedora defines its own XML based
data model, which provide the possibility to specify the relations between various data objects.
In this context, Zhu et al. [7] propose a repository architecture, which is based on iRODS and Fe-
dora with the emphasis on combining both technologies to realize an overall digital preservation
environment.
Marketakis and Tzitzikas [8] provide an approach to also preserve the intelligibility of digital ob-
jects. With intelligibility they mean the interpretability of the preserved bits composing a digital
object. Their approach starts with a formalization of the problem based on the metadata, which
basically results in a dependency graph. By processing the dependency graph, the goal is deter-
mine an optimal set of metadata, which is required to preserve the intelligibility of a digital object.
Koutsomitropoulos et al. [9] focus on digital repositories with a metadata model, which is ”usually
semi-structured from a semantics point of view”. Targeted for such repositories, they propose a
mechanism to enable Semantic Web techniques to be applicable on them. Their basic approach
is to extend the repository ”to provide inference-based knowledge discovery, retrieval and naviga-
tion” without modifying the original repository and its metadata model.
Jantz and Giarlo [10] emphasize on specific technologies that enable a digital repository to become
a trusted digital repository. To achieve that, they propose three technologies: digital signatures,
PIDs and audit trails. By means of digital signatures, they address the problem of the detection
of unauthorized modifications to the datasets. However, the essential challenge with digital sig-
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natures is to prevent the signature itself to become corrupted. To ensure permanent access to the
datasets, they propose to use PIDs, which is also emphasized in this thesis. With audit trails, it
is possible to trace back all the transformation steps an individual dataset has undergone. This in
turn provides another mechanism to ensure data integrity.
Thibodeau [11] approaches the issue of digital preservation quite theoretically by partitioning a
digital object into three classes. He concludes that ”every digital object is a physical object, a
logical object, and a conceptual object.” Furthermore, he also concludes that the ”properties at
each of those levels can be significantly different”. ”A physical object is simply an inscription of
signs on some physical medium. A logical object is an object that is recognized and processed
by software. The conceptual object is the object as it is recognized and understood by a person,
or in some cases recognized and processed by a computer application capable of executing busi-
ness transactions.” Hence, a conceptual object, can have multiple logical representations. Another
complicating fact is that digital objects are increasingly interconnected with each other. There-
fore, Thibodeau states that to preserve a digital object for the future, it is required to ”preserve its
physical and logical components and their interrelationship.” He also concludes that preservation
of digital content paradoxically requires modifications to be processable with future data formats,
applications, operation systems and hardware systems.

2.2 Persistent Identifier Introductory

The core intention behind the concept of persistent identification is based on the volatile access
methodology originated from the current Internet network setup, which is also inherited by URLs.
In the particular case of URLs, over time, this network setup leads to the occurrence of more
and more invalid URLs, which is also known as link rot or URL decay phenomenon. Several
works, [12], [13], [4], [14] and [15] are addressing this problem, where PIDs can be considered as
a consequence of this problem.
One of the first works about PIDs is provided by Kahn and Wilensky [3]. They envision the Handle
System as a means of providing ”universal basic access to registered digital objects”, rather than
emphasizing it in the context of persistent access. Instead, the whole work focuses on ”network-
based aspects” of a digital repository infrastructure, without going into aspects related with the
content itself. Thus, they abstractly propose digital repositories to support a simple and common
protocol for accessing and manipulating digital objects: the Repository Access Protocol (RAP). In
this protocol, the ACCESS DO operation is used to access digital objects, while the DEPOSIT DO is
intended to perform manipulation on the digital object.
Also the Handle System is only quite abstractly introduced, whereby a Handle server constitutes
an integral part of digital repository in their proposed architecture of a digital repository. The core
function of such a Handle server is to provide a component for ”naming, identifying and/or invok-
ing digital objects”. In addition, they discuss to avoid semantic expressions in the Handle-PIDs
identifiers. The complete specification of the Handle System itself is given by [16].
Paskin [17] states that the ”management of intellectual content” in the Internet ”requires the ex-
istence” of PIDs. He also argues that URLs and the Resource Description Framework (RDF),
”provide an infrastructure for managing and resource discovery and distribution, but not a suf-
ficient framework in which to manage intellectual content and the rights which accompany that
content, such as access rights and copyright.” Hence in contrast to [3], this work of Paskin focuses
more on the content itself. Moreover, Paskin proposes the Digital Object Identifier (DOI) system,
as a mechanism to ”enable intellectual content management to be integrated with Internet tech-
nologies”.
However, the actual architecture of the DOI concept is addressed in another work of Paskin [18].
According to this work, the DOI concept is made of three components: the DOI identifier, the DOI
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resolver and the DOI metadata. The resolution infrastructure of the DOI system is provided by
the underlying Handle System, therefore a DOI identifier is always also an ordinary Handle-PID
with a prefix of the form 10.X. The main additional or differentiating component is constituted by
the DOI metadata, which is decoupled from the underlying Handle System. In order to assign a
digital object with a DOI, it is necessary to comply with the relative strict metadata set [19].
Besides the Handle System, another important PID system is proposed by Kunze [20], which is the
Archival Resource Key (ARK). In contrast to the Handle System, the ARK concept is limited on
URLs as data locators. Another aspect is that Kunze envisions an ARK identifier to be associated
with three ”things”: ”the object, its metadata, and the current provider’s commitment statement”.
The selection of these ”things” is accomplished via additional parameters appended to the ARK
identifier. He proposes an ARK followed by the ”?” character to deliver the metadata, and by
appending ”??” to yield the commitment statement. The actual digital object is then provided by
the sole ARK identifier without any appended character.
Hilse and Kothe [14] provide a comprehensive introductory work about PIDs and discuss and com-
pare several existing PID systems. In this work, the authors also provide the related background
information, such as history, functionality, implementation, etc., about each of the considered PID
systems. The essential intention of this work is to enable an appropriate PID system choice for
a specific use case, therefore the authors provide a checklist of relevant questions which aim to
distill an appropriate PID system.
Nicholas, Ward and Kerry Blinco present an abstract model of identifiers and identifier schemes
[21] with the goal to provide a mechanism to compare different identifier schemes. By means
of this abstract model, which is formal and layered, they determine that also Uniform Resource
Identifiers (URIs) ”qualify as identifiers, provided that they are appropriately managed”.
In the context of URIs, Kuhn and Dumontier [22] propose trusty URIs for providing trust and
reliability for research datasets. The focus is on using cryptographic hash values in URIs corre-
sponding to identified research datasets, so called trusty URIs. A trusty URI can then be used to
determine whether the identified datasets has been subjected to manipulations. The essential dif-
ference to the approach in [10] is that Kuhn and Dumontier impose the signature into the identifier
itself instead to store it as an additional attribute. However, the authors do not consider the use
of PIDs for such a manipulation check. The advantage with PIDs is that they do not change even
when the research datasets move to another storage location. Another issue with trusty URIs is
related with the digital preservation. As indicated by Thibodeau [11], a digital object can have
multiple logical representations, and therefore also several different resulting hash values.
Hakala [23] provides another overview work about PIDs, whereby a specific set of PID systems is
compared with cool URIs [24]. A similar approach represents the work of Tonkin [25].
Richards, White, Nicolson and Pyle [26] provide a further introductory work about PIDs. As [14],
the authors in this work provide a comparison of some PID systems and a checklist for imple-
menting of PIDs on specific datasets. In contrast to [14], this work is more targeted on individual
researchers or research groups, therefore, it also covers the granularity issue of research datasets.
Since research datasets usually originate from a specific context, the authors provide guidelines of
how to apply PIDs for the degree of fineness of such contexts.
Also the use of internal identifiers is discussed, which is also in the scope of this thesis. However,
the authors do not consider to enable these internal identifiers to be globally resolvable.
Another comparison work is presented by Duerr et al. [27]. They address various PID technolo-
gies and evaluate their usage for earth science data. The focus here is on data, which is stored at
multiple storage locations. In their view, an unique identifier should identify all copies of an indi-
vidual dataset. Moreover, they define an ideal identifier as one which is generated at the dataset’s
creation time, as one which is incorporated into the dataset itself and as one which is addition-
ally associated with descriptive information about the dataset. Furthermore, they state that such
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an identifier can be used within a ”verification process” since the identifier is embedded in the
dataset, which finally serves the purpose of ”reproducibility and verifiability”. In principle, the
Handle System enables to associate a single Handle-PID with multiple URLs, however, it lacks in
an efficient selection algorithm, which results the best locator upon a resolution request.
A work, which discusses PIDs in a more sophisticated context is provided by Van de Sompel,
Sanderson, Shankar and Klein [28]. However, it also represents a work, which considers the con-
cept of persistent identification only as a simple redirection mechanism. Therefore, their focus is
to devise a ”machine-actionable bridge” from PIDs to URIs, which are associated with semantic
information or metadata about the identified research datasets. This is required because of the
increasing number of machine agents depending on machine readable information stored in the
Internet. In contrast to Kunze [20], the approach in this work is based on special HTTP linking
headers defined in [29]. A machine agent can then follow specific links contained in the HTTP
response, which in turn result from a PID resolution. By this, the machine agent is directed to a
representation containing machine-actionable information. A human user in turn, will be provided
with a human-readable representation of the identified research dataset. However, the essential as-
pect, which is not considered by this work, is the fact that PID records can, in addition to the sole
URL, also be equipped with semantic information relevant for machine agents.

2.3 Advanced Usage of Persistent Identifiers

As one of the first works which considers more advanced aspects for the concept of persistent
identification is presented by Bellini et al. [30]. The authors provide a hierarchical architecture for
a PID system based on the Uniform Resource Name (URN) scheme [31]. To overcome a central-
ized architecture in order to avoid a single point of failure, they propose a hierarchical architecture
which reflects the DNS system. For URN-based PID systems this is useful, because URN is first
of all purely a scheme for providing namespaces and identifiers. One of the most important nam-
ing schemes is the URN:NBN namespace, which is used to uniquely identify resources in the area
of national libraries. The main problem the URN concept is that there is no central and glob-
ally known resolution system in place, which is capable of resolving all namespaces. Therefore,
Bellini et al. basically provide a PID system architecture which implements the URN scheme.
In another work of Bellini et al. [32], the authors address the problem of the fact that there are mul-
tiple different PID systems in place. The authors propose an interoperability framework on top of
the diverse set of PID systems. This framework can be considered as a technology which pro-
vides a common interface, which can be used by individual users to retrieve data associated with
individual PIDs and their underlying PID systems. The core principle behind the interoperability
framework is an ontological refinement. Relevant services scrutinize the metadata associated with
PIDs in order to determine a common ontology. The distilled ontology is then used by individ-
ual ”content providers” to implement the actual mapping from the original format into the com-
mon ontology format supported in the interoperability framework. Hence, it requires additional
processing from the ”content providers” to provision the respective Interoperability Knowledge
Base (IKB), which holds the data in the corresponding common ontology structure. Thus, the
entire set of IKBs form the base data source of the interoperability framework.
The authors Weigel, Kindermann and Lautenschlager [33] present a work, which can be consid-
ered as a first attempt towards semantic PID records. The authors emphasize on using common
abstract data types [34] incorporated into PID records which then can be autonomously understood
and processed by machine actors. In addition, the authors consider such PID for the following use
cases: Data object replication, data object provenance, composite data objects, data object ver-
sioning.
In the context of data replication, PIDs provide a medium which ”can help to identify all replicas
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of a master object”. It should be noted that the replication mechanism of the EUDAT project [35]
is highly based on PIDs. By means of additional special metadata types imposed into the PID
records, it is possible to ”keep track of” the replicas and the master object, which have to appro-
priately specified within the respective PID records.
Also the issue of data provenance becomes increasingly important, since data constitutes an intel-
lectual property, which has be protected against unauthorized modifications. Furthermore, data is
often derived from other data. Thus, for this use case, PIDs can provide a mechanism to reveal all
the derivations of an individual dataset.
Related to data provenance is the aspect of data versioning. Also in this context, PIDs constitute
an appropriate registry to record all modifications an individual dataset has been subjected to.
Composite data objects are data objects, which are composed of various other data objects. Here,
PIDs can enable to define the individual relations between the data objects. Thus, the inter-linking
of individual data objects, which actually compose an overall data object is then accomplished
within the corresponding PIDs records.
Finally, to realize the proposed approach, the authors implement their idea with Handle Records
of the Handle System. A Handle Record represents the data model of the Handle System used to
store information associated with an individual Handle-PID, such as the URL of a dataset.
The work of C. Liu, Yang and T. Liu [36] is an example for the need of a naming component
in the Internet of Things (IoT) paradigm. The main idea is in principle to provide a DNS-like
system specifically targeted for IoT devices. However, this is de facto already existing: the Handle
System, which is also already in productive operation since several years. In addition, the data
structure (Handle Records) of the Handle System is generic enough to hold any kind of data in-
cluding device information. Another major advantage of the Handle System is that there are also
commitments and guarantees for a long-term operation.
In the context of IoT, the EU-China IoT Advisory Group [37] discuss PIDs as a concept for iden-
tifying ”things”.
An interesting work is provided by Bolikowski, Nowinski and Sylwestrzak [38]. The starting
point of the authors is the assertion that PID registration and management is usually bounded to a
single organization which therefore poses a single point of failure. As a solution for their asser-
tion, they propose a decentralized technology called Peer-Minted Persistent Identifiers, which is
highly inspired by the Bitcoin concept [39]. By means this technology anyone can register PIDs
and associate the respective records with a URL and a list of authorized users, which can perform
modifications to the respective PID record. As with Bitcoin, the technology is based on crypto-
graphic chains, and hence, registration and updates lead to the extension of the chain. However,
the problem is that extending the chain requires a certain amount of CPU computation, which the
authors denote as proof-of-work. This means, in addition to an expensive transactional storage
operation, with this technology, PID registration would also involve a formidable CPU computa-
tion overhead. For explosive amounts of research datasets, this is quite inappropriate. Considering
their assertion, the Handle System constitutes a highly distributed PID system since it enables a
naming authority, which is service for registering and managing PIDs, to be distributed among
different network locations and therefore to overcome a single point of failure.
Evrard et al. [40] introduce ORCID, which is a global persistent registry for scientist identifica-
tion. In their concept, a PID represents an individual scientist. Therefore, the corresponding PID,
namely ORCID record, contains the bibliographic information of the scientist.
Wannenwetsch and Majchrzak [41] address a critical point of the concept of persistent identi-
fication, which is constituted by the fact that PIDs have to be steadily administered in order to
keep them valid. Therefore, the authors assert to propose ”maintenance-free” PIDs. However, the
core of the work consists of creating PIDs for datasets stored in a decentralized data distribution
platform such as BitTorrent [42]. Since, data in the BitTorrent network is addressed by the Mag-
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net Link Scheme, instead of an ordinary URL, the respective PIDs have to reveal Magnet URIs
upon their resolution. To implement their idea, they utilize the Handle System. Thus, in principle
their essential contribution is to create PIDs, which contain Magnet URIs for datasets stored in a
decentralized data distribution platform, in which data is retrieved by Magnet Links. And since
these Magnet Links are independent of the actual location of the datasets, they will keep intact
even when the corresponding datasets moves within the decentralized data distribution network.
Hence, PIDs containing Magnet Links become ”maintenance-free”. Therefore, the authors actu-
ally do not address the core problem of PIDs itself, which would also include PIDs containing
ordinary locators, such as URLs. Such PIDs represent the vast majority among the set of all reg-
istered PIDs. Another issue is that, to some extent Magnet Links can be considered as PIDs as
well, which means that ordinary PIDs associated with data stored in such networks as BitTorrent
represent only alias identifiers.
Schwardmann [43] proposes a registry, the ePIC PID Information Type Registry2, which enables to
define machine processable types, whereby the registered types can be incorporated into Handle-
PIDs. Handle Records equipped with these types can then be autonomously processed by machine
actors. More specifically, by means of this registry, a machine actor can determine the interpre-
tation rule of a registered type and then apply the rule(s) on the actual data stored in the Handle
Record. Initially, the idea of such semantic PID records was introduced by Weigel, Kindermann
and Lautenschlager [33]. However, Schwardmann contributes with a registry, which can be pub-
licly used to register standardized types, which in turn enable a broad adoption of the idea of
semantic PID records. However, for such a registry, its highly essential to establish reliable com-
mitments and guarantees for a long-term operation. In addition, for an efficient global operation,
such a registry has to be established as a distributed architecture, such as the DNS system or
the Handle System itself. Otherwise, this could lead to performance problems due to increasing
request loads, especially with respect to machine actors.

2.4 Persistent Identifiers in the Context of ICN

Xylomenos et al. [44] present a comprehensive overview work about the ICN paradigm. Al-
though there are various different initiatives for an ICN network, the authors identify the following
”key functionalities”: Naming, name resolution and data routing, caching, mobility and security.
Based on these ”key functionalities”, the authors conduct a comparison of all existing ICN initia-
tives [45], [46], [47], [48], [49], [50] and [51]. Although, the working principle of PIDs is pretty
similar to some of the ”key functionalities” provided by the ICN approaches, the authors lack in a
comparison between the concept of persistent identification and the ICN paradigm solutions.
In principle, Sollins [52] proposes the URN identifier scheme for different ICN implementations,
in particular for the PURSUIT system [47]. The author first points out the importance of a reliable
and stable identification concept for the ICN paradigm, which is characterized by the ”what” rather
than the ”where”. Therefore, the core of ICN is based on the identifier, which in turn is used to
address and retrieve the ”what”. As a solution, the author presents an URN like solution, whereby
the identifiers resemble the syntax of the URN identifier scheme. In addition, Sollins describes
the resolution procedure to be accomplished by involving a ”global idspace service” (G-PPOID
RS) and a ”distinct sub idspace service” (S-PPOID RS), which pretty much resembles the setup
of the Handle System or the ARK concept. Hence, instead of considering these existing PIDs sys-
tems for ICN, the author basically combines concepts, in particular naming (URN) and resolution
(Handle System and/or ARK identifier), of different established PID systems.
One of the first works, which explicitly addresses PIDs in the context of ICN is provided by

2http://dtr.pidconsortium.eu
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Karakannas and Zhao [53]. Although the authors compare different ICN realizations and PID
systems, their main objective is to enable the ”delivery” of datasets which are actually accessed
through PIDs via Named Data Networking (NDN) [46]. To realize the delivery, the authors in-
troduce a special NDN ”gateway” for PIDs, which holds the mappings between PIDs and their
corresponding NDN names. Hence, to retrieve a PID identified dataset, this gateway functions
as a registry which responds with the corresponding NDN name in order to consume the dataset
stored in the NDN network. However, this NDN gateway basically constitutes another lookup
system, in addition to ordinary PID systems, and also, in addition the NDN infrastructure. The
authors do not consider the option that PID records enable to hold multiple locators, which would
result the special NDN gateway to become unnecessary.
The work of Schmitt, Majchrzak and Bingert [54] can be considered as an extension of the work
provided by Karakannas and Zhao [53]. The objective of Schmitt, Majchrzak and Bingert is to
enable PID management over the NDN network, while Karakannas and Zhao only consider the
dataset retrieval. In principle, Schmitt, Majchrzak and Bingert consider two different overlay
networks, the Handle System and the NDN network. Hence, to enable Handles Records to be
manageable within the NDN network, they propose to extend the Handle server with a NDN inter-
face, such that the Handle servers are also integrated into the overlay network of NDN. In addition
to a NDN interface, the Handle servers are also equipped with an appropriate transformation al-
gorithm which converts NDN requests (at the Handle server) into native Handle protocol requests
and vice versa. By this, NDN requests targeted to specific Handle servers are then accepted by
Handle servers, which in turn, perform a mapping of the incoming requests into corresponding
Handle protocol operations, such as resolution, creation, updating etc. Furthermore, the authors
conduct a performance evaluation, in which they compare the performance of the native Handle
protocol stack and the NDN enabled interface. It turned out, that with the NDN enabled inter-
face, the response times are approximately five times longer than with the native Handle protocol
interface, which is tremendous for high-performance.

2.5 DNS System

In particular the established Handle System, but also the design of other existing PID systems have
been more or less influenced by the well-known and heavily used DNS system. Therefore, in this
section we discuss DNS-related works, while we focus on performance-relevant contributions.
Jung, Balakrishnan and Morris [55] present a work, which addresses the ”client-perceived” DNS
resolution time and the ”effectiveness of caching”. For that, they collected DNS and TCP requests
at two different network nodes (USA and South Korea), where these nodes present gateways from
an internal network to the Internet. The idea behind to also gather TCP connections was to de-
termine the effect of caching. Since, DNS is mainly used to resolve a domain name into its
corresponding IP-address, which is then required to address specific hosts in the Internet, a TCP
connection is often preceded by a DNS request for the IP-address of the target node. Hence, by
taking to ratio between TCP connections and DNS requests, the authors were able to reveal a DNS
cache hit ratio around 85%. Furthermore, during their one month analysis phase, they found out
that at the first node (located in the USA), the median resolution time was about 85ms. In contrast
to that, at the second node (located in South Korea), the median resolution time resulted in 42ms.
The difference of the median resolution times at these two locations, is based on the fact that for
the node located in South Korea, a caching DNS server was in close proximity of the gateway
node.
Cohen and Kaplan [56] present another work for accelerating DNS involved communication. They
propose two different techniques. First, the renewal technique, in which certain DNS records are
queried ”unsolicitedly”. In contrast to preresolving, also proposed by Cohen and Kaplan [57], re-
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newal is incorporated into nameservers, which then automatically provision their caches with the
respective DNS records. Instead, preresolving ”utilizes predictions made based on per-user access
patterns and currently-viewed hyperlinks”. Whereby the relevant information for preresolving is
”available at the user’s browser or proxy server” and hence, the technique of preresolving is then
performed by clients. The second proposed technique is to apply simultaneous validation, which
is to establish the HTTP connection based on expired domain names containing IP addresses from
the local cache. However, during HTTP connection establishment, another request is concurrently
(simultaneously) issued to fetch the current DNS name-to-IP binding. Since, a HTTP connection
is usually preceded by a DNS query for an IP address, the technique of simultaneous validation
is addressed to reduce the latency. The results from the HTTP connection and the DNS query are
therefore validated in a concurrent manner. The problem of these techniques is that they require
the implementation and support of the algorithms at the nameserver and client respectively, which
is hindering the broad adoption.
The work of Yu, Wessels, Larson and Zhang [58] investigate the algorithm for nameserver selec-
tion of various DNS resolvers. Since a DNS zone often consists of multiple nameservers to ensure
load-balancing and high-availability, current popular DNS resolvers employ specific algorithms
to distribute the query load among these nameservers. The authors analyze the effectiveness of
these distribution algorithms, where most of them are based on the latency (RTT) between the
DNS resolver and the nameserver. In order to prevent the query load to be concentrated at the
nameserver with the smallest latency, the algorithms cause the latency values of the individual
nameservers to be weighted by specific values, which finally lead the queries to be partitioned
among the authoritative servers. The essential intention of the authors was to determine if the
partitioning is reasonable and effective. However, they found out that the employed algorithms
also include unresponsive nameservers, which cause long resolution times. The authors therefore
suggest to revise the selection algorithms, since they often cause ”large-latend” servers to be sub-
jected with disproportionate query loads.
Often, nameservers of top-level domain zones (TLDs) are also geographically distributed. Thus, in
order to redirect a domain name resolution request to the nearest nameserver, usually the technique
of anycast is applied. In anycasting, multiple hosts are reachable through the same IP address. To
redirect the request to the nearest host is based on the static hop count, which is used by network
switches to determine the port the packets to be sent out. Thus, Sarat, Pappas and Terzis [59]
analyze the effectiveness of anycast for DNS server selection, in which they reveal the general
usefulness of anycast.
However, in content distribution networks (CDNs) anycast alone usually does not suffices for ef-
ficient redirecting of user requests to appropriate CDN servers. Since in anycast the routing deci-
sion is done by the network switches based on the static hop count between different autonomous
systems, dynamic parameters such as the current load at individual servers are not covered by
anycasting. Therefore, in CDNs the request routing is based on special DNS servers which are
basically tasked with the collection of routing relevant parameters. The collected parameters are
then used to determine the most appropriate CDN server.
In this context, Shaikh, Tewari and Agrawal [60] analyze the ”effectiveness of DNS-based server
selection”. However, DNS-based server selection is also based on two other aspects, first, the
reduction of the TTL values in DNS records and second, the assumption that the proxy DNS re-
solvers, used by clients/applications, to be representative for the client/application location. The
authors found out that the small TTL values result in a significant growth of the resolution over-
head within the global DNS infrastructure, which can in future endanger the stability of the global
DNS system with the increased usage areas and requests. The authors also show that the assump-
tion, that the client/application is in close proximity of the proxy DNS resolver is often ”violated”.
In addition, they propose to develop further mechanisms which take into account their findings.
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As a possible solution, they propose to extend the DNS protocol, to ”carry additional information
to identify the actual client making the request”.
Furthermore Pan, Hou and Li [61] provide a detailed investigation of the working principle of
request routing in current CDNs. The authors reveal that current CDNs employ different DNS
servers with different functions in combination with anycast to achieve a reliable and effective
request routing. At the heart of such architectures are these already mentioned DNS servers which
collect parameters to serve as a request history memory. The primary function of such request
history memories is to constitute a base for request routing decisions.

2.6 Accelerating Database Ingests

As we have seen, the works related to DNS basically only cover to improve the retrieval of re-
sources. For PID systems, however, in addition to retrieval also the administration is highly im-
portant. Therefore, in this section we briefly provide an overview about works, which consider the
speedup of ingest operations by employing the technique of data bulking. Bulk insert is a well-
known technique to insert new records into databases. The works of Wiener and Naugthon [62]
and Jagadish et al. [63] provide examples for the use of bulking. In these works, the authors focus
on improving bulk insertion into a single database.
However, with the immense digital data deluge, in order to ensure scalability, the architecture of re-
cent data management systems becomes increasingly clustered. Therefore, the work by Silberstein
et al. [64] for example, focuses on an efficient bulk insertion into such a clustered architecture.
Common to all these works, is that they employ a specific grouping of datasets, on which then a
certain database-relevant operation is applied, instead of processing each individual dataset in a
separate manner.
Kepner et al. [65] achieved 100,000,000 database inserts per second with the Apache Accumulo3

database. The Apache Accumulo database belongs to a newer group of databases, namely to the
group of NoSQL databases. It is known that NoSQL databases usually provide enormous per-
formance improvements. However, the underlying principle behind these enormous performance
gains is the relaxation of the ACID principle ( [66, p. 566]), which ensures the Atomicity, Consis-
tency, Isolation and Durability of a transactional database operation. For PIDs, which are meant to
provide persistent access and unambiguous global identification, the ACID principle is essential.
Therefore, in this thesis, we emphasize on performance improvements complying with the ACID
principle.

2.7 Performance Analysis

The performance analysis of computer systems is a mature area. Various techniques and models
have been developed and discussed.
The work of Jain [67] provides a comprehensive overview about the topic. Another example for
a work, which presents a general overview about performance measuring in computer system is
given by Lilja [68].
In this context, the analysis of queuing networks often constitutes one of major aspects, which is
also covered in this thesis. This is based on the fact that PID systems are usually composed of
several components, such as myriads of other services offered in the Internet. These systems in
turn enable to be modeled as queuing networks, which finally enable to analyze their performance
behaviors.
Queuing networks in turn, are composed of multiple queuing systems, which are analyzed by

3https://accumulo.apache.org
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methods provided by the discipline of queuing theory. In principle, a queuing system is charac-
terized by three elements: First, the arrival distribution, secondly, the service time distribution and
thirdly, the queue discipline.
The arrival distribution specifies the interval between incoming requests to be processed by the
service center.
The service time distribution determines the amount of time individual requests are in the state of
processing in the service center.
Finally, the queue discipline characterizes the ordering a queue filled with requests is emptied by
the service center.
Depending on the character of these individual elements, the analysis could become rather com-
plex, which is particularly true for the combination of multiple individual queuing systems to form
a queuing network. Therefore, simplifying assumptions are applied to enable the analysis of such
complex queuing networks. In this context, the so called M/M/1 queue (so called Kendall nota-
tion), represents the simplest queuing system, where the first and second ”M” denote the arrival
process and the service process respectively to be of Poisson nature. The ”1” denotes that the
queue is served only by one service center. Another assumption is that the queuing system applies
the First-Come-First-Served (FCFS) queue discipline. Hence, the overall processing time for an
individual request results in a service time superposed with a waiting time. The most important
aspect of an exponential distribution, such as the Poisson distribution, is that it is memoryless,
which is specified by the ”M” in the Kendall notation: assume a request in a queuing system
was already waiting tp time units, with an exponentially distributed waiting time, the probability
that the request has to wait tadd additional time units for initiation of the processing at the service
center, is the same for any tp. Hence, an exponential distribution does not take into account the
previously waited tp time units, wherefore it is denoted as to be memoryless.
A fundamental property of M/M/1 queuing systems is that the departure process (requests leav-
ing the system) is the same Poisson process as the arrival process (requests entering the system).
Exactly this property enables the analysis of complex queuing networks. The analysis of queuing
networks complying with this property, reveal in the product of the results of the individual queu-
ing systems composing the overall queuing network. The overall solution is then composed as if
each individual queuing system has been considered independently from the remaining queuing
systems and by deducing the overall solution by calculating the product of all the individual re-
sults. Therefore, queuing systems equipped with this property forming a queuing network are also
known as product-form queuing networks.

A contemporary about queuing theory and queuing networks is provided by Bhat [69]. The au-
thor briefly introduces the foundations about the topic and finally discusses their aggregations in
queuing networks. Another characteristic of this work is that the authors also provide the corre-
sponding historical background behind the individual concepts.
Jain [67] additionally addresses possible target areas of queuing networks and their appropriate
analysis methods in great detail. However, the underlying assumption behind that work is that
even fine-grained parameters are easily retrievable, which is usually not the case in practice. This
is specially true with the new virtualization paradigm.
Another methodology for analyzing queuing systems and queuing networks is provided by opera-
tional analysis. The work of Lazowska, Zahorjan, Graham, and Sevcik [70] represents a compre-
hensive contribution for the area of operational analysis, which is most suitable to investigate the
parameters of the actual state of the system. The fundamental tools of operational analysis are the
operational laws, where Little’s Law constitutes the most important one:

L = λW, (2.7.1)

where L denotes the queue length, λ , the arrival rate into the system and W , the waiting time.
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2.7.1 MVA

Usually, the analysis of queuing networks is based on mapping their performance characteristics
into average, mean measures, which is realized by applying the MVA algorithm on the queuing
network. The MVA algorithm is applicable when the queuing network has a product-from solution
and a fixed request count circulating within the overall system. The fundamental principle of the
MVA algorithm is to recursively calculate the overall response time Rn

T of the queuing network
populated by n requests.
By Reiser and Lavenberg [71] it was shown that for a product-form queuing network, the process-
ing time of the ith queuing system results in

Rn
i = Si(1+Ln−1

i ), (2.7.2)

where Si represents the time, the service center requires for processing and hence, the service
time. More importantly, Ln−1

i represents the request population at the ith queuing system when
the overall queuing network is populated by n−1 requests. Hence, the nth arriving request at the
ith queuing system will see a request population with a mean population count of Ln−1

i requests.
Thus, as if the overall queuing network is populated by (only) n−1 requests.
Another representation of the MVA is given by the following equation:

Rn
i = Si(1+An

i ), (2.7.3)

where An
i denotes the mean request population an arriving request finds at the ith queuing system.

From this equation, it immediately follows the recursive nature of the MVA algorithm:

An
i = Ln−1

i , (2.7.4)

which basically reveals the dependency of performance measures of the concurrency level n onto
performance values of lower concurrency levels n−1.

2.7.2 Internet System Performance

There are myriads of different application areas of queuing models in Internet systems. In this
section, we provide an overview of the application areas.
Slothouber [72] proposes a queuing network model for HTTP Web servers, where the author mod-
els a single Web server by the fundamental resources it utilizes (CPU, Storage, Network). With
this model, the author showed that with increasing load on the Web server, the response time is
increasing ”gradually up to a point”. A further load increase then leads to a rapid growth of the
response time.
The objective of Doyle et al. [73] is to enable an efficient resource provisioning on which clustered
Internet services are dependent on. The paradigm of CDNs, which distributes individual services
among different hosts, entails a provisioning problem. Thus, to ensure the available underlying
resources to be efficiently utilized, the authors propose a ”model-based resource provisioning”
(MBRP). The authors emphasize on the performance of the basic resources such as CPU or stor-
age. Their approach is to apply performance prediction models derived from queuing theory onto
these basic resources. By means of a resource provisioning algorithm it is then determined how to
distribute the load among the available resources. This algorithm is based on the predicted param-
eters from the basic resources.
The work of Stewart and Shen [74] represents another work in the category of efficient resource
provisioning in distributed systems using queuing models. Furthermore, also another work of
Stewart and Shen [75] can be counted into that category.
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Kamra, Misra and Nahum [76] present ”Yaksha” to be an admission controller for 3-tiered Web-
sites. Yaksha is a proxy system in front of the actual Website, which prevents the overloading
of the actual Web service. The working principle of Yaksha is to control various parameters of
the Web service, to ensure the response times not increase rapidly, such as observed by Slothou-
ber [72]. The control and decision mechanism of Yaksha is based on a M/G/1 (Kendall notation)
Processor Sharing queue modeling of the underlying Web service, where ”G” specifies that the
service time has a general distribution.
One of the first works which models a multi-tiered Internet systems as a queuing network is pre-
sented by Liu, Heo and Sha [77]. Since the authors also take into account the multi-threaded
nature of Web services, to solve the queuing network by means of the MVA algorithm, they adopt
an approximation method ( [78]). The main idea is to model each tier with two successive queuing
systems, whereas the first queuing system is used to represent the size of the thread pool on which
the requests are distributed to. The second queuing system in turn, is used to model the actual
processing delay.
In this thesis, our contribution related to multi-tier Internet system performance improvement is
mostly influenced by Urgaonkar et al. [79]. The work of Urgaonkar et al. represents one of most
important works for performance modeling of multi-tier Internet systems. The basic approach of
the authors is to model each tier as a single queuing system as it is done in this thesis. Moreover,
the authors apply the MVA algorithm on the resulting queuing network to determine the mean
response time of the overall system. In addition, they also provide a modeling to simulate the
case, when the queuing capacity at each queue is exceeded, which they describe in the section
”handling concurrency limits at tiers”. To capture this behavior, before each individual queuing
system of the queuing network, the authors insert a mechanism which forks the incoming requests
into two different paths. The first path represents the regular workflow in which each request is
traversing the ordinary queuing systems to perform the ordinary tasks to finally retrieve a suc-
cessful response. The second path in turn is selected with a particular probability to simulate the
requests which are discarded by a tier due to an exceeding of the corresponding concurrency limit.
This is realized by leading these requests into another queuing network which finally cause the
affected requests to start the processing again at the first tier. The intention behind the second path
is to capture a certain retry behavior of discarded request, which is often implemented in recent
multi-tier Internet systems.
Also the work of Bhulai, Sivasubramanian, van der Mei Maarten and van Steen [80] is basically an
extension of the work of Urgaonkar et al. [79]. Since Urgaonkar et al. emphasize on the mean re-
sponse time, the basic extension of Bhulai, Sivasubramanian, van der Mei Maarten and van Steen
consists of additionally providing the variance bounds of the response time.
Stewart, Kelly and Zhang [81] provide a work, which addresses the aspect that often multi-tier
Internet systems offer different types of operations with different service times. Hence, such
multi-tier Internet systems are usually subjected to a ”mixture” of different requests, where each
request type requires a particular utilization of the available resources (CPU, disk, network, etc.).
This then finally complicates the modeling and predication of the response time behavior. The
authors propose to express the response time as a combination of services times multiplied by the
number of the corresponding request types occurring in a specific interval. Hence, their resulting
response time decomposition is a parameter of an interval, rather than the load. To accumulate
the load, the authors provide an extended response time decomposition, which is superposed with
waiting times of M/M/1 queuing systems. In their approach, each tier is associated with three
queuing systems for each resource (CPU, disk, network).
The aspect of simultaneous resource possession is dedicatedly considered by Rolia and Sev-
cik [82]. In principle, this work constitutes the base for the Layered Queuing Network (LQN)
methodology. The basic approach of this methodology is to also take into account each com-
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ponent/resource within a tier. This therefore requires a detailed understanding of the internal
architecture and the respective parameters, which is in practice often hard to realize, especially in
systems including third-party components.
Another work contributing to the LQN concept is provided by Neilson, Woodside, Petriu and Ma-
jumdar [83]. The authors concentrate on improving the throughput of a layered/tiered system.
Moreover, they introduce the concept of software bottlenecking, which is performance constraint
onto a layered/tiered system. A software bottleneck is a phenomenon, which is characterized by
the effect of load ”push-backing” caused by a fully utilized tier, which then leads its predecessor
tiers to be also over-utilized, whereas its successive tiers are under-utilized. Therefore, the load is
called to be ”push-backed” onto the previous tiers. In addition, the authors introduce the quantity
of the bottleneck strength, which is a measure of the potential throughput improvement by using
”clone-sets”. By clone-sets the authors mean to extent the queuing capacities of individual tiers by
increasing the thread pool size or by positioning additional instances of individual tiers on which
the load is distributed to.
A similar work is presented by Franks, Petriu, Woodside and Xu [84], which can be considered as
an extension of [83]. The authors introduce a corrected form of the bottleneck strength, which is
a factor, which specifies the maximum possible throughput increase after relieving a fully utilized
resource/tier. In the old definition constituted in [83], it is determined by the utilization ratio of the
saturated resource/tier and its direct successor. The corrected form in turn is defined to determine
the utilization ratio between the saturated resource/tier and one of its successive resources/tiers
with the highest utilization value. The main difference is that in the corrected form also the indi-
rect successors are taken into account. This is reasonable because the overall system’s throughput
will be limited by the second most utilized resource/tier after improving the most utilized resource.
Furthermore, the authors propose three strategies to achieve a relieve of the saturated resource. The
first strategy is to ”add resources”, which result in a distribution of the load among the additional
resources. In principle, this strategy complies with the ”clone-sets” idea already proposed in [83].
The second strategy is to reduce the service time of a resource/tier, which then leads to a faster
processing of the queued requests at the affected tier. Finally, with the third strategy, the authors
propose to reduce the amount of requests involving a saturated resource/tier.
The notion of potential speedup is mainly used in the area of parallelization. M. Kim, Kumar, H.
Kim and Brett [85] use the potential speedup to estimate the benefit of a serial code paralleliza-
tion effort. Donaldson, Berman, and Paturi [86] analyze the speedup in heterogeneous computing
network. Since our context is a speedup analysis of homogeneous layered models, their speedup
analysis is not adaptable to our context.
A more practical work is provided by Lilja [68], wherein several measures for expressing com-
puter system performance are discussed, including the speedup measure. However, their speedup
notion does not consider layered systems, which is addressed in this thesis.

2.7.3 MVA Algorithm Advancement

Applying the MVA algorithm onto large systems which additionally offer a mixture of operations,
can easily lead to extensive computations in each step of the MVA algorithm. Therefore, several
research efforts focus on deducing approximative and faster versions of the MVA algorithm. As
one of the earliest work in this context, Bard [87] introduce several estimation techniques for the
MVA algorithm, which can be summarized under the so called Approximate Mean Value Analysis
(AMVA).
The core of these expensive computations (in terms of time consuming) is based on the recursive
relation represented by equation (2.7.4). Hence, the performance quantities of a concurrency level
of interest, require computations of all the previous concurrency levels, which can be formidable
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expensive for high concurrency levels. Thus, AMVA techniques basically emphasize on fast to
compute approximations for An

i . In principle, there are two different approximation approaches,
where the first is based on the following:

An
i ≈ Ln

i −
(

1
n

)
Ln

i . (2.7.5)

The underlying assumption behind this approximation is that removing a single request does only
lead to a slight change in the state of each queuing system of the overall queuing network. By
making use of this relation, the Ln

i is iteratively approximated until a specific convergence thresh-
old is achieved. The main advantage of this approximation approach are savings in the storage
requirements for the relevant previous values. However, the savings in the storage are at the ex-
pense of the accuracy.
Thus, the second approach in turn is based on the following:

An
i = (n−1)

(
Ln

i
n
+ γ

n
i

)
, (2.7.6)

with

γ
n
i =

Ln−1
i

n−1
− Ln

i
n
. (2.7.7)

In this approach, there are iterative computations to approximate the γn
i terms, also until a specific

convergence threshold is met. In contrast to the first approach, this algorithm reveals a signifi-
cantly better accuracy, but also higher storage requirements.
Based on AMVA algorithms, Zahorjan, Eager, Sweillam [88] introduce the Aggregate Queue
Length (AQL) algorithm, which is based on the second approach, however, with reduced storage
requirements. In addition, the authors provide a comparison of these three approximation algo-
rithms.
Wang and Sevcik [89] provide a software package (IAMVAL), which includes two more iterative
approximate MVA algorithms: The Queue Line algorithm (QL) and Fraction Line (FL) algorithm.
Both of these proposed algorithms are based on the relation (2.7.5). Moreover, in both algorithms,
the emphasis is on improving approximations of specific terms of the algorithms. However, the
computational overhead in both algorithms is approximately the same as the original approxima-
tive version of the MVA, which is based on relation (2.7.5). In general the QL algorithm is more
accurate than the original approximation algorithm. Whereas the FL algorithm is either more
accurate than QL and the original approximative version, or even less accurate than both of ap-
proximation algorithms.
In this context, Cremonesi, Schweitzer and Serazzi [90] present a framework, which allows a
”unified view of approximate solution techniques” for the MVA, which also includes all the afore-
mentioned approaches. Under this framework, all ”known” approximations approaches for the
MVA can be analyzed.
The work of Petriu and Woodside [91] is another comprehensive contribution for the area of ap-
proximative MVA algorithms. The goal here is to provide an approximate MVA solution for
”Markov models that represent a composition of components”. The focus of the authors is to
derive approximation techniques for systems, which are considered from their processes levels,
which requires a deep and detailed insight about the inter-process interactions and their corre-
sponding parameters.
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2.8 Summary and Research Delta

First of all, the performance aspect in the context of persistent identification is not covered at all
or only addressed as a side effect by all the aforementioned research efforts.
The starting point of Schmitt and Majchrzak [54] is to enable the operation of the Handle System
on top of a possible future Internet infrastructure: the NDN infrastructure. Their objective is to
ensure the retrieval of legacy research datasets, which have been assigned Handle-PIDs, to be also
intact in NDN. Moreover, they also propose a solution, which not only ensures the resolution,
but also the management of Handle-PIDs over NDN. Only as a secondary objective, they also
compare the performance for resolution and administration of Handle-PIDs within the traditional
Internet and the NDN infrastructure. Their comparison reveal that the performance within NDN
is significantly slower than within the traditional Internet.
All remaining works, related to PIDs, do only discuss their usage for the area of research data
management.

Since in a certain sense, PID systems reflect the DNS system, we have also analyzed research
efforts in the area of DNS. However, the primary purpose of DNS is to act as a global data lookup
registry, rather than a global data management system. Therefore, the research efforts addressing
DNS performance, in principle only capture the performance of the resolution operation. The main
methodology here is to employ different caching techniques at various DNS servers. However, for
PIDs it is also highly important to ensure a high-performant PID record management, which is
addressed in this thesis.
To improve the resolution of PIDs, especially Handle-PIDs, however, we utilize the DNS system
and its worldwide spreading. For the PID systems based on the Handle System, this can be done
by equipping these PID systems by a DNS interface, which realizes the embedding of PID systems
into the global DNS infrastructure. In a sense, the embedding approach of Schmitt and Majchrzak
[54] is similar to our approach. They equip the PID systems with a NDN-interface, which enable
the operation within the NDN infrastructure. However, with their approach, the resolution time
becomes even significantly longer than with the native interface.

PID systems can also be considered as globally distributed databases for holding relevant infor-
mation about research datasets. Therefore, we also analyzed performance-relevant works in the
area of databases. In this context, bulking has proofed to be an efficient technique to accelerate
(especially) data writing operations, which is also employed in thesis. However, the focus in this
thesis is more on the respective PID system communication protocol used between a client and a
PID system, rather than on the PID system database.
Another technique is to relax the ACID principle, which results in tremendous performance im-
provements in database operations. However, this comes at the expense of data consistency, which
is essential for PIDs. Therefore, the relaxation of the ACID principle does usually not represent
an overall solution for PIDs systems.

Furthermore, PID systems are meant for long-term operation, which therefore requires their im-
provement with technological advance. Hence, another view on PID systems reveals that they
are basically transactional multi-tiered systems among various others available in the Internet.
The literature for performance improvement for such systems is considerable rich. Therefore, in
this thesis, we focus on the response time improvement of transactional multi-tier Internet sys-
tems. For this thesis, the work of Urgaonkar et al. [79] provides the basic approach for modeling
multi-tier Internet systems are a queuing network and to apply appropriate performance analysis
techniques. In contrast to Urgaonkar et al., we focus on the improvement of the response time
of multi-tier systems and the resulting effects of improvement in respective tiers onto the overall
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system’s performance behavior. Urgaonkar et al. basically only emphasize on the aspect of appro-
priate modeling.
Closest to our approach is the work of Franks, Petriu, Woodside and Xu [84]. In contrast to our
approach, the authors focus on detecting and relieving bottlenecks in layered systems to improve
the throughput of the system. One strategy proposed by the authors is to reduce the service time of
the resource/tier which causes the bottleneck. However, the effect of such an improvement in the
service time onto to the overall system’s response time is not analyzed by Franks, Petriu, Wood-
side and Xu. This, however, is provided in this thesis.
The core of our approach is to analyze of the response time behavior of the MVA algorithm. This
approach enables to deduce certain performance measures which are appropriate to support the
long-term improvement of multi-tier systems, such as PID systems.
All in the previous sections investigated research works addressing the MVA algorithm, do only
emphasize to deduce faster but approximative versions of the exact algorithm. In contrast to that,
we basically compare the application of the MVA algorithm on two systems, the old and improved
system, and deduce formulas which capture the resulting load distribution effects caused by im-
proving a specific tier.
Another aspect of the contributions to performance analysis, in particular the works related to the
MVA algorithm, is that they require the implementation of a certain simulation algorithm, mostly
the MVA algorithm or a variant of it. Although, our approach is fundamentally based on the MVA,
it does not require the implementation of the MVA algorithm. Instead, from the behavior analysis
of the MVA algorithm, we deduce estimation formulas, which can be used in combination with
the tools provided by operational analysis to investigate a multi-tier Internet system.



Chapter3
High-Performance Persistent Identification

In this chapter, we provide insight into the performance problem caused by persistent identifica-
tion, which is based on an additional maintenance overhead composed of expensive transactional
operations.
The starting point of the discussion is the analysis of the content access mechanism of the Internet.
This serves the purpose of providing the underlying context, which initiated the introduction of
PIDs. In this regard, we also consider the ideas behind the Information Centric Networking (ICN)
paradigm, which show similarities with the concept of persistent identification. By this com-
parison, we reveal that durable links are a matter of continuous maintenance causing a certain
overhead.
We finally propose a concept, which enables a significant reduction of the overhead required for
maintaining PIDs to keep them valid (cf. Figure 3.1). This concept is especially suitable for a
specific group of research data repositories.

Research Data 
Repository

Naming 
Authority

(PID System)
{ OP, OP, OP, OP, OP, OP }

Figure 3.1: Focus in chapter: Reducing the maintenance overhead for research data repositories
for administering PID records to keep them valid. A reduction of the maintenance
overhead can be achieved by reducing the number of these expensive OPs (cf. Sec-
tion 1.1), which is tackled in this chapter.

The base of our approach has been published in a conference paper at the 11th IEEE Networking,
Architecture and Storage (NAS) conference 2016 in Long Beach, CA, USA [92]. In this thesis,
however, we provide a revised and extended version.

3.1 Towards Persistent Access

In this section, we briefly describe the increasing importance of digital content. In addition, we
provide an investigation of its consumption mechanisms within the Internet. We also provide
insight into the fundamental challenge of persistent access within the Internet and explain the
existing approaches for a durable content access and enlighten the role of PIDs in this context.
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3.1.1 Internet Content Retrieval

The Internet is composed of myriads of interconnected nodes, where each node offers a diverse set
of digital content in the form of services and datasets. The original function of the Internet is to
establish a communication network among distributed computers. The first exchanged messages
were small ASCII messages containing a few bytes of text. However, the amount of transmitted
data has increased rapidly which in turn has led to the emergence of various information exchange
technologies such as the World Wide Web, or simply the Web. In principle, the Web is an addi-
tional layer on top of the Internet, which enables a convenient access to content. Content in the
Web is denoted as a resource and is addressed by a Uniform Resource Locator (URL), which is a
locator.
To retrieve an individual Internet content, it is required to address the node on which the requested
content is currently stored on, in combination with an additional access parameter serving as a
local identifier. A URL, therefore, is a composition of a node identifier and an additional, locally
unique content identifier (cf. Figure 3.6).
However, in the Internet, content usually does not reside on a specific node eternally. Instead,
the storage node of content is often changing, leading to changing locators such as URLs. These
changing URLs are the root cause for the so called link rot phenomenon [12].
Therefore, persistent access to content constitutes one of the major problems of the Internet which
is also inherited by the Web, our current standard information exchange platform. Exactly this
problem is the main reason for deducing PIDs and also the ICN paradigm.

3.1.2 Basic Idea of the Concept of Persistent Identification

In the previous subsection, we have identified the locator-based content access to pose a serious
challenge for durable data retrieval. In this subsection, we analyze the basic idea behind PIDs,
which represent a possible solution to tackle the problems induced by the address-based Internet
architecture.
The basic idea behind the concept of persistent identification is twofold: first to provide persistent
naming for digital objects, and second, to ensure persistent access to digital objects stored in the
Internet. The common functionality of the various existing PID systems is to provide an identifi-
cation layer which abstracts the locators of the digital objects, such that an individual digital object
is solely identified by an immutable, opaque and globally unambiguous identifier. However, such
a globally unique identifier has also to be actionable [20] [93] in the Internet, to enable the access
of the identified data. Exactly this (continuous) actionability, makes a globally unique identifier to
a real PID.
However, in particular the importance of the continuity of the actionability is often undervalued.
Only this continuity results in persistent access. Persistent access to data in turn constitutes a
formidable problem requiring elaborated and sustainable solution techniques. Therefore, the fol-
lowing subsection discuss the overall problem of persistent access in a broader context.

3.1.3 Persistent Access with PIDs and Information Centric Networking

The idea of PIDs has been mainly developed in the context of digital preservation of scientific
datasets. However, the problem of persistent access has gained an increasing relevance with the
recent explosively growing number of digital objects. Digital objects are now omnipresent. There-
fore, the ICN paradigm has been proposed to provide efficient solutions for data-oriented commu-
nication including persistent access.
The goal of the ICN paradigm is to establish a new Internet architecture, which is specifically ori-
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ented on content consumption rather than on node-to-node communication. In ICN, the focus is on
the ”what” instead of the ”where”. In addition to content retrieval, the ICN approach also provides
solutions for data integrity and security. The general idea is inspired by the publish-subscribe
communication model: Data producers notify the network when new data is available for distribu-
tion. Data consumers in turn, subscribe to datasets in which they are interested. Furthermore, to
solve the location-binding of content, in ICN, data is additionally stored at special caches within
the network level. By means of these caches, the load at the originating data locations can become
significantly reduced, also preventing Denial of Service (DoS) attacks [94].
Although there are several different approaches for ICN, they all employ similar techniques and
components. The consumption of data is done in two steps: first it is localized, then it is routed to
the requesting consumer. Therefore, the existing ICN approaches are always comprised of a name
resolution and a data routing system. The name resolution system is used to localize a requested
dataset, whereas the data routing system is used to efficiently transmit the localized dataset to the
interested consumer.
One group of the existing ICN realizations employ coupled name resolution and data routing
( [45], [46], [49], [50]), whereas another group employ decoupled name resolution and data rout-
ing ( [47], [48], [51]). In the coupled approach, the reverse order of the nodes, which were tra-
versed in the name resolution procedure, are used again to route the data to the consumer. In the
decoupled approach in turn, data is routed through a different path, often a more efficient path for
data delivery.
Another characteristic of the proposed ICN solutions is given by the composition of the data iden-
tifiers. In one part of the ICN solutions, the identifiers are hierarchical ( [46], [50]), whereas in
the other part, the identifiers are flat or quasi-flat ( [45], [49], [47], [48], [51]). Flat means that the
identifier does not incorporate any structure. The naming system of the proposed ICN solutions,
which are based on flat or quasi-flat identifiers, can be considered as a quasi centralized global
data registry, wherein all new datasets and the corresponding dataset movement operations have
to be registered to keep track of the data locations. This, however, often causes a significant over-
head in the global data registry. With hierarchical identifiers in turn, the global naming system
becomes distributed leading the datasets to be registered at specific sub-registries, which are only
responsible for a certain group of datasets. The global retrieval of an individual dataset is then
accomplished by suffixing the local data identifier by the globally unique sub-registry identifier.
However, a hierarchical identifier is basically a grouping mechanism, which again can aggravate
the movement of individual datasets.

A major problem with the existing ICN initiatives is that they require a profound replacement of
the current Internet architecture. All Layer-3 switches, currently used in the world, would have
to be replaced by the new name resolution and routing systems. In contrast to that, existing PID
systems function only as overlay networks on top the current Internet, without the need of changes
in the underlying network.
On an abstract level, the existing PID systems employ pretty similar techniques as the proposed
ICN solutions. The existing PID systems are pretty much inspired by the well-known DNS system.
Hence, PIDs are composed of hierarchically ordered labels, but opposed to DNS domain names,
without any semantic in the individual labels. In the DNS system and also in the PID systems,
the overall architecture is built as a globally distributed database. In a global PID system, an in-
dividual database is usually denoted as a naming authority (local PID system), which is assigned
a globally unique identifier. New datasets are then registered at specific naming authorities to be
assigned with PIDs. A PID is then constructed by suffixing the globally unique naming authority
identifier with a label, which is only unique in the scope of that specific naming authority. The
result is a globally unique identifier assigned to an individual dataset. Note that the term naming
authority was already introduced in the introduction chapter (Chapter 1) of this thesis.
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To consume a dataset assigned with a PID, a preliminary request is always necessary to resolve the
PID into its locator, which is then followed by a second request with the obtained locator to retrieve
the actual content. This means that PIDs only enable indirect data retrieval. In contrast to that,
in ICN, the data identifier enables a direct retrieval of the corresponding the content. However,
apart from that, the PID concept is comparable to those ICN approaches, which employ decoupled
name resolution and data routing:
On the one side, at the resolution procedure of PIDs, several nodes of the global resolution ar-
chitecture are traversed until the responsible naming authority is found. The traversal path is
determined by the hierarchically ordered labels composing the PID. The retrieval of the actual
dataset by means of the obtained locator, is then carried out totally independently from the PID
system. In terms of ICN, a PID system can be considered as a name resolution system. This means
that there is already a name resolution system in our Internet architecture.
On the other side, data producers have to register all their datasets at a specific naming authority
(local PID system) to enable their global localization. Controversially, also this has to be done
with the ICN solutions.

Finally, although the ICN initiatives aim to established a data-oriented network, from an abstract
perspective, their conceived network elements resemble again the components already used within
the current Internet architecture. The most important result of this section is that persistent access
is only ensured by a continuous tracking of data movement. More concretely, persistent access
requires a persistent maintenance effort to ensure the validity of the name-to-location bindings,
this holds true for the proposed ICN solutions as well as for PIDs.

3.2 Performance in Persistent Identification

So far, we have revealed that persistent access requires a persistent maintenance overhead. This,
however, usually results in a performance problem, especially for PIDs. In this section, we exam-
ine the fundamental cause of the performance problem of existing PID systems. After concretely
revealing their individual response times for PID record administration, we finally provide insight
into our first proposal of this thesis, which is based on Data Silo Identifiers (Research Data Silo
Identifiers (DSIDs)). Our proposed concept of DSIDs enable the reduction of the overhead caused
by the maintenance of the PID-to-locator bindings.

3.2.1 Fundamental Performance Problem

The fundamental performance problem of existing PID systems from the perspective of a research
data repository is based on the following performance issue:

• A persistent maintenance overhead for PID records to maintain them valid, which is com-
posed of a set of expensive transactional administration operations (cf. Figure 3.1 or Fig-
ure 3.2: OP ) issued against a particular naming authority (local PID system).

Figure 3.2 provides a vivid example for this: We can see a research data repository, which is
continuously issuing administration requests against the ePIC PID system. The ePIC system is
composed of several components including a Handle server (grey box), which represents a partic-
ular naming authority within the global PID system established by the Handle System. In the ePIC
system, the response time of a single OP includes the processing times of all these components.
And since a single OP is accomplished transactionally, it often leads to a performance problem
for large amounts of PID records. A concrete example of a single OP is provided by Listing 3.1.
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ePIC PID System

HTTP-Server

ePIC-API v2

Handle Server (NA)

MySQL-DB
Research Data 

Repository

OP

OP

OP OP OP OP OP

OP

Figure 3.2: Research data repository administering PID records at the ePIC PID system. Again,
each OP symbolizes an expensive transactional administration operation.

This listing illustrates a HTTP request example for creating a single PID at the ePIC PID system
provided by GWDG.

1 POST /handles/21.T11996 HTTP/1.1

2 Host: pid.gwdg.de

3 Accept: application/json

4 Content-type: application/json

5 Content-length: 51

6
7 [{"type":"URL","parsed_data":"https://bitbucket.org/fatihbucket"}]

Listing 3.1: Example for a single OP: HTTP Request for creating a PID at ePIC sys-
tem (v2) provided by GWDG. The resulting PID will point to the locator
https://bitbucket.org/fatihbucket.

Since the existing PID concepts are commonly realized as overlay networks (cf. Figure 3.5), each
such an overlay network requires the implementation of a particular protocol and/or data model to
enable the internal communication, which is usually not supported by recent research data repos-
itories. This is the reason for the need of naming authorities which comply with the respective
protocol and/or data model.
Moreover, these naming authorities usually employ expensive transactional administration proce-
dures to ensure the durability and consistency of the information associated with PID records.

There are two options for the choice of a naming authority, from which research data repository
system designers are compelled to make a selection:

(a) Setting up an internal naming authority service.
(b) Making use of an external naming authority service provided by an external PID service

provider.

Option (a) usually entails a significant implementation effort to enable the support of the required
protocol and/or data model. In addition, this option requires an appropriate maintenance effort for
the service itself to ensure its long-term operation.
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Since in option (b) the naming service is already offered by an external service provider, there is no
significant implementation effort required. In addition, the service operation effort is already cov-
ered by the service provider (such as GWDG). However, due to the network latency, the overhead
of the administration procedure is usually even more increased with option (b).

The following subsection, provides a brief overview of various existing PID systems including
their protocols and data models.

3.2.2 Description of Existing PID Systems

Note that the description of the various PID systems, is followed by a comparison of their response
times for PID record administration.

Handle System: The Handle System, requires the implementation of the Handle protocol [95],
which enables the integration into the corresponding global resolution system. In fact, this
system can be also considered as an imitation of the well-known DNS system. Instead
of computer host identification, the Handle System is used for research dataset identifica-
tion and localization. A resolution request in the DNS system primarily results in a DNS
Resource Record containing an IP-address of a computer host. In the Handle System for in-
stance, it results in a Handle Record, which contains the corresponding locator of a research
dataset. Originally, the Handle protocol has been designed to operate directly via TCP/IP
and UDP/IP. A mature REST interface is only supported beginning with version 8 of the
Handle System software.

Digital Object Identifier (DOI) System: The DOI system is the most prominent among the
PID systems. It is technologically based on the Handle System. Initially, the DOI system
has been developed on top of a previous version (<8.0) of the Handle System, which did
not offer a REST interface. Therefore, the DOI system extends the Handle System by a
complete REST interface. In addition to a REST interface, there is also a special function
for collecting and processing metadata of registered research datasets. Thus, instead of
functioning as a sole proxy between a research data repository and the Handle System, the
DOI system additionally provides a special index of all registered research datasets. This
special index is realized by an additional database. However, to register a research dataset
at a DOI registration agency, a research data repository is required to map the research
dataset into a specific data model [19]. This mapping is not just a transformation from one
data model into another. Instead, it is a procedure to verify whether an individual research
dataset is compliant to be included into the overall index. For that, an individual research
dataset has to provide a mandatory set of key-value pairs, which are then mapped into the
DOI data model. Usually, only research datasets which are already in a finalized state of the
research data lifecycle [96], can provide this mandatory set of key-value pairs. Therefore,
the special index of the DOI system usually contains research datasets, which have been
published.

ePIC PID System v2: The ePIC system (version 2) [97] (cf. Figure 3.2) is another PID system,
which is based on the Handle System. In principle, it is very much comparable to the DOI
system, as it provides a REST interface and a special function for metadata processing. The
essential difference is that the data model of ePIC is much more flexible than the DOI data
model. The focus in ePIC is more towards machine readability of the Handle Records of
the registered research datasets. Therefore, with the ePIC system, individual researchers
can first define their own data structure(s) and then, register new research datasets, which
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in addition are compliant with the predefined data structure(s). This flexibility in the data
model enables to register any type of research datasets at the ePIC system. In contrast to
the DOI system, in ePIC there is no additional index database which has to be provisioned.
Instead, the ePIC system directly operates with the database attached to the underlying Han-
dle server. By means of this direct connection to the database of the Handle server, the ePIC
system also provides a search functionality for searching directly in the registered set of
Handle Records.

Archival Resource Key (ARK) PID Concept: Another established concept for persistent
identification is realized by the ARK [98] concept. In comparison to the Handle System,
the ARK identifier is much more lightweight. This identifier is in principle only a naming
scheme, for which a set of URL-based conventions is defined. These conventions form the
so called HTTP URL Mapping Protocol (THUMP) [99]. Therefore, to be integrated into
the global resolution infrastructure of the ARK identifier system, a research data repository
is compelled to implement the THUMP protocol.

Easy-Eye-Dee (EZID) PID System: A PID service provider based on the ARK identifier
scheme is provided by the EZID system [100]. Similar to the PID systems based on the
Handle System, this system provides an additional service on top of the underlying ARK
PID system, such as a REST interface for the administration of the PIDs. Also the imple-
mentation of the THUMP protocol is covered by the EZID system. However, as with the
Handle-based PID systems, the EZID system also requires a specific data model (ANVL4)
to be provided for the registration of individual research datasets.

Uniform Resource Name (URN) Scheme: Often, the URN [31] scheme is counted to the set
of PID concepts, however, it is much more a naming scheme than a real PID system. The
common goal of URNs and PIDs is to provide persistent names for digital objects stored
in the Internet. In contrast to PID systems, the URN specification does not provide a com-
mon globally widespread overall network to make URNs actionable. Among the registered
URN namespaces, the National Bibliography Number (NBN) namespace is the most used
namespace which can be listed within the existing concepts for persistent identification. It
is particularly used in the area of libraries. However, even for the URN-NBN namespace
there is no central resolution service, which is able to resolve all URNs of the NBN names-
pace. Instead, there are multiple resolution services, each responsible for a specific NBN
sub-namespace. In addition, each of the registration agencies of the sub-namespaces define
their own requirements for research datasets necessary for their registration.

These descriptions are summarized with Table 3.1.

Furthermore, Figure 3.3 shows the response times of different PID systems for administering
a single PID record. The response time RT represents the overhead of a single administration
operation (cf. Figure 3.1 or Figure 3.2: OP ) offered by an individual (local) PID system to
register or update a single PID record.

We can see that the most known DOI-PID system requires approximately 800ms to create a single
DOI-PID. After registration, for DOI-PIDs, it then usually also takes about 24 hours for them to
be globally resolvable.
Version 1 of the ePIC PID system does not allow an URL which is already assigned a PID to be as-
signed with another PID within its database. For this, it aims to ensure a bijective relation between

4https://confluence.ucop.edu/display/Curation/Anvl
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PID System Protocol Data Model Global Resolver Identifier

Handle HDL Protocol
Handle Record

hdl.handle.net hdl:PREFIX/SUFFIX
Handle Value

DOI REST DOI Metadata
dx.doi.org

doi:10.PREFIX/SUFFIX
hdl.handle.net

ePIC REST ePIC Json hdl.handle.net hdl:21.PREFIX/SUFFIX
ARK THUMP - n2t.net ark:PREFIX/SUFFIX
EZID REST ANVL n2t.net ark:PREFIX/SUFFIX
URN - - - urn:NID:NID-SPEC

Table 3.1: Overview of existing PID systems.

PIDs and URLs. This however requires an additional duplicate check within the database causing
a long registration time. In contrast to that, version 2 of the ePIC PID system (cf. Figure 3.2)
only ensures a surjective relation between PIDs and URLs, which means that there is no such a
duplicate URL check. Therefore, the second version of the ePIC PID system is significantly faster
than its previous version. Note that its plotted response time (250ms) corresponds to the HTTP
request, specified by Listing 3.1.
As already indicated, with version 8 of the Handle server implementation, there is also a built-in
REST interface for PID record management. The PID creation times of the new REST interface
and the native Handle protocol are labeled as ”Handle-REST” and ”Handle-LIB” respectively. We
can also see that these interfaces provide the fastest response times for PID creation.

However, for research data repositories subjected to an immense data growth, such PID mainte-
nance times are simply too slow. For example, the TextGrid5 repository frequently registers up to
10,000 or more PIDs at once. With the measured response times, this means that the special PID
registration module within the TextGrid repository would be blocked for approximately 1700 to
10,000 seconds.

To overcome the problems posed by the current PID systems, we propose a novel persistent iden-
tification concept. This novel concept focuses on the reduction of the maintenance overhead by
reducing the number of the transactional administration operations, rather than on the acceleration
of the processing time of the operations itself.
Since our concept is specifically suitable for a certain group of research data repositories, we first
provide an abstract view onto recent research data repositories in order to distill their essential
functionality. This is followed by a repository categorization, which is based on the different
usages of PIDs in such repositories.

3.2.3 Abstract View on Research Data Repositories

An abstract view on a research data repository is illustrated in Figure 3.4. As can be seen from
this figure, a research data repository can be considered as a research data silo, which offers the
following five basic operations: Create, Read, Update, Delete, and Search and for short: CRUDS.
Originally, the CRUD paradigm [101] has been established in the area of databases. In addition
to the CRUD operations, many research data repositories also offer a search operation, which pro-
vides an aggregation of different datasets containing a common information pattern.
Recent research data repositories are usually additionally equipped with a built-in naming compo-
nent, which generates opaque and immutable identifiers for the incoming datasets. Note that the

5https://textgridrep.org.de
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Figure 3.3: PID creation times for various PID systems.
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Figure 3.4: Abstract view on a research data repository offering a set of interfaces: Create, Read,
Update, Search (CRUDS). The stored datasets are usually assigned internal identifiers
generated by a special built-in naming component.

research datasets are finally stored as regular files on the underlying storage system. The access to
individual research datasets is then accomplished by using the corresponding file paths. The inter-
nal identifiers in turn, are used as logical names to abstract the file paths. However, these internal
identifiers are only unique in the scope of the respective research data repositories. To enable a
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global retrieval of research datasets, it is necessary to provide the IP-address or the domain name
of the research data repository in combination with the internal identifier and often also a further
access parameter, which finally results in a volatile locator, such as a URL.

Based on the usage purpose of PIDs, contemporary research data repositories can be categorized
into three groups:

• Group (A): In this group of research data repositories, PIDs are only used for locator ab-
straction.
• Group (B): In this group, in addition to a sole locator, the corresponding PID records are

additionally imposed with semantic information about the research datasets.
• Group (C): In this group of research data repositories, the overall set of the corresponding

PID records can be split into two subsets: A first subset consisting of PID records, which
only contain sole locators. And a second subset of PID records equipped with semantic
information in addition to a locator.

Our novel concept is particularity suitable for research data repositories belonging to group (A).
Solutions for group (B) and group (C) of research data repositories are particularly addressed in
Chapter 4 and Chapter 5.

Figure 3.5 depicts the situation of research data repositories (all groups (A),(B),(C)) registering
each of their research datasets at particular naming authorities.

To reduce the management overhead for group (A) research data repositories, it would be much
more efficient to directly enable the internal identifiers to be globally resolvable. This would
eliminate the whole overhead for individual PID record management.
An abstract discussion of the global resolvability of internal identifiers is provided by the following
subsection.

3.2.4 Global Resolvability of Internal Identifiers via DSIDs

In this subsection, we theoretically discuss how internal identifiers can become globally unique
and resolvable.
Since existing global PID systems are composed of hierarchically ordered naming authorities,
such as the DNS system, PIDs consist of hierarchical labels reflecting the ordering of the cor-
responding naming authorities. Commonly, a PID is composed of a prefix and a suffix, e.g.
21.11115/0000-000B-C8D9-F. It is the prefix (e.g. 21.11115) which uniquely identifies the
responsible naming authority within the hierarchy of the overall global PID system. The suffix
(e.g. 0000-000B-C8D9-F) on the other hand, is a locally unique identifier assigned to an indi-
vidual research dataset. Only by prefixing the locally unique suffix with a globally unique prefix
label, the resulting identifier becomes globally unique. Therefore, the prefix plays an integral role
in the global resolvability of identifiers.

For a research data repository assigned with a dedicated (prefix) label, by prefixing its internal
identifiers with that label, these internal identifiers become globally unambiguous. To additionally
enable these unambiguous internal identifiers to be globally additionally resolvable, requires a
special locator composition rule associated with the prefix. This rule has to be used by the naming
authority to compose the locator for the incoming identifier at a resolution request.

We define such a prefix, which is dedicated to an individual research data repository and associated
with a specific locator composition rule to be a:
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• Data Silo Identifier (DSID).

Hence, a DSID prefixed internal identifier would be global resolvable without being individually
registered at a naming authority.

Finally, the technical realization of the DSID approach is discussed in the following subsection.

3.2.5 Data Access Interface Registration

The basic function of a regular naming authority is twofold: on the one hand to enable the ad-
ministration of PID records and on the other hand, to respond to resolution requests revealing the
locators. The resolution operation basically results in a lookup into its database for entries asso-
ciated with the incoming PID string. For group (A) research data repositories, the most important
entry within an individual PID record is the PID-to-locator binding. This entry in turn usually
contains the following three information entities:

(a) The current Internet address of the research data repository.
(b) The current access request syntax used for retrieving datasets from that research data repos-

itory.
(c) The internal identifier of the research dataset stored in the research data repository.

The entities (a) and (b) compose the base part of the data access interface of a research data
repository. This base part is usually included in all PID records associated with an individual
research repository, which means that the information entities (a) and (b) are usually redundantly
available in a database of a naming authority.
Therefore, for a group (A) research data repository assigned with a dedicated prefix, the DSID
approach can be technically realized by associating the prefix with a composition rule based on
the information entities (a) and (b). This requires only a single registration/update of the base part
of the data access interface of the repository at a naming authority, which is then stored under the
record of the DSID. The resolution request of identifiers prefixed by a DSID is then accomplished
by dynamically extending the base part with the incoming information entity (c).

An example for a group (A) repository is the ARCHE repository6. Its datasets are registered at
a naming authority, which is based on the ePIC PID system and therefore also on the Handle
System. This naming authority is provided by the GWDG. Figure 3.6 illustrates an excerpt of the
important entries (PID-to-locator bindings) from the database of this naming authority. In addition
to that, Figure 3.7 depicts the complete entries of an individual PID. These entries form a Handle
Record for one of these Handle-PIDs listed in Figure 3.6. The Handle Record is composed of three
entities, where the first entry represent the most important one, since it contains the URL (locator).
The second and third entries contain only internal information used by the ePIC PID system and
the underlying Handle server for administrative purposes, which means that they do not hold any
additional information specific to the identified dataset.

As can be see from Figure 3.6 and also from the first entry in Figure 3.7, the locators are composed
of exactly the three entities: (a) id.acdh.oeaw.ac.at, which is the address of the repository,
(b) https://{· · ·}/uuid/, which specifies the current access request syntax and (c) an internal
identifier, which is opaque and hence, appropriate to be used as a PID.

Instead of registering each individual research dataset, with the DSID concept, there is only an

6https://arche.acdh.oeaw.ac.at
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21.11115/0000-000B-C8D5-3 https://id.acdh.oeaw.ac.at/uuid/1f0bbeff-343d-5081-a887-90b632b2a05f
21.11115/0000-000B-C8D6-2 https://id.acdh.oeaw.ac.at/uuid/a80553c0-6be1-6a7f-a63b-16993060302d
21.11115/0000-000B-C8D7-1 https://id.acdh.oeaw.ac.at/uuid/84b8b78a-321a-4239-e091-3ee565a9737f
21.11115/0000-000B-C8D8-0 https://id.acdh.oeaw.ac.at/uuid/e1fc9dfe-b8c0-e9f3-9115-ae48421fb2ff
21.11115/0000-000B-C8D9-F https://id.acdh.oeaw.ac.at/uuid/d62ca450-5693-6c45-c5b0-fe6890e366fc
21.11115/0000-000B-C8DA-E https://id.acdh.oeaw.ac.at/uuid/cca1beff-5c9e-4223-970e-7faf7b5580a3
21.11115/0000-000B-C8DB-D https://id.acdh.oeaw.ac.at/uuid/69bf3f5f-46d2-6296-dc98-a24d299ce9dc
21.11115/0000-000B-C8DC-C https://id.acdh.oeaw.ac.at/uuid/c47f12a0-e05f-d2ea-a7f9-e4210e3f8df0
21.11115/0000-000B-C8DD-B https://id.acdh.oeaw.ac.at/uuid/0e33f785-5ff5-55f2-f6f3-efea0453833d
21.11115/0000-000B-C8DE-A https://id.acdh.oeaw.ac.at/uuid/72045ebc-b726-f10d-c3a4-4816abaa9d46
21.11115/0000-000B-C8DF-9 https://id.acdh.oeaw.ac.at/uuid/47841bc7-086d-ec40-978d-bb992e72a03b
21.11115/0000-000B-C8E0-6 https://id.acdh.oeaw.ac.at/uuid/37ff0e18-3197-7bcb-9d59-11aa6bd8a78c
21.11115/0000-000B-C8E1-5 https://id.acdh.oeaw.ac.at/uuid/830106dd-6494-7a4b-d455-432b6d05660e
21.11115/0000-000B-C8E2-4 https://id.acdh.oeaw.ac.at/uuid/53274ca7-51b8-cfc0-dd59-9f284254c5c7
21.11115/0000-000B-C8E3-3 https://id.acdh.oeaw.ac.at/uuid/b929ed98-a354-d82b-e733-d01ba5ae3b29
21.11115/0000-000B-C8E4-2 https://id.acdh.oeaw.ac.at/uuid/60e5d6aa-e48a-e298-c7eb-0f22e2a24745
21.11115/0000-000B-C8E5-1 https://id.acdh.oeaw.ac.at/uuid/f440a719-17c0-ed14-f091-d8c4331c09d7
21.11115/0000-000B-C8E6-0 https://id.acdh.oeaw.ac.at/uuid/07188f15-2948-73c0-8bc4-e3eadb91a072
21.11115/0000-000B-C8E7-F https://id.acdh.oeaw.ac.at/uuid/bbe76c68-48ff-fe96-e638-ae2001e2de65
21.11115/0000-000B-C8E8-E https://id.acdh.oeaw.ac.at/uuid/fd428ae8-0ed1-c285-a0bc-96d0bb759874
21.11115/0000-000B-C8E9-D https://id.acdh.oeaw.ac.at/uuid/b7e43e5f-42a2-619d-d3de-5f04edd88900

URLPID

Figure 3.6: Excerpt of database entries of a naming authority hosted by GWDG.
(a) address of repository, (b) access request syntax, (c) internal identifier

21.11115/0000-000B-C8D7-1

Figure 3.7: Handle Record of a dataset stored in the ARCHE repository.
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administration of the information entities (a) and (b) within the record of the prefix 21.11115

required.
Often, there are research data repositories, which already contain huge amounts of research
datasets without being previously registered at a PID system. For these research data reposito-
ries, which also belong to group (A), with this concept, all the contained research datasets get
assigned with a PID by a single registration. Therefore, the DSID approach can lead to an enor-
mous reduction of the maintenance overhead for PID administration.
Note that a concrete technical implementation of the DSID approach is only provided in the im-
plementation section, Section 3.3. In contrast that, the following subsections discuss limitations
and side effects of this approach.

3.2.5.1 Tracking of Individual Research Datasets

However, the movement of individual research datasets can not be tracked with this approach.
Although the DSID approach is specifically addressed for group (A) research data repositories,
it can be possible that specific datasets move to another research data repository. In order to
additionally sustain the ability of tracking the movement of individual research datasets, for a
naming authority, it is necessary to employ two different resolution functions: The first function is
an ordinary lookup for an entry match for the incoming PID in its database. The second function is
to apply the special locator composition function, which is specified in the DSID record. In order
to respond a resolution request, the naming authority always has to start with the ordinary database
lookup first. If there is no matching entry found, the special composition function is applied,
provided that there is a locator composition rule in the corresponding prefix record. Otherwise,
the resolution request is responded by an error message indicating that a matching entry could not
be found in the database.
The overall resolution algorithm of a naming authority is depicted by Figure 3.8. The greyed
area represents the special function block for resolving DSID-prefixed PIDs. This special function
block is incorporated into the regular resolution algorithm path between the red and blue dots. The
black dashed line, denotes the processing path of the original resolution path.

Another issue is the verification of the existence of an individual PID record. Provided that the
DSID record of an individual prefix is associated with a locator composition function Handle
Value, if the extended resolution path would directly lead from the red dot to the yellow dot (grey
dashed line), without involving the green box, the resulting resolution algorithm would always
return a positive answer. Even when there is no individual PID record stored in the database asso-
ciated with an individual PID. Therefore, the green box represents a mechanism, which enables to
distinguish between an individually registered locator and a dynamically generated locator.
For a dynamically generated locator, the existence of the corresponding dataset can be ultimately
verified by the respective research data repository:
The naming component (cf. Figure 3.4) of the research data repository, which generates the inter-
nal identifiers, usually also records additional information about the assigned identifiers. Hence,
by means of this additional information, it is possible to confirm the validity of the suffixes ap-
pended to the corresponding DSID.

3.2.5.2 Metadata Associated with PIDs

Another shortcoming of the DSID approach is related with metadata. As already indicated in
Section 3.2.3, PID systems usually also provide the possibility to retrieve individual metadata
associated with the identified research dataset. The metadata is often included in the respective
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Figure 3.8: Naming authority resolution algorithm: The greyed area represents our extension to
realize the DSID resolution approach. In this area, the yellow box represents the core
function of our extension. The function represented by the green box is used to sup-
press the execution of the locator composition path.
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PID records in addition to the sole locators. The DSID approach does not comprise individual
metadata. Therefore, this approach is not appropriate for group (B) research data repositories.
The following subsection discusses a combined usage of DSIDs with regular PIDs for group (C)
research data repositories.

3.2.6 Combined Application of DSIDs with regular PIDs

For research data repositories which belong to group (C), the DSID approach can be used for a
subset of the contained datasets, for which the PIDs are only required for locator abstraction. For
the remaining subset of datasets, which also require the imposition of semantic information into
the PID records, the datasets can be registered individually at the naming authority. The resolu-
tion of both subsets of PIDs would be then accomplished as described in Section 3.2.5.1: First
function, to resolve individual PID records. Second function, used to dynamically compose the
locators for the incoming identifiers.
Furthermore, it is also possible that the first subset is composed of datasets, which are only in an
early phase of the research data lifecycle. And with an increasing level of the research data life-
cycle, the individual metadata might become more important. In this case, the research datasets,
which were previously identified with DSIDs, can then be registered individually at the naming
authority. This would lead the research dataset to be moving from the first subset into the second
subset of datasets.

In summary this means that the DSID approach is reversible: datasets identified with the DSID
approach can be always identified (again) with individual PIDs.

3.2.7 Search Interface Registration

The approach of data interface registration is in principle an approach to register a specific service
endpoint at a globally interconnected naming authority. Such a naming authority can then be con-
sidered as a system, which provides a common service endpoint on top of the underlying research
data repositories.
In addition to a service endpoint for research dataset retrieval, this approach also enables a service
endpoint for searching. Since PID systems can also be considered as central data silo registries,
these PID systems can also be used as search engines on top of the registered research data repos-
itories.
Therefore, a side effect for our DSID approach is that a naming authority can also be equipped
with a special searching functionality. Such a naming authority would then act as a federated
search engine on top of all registered research data repositories. A search query submitted to such
a naming authority would then be delegated to all the registered research data repositories.
Technically, this can be realized by the specification of the individual search interface at the one-
off registration of the research data repository. However, this requires further research to develop
appropriate filtering and mapping strategies at the naming authorities, which is not the scope of
this thesis. The challenge is to elaborate mechanisms, which provide a sophisticated delegation on
the relevant research data repositories.

3.3 Implementation

In order to provide a realization of our concept of Data Access Interface Registration, in this
section, we examine the possibilities of an implementation into the Handle System. The imple-
mentation consists of modifying the resolution algorithm in the overlay network formed by the
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Handle System to comply with the algorithm depicted in Figure 3.8. Therefore, we proceed with
a quick introduction into the composition of the Handle System.

3.3.1 Handle System Overlay Network

The components of the overall Handle System can be categorized into three parts: Global Proxy
Resolver (GPR), Global Handle Registry (GHR) and Local Handle Service (LHS). A LHS and
the GHR are basically naming authorities consisting of one to many so called Handle servers. The
entirety of Handle servers form an overlay network on top of the current Internet. The commu-
nication between and with these Handle servers is carried out through the Handle protocol [95].
The GPR in turn, consists of special servers, functioning as proxy servers which enable the trans-
lation of HTTP-requests into native Handle protocol resolution requests. Figure 3.9 depicts the
overall retrieval procedure for a research dataset assigned with a Handle-PID. At first, to resolve
the Handle, a requesting application (App) has to send a HTTP-request to the GPR ( 1 ), which
first contacts the GHR (( 2 )) via the Handle protocol to determine the responsible LHS ( 3 ).
This is followed by a request to the determined LHS ( 4 ). The LHS in turn, responds with a
Handle Record including also the current locator of the research dataset ( 5 ). Finally, with the
response from the LHS, the GPR sends back (only) the current locator of the identified research
dataset ( 6 ). To retrieve the complete Handle Record, it has to be specified by the parameter
”?noredirect” appended to the requested Handle-PID.

Handle System Overlay Network
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HSHSGPR
App

Research Data 
Silo

1

3

2

45
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7

8 LHS
LHS

LHS

LHS
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Figure 3.9: Retrieval of research data assigned with Handle-PIDs: Step 1 to 6 for resolving the
PID. Step 7 to 8 for retrieving the actual research dataset.

It should be noted that Figure 3.9 only illustrates the levels of the prefix hierarchy (GHR and
LHS), representing a great majority of Handle-PIDs. However, it is also possible that a LHS only
provides a referral to another LHS instead of returning the requested Handle Record.

The GHR represents the root level of the hierarchical structure of the Handle System. It only
responds with a referral to the (next) responsible LHS. Therefore, a query submitted to the GHR
is usually responded with a Handle Record containing an IP-address and a port number of a LHS.
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Currently, the GHR is under control of DONA7 and consists of eight8 globally distributed special
Handle servers (HS). Each of these special Handle servers in turn, is operated by so called Multi-
Primary Administrators, which are member data centres of DONA. GWDG is one such a member.

A LHS is composed of at least one primary Handle server (HS) and none to many mirror Handle
servers. A single LHS stores all the Handle Records under a specific set of prefixes. These
prefixes are also called to be ”homed” at that LHS. A LHS can also function as a parent for
other LHS. A parent LHS then responds with Handle Records containing IP-addresses and port
numbers of the (next) responsible LHS. The administration of Handle Records is always done at
the primary Handle server. The mirror Handle servers of the LHS are only used for resolution
to distribute the load from the primary Handle server and ensure high availability. The mirror
Handle servers periodically poll the primary Handle server for data synchronization. In contrast
to the single GHR, there are numerous LHS, each under control of another organization or PID
service provider.

The GPR currently consists of five globally distributed special proxy resolvers accessible through
the hdl.handle.net domain name, where the selection is based on the DNS round robin mech-
anism.

3.3.2 Implementing into Handle System

To implement the resolution algorithm for our DSID approach, the regular resolution algorithm
has to be extended by a special locator composition functionality. This special composition func-
tionality is represented by the greyed area in Figure 3.8.
All components of the Handle System overlay network are based on a common core software
package, which incorporates a Java reference implementation of the Handle protocol. This core
software package implements the entire operation mechanism of the Handle System including the
resolution algorithm for Handle-PIDs. Therefore, to realize our proposed concept with the Handle
System, it has to be implemented into this core software package.

In the Handle System, there are two different options for performing the locator composition
functionality. The first option is to make use of an already built-in technique, whereas the second
option is to extend the core software package of the Handle System. In the following subsections
we provide insight into both options and discuss their benefits and drawbacks.

3.3.2.1 Option (A): Making use of a pre-defined HS NAMESPACE Handle Value Type

First of all, this option is based on the ordinary approach of setting up a LHS and homing a
DSID prefix dedicated to an individual research data repository. To enable the locator composition
function, we make use of a special Handle Value with the HS NAMESPACE type, which belongs to
the set of pre-defined types of the original Handle protocol. Originally, the HS NAMESPACE type
has been conceived to identify sub-parts of a single research dataset. Therefore, the data field
of such a Handle Value type allows to define XML-based extension rules, which can be applied
onto a particular base Handle-PID, which is usually an ordinary Handle-PID composed of a prefix
and a suffix. Within the database of the LHS, the Handle-PID is associated with a specific set of
Handle Values, which are then used to dynamically compose individual Handle Records for the
sub-part of a research dataset. The identification of individual sub-parts is achieved by appending
additional parameters on the Handle-PID. However, since only the base Handle-PID is associated

7https://www.dona.net
8https://www.dona.net/mpas
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with a Handle Record, the LHS has to be able to recognize the base of an extended Handle-PID.
This recognition of a base Handle-PIDs is specified in the data field of a HS NAMESPACE-typed
Handle Value, which first specifies the delimiter and secondly, the extension rules to be applied on
the Handle Values of the base Handle-PID. The resulting Handle Values are then a composition
of the Handle Values already stored in the base Handle Record including the extension parameters
appended to the base Handle-PID.
Example: Assume a HS NAMESPACE-typed Handle Value specifying the ”@” character to be the
delimiter. Further assume that the base Handle-PID 21.T11996/A105C-FC251 is associated with
a Handle Record stored in the database of the responsible LHS. Then, the resolution request
for 21.T11996/A105C-FC251@12345 is accomplished such that the extension 12345 is used
as an input parameter for the XML-based rules defined in the data field of the HS NAMESPACE-
typed Handle Value. These rules are then applied onto the Handle Values associated with Handle-
PID. For further information and more examples we refer to the technical manual9 of the Handle
System, defined under the section of ”Template Handles”.

This ultimately means, that in the core software package of the Handle System, there is al-
ready a built-in and generic enough composition functionality. For our approach, within the
HS NAMESPACE-typed Handle Value, it is necessary to define the ”/” character to be the delim-
iter. In addition, the data data field of this Handle Value type has to specify the current data access
interface of the corresponding research data repository. With the ”/” character as the delimiter, the
suffix becomes the extension used as an input parameter to be included into the specified current
data access interface.
The specification of the HS NAMESPACE has to be stored at the GHR within the DSID Handle
Record. This is then retrieved by the LHS at the resolution process between step 4 and 5 in
Figure 3.9.
By using this Handle Value type, a LHS dynamically composes the current locator of a research
dataset based on the definition stored in the data field and the incoming internal identifier appended
to the base Handle-PID.
However, with this approach, the LHS would always respond with a Handle Record, even when
there is no associated Handle Record stored in the database for an individual Handle-PID. This
means that a research data repository, which for example requires the pre-check of the existence
of an individual Handle Record, will always get a positive answer (nonempty Handle Record).
Therefore, we additionally propose to extend the native resolution operation of the Handle proto-
col by an additional flag, which enables to suppress the dynamic Handle Record generation. This
can be used to determine if there is an individual Handle Record really stored in the database. This
extension is represented by the green box in Figure 3.8.

3.3.2.2 Option (B): Making use of the new HS RDS URL Handle Value Type

Another option is to introduce a new type into the pre-defined set of Handle Value types: the
HS RDS URL type. The introduction of such a new Handle Value type is based on the resolution
procedure of the Handle System:

The first reason is that to resolve an extended Handle-PID for which the extension mechanism
is specified by the HS NAMESPACE type, there is always a LHS required. This means that the
resolution request has to be always delegated from the GPR to the LHS, except for Handle-PIDs
which have been previously resolved, since these are usually cached at the GPR. Hence, the
resolution procedure is the same as for regular Handle-PIDs.

9http://www.handle.net/hnr documentation.html



High-Performance Persistent Identification 44

In contrast to that, with the new HS RDS URL type, the composition of the locator can be performed
right at the GPR without the necessity to delegate the resolution request to the LHS. As it is the
case with the HS NAMESPACE type, the specification of the new HS RDS URL type is also stored at
the GHR within the DSID record. This also enables to cache the HS RDS URL-typed Handle Values
at the GPR used to compose the locators without involving the GHR. This finally means that with
the new type, in addition to an improved PID assignment mechanism, we can also achieve an
improved resolution performance by shortening the delegation procedure.
Another major benefit with the new type is that, since there is no need for a LHS, there is also no
additional maintenance overhead for the operation of a LHS necessary.

The second reason is to enable a combined usage with option (A). This is for example necessary to
enable the tracking of individual research datasets when they move out of the research repository.
Or, to apply the DSID approach in combination with individual PIDs for group (C) research data
repositories.

Since there is already a built-in locator composition functionality in the core software pack-
age which can be directly used at the GPR, there is no need to implement a separate com-
position algorithm for the GPR. And since the existing composition algorithm is based on
XML, the data field of the new HS RDS URL type has to contain the same XML extension rules
as for the HS NAMESPACE type. This means, that these types are used to distinguish between
the application of option (A) and option (B). Finally, for a DSID Handle Record containing a
HS NAMESPACE-typed Handle Value, the locator composition is accomplished by the LHS, where
with a HS RDS URL-typed Handle Value, it is performed directly at the GPR. This, however, re-
quires an additional mechanism at the GPR to be able to employ option (B).

3.3.2.3 XML Locator Composition Rule

For the ARCHE repository, an appropriate XML locator composition rule is given by Listing 3.2.
Line 2 of this listing is specifying the slash character ”/” to be delimiter between the DSID and the
internal identifier. The actual composition of the locator is specified in line 3. As already pointed
out, the successful resolution operation in the Handle System always results in a Handle Record
composed of Handle Values. Since a Handle Value in turn is basically composed of a type-data
pair, the result of the locator composition has to be a Handle Value with a type field specifying the
type of the locator, which is currently usually a URL. The corresponding data field in turn, has to
contain the actual locator.
For the ARCHE repository, we can first of all see that the locators are URLs. We can also see that
these locators are composed by https://id.acdh.oeaw.ac.at/uuid/${extension}, where
the ${extension} expression is used as a placeholder for the internal ARCHE data identifiers.
Hence, the locators of the ARCHE repository do not require the DSID to be included in the locator
composition. Otherwise, this would have to be specified with the ${base} expression representing
the DSID label.

1 <namespace>

2 <template delimiter="/">

3 <value data =

4 "https://id.acdh.oeaw.ac.at/uuid/${extension}" type="URL"/>

5 </template>

6 </namespace>

Listing 3.2: XML Composition Rule for ARCHE Respository
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Currently the datasets stored in the ARCHE repository are only registered by the reg-
ular approach under prefix 21.11115, which is under control of a (naming authority)
LHS provided by GWDG. If our proposed concept would be applied for the ARCHE
repository, the Handle-PID 21.11115/0000-000B-C8D7-1 for example, would become to
21.11115/84b8b78a-321a-4239-e091-3ee565a9737f, without being registered at that LHS.

3.3.2.4 Resolution Algorithm at GPR

The resolution algorithm, which is depicted by Figure 3.8, is only appropriate for the naming
authorities. For the GPR, however, it is necessary to implement another algorithm to perform the
locator composition with the HS RDS URL-typed Handle Values. Such an appropriate algorithm
for the locator composition is illustrated by Figure 3.10. Again the red and blue dots indicate the
extension points to the regular resolution procedure. Thus, at the GPR to resolve a Handle-PID,
it first retrieves the prefix Handle Record of the responsible LHS. When there is a HS RDS URL-
typed Handle Value in that prefix Handle Record, the resolution procedure continues with the
locator composition based on the rule in the corresponding data field. However, if there is no such
a Handle Value indicating the locator composition approach, the regular resolution procedure is
executed. To force a real lookup for an individual Handle Record, we additionally introduce the
parameter ”?nocomposition”, which is appended to the HTTP resolution request sent to the
GPR. With the HS RDS URL approach, if this parameter is set, the GPR immediately responds
with a negative answer (”Handle Not Found”), whereas with the HS NAMESPACE, the special flag
to suppress the dynamic locator composition is set in the resolution request to the LHS (Figure 3.9:
step 4 ).
Finally, our extension of the original core software package of the Handle System can be found at
[102]. Note that this implementation also includes the algorithm for the HS NAMESPACE approach.

3.4 Evaluation

In this section, we provide an experimental evaluation of the two DSID approaches discussed
in the previous section. Since with these approaches, there is no need to register and up-
date individual PIDs, the evaluation is limited only to the resolution operation of PIDs, which
are composed by concatenating the DSID with an internal identifier, such that PID = DSID /
INTERNAL IDENTIFIER. Note that the acceleration of the resolution of PIDs, which are associ-
ated with individual PID records is comprehensively addressed in Chapter 6.
Hence, the response times of the administration for individual PID records, depicted in Figure 3.3,
remain unimproved. However, our proposed approach results in the effect that these expensive
administration operations have not to be applied for each individual PID record. Instead, only
when the research data repository is subjected to modifications affecting its data access interface,
the corresponding DSID record has to be transactionally updated. However, also the tracking of
individual research datasets still requires with option (A) transactional administration procedures.
The performance improvement for individual PID records is addressed in Chapter 4 and Chapter 5.

3.4.1 Evaluation Setup

The evaluation setup is depicted by Figure 3.11 and includes several components. Therefore, we
proceed with a description of these components:

Testing GPR: Since the approach with the HS RDS URL-typed Handle Value requires a modified
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Figure 3.10: GPR resolution algorithm: The greyed area represents our extension to realize the
DSID resolution approach at the GPR. Again, the yellow box represents the core
function of our extension.
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Figure 3.11: Evaluation Setup

processing at the GPR, we placed a testing GPR at an Amazon EC2 c3.xlarge instance in
Ireland. In Figure 3.11, this testing GPR is labeled as GPR-EU. This testing GPR was
equipped with our extended core software package of the Handle System [102].

Productive GHR: The productive GHR was used in the usual way for storing the HS RDS URL-
typed Handle Values into a prefix Handle Record. For this evaluation, we used the
0.NA/21.T11996 prefix Handle Record.

Testing LHS: The LHS, responsible for the 21.T11996-prefix, was installed at GWDG. It was
composed of a primary and a mirror Handle server. This LHS was particularly interesting
for the approach with the HS NAMESPACE type.

Load-Generators: To produce appropriate workload, we placed four load-generators at different
geographical locations. Three of them were hosted on an Amazon EC2 c3.xlarge instance,
where the first load-generator (LG-EU) was hosted in Frankfurt, the second in US-east (LG-
US) and the third in Singapore (LG-AS). The remaining load-generator (LG-GWDG) was
hosted at GWDG.

3.4.2 Measurements

The overall evaluation procedure includes two different measurement procedures. The first mea-
suring procedure was composed of two one-hour measurement runs. In both runs, the testing GPR
was subjected to HTTP resolution requests from the three load-generators hosted on Amazon EC2
instances. In the first run, the Handle-PIDs were resolved by means of the HS RDS URL type ap-
proach (option (B)). In contrast to that, in the second run, they were resolved by means of the
HS NAMESPACE type approach (option (A)).
Also the second measuring procedure was composed of two one-hour measurement runs. The
intention behind the second measuring procedure is to reveal the difference in the performance
for resolving ordinary individual PIDs and the dynamic locator composition approach based on
the HS NAMESPACE type. In contrast to the first measuring procedure, in this procedure only the
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GWDG load-generator was issuing HTTP resolution requests directly to the LHS without involv-
ing the testing GPR.

Finally, the measurements of the first measuring procedure are depicted by Figure 3.12 and Fig-
ure 3.13. Figure 3.12 illustrates the average resolution times. In addition to that, Figure 3.13
reveals the relative improvements for the resolution times. The relative improvement is measured
by the formula

(
RS(B)−RS(A)

RS(B)

)
, where RS(A) and RS(B) denote the resolution times recorded with

option (A) and option (B) respectively.
Furthermore, Figure 3.14 shows the per request resolution times at the LHS for the ordinary and
option (A)-approach (remember that option (B) does not involve the LHS).

3.4.3 Analysis

From Figure 3.12 we can see that the resolution time is obviously highly dependent on the network
latency between the involved components. For the resolution by means of the option (A)-approach,
the resolution time is mainly composed of the latency between three connections: first, between
the load-generator and the testing GPR, secondly, between the testing GPR and the GHR and
thirdly, between the testing GPR and the LHS. In Figure 3.11, the communication latencies are
depicted as directed graphs.
Hence, the resolution time via option (A) includes the latencies 1 - 3 . In contrast to that, since
with option (B) the locator composition is performed directly at the GPR, the resolution time with
the HS RDS URL type approach is composed of only the latencies 1 - 2 . Therefore, for each
load-generator, the resolution time with option (B) is always shorter than with option (A). In ad-
dition, with option (B), the resolution time is more stable than with option (A), which can be seen
from the deviation whiskers plotted on the bars in Figure 3.12.
With increasing geographical distance between the load-generator and the GPR, the overall res-
olution time becomes expectingly longer. However, also the improvement effect with option (B)
becomes smaller, which can be clearly seen from Figure 3.13. For the EC2 load-generator located
in Frankfurt, the relative improvement is about 43%, whereas for the EC2 load-generator located
in Singapore it is only about 10%.

Furthermore, Figure 3.14 shows that there is no significant difference between the resolution time
with the HS NAMESPACE type approach and the ordinary resolution approach. The average resolu-
tion time for resolving ordinary Handle-PIDs is 8.09ms, where with the HS NAMESPACE resolution
approach it is 8.15ms. Also the fluctuations in the resolution times of both approaches are pretty
similar. This means that the algorithm for composing the locators at the LHS does not introduces
a significant overhead onto the resolution time. It should be noted that in our setup, the MySQL
databases attached to the Handle servers (primary and mirror) had about three million records.
Note that due to caching at the productive GPR, frequently resolved ordinary Handle-PID would
have the same resolution times as the with option (B)-approach. The difference is that with option
(B), all (not only the cached ones) DSID-prefixed Handle-PID would benefit from the shortened
delegation procedure.

3.5 Summary

In this chapter, we have revealed that the fundamental performance problem with PIDs is based on
a maintenance overhead involving a number of expensive transactional administration operations.
Therefore, we have proposed a novel identification concept, which emphasizes on the performance
improvement by reducing the number of these transactional administration operations. The core
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idea is to enable internal identifiers to be globally resolvable without being individually registered
at a PID system.

Suppose a group (C) research data repository, with two million datasets divided into two subsets:
one million, only depending on the locator abstraction function of PIDs and the remaining million
of datasets, for which also semantic information is imposed into the PID records. Since with
our DSID approach we would have to only register the second million of datasets. Based on the
response time of the ePIC Persistent Identifier (PID) system in Figure 3.3, this would result into
the following calculation:

1,000,000 PIDs×250ms =̂ 250,000,000ms

=̂ 250,000s

=̂ 69h,

instead of 138 hours. The improvement of the remaining 28 hours is addressed in the following
two chapters Chapter 4 and Chapter 5.
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Figure 3.14: Comparison of the resolution times at the LHS of the regular resolution and the
HS NAMESPACE resolution approach. Hereby the mean resolution times are 8.09ms
for the regular resolution and 8.15ms for the HS NAMESPACE resolution approach.



Chapter4
Persistent Identifier System Optimization

In the previous chapter we have seen that global PID systems are composed of myriads of naming
authorities, which are used as distributed registries to maintain PID records. To ensure a durable
and consistent PID record management, these naming authorities usually employ expensive trans-
actional procedures. Therefore, in this chapter, we directly focus on the performance improvement
of the naming authorities itself (cf. Figure 4.1), whereas the approach in the previous chapter was
to reduce the amount of the PID record management operations. A naming authority can be

Research Data 
Repository

Naming 
Authority

(PID System)
{ OP, OP, OP, OP, OP, OP }

Figure 4.1: Focus in this chapter: Accelerating the administration operations (OP) by improving
the response time of naming authorities.

considered as an ordinary transactional system, of which there are innumerable available in the
current Internet. Usually, ordinary transactional Internet systems are composed as multi-tier sys-
tems, whereby each tier is tasked with a specific functionality.
The increasing volume of data leads to higher performance requirements at these transactional
multi-tier Internet systems. Therefore, developers are compelled to steadily improve their sys-
tems, which is also valid for PID system developers.
Another aspect with PIDs is that their importance for research data management is increasing con-
tinuously. This is essentially based on the ability of PIDs of storing more complex information
about the identified research dataset in addition to the sole locator. The increasing research dataset
complexity in turn, leads also PID systems to become more complex, which finally results in an
even higher overhead at the administration of PIDs.
We therefore emphasize on accelerating the PID administration procedures by improving the re-
sponse time RT of PID systems. Our discussion is initiated with the modeling of a multi-tier
Internet system as a queuing network. This is then analyzed with the established Mean Value
Analysis (MVA) algorithm. After determining the asymptotic behavior of the MVA algorithm,
based on this, we deduce estimation formulas for the investigation of improvement effects in indi-
vidual tiers onto the overall response time.

The base of our approach has been published in a conference paper at the 36th IEEE International
Performance Computing and Communications (IPCCC) conference 2017 in San Diego, CA, USA
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Figure 4.2: Typical Multi-Tier PID System.

[103]. In this thesis, however, we provide a revised and extended version.

4.1 PID Systems as Multi-Tier Internet Systems

As already indicated, transactional Internet systems, such as PID systems, are usually composed
as multi-tier systems. This composition allows to partition the entire system into function blocks.
Such a chaining of function blocks enables an efficient modification of the system for further
development without significantly affecting the overall functioning. In the case of PID systems,
with the advent of the Digital Era, the chaining of function blocks, usually tend to be extended.
This is based on the fact that the massive research dataset growth not only requires a durable
identification and retrieval concept, but also increasingly a concept, which provides a common
structure and interpretability for very diverse research datasets. Therefore, the requirements on
PID systems increase rapidly. These requirements are basically threefold:

(1) Persistent identification and access.

(2) Common data structure for diverse research datasets.

(3) High-performance registration and resolution.

As we have already discussed in the previous chapter, even the first requirement entails a particular
overhead, which often leads to a significant impact on the performance. With the second require-
ment, the performance problem is even more aggravated, since it means further (data) processing
in PID systems and hence, usually also a further overhead.
Figure 4.2 depicts a typical multi-tier PID system. It first of all consists of a front-end tier T0, for
receiving and responding to requests from applications or users, and a back-end tier Tm, which is
often a transactional storage system for storing the PID records. The integration tier Tj constitutes
the core component of the entire PID system. Its essential function is to integrate the system into
the overlay network of the respective global PID system infrastructure, which is realized by im-
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plementing the corresponding protocol. The integration tier of a PID system which for example is
based on the Handle System, implements the Handle protocol in order to be able to communicate
within the overlay network of the Handle System.
So far, with the described tiers, a PID system only meets the first and possibly also the third re-
quirement. To comply with the second requirement, a PID system is also equipped with one or
more data processing tiers Ti and/or Tk. The basic function of these data processing tiers is to trans-
form the incoming data into a specific data structure, which is appropriate for more sophisticated
analyses and use cases.

PID service providers often have to address two goals: On the one side, they are compelled to
advance their PID systems with more functionality and on the other side, they have to optimize it
to ensure a high-performant system.
Since PIDs are designed to provide long-term retrieval, the underlying PID systems have to be
conceived for long-term operability. And since IT technology is developing incredibly fast, bring-
ing forth new, faster hardware resources, operation systems, programing languages and more so-
phisticated and efficient frameworks, PID systems have to keep up with these technological ad-
vancements. The particular challenge with PID systems is the evolution in conjunction with the
necessity to keep the PID-to-locator mappings intact.
The advancing technology also provides numerous possibilities for composing an appropriate and
efficient function block chaining of multi-tier PID systems. The consequence is that PID service
providers have to make strategic choices, which are usually based on particular parameters such
as the system’s response time, system’s throughput, costs for development and deployment, etc.
The ultimate aim is to achieve a best possible benefit-effort ratio for the optimization effort.

4.2 Response Time of Multi-Tier Internet Systems

The response time RT is one of the most fundamental measures of a multi-tier Internet system.
This is especially true for transactional multi-tier systems. From the perspective of a requesting
application which issues requests against a multi-tier system, the response time is the time, the
application has to wait until it gets a response from the multi-tier system. In fact, in a multi-tier
Internet system, the response time RT itself is usually a composition of various other measures, in
particular, the contributions of the processing times of the individual tiers. Thus, an improvement
of the overall response time RT of a multi-tier system is usually achieved by improving the pro-
cessing times of the individual tiers.
The overall goal of this chapter is therefore to provide an approach, which finally supports a strate-
gic optimization procedure. The basic idea is to deduce:

• A mathematical analysis of the improvement impacts at individual tiers onto the overall
response time RT .

For this, we provide an analysis of the response time behavior in the following sections.

Before we proceed with our mathematical approach, we first introduce a definition of the terms
used in this chapter.

4.2.1 Definition of Terms

Note that in this chapter, a superscript such as n in Rn
T denotes the number of requests which are

concurrently processed in the overall system. In contrast to that, a superscript in brackets such as
(k) in a(k) denotes a real exponent.
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Since a multi-tier Internet system is usually subjected to multiple requests which are then concur-
rently processed, the response time RT is highly dependent on the number of requests populating
the system. To analyze the system’s load dependent behavior, requires a specific modeling ap-
proach for which we provide a definition of the used terms:

S1S1 S2S2

Q1Q1

T1T1

SmSm

T2T2

Q2Q2

TmTm

QmQm

Figure 4.3: (Ti ≡ Qi)-Multi-tier system with m tiers modeled as a closed-loop queuing network
with m queues. The loop back from queue Qm to Q1 symbolizes a constant request
population at a specific concurrency level n, which is a necessary condition for the
analysis with the MVA algorithm.

Tier (Ti) As already described in Section 4.1, a tier is a function block, which is tasked with a
specific function within a multi-tier system.

Queue (Qi) In this chapter, a queue represents a M/M/1 queuing system, which is characterized
by a Poisson arrival process (”M”) and exponentially distributed service times (”M”) (cf.
Section 2.7). Another important characteristic is that the queue is assumed to have an un-
limited capacity for queuing the incoming requests, which are then processed by a single
service station (”1”).

Number of Tiers (m) This number specifies the count of tiers composing the multi-tier system.

Request Population (n) This number specifies the count of requests, which are concurrently
processed in the multi-tier system.

System Property (Ti ≡ Qi) In this chapter, a multi-tier system, in which each tier can be mod-
eled as a single queue is defined to be a (Ti ≡Qi)-multi-tier system. Such a multi-tier system
is schematized in Figure 4.3.

Service Time (Si) The average time an individual tier Ti needs to process an incoming request,
excluding the time being blocked while calling subsequent tiers, without being interfered by
another request.

Queue Length (Ln
i ) The average queue length of tier Ti when there are n requests concurrently

processed in the overall system. Hence, it holds Ln
i ≤ n and ∑

m
i Li = n.

Processing Time (Rn
i ) The service time Si including the queuing time when there are n requests

concurrently processed in the overall system. In contrast to the service time, the processing
time also includes the time, in which a request is waiting for the processing in an individual
tier Ti.
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Response Time (Rn
T ) The average amount of time a multi-tier system needs for a complete

processing of an individual request, while it is also busy with the concurrent processing of
(n−1) other requests. Note that the multi-tier system is then populated by n (= (n−1)+1)
requests.

With these definitions, we begin with our actual mathematical investigation approach.

4.2.2 Response Time Decomposition of a Multi-Tier System

When there is only a single request processed in the multi-tier system with m tiers {T1, · · · ,Tm},
the response time can be written as the sum of the service times Si of all involved tiers Ti:

R1
T =

m

∑
i=1

Si. (4.2.1)

Such a situation is very common for testing systems, which are used by developers to test mod-
ifications in their systems. However, this situation does usually not cover the workload of the
productive system, which is often subjected to multiple requests originating from multiple differ-
ent requesting applications.

With an increasing concurrent request count, the individual service times get usually superposed
with queuing times. To model the response time of a multi-tier Internet system, there are various
different approaches. The state-of-the-art approach is to model the entire multi-tier system as a
(complex) queuing network composed of multiple simple queuing systems and to apply the MVA
algorithm to calculate the mean response time for a particular request population.
The basic approach behind the MVA algorithm is to consider the individual queues of the queuing
network independently from each other. The overall network solution then results in the product of
the individual solutions obtained from the individual queues. Such queuing networks are therefore
also called product-form queuing networks (cf. Section 2.7.1).
The determination of the number of queues per tier Ti is one of the important aspects in the of
modeling multi-tier systems. This, however, is beyond the scope of this thesis. Instead, the goal
in this chapter is to provide insight into the effect of an improvement in an individual tier onto
the overall system. This is important to understand how a planned or already implemented opti-
mization will affect the overall systems’ behavior. This is also important to determine whether a
costly improvement effort is worthy to be tackled. Otherwise, this can often lead to a waste of
valuable time and money. Therefore, to simplify the discussion onto the most relevant aspect, in
this chapter we focus on multi-tier systems, which comply with the (Ti ≡ Qi) property, such as
depicted in Figure 4.3.
Our approach is fundamentally based on the load distribution analysis of the established MVA
algorithm. Therefore, in the following, we provide insight into several aspects of its asymptotic
behavior.

4.2.2.1 The Basic MVA Algorithm

Algorithm 1 represents a basic form of the MVA algorithm, which was also used by Urgaonkar et
al. [79]. Note that its background was already explained in Section 2.7.1. In this section, the given
algorithm serves the purpose of clarity.
If we model each tier as a single queue, this algorithm can be used to predict a multi-tier system’s
response time for an increasing concurrency level n.
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Algorithm 1 Basic MVA
1: input: n, Si, 1≤ i≤ m
2: initialization:
3: for i = 1 to m do
4: Li = 0
5: end for

6: for k = 1 to n do
7: for i = 1 to m do
8: Ri = Si(1+Li)
9: end for

10: τ =
(

k
∑

m
i=1 Ri

)
11: for i = 1 to m do
12: Li = τRi

13: end for
14: end for
15: Rn

T = ∑
m
i=1 Ri

Since the MVA algorithm is a recursion, to determine the response time Rn
T for a concurrency level

n, the algorithm always starts with the calculation of R1
T and terminates at the response time Rn

T
for the concurrency level in question.
The lines 8, 10 and 12 of Algorithm 1 constitute the fundamental recurrence relation of the MVA
algorithm, which can also be written as:

Rn
i = Si(1+ τ

n−1Rn−1
i ), (4.2.2)

where Rn
i denotes the processing time as defined above. The variable

τ
n−1 =

(n−1)

∑
m
i=1 Rn−1

i
(4.2.3)

denotes the throughput of the multi-tier system for concurrency level n. The overall response time
Rn

T is then the sum of the per tier processing times Rn
i .

The recurrence relation (4.2.2) only shows how the processing time at concurrency level n is
composed from the processing time for n− 1. To reveal all the terms incorporated from previ-
ous concurrency levels, the following theorem provides a compact representation of Rn

T . It also
provides insight into the development of the response time Rn

T calculated by means of the MVA
algorithm.

Theorem 1. For the response time Rn
T , calculated by means of the MVA algorithm for a queuing

network composed of m iterative queues, such as illustrated in Figure 4.3, it holds:

R1
T =

m

∑
i=1

Si =̂ (4.2.1) (4.2.4)

and for n > 1 it holds:

Rn
T = R1

T +
m

∑
i=1

n−1

∑
k=1

[
(n−1)!

(n−1− k)!

][
1

∏
k−1
j=0 Rn−1− j

T

]
S(k+1)

i . (4.2.5)
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Proof. Since the overall response time is a sum of the processing times, it holds

Rn
T =

m

∑
i=1

Rn
i .

Hereby, the relation (4.2.4) is trivially proven. The proof for (4.2.5) in turn, is then accomplished
by deducing a compact representation for exactly these processing times:

Rn
i =

(
1+Ln−1

i

)
Si, with Ln−1

i =
(n−1)Rn−1

i

∑
m
i=1 Rn−1

i
=

(n−1)Rn−1
i

Rn−1
T

=⇒ Rn
i =

(
1+

(n−1)Rn−1
i

Rn−1
T

)
Si =

(
1+

(n−1)
[
(1+Ln−2

i )Si
]

Rn−1
T

)
Si

=

1+
(n−1)

[
(1+ (n−2)Rn−2

i
Rn−2

T
)Si

]
Rn−1

T

Si = Si +
(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)Rn−2
i

Rn−1
T Rn−2

T
S(2)i

= Si +
(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)
[
(1+Ln−3

i )Si
]

Rn−1
T Rn−2

T
S(2)i

= Si +
(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)
[
(1+ (n−3)Rn−3

i
Rn−3

T
)S(2)i

]
Rn−1

T Rn−2
T

S(2)i

= Si +
(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)
Rn−1

T Rn−2
T

S(3)i +
(n−1)(n−2)(n−3)Rn−3

i

Rn−1
T Rn−2

T Rn−3
T

S(3)i

By continuing with the successive substitution of the emerging terms, for the processing times
Rn−3

i ,Rn−4
i , · · ·R1

i we finally get:

Rn
i = Si +

(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)
Rn−1

T Rn−2
T

S(3)i + (4.2.6)

(n−1)(n−2)(n−3)
Rn−1

T Rn−2
T Rn−3

T
S(4)i + · · ·+ (n−1)!

Rn−1
T · · ·R1

T
S(n)i

The final step of the proof is to build the sum of all Rn
i , i = 1, · · · ,m , ∑

m
i=1 Rn

i , which finally yields
(4.2.5).

Theorem 1 reveals that the response time Rn
T calculated by means of the MVA, is basically com-

posed of power series of the services times Si with complex coefficients depending on the response
times from previous steps, which therefore again results in a recursion.
However, this theorem is not appropriate for practical situations. First of all, it is numerically
highly unstable due to floating point errors. More importantly, it is not suitable to reveal specific
asymptotic behaviors of the response time. Yet, to understand the overall system behavior for
increasing concurrency this asymptotic behavior is essential.

Therefore, we proceed with a reformulation of the recurrence relation in equation (4.2.2):

Rn
i = Si(1+ τ

n−1Rn−1
i ) = Si

(
1+

(n−1)Rn−1
i

∑
m
j=1 Rn−1

j

)
. (4.2.7)

=⇒ Rn
i = Si

(
1+(n−1)ωn−1

i

)
, (4.2.8)
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with

ω
n−1
i :=

Rn−1
i

∑
m
j=1 Rn−1

j
, 0 < ω

n−1
i < 1 (4.2.9)

and
m

∑
i=1

ω
n−1
i = 1. (4.2.10)

The term ωn
i , also called weighting factor, is a relative measure of how many of the n requests

in the entire system are processed at tier Ti. The relation (4.2.9) is true, because an individual
weighting factor is a ratio between the corresponding processing time and the overall response
time (composed of all processing times).
Note that Ln

i ≤ n−1, since Ln
i denotes the queue length of Ti at the moment when another request

is going to populate the system while there are already (n− 1) requests in processing. With the
recurrence relation (4.2.8), the term for the queue length Ln−1

i is expressed as a per tier weighting
factor, distributing the overall load among the individual tiers.
The advantage with these weighting factors is that they enable to analyze the asymptotic behavior
of the response time calculated with the MVA algorithm. The analysis is based on the characteristic
of the weighting factors that they are always bounded by 0 < ωi < 1. Our analysis of the MVA
algorithm behavior is essentially based on the development of these weighting factors. This is
dedicatedly examined in the following section.

4.2.3 MVA Algorithm Response Time Behavior

If we assume that an individual request has to traverse all m tiers of the multi-tier system (cf.
Figure 4.3), the overall response time Rn

T for a successful request processing, consists of all the
service times Si including the queuing times: SiLn

i = (n−1)Siω
n−1
i .

With an increasing request number n, the queuing times grow monotonically, where the growth
rate is different from to tier to tier. The growth of an individual queuing time is determined by the
development of the corresponding weighting factor ωi.
The analysis in this chapter is fundamentally based on the following theorem. It provides in-
sight into the behavior of the overall response time Rn

T calculated by the MVA algorithm. More
importantly, it also reveals insight into the growth of the weighting factors:

Theorem 2. Assume Smax to be the dominating service time with Smax = max{S1, · · · ,Sm} among
the m tiers of a (Ti ≡ Qi)-multi-tier system. Further, assume DS to be a subset of the tier indices,
for which it holds DS = {i∈ {1, · · · ,m} | Si = Smax} with a cardinality k := card(DS) (cardinality
=̂ number of elements of a set).
Then, for the weighting factors ωn

i , for an increasing concurrency level (n→ ∞) it holds:

lim
n→∞

ω
n
i =

1
k
∀i ∈DS (4.2.11)

and
lim
n→∞

ω
n
i = 0 ∀i /∈DS (4.2.12)

Proof. First of all, for the processing time of all l ∈DS it holds:

Rn
max = Smax

(
1+(n−1)ωn−1

max
)
= Sl

(
1+(n−1)ωn−1

l

)
= Rn

l

with

ω
n−1
max =

Rn−1
max

Rn−1
T

= ω
n−1
l .
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Secondly, for the remaining tiers with indices p /∈DS it holds:

Rn
p = Sp

(
1+(n−1)ωn−1

p
)

with

ω
n−1
p =

Rn−1
p

Rn−1
T

.

Furthermore, the monotonic increase of the ωn
max is proven by the following explanation:

For (n = 1) we have:

R1
max = Smax with ω

1
max =

Smax

R1
T

and

R1
p = Sp with ω

1
p =

Sp

R1
T
∀p /∈DS

Hence, it holds ω1
max > ω1

p, which means that the tiers l ∈ DS have the largest contribution onto
the overall response time R1

T .
For (n = 2) we have:

R2
max = Smax(1+ω

1
max) with ω

2
max =

R2
max

R2
T

and

R2
p = S j(1+ω

1
p) with ω

2
p =

R2
p

R2
T
∀p /∈DS

Obviously, it holds R2
max > R1

max and R2
p > R1

p. However, the growth rate between R1
max and R2

max

is higher than between R1
p and R2

p. This is based on the the dominating weighting factors (ω1
max)

from the previous step. Therefore, the contribution of the tiers l ∈ DS onto the overall response
time R2

T is even more increased. Thus, it holds ω2
max > ω1

max. On the other side, with the growing
weighting factors of the dominating tiers, from relation (4.2.10) it immediately follows ω2

p < ω1
p.

In the next step (n = 3), the ω2
max will lead the growth rate between R2

max and R3
max to be again

higher than between R2
p and R3

p. This in turn leads again to ω3
max > ω2

max and ω3
p < ω2

p.

Therefore, for an arbitrary n, the growth rate between Rn−1
max and Rn

max will be always higher than
between Rn−1

p and Rn
p, which finally leads to ωn

max > ωn−1
max and ωn

p < ωn−1
p .

Ultimately, the monotonic decrease of the ωn
p leads to ωn

p → 0 for n→ ∞. Where the monotonic
increase of the ωn

max leads with relation (4.2.10) for n→ ∞ to ωn
max→ 1/(card(DS)) =

1
k .

Theorem 2 basically reveals insight into the load distribution behavior of the MVA algorithm.
Hence, according to Theorem 2, the core characteristic of the MVA algorithm is that the overall
response time will be increasingly dominated by the processing times of the dominating tiers.
The key for this analysis has been provided by our introduction of the weighting factors in equa-
tion (4.2.8).

This monotonic behavior allows to deduce another theorem, which reveals boundaries for the
overall response time:
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Theorem 3. For n > 1, the overall response time Rn
T of a (Ti ≡ Qi)-multi-tier system composed of

m tiers and calculated with the MVA algorithm, is bounded by:

Rn
5 ≤ Rn

T ≤ Rn
4,

with

Rn
5 :=

m

∑
i=1

Si
(
1+(n−1)ω1

i
)
, ω

1
i =

Si

∑
m
j=1 S j

and

Rn
4 :=

m

∑
i=1

Si +(n−1)Smax

Proof. First of all, to obtain an upper boundary for the overall response time Rn
T , it is necessary

to weight the dominating processing times Rn
l , l ∈DS (Tl is a dominating tier) with the maximal

possible weighting factors. In addition, for the remaining processing times Rn
p, p /∈DS (Tp is not

a dominating tier) it is required to weight them with the minimal possible weighting factors.
Since the contributions ωl of the dominating tiers Tl, l ∈ DS are monotonically increasing, we
have l ∈DS : lim

n→∞
ωn

l = 1
k and, therefore, also p /∈DS : lim

n→∞
ωn

p → 0.
Therefore, an upper boundary Rn

4 is achieved by weighting the processing times Rn
l , l ∈DS with

1/k, and, by weighting the processing times Rn
p, p /∈DS with 0:

Rn
T = ∑

p/∈DS

Sp
(
1+(n−1)ωn

p
)
+ ∑

l∈DS

Smax (1+(n−1)ωn
l )

≤ ∑
p/∈DS

Sp (1+(n−1)0)+ ∑
l∈DS

Smax

(
1+(n−1)

1
k

)
= ∑

p/∈DS

Sp + ∑
l∈DS

Smax

(
1+(n−1)

1
k

)
= ∑

p/∈DS

Sp + kSmax

(
1+(n−1)

1
k

)
= ∑

p/∈DS

Sp + kSmax(n−1) =
m

∑
i=1

Si +(n−1)Smax = Rn
4

A lower boundary is then obtained by using the initial weighting factors ω1
i for the processing

times Rn
i with n≥ 1. By this, the contributions of the dominating processing times Rn

l , l ∈DS get
damped, where the contributions of the remaining tiers Rn

p, p ∈DS get amplified:

Rn
T = ∑

p/∈DS

Sp
(
1+(n−1)ωn

p
)
+ ∑

l∈DS

Smax (1+(n−1)ωn
l )

≥ ∑
p/∈DS

Sp
(
1+(n−1)ω1

p
)
+ ∑

l∈DS

Smax
(
1+(n−1)ω1

l
)

≥
m

∑
i=1

Si
(
1+(n−1)ω1

i
)
= Rn

5

This is true, because the response time development with the MVA algorithm is based on the fact
that, the dominating tiers with the service time Smax are in each step weighted with the largest
weighting factors (ωn

max). Since the initial weighting factors (ω1
max) for the dominating tiers are

always less than or equal to the weighting factor ωn
max, the sum of the resulting processing times

will be always smaller than the actual Rn
T .
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Until this point, we have analyzed the response time behavior of the MVA algorithm and deduced
boundaries for the actual response time. This analysis is essentially based on the load distribution
behavior of the MVA algorithm represented by the weighting factors. In the following, these
results are used to investigate the effect of optimizations achieved in individual tiers. Moreover,
in contrast to the analysis so far, the following discussion basically considers two systems: a
multi-tier system and its improved version.

4.3 Speedup Effects in Multi-Tier Internet Systems

The aim of this section is to provide an understanding for the resulting effects of an improvement
endeavor in a tier Ti of a multi-tier system. Therefore, after defining our terms to measure the
results of improvements in individual tiers, we proceed with the actual analysis of the optimization
impacts.

4.3.1 Speedup Measures

The notion of speedup is mainly established in the context of parallelization. In this chapter, we
use the speedup to quantify the improvement of an individual tier’s service time or processing time
in a multi-tier system. For this reason, we first define the service time speedup αi as:

αi =
Si

Ŝi
, (4.3.1)

where Si and Ŝi denote the service times of the old and improved tier Ti respectively.
Since an improvement in the service times also affects the processing times Rn

i ,we define the
speedup for the concurrency level n as:

α
n
i =

Rn
i

R̂n
i

, (4.3.2)

where n = 1 leads to (4.3.1).
Likewise, we define the overall response time speedup κn for concurrency level n of the multi-tier
system as:

κ
n =

Rn
T

R̂n
T

, (4.3.3)

where Rn
T and R̂n

T denote the response times of the old and improved system respectively. The
response time R̂n

T of the improved system is the result of any improvement endeavor in at least one
of the tiers of the old system.
For the rest of this thesis, we define κ := κ1.

4.3.2 Response Time Speedup

The following lemma provides insight into a multi-tier system’s response time speedup κn

achieved by an improvement endeavor in individual tiers.

Lemma 1. Assume a processing time improvement in at least a single tier Ti with a speedup factor
αn

i ≥ 1 for the concurrency level n of a (Ti ≡ Qi)-multi-tier system composed of m tiers. Then for
the response time speedup κn it holds:

κ
n =

(
m

∑
i=1

ωn
i

αn
i

)−1

,
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with the corresponding weighting factors

ω
n
i =

Rn
i

∑
m
i=1 Rn

i
. (4.3.4)

Proof. With definition (4.3.3) and from the response time decomposition (4.2.1), for the reciprocal
of the response time speedup it follows:

1
κn =

R̂n
T

Rn
T
=

∑
m
i=1 R̂n

i

∑
m
i=1 Rn

i
,

and with (4.3.2)
1

κn =
∑

m
i=1 Rn

i /αn
i

∑
m
i=1 Rn

i
=

m

∑
i=1

1
αn

i

[
Rn

i

∑
m
i=1 Rn

i

]
︸ ︷︷ ︸

=:ωn
i

=
m

∑
i=1

ωn
i

αn
i
.

=⇒ κ
n =

(
m

∑
i=1

ωn
i

αn
i

)−1

.

Lemma 1 implies that the impact of an individual αn
i onto the overall κn is (naturally) dependent

on the corresponding weighting factor ωn
i . Thus, the larger the weighting factor ωn

i , the higher its
contribution to the overall response time speedup κn.

In contrast to this lemma, the following subsection analyzes the relation between the weighting
factors of the improved and unimproved multi-tier system, which is important to understand how
an improvement effect will affect the improved system’s behavior.

4.3.3 Effect of Load Redistribution

Since an improvement of an individual tier basically leads to a redistribution of the weighting
factors, the following theorem gives insight into this effect of load redistribution.

Theorem 4. Suppose an optimization effort in tier Ti of a (Ti ≡ Qi)-multi-tier system to result
in a speedup factor κn for the overall response time. Then, for the weighting factors ω̂n

i of the
improved system it holds:

ω̂
n
i = ω

n
i

κn

αn
i

(4.3.5)

Proof.

ω̂n
i

ωn
i
=

R̂n
i

∑
m
j=1 R̂n

j

∑
m
j=1 Rn

j

Rn
i

=

(
∑

m
j=1 Rn

j

∑
m
j=1 R̂n

j

)
︸ ︷︷ ︸

κn

(
R̂n

i
Rn

i

)
︸ ︷︷ ︸

1/αn
i

⇐⇒ ω̂
n
i = ω

n
i

κn

αn
i
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Hence, the resulting weighting factor ω̂n
i of the improved system is determined by the factor

(κn/αn
i ), which we define to be the redistribution factor.

For the particular case of concurrency level n = 1, Theorem 4 results in the following corollary:

Corollary 1. Suppose for the concurrency level n = 1 there is a service time improvement only in
tier Ti of a (Ti ≡ Qi)-multi-tier system with αi =

(
Si/Ŝi

)
, resulting in a response time speedup κ ,

then for the weighting factors ω1 it holds:

ω̂
1
j 6=i = ω

1
j 6=iκ and ω̂

1
i = ω

1
i

κn

α1
i
.

Proof. Since we have Ŝ j = S j for j 6= i, it follows:

ω̂1
j

ω1
j
=

(
Ŝ j

∑
m
j=1 Ŝ j

)(
∑

m
j=1 S j

S j

)
=

∑
m
j=1 S j

∑
m
j=1 Ŝ j

=
R1

T

R̂1
T

= κ

For the ratios of the weighting factors of the improved tier Ti we have:

ω̂1
i

ω1
i
=

(
Ŝi

∑
m
i=1 Ŝi

)(
∑

m
i=1 Si

Si

)
=

∑
m
i=1 Si

∑
m
i=1 Ŝi

(
Ŝi

Si

)
=

R1
T

R̂1
T

(
1
αi

)
=

κ

αi
.

The difference between Theorem 4 and Corollary 1 is twofold: First, Corollary 1 is only valid
for the concurrency level n = 1. In addition, it considers an improvement effort in only one tier
Ti. Hence, α1

j 6=i and α1
i ≥ 1. Therefore, the redistribution factor between ω̂1

j 6=i and ω1
j 6=i results

in κ1 = κ , where between ω̂1
i and ω1

i (the improved tier) it results in κ/αi. In contrast to that,
Theorem 4 provides a general mathematical description of the load redistribution effect, caused
by improving the service time of at least a single tier.

4.3.4 Speedup Effect Estimation

Remember that our goal was to mathematically analyze the improvement impact at an individual
tier onto the overall system’s response time Rn

T . Since the overall Rn
T is determined by the pro-

cessing times of the individual tiers, we have to focus on the resulting effects onto the processing
times. The processing times in turn are composed by the services times superposed with the queu-
ing times. The queuing times in turn are specified by the individual population counts, which are
determined by the weighting factors ωn

i . Finally, the result of an improvement endeavor can be
captured by the modifications in these weighting factors, which are mathematically described by
Theorem 4. Since this mathematical description depends on the ratio (κn/αn

i ), requiring the two
terms κn and αn

i , the following discussion is mainly intended to deduce estimation formulas for
these two terms.
These estimation formulas are necessary to enable predications for the resulting effects for an
intended improvement endeavor.

Commonly, improvements on systems are first implemented into testing systems. Often, only
when the improvements successfully endure a particular evaluation procedure, these improve-
ments become a release for productive deployment. However, a comprehensive evaluation pro-
cedure itself, usually entails a significant sophistication. This is especially true for the workload
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with which the testing system gets stressed.
To quantify the benefit of an improvement effort, an individual developer usually first measures
the response time for iteratively submitted requests. In this case, the system is only populated
by one request. By taking the ratio of the response times R1

T and R̂1
T then reveals the achieved

response time speedup κ . The effort for this evaluation approach is often relatively small: Current
multi-tier Internet systems are commonly equipped with sophisticated logging modules, which
provide extensive information about the system’s metrics, with the response time often being a
default measure. Thus, the response time can usually be easily extracted from the logging files of
the system.
However, a productive multi-tier Internet system is generally subjected to multiple requests which
are concurrently processed in the system. Hence, the productive workload is typically character-
ized by a concurrency level n > 1. The essential question here is which quantity the response time
speedup κn will have for the productive concurrency level n > 1, instead of only κ for n = 1.
To capture the behavior of the testing system for a productive workload further effort is required,
which is especially true for multi-tier Internet systems, which only provide special interfaces, such
as the ePIC PID system. To evaluate such systems, either the deployment of a special proprietary
stress testing framework or an in-house development is necessary. Both are again associated with
additional costs.
In the next sections, we provide another evaluation methodology, which is based on estimations
of the formulas deduced in the previous sections. The underlying assumption is that the measures
of the unimproved system are already at hand or easily extractable.

4.3.4.1 Response Time Speedup Boundaries

By means of the measures gathered from the testing system for iteratively submitted requests, the
following lemma can be used to determine the overall boundaries for the response time speedup.

Lemma 2. Given a (Ti ≡ Qi)-multi-tier system with a dominating service time Smax =
max{S1, · · · ,Sm}. Further, assume a service time improvement αi in tier Ti to result in a re-
sponse time speedup κ for concurrency level n = 1. Moreover, assume Ŝmax = max{Ŝ1, · · · , Ŝm} to
be the dominating service time of the improved (future) multi-tier system.
Then, for an upper and a lower boundary for the response time speedup, it holds:

κ5 := min
(

Smax

Ŝmax
,κ

)
(4.3.6)

κ4 :=
Rn
4

R̂n
4

(4.3.7)

=⇒ κ5 ≤ κ
n ≤ κ4 (4.3.8)

Proof. From Theorem 3 we have:

lim
n→∞

Rn
T =

m

∑
i=1

Si +(n−1)Smax

and

lim
n→∞

R̂n
T =

m

∑
i=1

Ŝi +(n−1)Ŝmax



65 4.3 Speedup Effects in Multi-Tier Internet Systems

for the response times of the old and improved system respectively.
This results in the following:

κ
∞ := lim

n→∞
κ

n =
Rn

T

R̂n
T

=
∑

m
i=1 Si +(n−1)Smax

∑
m
i=1 Ŝi +(n−1)Ŝmax

.

Furthermore, we define:

r(n) :=
m

∑
i=1

Si +(n−1)Smax

and

r̂(n) :=
m

∑
i=1

Ŝi +(n−1)Ŝmax,

which results:

=⇒ κ
∞ := lim

n→∞
κ

n =
r(n)
r̂(n)

. (4.3.9)

Applying L’Hospital’s rule on equation (4.3.9) finally yields:

κ
∞ = lim

n→∞
κ

n =
d

dn r(n)
d

dn r̂(n)
=

(
Smax

Ŝmax

)
.

Hence, the response time speedup factor starts at κ and moves towards κ∞ = Smax/Ŝmax. However,
during the course towards κ∞, it is possible that κn can have values larger than κ and Smax/Ŝmax.

Therefore, with min
(

Smax

Ŝmax
,κ

)
we also have a lower boundary for the response time speedup.

An upper boundary is determined by taking the ratio between an upper boundary for the response
time of the old system and an lower boundary for the response time of the improved (future)
system. Thus, κn ≤

(
Rn
4/R̂n

5

)
.

In practical situations, where Rn
T is at hand, it can be used to derive a more accurate estimation:

κ
n
4 =

Rn
T

R̂n
5

=
Rn

T

R̂1
T +(n−1)∑

m
i=1 Ŝiω̂

1
i

(4.3.10)

Lemma 2 provides an important tool for the whole improvement endeavor, as it only relies on the
services times and not on the processing times. If for instance, an improvement effort leads to
Ŝmax = Smax, for increasing n, the response time speedup κn moves towards κ∞ = 1, which means
that the benefit of the effort becomes diminished with increasing concurrency level.
The situation where it holds Ŝmax = Smax, is achieved by either improving any non-dominating
tier Tp with Sp 6= Smax or by not improving the complete set of the dominating tiers Tl with DS =
{l | Sl = Smax ∧ l ∈ 1, · · ·m}. For multi-tier systems subjected to high concurrency levels, this
means that for a significant speedup of the response time, the improvement endeavor has to address
all the dominating tiers.
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4.3.4.2 Weighting Factor Boundaries

As already discussed, an optimization in an individual tier will lead to a redistribution of the
load. The theoretical insight has already been summarized with Theorem 4. As indicated in the
first paragraph of Section 4.3.4, in the following, we provide estimations for the resulting load at
individual tiers. In principle, all so far deduced formulas are incorporated into these estimations,
in particular the load distribution behavior specified by Theorem 2.

This subsection includes two corollaries: The first corollary is applicable for multi-tier systems,
which are composed of multiple dominating tiers. The second corollary in turn, is appropriate
when the multi-tier system only includes a single dominating tier.

Corollary 2. Suppose an optimization effort at one of the dominating tiers Td with d ∈DS (≡ Sd =
Smax ) and k = card(DS) of a (Ti ≡ Qi)-multi-tier system to result in a response time speedup κ

for concurrency level n = 1. Further, suppose the service time speedup αd to be of such a degree
that for T̂d it holds d /∈ D̂S (tier Td is not part of dominating tiers in the improved system) and
(k−1) = card(D̂S).
Then, for the new weighting factors ω̂n

i of the improved system, we have the following three cases:

Case 1: Tl with l ∈ D̂S (remaining dominating tiers) =⇒

ω
n
l κ5 ≤ ω̂

n
l ≤ ω

n
l κ4

 1+ (n−1)
(k−1)

1+(n−1)ωn−1
l



Case 2: Tp with p /∈DS and p /∈ D̂S (remaining tiers) =⇒

ω
n
pκ5 ≤ ω̂

n
p ≤ ω

n
pκ4

(
1+(n−1)κω1

p

1+(n−1)ωn−1
p

)

Case 3: Td with d ∈DS and d /∈ D̂S (improved tier) =⇒

ω
n
d

(
κ5

α1
d (1+

n−1
k )

)
≤ ω̂

n
d ≤ ω

1
d

κ

α1
d

Proof. The proof is based on equation (4.3.5), which basically reveals how the weighting factors
are changed after a tier improvement. To accomplish the proof, for each case we have to find
appropriate upper and lower boundaries for κn and 1/αn

i . Since a lower and an upper boundary
for κn is already given by Lemma 2, the proof basically consists of deducing boundaries for 1/αn

i :

Case 1:

In this case, the weighting factors ω̂n
l of the remaining dominating tiers are increasing towards
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1/(k−1) instead to 1/k. By this, for an upper boundary we have:

ω̂
n
l = ω

n
l

κn

αn
l

≤ ω
n
l κ4

1
αn

l
≤ ω

n
l κ4

R̂n
l

Rn
l

≤ ω
n
l κ4

(
Ŝn

l (1+(n−1)ω̂n−1
l )

Sn
l (1+(n−1)ωn−1

l )

)

≤ ω
n
l κ4

 1+ (n−1)
(k−1)

1+(n−1)ωn−1
l


The lower boundary is deduced by the following:

ω̂
n
l = ω

n
l

κn

αn
l

ω̂
n
l ≥ ω

n
l κ5

1
αn

l
≥ ω

n
l κ5

R̂n
l

Rn
l

≥ ω
n
l κ5

1
αn

l
≥ ω

n
l κ5

(
R̂n

l
Rn

l

)
︸ ︷︷ ︸
≥1

≥ ω
n
l κ5

Hence, we finally have:

ω
n
l κ5 ≤ ω̂

n
l ≤ ω

n
l κ4

 1+ (n−1)
(k−1)

1+(n−1)ωn
l


Case 2:

Since these tiers are not part of the set of dominating tiers, the corresponding weighting factors are
decreasing in both systems. In the old system, the decrease starts from ω1

p towards 0, whereas in
the improved system it starts from ω̂1

p = κω1
p. With this behavior, for an upper boundary we have:

ω̂
n
p = ω

n
p

κn

αn
p

≤ ω
n
pκ4

1
αn

p
≤ ω

n
pκ4

R̂n
p

Rn
p

≤ ω
n
pκ4

(
1+(n−1)ω̂n−1

p

1+(n−1)ωn−1
p

)

≤ ω
n
pκ4

(
1+(n−1)κω1

p

1+(n−1)ωn−1
p

)

The lower boundary is deduced in the same way as for Case 1.
With the lower boundary, we finally have:

ω
n
l κ5 ≤ ω̂

n
l ≤ ω

n
l κ4

 1+ (n−1)
(k−1)

1+(n−1)ωn
l


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Case 3:

The improvement of the service time Sd with a speedup factor αd results in an accelerated service
time Ŝd , whereas it holds αd = Sd/Ŝd . However, this improvement also leads that tier Td to be
no more part of the dominating tiers of the improved system. Therefore, in contrast to ωn

d , the
weighting factor of the improved system ω̂n

d decreases towards 0 starting at ω̂1
d =ω1

d κ1/α1
d , which

is an appropriate upper boundary.
The lower boundary is deduced as follows:

ω̂
n
d = ω

n
d

κn

αn
d

≥ ω
n
d κ5

1
αn

d

≥ ω
n
d κ4

(
Ŝd(1+(n−1)ω̂n−1

d )

Sd(1+(n−1)ωn−1
d )

)

≥ ω
n
d κ4

(
1

α1
d (1+

n−1
k )

)

To proceed with the next corollary, we first define another subset of tiers of the multi-tier system.
We define the set of secondary dominating tiers with the corresponding tier indices set
FS := {i | Si = Smax2 := max{S j} ∧ j /∈ DS}. Hence, FS defines the subset of tier indices for
which the tiers have the maximum service time Smax2 among the tiers which do not belong to the
dominating set DS. Therefore they are called secondary dominating tiers.
From this definition it follows Smax2 < Smax and the corresponding cardinality results in
card(FS) =: c < m.

Corollary 3. Suppose a (Ti ≡Qi)-multi-tier system with m tiers consisting of only one dominating
tier Td with d ∈DS and a set of tiers Tf forming a secondary dominating tier set, f ∈ FS∧ f /∈DS,
with c = card(FS) and further set of tiers Tp with p /∈ {FS,DS}, which do not belong to any of the
two dominating tier sets.
Further, suppose an optimization effort in the service time of the dominating tier Td to result in αd
for the service time speedup and κ for the response time speedup at the concurrency level n = 1.
Then for the new weighting factors ω̂n

i of the improved system, we have the following three cases:

Case 1: Ŝd > Ŝ f = S f (Td is still dominating tier) =⇒

(i) Tp with Ŝp < Ŝd (remaining tiers)

ω
n
pκ5 ≤ ω̂

n
p ≤ ω

n
pκ4

(
1+(n−1)κω1

p

1+(n−1)ωn−1
p

)

(ii) Td with Ŝd < Sd (Td is still dominating tier)

ω
n
d κ5

(
1+(n−1)ω1

d κ1/α1
d

α1
d (1+(n−1)ωn−1

d

)

)
≤ ω̂

n
d ≤ ω

n
d
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(iii) Tf with Ŝ f < Ŝd (Tf ’s are secondary dominating tiers)
- cf. Case 1-(i)

Case 2: Ŝd = Ŝ f (secondary dominating tiers including Td become dominating) =⇒

(i) Tp with Ŝp < Ŝ f = Ŝd (remaining tiers)
- cf. Case 1-(i)

(ii) Td with Ŝd = Ŝ f (Td is part of dominating tier set)

ω
n
d κ5

(
1+(n−1)ω1

d κ1/α1
d

α1
d (1+(n−1)ωn−1

d

)

)
≤ ω̂

n
d ≤

(
1

c+1

)

(iii) Tf with Ŝp < Ŝ f = Ŝd (Tf become part of dominating tier set)

ω
1
f κ

1 ≤ ω̂
n
f ≤

(
1

c+1

)
Case 3: Ŝd < Ŝ f (secondary dominating tiers become dominating without Td =⇒

(i) Tp with Ŝp < Ŝ f and p 6= d (remaining tiers)
cf. Case 1-(i)

(ii) Td with Ŝd < Ŝ f (Td is no more dominating tier)

ω
n
d κ5

(
1

α1
d (1+(n−1)ωn−1

d

)
≤ ω̂

n
d ≤ ω

1
d κ

1/α
1
d

(iii) Tf with Ŝp < Ŝ f ∧ Ŝd < Ŝ f (Tf become dominating tier set)

ω
n
f κ5

(
1+(n−1)ω1

f κ1

1+(n−1)ωn−1
f

)
≤ ω̂

n
f ≤

(
1
c

)

Proof. In principle, the proof is similar to the proof of Corollary 2.

Case 1:

(i) The weighting factors of the tiers Tp are still decreasing. However, due to an improvement
in the dominating tier Td it comes to a load redistribution, which causes the load at the tiers
Tp to increase. Hence, the processing time R̂n

p is always larger or equal than the processing
of the old system Rn

p.

ω̂
n
p = ω

n
pκ

n

 Ŝp(1+(n−1)

≤ω̂1
p︷ ︸︸ ︷

(ω̂n−1
p ))

Sp(1+(n−1)ωn−1
p )

 ≤ ω
n
pκ4

(
1+(n−1)κω1

p

1+(n−1)ωn−1
p

)

ω̂
n
p = ω

n
pκ

n

(
1+(n−1)ω̂n−1

p

1+(n−1)ωn−1
p

)
≥ ω

n
pκ5

(
1

1+(n−1)ωn−1
p

)
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(ii) Td is still the only dominating tier, but the improvement results in the reduction of its weight-
ing factors. Hence, we have:

ω̂
n
d ≤ ω

n
d

ω̂
n
d = ω

n
d κ

n

 1+(n−1)

≥ω̂1
d︷ ︸︸ ︷

(ω̂n−1
d )

α1
d (1+(n−1)ωn−1

d )

 ≥ ω
n
d κ5

(
1+(n−1)ω1

d κ1/α1
d

α1
d (1+(n−1)ωn−1

d

)

)

(iii) Since Td is still the only dominating tier, the weighting factors of all other tiers are de-
creasing, which is therefore also true for the secondary dominating tiers. Therefore, the
estimations in Case 1-(i) are also valid for the secondary dominating tiers.

Case 2:

(i) This is the same situation as in Case 1-(i).
(ii) Td is no more the only dominating tier. Instead, together with the originally secondary

dominating tiers, it forms a new dominating set of tiers. Therefore, all the weighting factors
of this dominating tier set are increasing towards 1/(c+ 1). Hence, for Td we have the
following boundaries:

ω̂
n
d ≤

(
1

c+1

)

ω̂
n
d = ω

n
d κ

n

 1+(n−1)

≥ω̂1
d︷ ︸︸ ︷

(ω̂n−1
d )

α1
d (1+(n−1)ωn−1

d )

 ≥ ω
n
d κ5

(
1+(n−1)ω1

d κ1/α1
d

α1
d (1+(n−1)ωn−1

d

)

)

(iii) Since Td is still the only dominating tier, the weighting factors of all other tiers are de-
creasing, which is therefore also true for the secondary dominating tiers. Therefore, the
estimations in Case 1-(i) are also valid for the secondary dominating tiers.

(iii) As in this case the tiers Tg form with Td the set of the dominating tiers, the upper boundary
is already deduced in Case 2-(ii).

ω̂
n
g ≤

(
1

c+1

)

ω̂
n
g = ω

n
g κ

n

1+(n−1)

≥ω̂1
g︷ ︸︸ ︷

(ω̂n−1
g )

1+(n−1)ωn−1
g

 ≥ ω
n
g κ5

(
1+(n−1)ω1

g κ1

1+(n−1)ωn−1
g

)

Case 3:

(i) This is same situation as in Case 1-(i).
(ii) In this case, Td is part of the set, consisting of non-dominating tiers. Therefore, with in-

creasing concurrency level n, its weighting factor decreases starting from ω̂1
d towards 0. For
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the weighting factor boundaries this results in:

ω̂
n
d ≤ ω

1
d κ

1/α
1
d

ω̂
n
d = ω

n
d κ

n

(
1+(n−1)ω̂n−1

d

α1
d (1+(n−1)ωn−1

d

)
≥ ω

n
d κ5

(
1

α1
d (1+(n−1)ωn−1

d

)

)

(iii) In this case, the secondary dominating tiers have become a dominating tier set. Hence, the
corresponding weighting factors are increasing towards 1/c, whereas the boundaries are
deduced as follows:

ω̂
n
f ≤

(
1
c

)

ω̂
n
f = ω

n
f κ

n


1+(n−1)

≥ω̂1
f︷ ︸︸ ︷

(ω̂n−1
f )

1+(n−1)ωn−1
f

 ≥ ω
n
f κ5

(
1+(n−1)ω1

f κ1

1+(n−1)ωn−1
f

)

In summary, these formulas can be used to predict and understand the resulting effects of an
improvement effort. To conclude the discussion so far, based on the monotonous behavior of
the MVA algorithm, we have derived the following estimation tools, which can support efficient
approaches to optimize multi-tier systems:

• Theorem 3, which provides a quick tool to estimate the asymptotic boundaries of the re-
sponse time of a multi-tier system.
• Lemma 2, which constitutes another tool to approximate the asymptotic boundaries of the

resulting response time speedup factor.
• Corollary 2 and Corollary 3, which enable to estimate the resulting load in individual tiers.

The fundamental base behind these formulas is provided by Theorem 2, which describes how the
load within a (Ti ≡ Qi)-multi-tier system is distributed for increasing concurrency level n.

In contrast to other research efforts related to the MVA algorithm (cf. Section 2.7), our method-
ology does not require the implementation and execution of a MVA-based algorithm. Instead, by
analyzing different improvement cases, which can occur after an optimization in the multi-tier sys-
tem, we have provided appropriate estimation formulas. The core benefit of these formulas is that
they are free of recursions and hence, applicable without a particular algorithm implementation.

4.4 Model Limitations

In this section, the limits of the above modeling approach are described. In principle, there are
four possible limiting aspects. The first aspect is the modeling of a tier as a single queue. Another
aspect is our consideration of a tier to only offer a single operation. A third constraint is the
assumption of an unlimited queuing capacity at each tier. All these aspects can lead the load
within the multi-tier system to be differently distributed than we have examined with our (Ti ≡Qi)
modeling approach. Note that our modeling approach has revealed a monotonic load distribution
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S0S0 S1S1 S2S2

T01T01 T2T2

Q0Q0 Q1Q1 Q2Q2
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(a)

(b)

Figure 4.4: Two-Tier System: (a) Modeling as three-queue system. (b) Modeling as two-queue
system.

behavior, where the load is increasingly concentrated at the tiers with the longest service times,
which we defined to be the dominating tiers. Therefore, we provide insight into the these three
aspects, which can lead to a different load distribution behavior.
The final constrain is based on the architecture of the multi-tier system: Our approach is based on
a multi-tier system, which preserves the number of tiers m after the optimization endeavor.

4.4.1 Multiple Queues per Tier

The most important assumption for these formulas is to model each tier with a single queue
(Ti ≡ Qi). However, this is not always valid, since there are often also tiers, which actually in-
corporate multiple queues for various internal resources, also known as simultaneous resource
possession.
Modeling such a tier as a single queue would lead its simulated processing time to be superposed
with redundant queuing times. The result would be that the simulated processing time and there-
fore, also the simulated overall response time would be longer than the exact values. This effect
of redundant queuing time superposition can be seen by the following explanation:

Given a multi-tier system composed of the two tiers T01 and T2. Further, suppose tier T01 to
incorporate two resources, while tier T2 only includes a single resource. Figure 4.4 depicts two
possible models of the overall multi-tier system. In case (a), for tier T01 each resource is modeled
as an independent queue Q0 and Q1 with the corresponding service times S0 and S1, while in case
(b), for tier T01, both resources are modeled as a single queue Q01 with a service time S01 = S0+S1.
To reveal the effect of redundant queuing times, it is sufficient to apply the MVA algorithm for
only n = 2:
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Case (a):
n = 1 :
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Case (b):
n = 1 :
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For n = 1, the response times are equal for both modeling approaches. However, for n = 2, the
processing time R2

01 is larger than R2
0 +R2

1, due to the redundant queuing times in R2
01:
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Generally, the problem of redundant queuing times stems from the fact that the formula in the
MVA algorithm for computing MVA processing times (line 8 in Algorithm 1 or equation (4.2.6)
is not an additive map:
Let define equation (4.2.6), to be the processing time function as follows:

pt(S,n) := Si +
(n−1)
Rn−1

T
S(2)i +

(n−1)(n−2)
Rn−1

T Rn−2
T

S(3)i +
(n−1)(n−2)(n−3)

Rn−1
T Rn−2

T Rn−3
T

S(4)i + · · ·+ (n−1)!
Rn−1

T · · ·R1
T

S(n)i

By merging any two queues with service times Sa and Sb of the same overall multi-queue system
into a single queue with Sab = Sa +Sb, for n > 1 yields:

pt(Sa +Sb,n)> pt(Sa,n)+ pt(Sb,n).

This in turn is based on S(n)a +S(n)b < (Sa +Sb)
(n), for n > 1. Thus, the queuing times are based on

the power series of the service times Sa and Sb, while the redundant queuing times are induced by
the mixed terms (Sa +Sb)

(n)−S(n)a −S(n)b .
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In principle, multiple successive queues per tier mean to increase the number of the overall func-
tion block chaining, which compose the system. And although, the resulting system can not be
considered as a (Ti ≡ Qi)-multi-tier system, it can be considered as queuing network of iterative
queues. This ultimately means, that our deduced formulas are still valid for such a iterative queu-
ing network, even when the number of queues is higher than the number of tiers. If the number of
iterative queues with the corresponding service times per tier is known, our approach would be to
model each tier as a sub queuing network. All these sub queuing networks, would then again form
an overall iterative queuing network composed of Mall > m queues, where m ≡ number of tiers.
Our formulas can then be applied on this queuing network.

4.4.2 Multiple Operations per Tier

Another aspect, in addition to multiple queues per tier, is that individual tiers can also provide
different operations, which do not involve all available internal queues or even subsequent tiers.
Such tiers are characterized by different processing times for the same concurrency level n. The
common approach is to model this behavior with transition probabilities: Within each tier, each
processing path is associated with a certain probability. This results in multiple possible process-
ing times at an individual tier, which ultimately means that there are also multiple possible overall
response times.
To apply our approach to such a behavior, one strategy would be to determine the dominating tier
set for a request processing path (from the first tier until the last tier). Since the overall monotonic
behavior would be still existing, the dominating tier set would still dominate the response time per
request processing path. And since there are multiple paths, each dominating set would be again
associated with a specific probability.
However, in this thesis, we focus on transactional multi-tier systems, which involve all available
tiers for a successful request processing. Such systems are commonly in use in the current In-
ternet, which is particularly true for distributed systems applying the master/slave principle. The
master node is usually used to perform uniform writing operations, whereas the slave nodes are
used for backup and reading operations. Commonly, there is only a single master node, which is
then replicated by multiple slave nodes. Another important purpose of such an architecture is to
distribute the reading operation from the master to the slave nodes. In effect, the master node is
then mainly subjected to writing operations. Prime examples for such an architecture are the DNS
system and also various PID systems such as the Handle System. This means, that our approach
is still applicable for a broad group of multi-tier Internet systems.

4.4.3 Limited Queuing Capacity

A further basic assumption in our approach is an unlimited queuing capacity in all queues. How-
ever, in practice all resources are usually limited available. Since the goal of our approach is to
provide a prediction methodology to understand the asymptotic behavior of the system rather than
a simulation technique, which provides more fine grained information about the system’s mea-
sures, the assumption of an unlimited queuing capacity can not be considered as a drawback.
Our approach enables an estimation of the increased load at individual tiers after an improvement
at a particular tier. These estimations in turn, can be used by an individual developer to analyze
whether the capacities at specific tiers or queues could become overloaded. Therefore, the weight-
ing factor boundary analysis provided in Section 4.3.4.2 is perfectly suitable for such a capacity
utilization analysis.
The typical behavior when a tier becomes overloaded is that a part of the incoming requests will be
discarded. The handling of such situations is highly dependent on the implementation. Previous
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tiers can either employ a sophisticated retry mechanism or directly send back a response to the
requesting application containing an error message. In either case, the overall response time for a
successful processing increases rapidly. Hence, our approach enables to detect and solve such a
problematic situation, rather than to model the rapid increase of the response time.

4.4.4 Architecture Preservation

An implicit assumption of our approach is that the architecture of the multi-tier system consisting
of m tiers is preserved in the resulting improved system. This means that the improved system
is again a multi-tier system consisting of m tiers and that the respective improved procedure still
involves all the same tiers as in the unimproved system.
Our approach is not applicable for improvement endeavors, which result in a different system
architecture and request processing path.

4.5 Evaluation

In this section, we provide an evaluation of our approach, which is conducted on the ePIC PID
system.
The European Persistent Identifier Consortium (ePIC) [97] was founded to provide PIDs for the
research community. Currently, the ePIC PID system is used by several research communities.
However, as the amount of research datasets increase, also the requirements on the PID systems
increase, which is especially true for the performance.
As already described in Section 3.2.2, the ePIC PID system is fundamentally based on the under-
lying Handle System. The ePIC PID system provides additional functions on top of the Handle
server to realize an easily adoptable REST interface and to ensure the registered PID records,
which are stored as Handle Records, to comply with a certain metadata scheme.
However, the additional data logic component, provided by the ePIC PID system, on top of the
Handle System, comes at the expense of the performance. The increasing demand for PIDs there-
fore compels the ePIC consortium to improve its system in order to be able to meet the rising
performance requirements.
Since the ePIC PID system is basically a transactional multi-tier Internet system, it is suitable to
evaluate our approach.

4.5.1 ePIC PID System

The ePIC consortium currently consists of six European members, where the GWDG is a found-
ing member and currently (year 2018) also chairing the consortium. Each of the ePIC members
is hosting several instances of the ePIC PID system, whereby each instance operates on top of a
dedicated primary Handle server. In addition, each of the primary Handle servers is replicated by
at least one mirror Handle server, which is hosted by another ePIC member. Hence, all ePIC-PID
administration operations are performed via the ePIC PID system at the primary Handle server.
Since ePIC-PIDs are Handle-PIDs, their resolution is accomplished over the global resolution sys-
tem provided by the Handle System without involving the ePIC PID system. It should be noted
that Handle-PIDs with a 21.XXXXX-prefix are homed at PID systems, which are controlled by the
ePIC consortium.
To resolve a Handle-PID, the resolution request is delegated starting from the global root Han-
dle resolver (hdl.handle.net) towards the responsible Local Handle Service (LHS) (cf. Sec-
tion 3.3.1). Due to caching at several nodes and the mirroring mechanism, the primary Handle
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server is usually predominantly stressed by administration operations. Therefore, for this evalua-
tion, we only consider the improvement of the PID administration operation. This administration
operation was already described in the previous chapter by Listing 3.1.
In the following, we provide insight into the multi-tier composition of the ePIC PID system, which
is additionally depicted in Figure 4.5.

ePIC PID System

HTTP-Server

ePIC-API v2

Handle Server v7

MySQL-DB

T0T0

T1T1

T2T2

T3T3

Mirror Handle Server

DB

Figure 4.5: ePIC PID System

HTTP-Server (T0): This is the first tier of the ePIC PID system. It is a JRuby10 HTTP-Server,
which translates incoming HTTP-requests into Ruby objects and likewise outgoing Ruby
objects into HTTP-responses. In terms of Figure 4.2, this is the front-end tier.

ePIC-API v2 (T1): The second tier, tier T1, is the ePIC-API v2, which is the most important
component of the overall ePIC PID system. The incoming requests (Ruby objects) are
first examined for further data processing before the requests are transmitted to the Handle
server via the native Handle protocol. The goal of the data processing at the ePIC-API v2
is to ensure the incoming datasets to comply with an individually defined data structure.
The definition of a data structure is accomplished by the so called ePIC-Profiles module. In
terms of Figure 4.2, this represents the pre-processing tier.

Handle Server v7.3.1 (T2): The primary Handle server registers the incoming datasets as Han-
dle Records into the attached database. Incoming requests are first decoded from the Handle
protocol encoding into Java objects. With these Java objects, the transactional administra-
tion workflow is launched, where the final step is to store the Handle Record permanently
into the attached database. In terms of Figure 4.2, this is mainly the integration but also the
post-processing tier.

MySQL Database (T3): The database is the final tier of the ePIC PID system. It basically
stores all the data of the overall PID system into the underlying storage system. Usually,
all the ePIC PID system instances are attached to a MySQL database with InnoDB as the
underlying storage engine. InnoDB is characterized by ensuring a transactional processing
in the MySQL database. In terms of Figure 4.2, this is finally the back-end tier.

It is the Handle server, which actually makes the ePIC PID system to a PID system. Since the

10http://jruby.org
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entirety of all running Handle servers form a global overlay network with a common communi-
cation protocol, by a registration at a primary Handle server, an individual PID becomes globally
resolvable. This the reason, why the Handle server represents the integration tier in terms of
Figure 4.2.

4.5.2 Evaluation Methodology

As previously mentioned, in our evaluation, we only focus on the optimization of the PID record
administration operation. This administration operation of the ePIC PID system involves all the
tiers T0, · · · ,T3. Our evaluation methodology was to determine the impact of an improvement of
one these tiers.

4.5.3 Evaluation Environment

Our evaluation covered two different hosting environments. The first hosting environment was a
MacBook Air with 1.7 GHz Intel Core i7, 8 GB Ram and a SSD hard disk. This is reasonable,
because system developers usually first implement, deploy and evaluate changes within their own
working environment. In addition, we are mainly interested in the evaluation of the deduced for-
mulas, rather than on the system’s behavior on a specific hosting environment.
Nevertheless, we also made use of the productive hosting environment: At GWDG a productive
ePIC PID system instance is hosted in a virtualized environment. The virtualization paradigm it-
self, provides much more efficiency and flexibility for service provides, however, at the same time
it complicates the behavior of both, the underlying hardware and software systems. Therefore, the
first hosting environment can also be considered as an ideal host. Hence, as the second hosting
environment, we made use of a dedicated ePIC PID system instance from the productive environ-
ment.
In principle, the primary difference between the first and second environment is the computing
power and the SSD hard disk. On the MacBook, the CPU is only shared between various parallel
processes. In contrast to that, in the virtual host, the hardware CPU is additionally shared between
multiple other virtual hosts.
However, in both environments, the databases of the productive systems were used, especially for
the database system at tier T3. This was a MySQL database instance from the special GWDG
MySQL database cluster, the MySQL Appliance 11. But also within tier T1, to generate unique
identifiers based on a counter, where the state of the counter was stored in a MySQL database.

To stress our testing ePIC PID systems with appropriate workload, we made use of a self-built
load-generator. This load-generator steadily issued PID creation requests for sample research
datasets extracted from the productive PID databases of GWDG. Every five minutes the count of
parallel threads for creating PIDs was increased by one. Thus, in the first five minutes, only one
thread was active, in the last five minutes the PID system was stressed by ten concurrent threads.
It should be noted, that each productive ePIC instance at GWDG is usually shared by multiple
research data repositories (dedicated prefix). Thus, the concurrency level is often between five and
seven. But there are also many periods of time with a concurrency level of n = 1.

4.5.4 Improvement Analysis

In order to identify the problematic components of the ePIC PID system, we performed an exten-
sive measurement analysis. This allowed us to locate the problems and to improve the ePIC PID

11https://www.gwdg.de/application-services/database-service-mysql
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ID Alias S[ms] Ŝ[ms]
T0 HTTP-SERVER 1 1
T1 EPIC 37 9
T2 HS 7 7
T3 DB 25 25
response time RT 70 42

Table 4.1: Ideal Host: Service times for each tier of the old and improved system

system. During this analysis it turned out, that the ePIC-API v2 (T1) was causing a high contri-
bution into the overall response time. Therefore, our improvement effort was particularly focused
on several components in the ePIC-API v2. These critical components can be categorized into
logging, identifier generation and response handling.
The logging component was quite inefficiently involving unnecessary many I/O operations. This
is turn caused many CPU context switches, which finally resulted in long processing times.
Also the identifier generator for creating unique counter-based identifiers was causing high over-
heads in the ePIC-API v2 tier, which was mainly because of a database access to store the current
state of the counter.
In addition to that, the response handling was highly inefficient as well. The problem in this com-
ponent was that in a successful processing, the response object was generated and handled in an
exceptional processing path, which also caused high CPU context switches and hence, long pro-
cessing times.
We were able to optimize all these critical components. The result of our optimization endeavor
is implemented in version 2.5 of the ePIC-API, and can be found in the source code repository
of the ePIC consortium12. Additionally, the PID 11022/0000-0007-C618-F resolves directly to
our contributions, which have been accepted by the ePIC consortium for productive operation.

4.5.5 Ideal Host Measurements Analysis

In this section, the focus is on the analysis of the measurements from the ideal host. For this,
we provide the most important measurements of the two versions of the ePIC PID system. The
first version is the unimproved system with version 2.3 of the ePIC-API v2. Whereas, the second
version is the result of our improvement effort, which has been done in T1, the ePIC-API v2.

4.5.5.1 Service Time Improvement

As can been seen from Table 4.1, the speedup factor achieved by our improvement effort in tier T1
is α1 = 37/9≈ 4.11.
For the overall response time improvement for the concurrency level n = 1, this results in κ =
70/42 ≈ 1.67. The highest possible speedup would equal to 70/33 ≈ 2.12, which could be
achieved by improving tier T1 such that it would cause no overhead (=̂ Ŝ1 = 0) .

4.5.5.2 Response Time Decomposition

In Figure 4.6, we can see the response time decomposition for increasing concurrency level n. The
overall response time Rn

T is composed of the processing times Rn
i , which are shown with different

colors on the bar plots. Note that the hatched bars denote the measurements of the improved

12https://github.com/pidconsortium/EPIC-API-v2
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Figure 4.6: Ideal Host: Response Time Decomposition for increasing concurrency level. The
response time is composed of the processing times of the tiers. Each processing time
is highlighted as a colored part on the response time bar.

system. It should also be noted that due to the small values, the processing times of T0 and T̂0 are
only barely recognizable. In addition to the response time, Figure 4.7 shows the respective lower
and upper boundaries, which are deduced by Theorem 3. We can see that the actual response times
always lie within these boundaries, which underlines the practical utility of Theorem 3. Finally,
as expected, the overall response time Rn

T is increasing with the concurrency level n.

4.5.5.3 Weighting Factor Decomposition

From Figure 4.8, we can see the weighting factor decomposition for increasing concurrency level.
The most important development in this figure is that the weighting factors ωn

1 for the ePIC-
API tier (dominating tier of unimproved system) and ω̂n

3 for the database tier (dominating tier
of improved system) are increasing with the concurrency level n, while the respective remaining
weighting factors are decreasing. This is exactly the monotonicity behavior, which is described by
Theorem 2.

4.5.5.4 Course of the Response Time Speedup

In our case it holds κ = 1.67 > 1.48 = Smax/Ŝmax, this means that κn decreases towards κ∞ = 1.48,
which is therefore a lower boundary κ5 = 1.48. This can also be seen from Figure 4.9. Based on
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Figure 4.7: Ideal Host: Response Time RT for increasing request count including lower and up-
per boundaries R5 and R4 provided by Theorem 3. The actual response times are
plotted as squares, which are limited by an upper (↑) and lower (↓) arrow denoting the
estimated boundaries (R4 and R5).

equation (4.3.10) in the proof of Lemma 2, for an upper boundary for κn, we can take:

κ
n
4 =

Rn
T

R̂1
T +(n−1)∑

m
i=1

(
Ŝ(2)i /R̂1

T

) =

(
Rn

T
42+18(n−1)

)

As an example, for n = 5, we have R5
T ≈ 196ms and R̂5

T ≈ 126ms, which results in κ5 ≈ 1.555.
Another example with n = 10, R10

T ≈ 372ms and R10
T ≈ 250ms, leads to κ10 ≈ 1.488.

4.5.5.5 Weighting Factor Redistribution

Table 4.2 and Table 4.3 show the exact weighting factors of the old and improved system re-
spectively. In addition, Table 4.4 provides estimations for the weighting factors of the improved
(future) system, which are based on our derived formulas from Section 4.3.4.2. Since in our setup
we have only one dominating tier T1 with Smax = S1 (DS = {1}), we have to apply Corollary 3.
The secondary dominating tier set also consists of only one tier: T3 with Smax2 = S3 (FS = {3}).
Furthermore, since our improvement effort in T1 has resulted in Ŝ1 < Smax2, to retrieve estimations
for the weighting factors of the improved (future) system, we have to apply Case 3 of Corollary 3.
The estimations for T0 and T2 are based on Case 3-(i). In contrast to that, the estimations for the
old dominating tier T1 are calculated by means of Case 3-(ii). Finally, the estimations of the new
dominating tier T3 are determined by Case 3-(iii).
In Table 4.4, the values in the grey columns denote the actual weighting factors. Each column to
the left of the grey column contains lower boundaries, where the columns to the right represent the
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The interesting behavior of the MVA algorithm with a dominating
SD is that the corresponding weighting factor �D is monotoni-
cally increasing, whereas the weighting factors of the remaining
tiers are monotonically decreasing. This can be particularly seen
from relation (4). The weighting factor of an individual tier Ti is
determined by the ratio between its processing time Rn

i and the
overall response time Rn

T . Since the MVA algorithm is recursive, the
response time calculation starts from the state where there is only
one request processed in the multi-tier system, which is given by (1).
In the next step the individual processing times R2

i are composed by
multiplying the service times Si with the factors (1 + �1

i ), whereas
the factor for SD obviously has the largest value with (1 + �1

D ).
This in turn leads to the fact that tier TD to have again the largest
contribution �2

D to the overall response time R2
T of step two. There-

fore, with an increasing request number n, the weighting factor
�n

D is monotonically increasing and due to Pm
j=1 �

n
j = 1, all the

remaining weighting factors are monotonically decreasing.
Ultimately, the monotonically increasing �D provides the base of
the following theorem:

T������ 3.1. For the response time Rn
T of a multi-tier system

composed of m tiers calculated by means of the MVA algorithm, it
holds:

Rn5  Rn
T  Rn4, (7)

with

Rn5 :=
mX

j=1
Sj
⇣
1 + (n � 1)�1

j

⌘
, �1

j =
SjPm

i=1 Si
(8)

and

Rn4 :=
mX

j=1
Sj + (n � 1)SD (9)

P����. Since the contribution �D of tier TD is monotonically
increasing, we have limn!1 �n

D ! 1 and limn!1 �n
j, j,D ! 0.

Hence, (n � 1)SD is always an upper boundary for the overall
queueing time of the multi-tier system at concurrency level n.
On the other side, at concurrency level n, by means of the ini-
tial contributions �1

j , we have a lower boundary for the overall
response time Rn

T . This based on the fact that the increasing contri-
bution of the dominating service time SD is damped by the initial
�1

D , whereas the contributions of the remaining service times are
increased. ⇤

This theorem provides the base to analyzes the impact of an
improvement e�ort of an individual tier onto the overall multi-tier
system.

3.4 Multi-Tier System Speedup
The notion Speedup is mainly established in the context of paral-
lelization. Instead, we use the speedup to quantify the improvement
result of an individual tier’s processing time in a multi-tier system.
For this reason, we de�ne the service time speedup � as

�i =
SiDSi
, (10)

where Si and DSi denote the service times of the old and improved
tier Ti respectively.

Since an improvement in the services times also a�ects the process-
ing times Rn

i , we de�ne the speedup for the concurrency level n
as

�n
i =

Rn
iDRn
i

, (11)

whereas n = 1 leads to (10).
Likewise we de�ne the overall response time speedup �n for con-
currency level n of the multi-tier system as

�n =
Rn

TDRn
T

, (12)

where Rn
T and DRn

T denote the response times of the old and im-
proved system respectively. Whereas the response time DRn

T of the
improved system is the result of any improvement endeavor in at
least one of the tiers of the old system.
Note that in the remainder � always denotes the response time
speedup for the concurrency level n = 1 and hence � ⌘ �1.

Sine the response time for concurrency level n = 1 is only com-
posed of the service times Si , we derive the following lemma, which
gives insight about a multi-tier system’s response time speedup �
for n = 1.

L���� 3.2. Assume a service time improvement in at least a single
tierTi with a speedup factor �i � 1 of the multi-tier system composed
of m tiers. Then for response time speedup � for the concurrency level
n = 1 it holds:

� =
1

Pm
i=1

�i
�i

, (13)

with the corresponding weighting factor

�i =
SiPm

i=1 Si
, (14)

P����. With de�nition (12), for the reciprocal of the response
time speedup we have:

1
�
=

DR1
T

R1
T
,

and from the response time decomposition (1) it follows

1
�
=

DR1
T

R1
T
=

Pm
i=1

DSiPm
i=1 Si

,

and �nally with (10) it reveals

1
�
=

Pm
i=1 Si/�iPm

i=1 Si
=

mX

i=1

1
�i

"
SiPm

i=1 Si

#
|      {z      }
=:�i

=

mX

i=1
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.

=) � = �1 =
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Furthermore, the following corollary reveals the relation be-
tween the weighting factors �1

i and D�1
i of the old and improved

system.
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The interesting behavior of the MVA algorithm with a dominating
SD is that the corresponding weighting factor �D is monotoni-
cally increasing, whereas the weighting factors of the remaining
tiers are monotonically decreasing. This can be particularly seen
from relation (4). The weighting factor of an individual tier Ti is
determined by the ratio between its processing time Rn

i and the
overall response time Rn

T . Since the MVA algorithm is recursive, the
response time calculation starts from the state where there is only
one request processed in the multi-tier system, which is given by (1).
In the next step the individual processing times R2

i are composed by
multiplying the service times Si with the factors (1 + �1

i ), whereas
the factor for SD obviously has the largest value with (1 + �1

D ).
This in turn leads to the fact that tier TD to have again the largest
contribution �2

D to the overall response time R2
T of step two. There-

fore, with an increasing request number n, the weighting factor
�n

D is monotonically increasing and due to Pm
j=1 �

n
j = 1, all the

remaining weighting factors are monotonically decreasing.
Ultimately, the monotonically increasing �D provides the base of
the following theorem:

T������ 3.1. For the response time Rn
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holds:

Rn5  Rn
T  Rn4, (7)

with
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P����. Since the contribution �D of tier TD is monotonically
increasing, we have limn!1 �n

D ! 1 and limn!1 �n
j, j,D ! 0.

Hence, (n � 1)SD is always an upper boundary for the overall
queueing time of the multi-tier system at concurrency level n.
On the other side, at concurrency level n, by means of the ini-
tial contributions �1

j , we have a lower boundary for the overall
response time Rn

T . This based on the fact that the increasing contri-
bution of the dominating service time SD is damped by the initial
�1

D , whereas the contributions of the remaining service times are
increased. ⇤

This theorem provides the base to analyzes the impact of an
improvement e�ort of an individual tier onto the overall multi-tier
system.

3.4 Multi-Tier System Speedup
The notion Speedup is mainly established in the context of paral-
lelization. Instead, we use the speedup to quantify the improvement
result of an individual tier’s processing time in a multi-tier system.
For this reason, we de�ne the service time speedup � as

�i =
SiDSi
, (10)

where Si and DSi denote the service times of the old and improved
tier Ti respectively.

Since an improvement in the services times also a�ects the process-
ing times Rn

i , we de�ne the speedup for the concurrency level n
as

�n
i =

Rn
iDRn
i

, (11)

whereas n = 1 leads to (10).
Likewise we de�ne the overall response time speedup �n for con-
currency level n of the multi-tier system as

�n =
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TDRn
T

, (12)

where Rn
T and DRn

T denote the response times of the old and im-
proved system respectively. Whereas the response time DRn

T of the
improved system is the result of any improvement endeavor in at
least one of the tiers of the old system.
Note that in the remainder � always denotes the response time
speedup for the concurrency level n = 1 and hence � ⌘ �1.

Sine the response time for concurrency level n = 1 is only com-
posed of the service times Si , we derive the following lemma, which
gives insight about a multi-tier system’s response time speedup �
for n = 1.

L���� 3.2. Assume a service time improvement in at least a single
tierTi with a speedup factor �i � 1 of the multi-tier system composed
of m tiers. Then for response time speedup � for the concurrency level
n = 1 it holds:

� =
1

Pm
i=1

�i
�i

, (13)

with the corresponding weighting factor

�i =
SiPm

i=1 Si
, (14)

P����. With de�nition (12), for the reciprocal of the response
time speedup we have:

1
�
=

DR1
T

R1
T
,

and from the response time decomposition (1) it follows

1
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,

and �nally with (10) it reveals

1
�
=

Pm
i=1 Si/�iPm

i=1 Si
=

mX

i=1

1
�i

"
SiPm

i=1 Si

#
|      {z      }
=:�i

=

mX

i=1

�i
�i
.

=) � = �1 =
1

Pm
i=1

�i
�i

.

⇤
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SD is that the corresponding weighting factor �D is monotoni-
cally increasing, whereas the weighting factors of the remaining
tiers are monotonically decreasing. This can be particularly seen
from relation (4). The weighting factor of an individual tier Ti is
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i and the
overall response time Rn

T . Since the MVA algorithm is recursive, the
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i are composed by
multiplying the service times Si with the factors (1 + �1
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the factor for SD obviously has the largest value with (1 + �1
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P����. Since the contribution �D of tier TD is monotonically
increasing, we have limn!1 �n
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Hence, (n � 1)SD is always an upper boundary for the overall
queueing time of the multi-tier system at concurrency level n.
On the other side, at concurrency level n, by means of the ini-
tial contributions �1

j , we have a lower boundary for the overall
response time Rn

T . This based on the fact that the increasing contri-
bution of the dominating service time SD is damped by the initial
�1

D , whereas the contributions of the remaining service times are
increased. ⇤

This theorem provides the base to analyzes the impact of an
improvement e�ort of an individual tier onto the overall multi-tier
system.

3.4 Multi-Tier System Speedup
The notion Speedup is mainly established in the context of paral-
lelization. Instead, we use the speedup to quantify the improvement
result of an individual tier’s processing time in a multi-tier system.
For this reason, we de�ne the service time speedup � as

�i =
SiDSi
, (10)

where Si and DSi denote the service times of the old and improved
tier Ti respectively.

Since an improvement in the services times also a�ects the process-
ing times Rn
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as

�n
i =

Rn
iDRn
i
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whereas n = 1 leads to (10).
Likewise we de�ne the overall response time speedup �n for con-
currency level n of the multi-tier system as

�n =
Rn

TDRn
T
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where Rn
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proved system respectively. Whereas the response time DRn

T of the
improved system is the result of any improvement endeavor in at
least one of the tiers of the old system.
Note that in the remainder � always denotes the response time
speedup for the concurrency level n = 1 and hence � ⌘ �1.

Sine the response time for concurrency level n = 1 is only com-
posed of the service times Si , we derive the following lemma, which
gives insight about a multi-tier system’s response time speedup �
for n = 1.
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SD is that the corresponding weighting factor �D is monotoni-
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Figure 4.8: Ideal Host: Weighting factor decomposition for increasing concurrency level.

n T0 T1 T2 T3

1 0.0143 0.5286 0.1 0.3571
2 0.0102 0.5701 0.0776 0.342
3 0.0078 0.6073 0.062 0.3229
4 0.0063 0.6407 0.0509 0.302
5 0.0052 0.6709 0.0429 0.281
6 0.0044 0.6982 0.0368 0.2605
7 0.0039 0.7228 0.0322 0.2412
8 0.0034 0.7448 0.0285 0.2233
9 0.003 0.7646 0.0255 0.2069
10 0.0028 0.7822 0.0231 0.1919

Table 4.2: Ideal Host: Weighting factors for the unimproved system.

upper boundaries. Ultimately, we can see that our deduced boundaries limit the actual weighting
factors.

This means, by only having the weighting factors ωn
i of the unimproved system at hand, together

with the improvement parameters for n = 1 (κ , κ5, κ4, α1), we were able to predict the weighting
factors of the improved (future) system for concurrency levels n > 1, without the need to conduct
extensive performance evaluations with the improved system.
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concurrency level N



Figure 4.9: Ideal Host: Response time speedup for increasing concurrency level with the improve-
ment of tier T1.

n T̂0 T̂1 T̂2 T̂3

1 0.0238 0.2143 0.1667 0.5952
2 0.0171 0.1822 0.1361 0.6647
3 0.0129 0.1526 0.1107 0.7238
4 0.0101 0.1277 0.0907 0.7715
5 0.0082 0.1076 0.0755 0.8086
6 0.0069 0.0919 0.064 0.8371
7 0.0059 0.0797 0.0553 0.8591
8 0.0052 0.0701 0.0485 0.8762
9 0.0046 0.0624 0.0432 0.8898
10 0.0042 0.0562 0.0389 0.9007

Table 4.3: Ideal Host: Weighting factors for the improved system.

4.5.5.6 Overloading

An important aspect, which has to be taken into account within an improvement endeavor, is the
effect of load redistribution. This effect is caused by an improvement at an individual tier and can
ultimately lead to an overloading of limited queuing capacities at the remaining tiers.
The thread pool sizes of the components of the ePIC PID system are usually set to sufficient high
threshold values. However, if for example the thread pool size of the database at tier T3 would
had been set to three threads, our approach would enable to predict an overloading at the database
although a limited queuing capacity is not directly addressed by our modeling approach. For
the productive concurrency level 5 ≤ n ≤ 7, this is described in Table 4.5: We can see that the
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database of the improved system is populated by at least 4 requests for 5 ≤ n ≤ 7. Whereas with
our formulas, we were able to predict a minimum request population of L5DB = 3.2 at the database
(T3), after the improvement of tier T1. Note that in the unimproved system, the request population
at the database for 5≤ n≤ 7 was only between 1.4 and 1.7 requests.
The effect, which occurs at overloading is usually a sharp increase in the response time. This can
be particularly seen in Figure 4.10, which depicts the response time behavior of a modified version
of the improved ePIC PID system hosted on an Amazon EC2 instance. The core difference was
that the MySQL database attached to the Handle server, was installed locally on the EC2 host. In
addition, we set the thread pool size of the database to three threads.
We can see a sharp rise of the response time at the concurrency level n = 5.

n L5DB LDB L4DB

5 3.2 4.0 5
6 3.8 5 6
7 4.5 6 7

Table 4.5: Ideal Host: Request population L at database tier T3. The grey column contains the ex-
act values, whereas the columns to the left and right contain lower and upper boundaries
respectively.
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Figure 4.10: EC2 Host: Effect of overloading in the response time for a ePIC PID system instance
hosted a Amazon EC2 instance. Beginning at a concurrency level n = 5, the response
time is rapidly increasing.
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4.5.6 Productive Host Measurements Analysis

In this section, we analyze the measurements from the productive host and compare these with the
measurements from the ideal host.

ID Alias S[ms] Ŝ[ms]
T0 HTTP-SERVER 22 4
T1 EPIC 51 24
T2 HS 11 14
T3 DB 17 15
response time RT 101 57

Table 4.6: Productive Host: Service times for each tier of the old and improved system.

4.5.6.1 Service Time Improvement

For the productive ePIC PID system, we have reduced the PID creation time from at least 101ms
to 57ms.
Table 4.6 lists the service times of the old and improved ePIC PID system hosted on the productive
system. The speedup factor for tier T1 is αp1 = 51/24 ≈ 2.13. And the response time speedup
factor is κp = 101/57 ≈ 1.77, which is pretty close to the response time speedup from the ideal
host (1.67).
However, by improving the service time of tier T1, except for T2, also the service times of all
the remaining tiers have improved. This is particularly true for tier T0. We assume that this is
based on the reduced I/O operations, which first of all reduce the load on the attached storage
medium (virtual hard disk). Additionally this leads to a reduction of the CPU context switches,
while waiting for the I/O operation to complete. Thus, this has led the CPU to be used more
efficiently for the ePIC PID system in the virtual (productive) host, leading to an overall improved
performance.

4.5.6.2 Response Time Decomposition

Figure 4.11 illustrates the response time decomposition for the productive host. As for the ideal
host in Figure 4.6, the processing times of the individual tiers are plotted with different colors
on the bar plot. Again, the striped bars denote the improved ePIC PID system. In addition, the
bars with crossed stripes denote the measurements, where the PIDs were created directly with the
primary Handle server without involving the tiers T0 and T1. For this, the load-generator made use
of the native Handle protocol to directly communicate with the primary Handle server.
Interestingly, in the productive host, the overall response time Rn

T first decreases until n = 3 for
both versions of the ePIC PID system. And beginning at n = 3, the response times show the
expected behavior of monotonic growth. We assume that is caused by a fluctuating load on the
VMware-Cluster of GWDG during our measurement phase. The processing times R3

i are dedicat-
edly listed in Table 4.7.
In the unimproved ePIC PID system it is again tier T1, which has the longest service time. For
increasing concurrency level, however, its processing times are not significantly dominating the
overall response times. Instead, the processing times of the tiers T0, T1 and T3 almost equally
contribute to the overall response times. We assume that this behavior is also based on the inef-
ficient CPU usage due to high I/O operations in the unimproved ePIC system affecting the entire
performance of the host itself.
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According to the service times of the improved ePIC system, given by Table 4.6, the optimized
tier T1 would still be the dominating tier after the improvement effort. However, considering the
processing times R3

i , listed in Table 4.7, as in the ideal host, it is the database tier T3, which is the
new dominating tier. This is also underlined by the response times of the improved ePIC system
for increasing load (cf. Figure 4.11).

ID Alias R3[ms] R̂3[ms]
T0 HTTP-SERVER 23 3
T1 EPIC 40 13
T2 HS 10 11
T3 DB 15 17

Table 4.7: Productive Host: Processing times for each tier of the old and improved system for
n = 3.

Moreover, for the unimproved ePIC system, the response times for increasing concurrency level
have significantly lower magnitudes than in the ideal host (cf. Figure 4.11 and Figure 4.6). Our
assumption for this is that due to the higher processing times at tier T0 and T3, the load on tier T1
is damped in the productive host. In addition, due to the lower computing power at the productive
host, we also assume that the load on the identifier generator component within tier T1, is also
reduced. Hence, likewise we assume that due to the higher computing power and faster hard disk
at the ideal host, the load was more concentrated on the identifier generator component within tier
T1, which therefore has led its processing times to growth rapidly. This ultimately means, that in
the productive host, modeling tier T1 as a single queue was inappropriate (cf. Section 4.4.1).
Also for the improved ePIC PID systems, the response times of the ideal host, for increasing n,
have a larger magnitude than in the productive host. This is again based on the load damping ef-
fect, as described for the unimproved system. However, as in the ideal host, also in the productive
host, the processing times of the database tier T3 are increasingly dominating the overall response
time.
Our assumption of the load damping effect is also underlined by the response times of the direct
PID creation at the primary Handle server. As we can also see from Figure 4.11, although for
n = 1 it is significantly faster, for increasing concurrency level the overall response times are even
longer than with involving the ePIC system. This is based on the fact that there is no load damping
effect by subsequent tiers (T0 and T1). If we compare the response times of the improved ePIC
system from the ideal host with the response times of the modified system (no T0 and T1) from the
productive host, we can again see the effect of load damping: in the ideal host the response time
starts at 42ms for n = 1 and increases until ≈ 250 for n = 10. Whereas in the modified system, it
starts at only 25ms for n = 1, but also increases until ≈ 260 for n = 10.

4.5.6.3 Response Time Estimation

Figure 4.12 provides estimations for the response times based on Theorem 3. However, for the
productive host, the estimations are not appropriate, since the actual response times, plotted as
squares, are outside the respective estimated ranges. Only for the improved ePIC PID system,
the estimations are relatively close to the estimated response time ranges. In both environments,
productive and ideal, the database tier T3 becomes the critical component after the improvement
effort. Therefore, an increase of the load leads to a proportional rise of its processing time.
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Figure 4.11: Productive Host: Response time decomposition for increasing concurrency level.
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Figure 4.12: Productive Host: Response Time RT for increasing request count including lower
and upper boundaries R5 and R4 provided by Theorem 3. The actual response times
are plotted as squares, which are limited by an upper (↑) and lower (↓) arrow denoting
the estimated boundaries (R4 and R5).
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Figure 4.13: Productive Host: Response Time Speedup for increasing concurrency level

4.5.6.4 Course of the Response Time Speedup

A response time speedup comparison between the ideal and productive host is illustrated in Fig-
ure 4.13. As can be seen, for n = 1, the speedup factors κ are almost equal. However, while on
the ideal host the response time speedup is decreasing, on the productive host it first increases
approximately to the factor κ3

p ≈ 2.0 and then it decreases rapidly to the factor of κ10
p ≈ 1.1. In

principle, this behavior partially complies with the response time speedup behavior described in
the proof of Lemma 2, which is that the speedup factor starts at κ1

p and moves towards a κ∞
p , while

κn
p can also have larger values than κ1

p and κ∞
p . It should be noted that this does not mean that

Lemma 2 and its deduced proof are disproved, but rather that in the productive host, the modeling
of a tier as a single queue (remember the Ti ≡ Qi property) to be inaccurate.
In Lemma 2 we have deduced that κ∞ = Smax/Ŝmax, which would be in our case κ∞

p = 51/24≈ 2.1
(cf. service times in Table 4.6) or κ∞

p = 40/17 ≈ 2.3, if we would take the processing times R3
i

from Table 4.7. With both results, this would mean that the response time speedup increases start-
ing from κ1

p ≈ 1.77 towards 2.1 or 2.3, which is, however, not the case for the actual response time
speedup course as depicted in Figure 4.13.

Since the actual response time of the unimproved ePIC system for n = 10 is available, we can use
this to estimate the expected response time speedup for high concurrency levels n. This approach
was already described by equation (4.3.10). Since the processing time of the database tier T3 is
showing the expected behavior, with its service time Ŝ3 = 15, we can calculate the expected upper
boundary for the response time for n = 10, which is:
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R̂10
4 = S3(n−1)+ R̂1

T = 135+57 = 192[ms]

Together with the response time R10
T ≈ 213[ms] of the unimproved ePIC system we have:

κ
10
5p =

213
192
≈ 1.1≤ κ

10
p = 1.15

which complies with the response time speedup course in Figure 4.13.
Hence, since the response time of the improved ePIC PID system is developing as expected, we
made use of Theorem 3 to obtain an upper boundary for its response time at n= 10. In conjunction
with the available response time R10

T of the unimproved ePIC system, we could estimate the actual
response time speedup factor for n = 10.

4.5.6.5 Population Count Distribution
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Figure 4.14: Request population comparison of four ePIC systems: (corresponding to the ordering
in each 4-bar group) unimproved on productive host, unimproved on ideal host, im-
proved on productive host, improved on ideal host . The request count for each tier is
highlighted with a distinct color on the overall system’s population bar.

Figure 4.14 shows the request population of the individual tiers of the unimproved and improved
ePIC system. The bars with the pale colors denote the measurements from the ideal host (also:
every second bar in the 4-bar group), where the bars with saturated colors denote the measurements
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of the productive host.
As we can see, until n = 7 the population counts in the database tier T3 of both unimproved ePIC
systems are quite similar. This also means that the sum of the population counts of tier T0 and T1
grow as expected until n = 7, in both environments. However, starting at n = 8, the sum of their
population counts begin to stagnate in the productive host, where in the ideal host, it is further
growing. Instead, from n = 8 on, the population count of the database tier T3 begins to growth
significantly in the productive host.
We assume that this is again caused by the load damping effect before tier T1 in the productive
host. In the ideal host, such an effect is not occurring, therefore the load is concentrated at tier
T1. Furthermore, we assume that within tier T1, the load in the ideal host is concentrated at the
database access of the identifier generator component, which causes the processing time of T1 to
grow rapidly.
However, as it is the case for the processing times, also the population count distribution of both
improved ePIC systems behave quite similar: The population count of the database tier T3, as
expected, is growing monotonously.

4.5.6.6 Weighting Factor Estimation

According to the service times in Table 4.6, we have only one dominating tier in both, the unim-
proved and improved system. This first of all means that we again have to apply Corollary 3.
However, the core problem is that Corollary 3, as Corollary 2, are based on the monotonous
growth of the weighting factors of the dominating tier in the unimproved system, which was only
true in the ideal host. In the productive host, however, although T1 is according to its service time
S1 the dominating tier, for increasing concurrency level, its processing times do not dominate the
overall response times. This implies that the service time S1 itself is again composed of multiple
other internal component service times within tier T1. As already stated, in the productive host,
the modeling of tier T1 as a single queue (the Ti ≡ Qi property) was inappropriate.
Ultimately, in order to be able to apply Corollary 2 or Corollary 3, we would have to retrieve the
service times of the internal components within tier T1.
Nevertheless, another option is to consider the insights gathered in the ideal environment as heuris-
tic values which can be used as an orientation for the productive host. In our case this is even con-
firmed by the fact that both improved systems show a similar behavior, especially for the database
tier T3. In the ideal host we were able to predict the population count at tier T3 to become at
least L5DB = 3.2 (Section 4.5.5.6 and Table 4.5) for the productive concurrency level (5≤ n≤ 7),
which is also approximately true in the productive host (cf. Figure 4.14).

4.5.7 Summary

We have seen that our deduced formulas are applicable in the ideal host. For the productive
host, however, they are only partially valid. In particular, our formulas for the weighting factor
estimations were not applicable in the productive host. This was mainly caused by the inaccurate
modeling of tier T0 and especially of tier T1 as a single queue. Due to less computation power,
inefficient CPU utilization and slower (virtual) hard disk, within those tiers, the service times were
actually composed of multiple other internal component service times.
However, for system optimization or advancement, such an ideal host is often involved. System
developers usually do source code developments on the their local machines, which thus can be
considered as ideal hosts. In addition, usually prior to the deployment on a particular testing
system, the modifications are tested locally on such an ideal host. The investigation based on
our formulas on the ideal host can finally reveal heuristic measures, which can be used for the
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productive environment analysis.

Furthermore, for a high-performance PID system, the improved ePIC PID system is still too slow.
The average response time an individual requestor would have to wait for a single PID registration
is R̂avg

T ≈ 100ms with the improved ePIC system at GWDG. For one million PIDs this would mean:

1,000,000 PIDs×100ms =̂ 100,000,000ms

=̂ 100,000s

=̂ 28h

Note that this calculation does not consider the network latency between a requestor and the PID
system. Note also that recent research data repositories steadily issue PID administration requests.

Our investigation has also revealed that to achieve high-performance, the next improvement ef-
forts have to address the tiers which follow the ePIC-API, the Handle server and the database tier.
Although, in our evaluation the database tier proved to be the bottleneck, we assume that this is
caused by an inappropriate handling of large amounts of administration requests within the pri-
mary Handle server. Therefore, the following chapter specifically focuses on the Handle protocol
and on the administration procedures within the primary Handle server.





Chapter5
High-Performance Persistent Identifier
Management Protocol

As already indicated in the beginning of the previous chapter, PIDs are further gaining in impor-
tance for research data management, based on their ability of holding semantic information about
the identified research dataset in addition to a sole locator. This has led PIDs to play an essential
role for global research data exchange. The assignment of a PID to an individual research dataset
can also be considered as a mapping from a local, community-specific into a globally interopera-
ble representation of the research dataset. Hence, the concept of persistent identification enables
community-specific research data repositories to be embedded into a virtual global research data
network.

Research Data 
Repository

Naming 
Authority

(PID System)

{ OP, OP, OP, OP, OP, OP }

BULK
OP

Figure 5.1: Focus in this chapter: Accelerating the administration of large groups of PID records
by conceiving an efficient bulk administration operation (BULK OP), which signifi-
cantly improves the throughput of naming authorities.

The consequence is that these PID systems increasingly become an integral part of recent research
data repositories as an additional component. However, since they are very much oriented on the
DNS system, whose primary function is to act as a global lookup registry system for computer
host addresses, rather than a global data management system, they are often not able to ensure
a high performant management of large amounts of data. Due to this aspect, it is necessary for
PID systems to be adapted to the workload of research data repositories to finally provide a high
performant management of PID records.
Thus, in this chapter we focus on a high-performance persistent identifier management protocol,
which is based on the Handle protocol.

The structure of this chapter is as follows: We first examine certain application areas of PIDs,
which involve their advanced usage in addition to their basic function of locator abstraction. This
is followed by a comprehensive comparison between the DNS and Handle System. The intention
behind this comparison is to reveal the differences between both systems, especially in terms of
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the respective workload they are subjected to. This comparison serves also the purpose of provid-
ing a better understanding of the Handle System and the need for a bulk administration operation,
which is often lacking in recent PID systems, in particular, in systems based on the Handle Sys-
tem, such as the Digital Object Identifier (DOI) system or the ePIC system. Therefore, we finally
propose to extend the Handle protocol with a bulk operation, for which we provide an appropriate
specification and data model.
In contrast to the previous chapter, in this chapter, the focus is on the conception of bulk admin-
istration operation, which improves the throughput of naming authorities based on the Handle
System (cf. Figure 5.1).

The base of our approach has been published in a conference paper at the 12th Networking, Archi-
tecture and Storage (NAS) conference 2017 in Shenzhen, China [104]. In this thesis, however, we
provide a revised and extended version.

5.1 Towards a Global Virtual Research Data Network

The idea of depositing semantic information into PID records has led diverse research datasets to
be assigned a PID. This in turn, is causing a steadily increasing load at PID registration agencies.
The importance of semantic information in PID records is based on the huge variety of digital
research data. With the increasing amount of research datasets new challenges arise for the han-
dling of such a data diversity and volume. In order to mitigate research datasets from being solely
stored in a specific research data repository and forgotten for future use cases, recent related re-
search initiatives, such as the Research Data Alliance13, focus on concepts, which can provide an
active global exchange of research datasets among different scientific disciplines. To ensure this,
a standardized representation of research datasets is required.
PID systems are globally connected systems forming a certain global research data registry. The
idea, therefore, is to equip PID records with more complex, standardized semantic information.
This is also important, because such huge volumes of research data are only processable by au-
tonomous machines rather than by individual humans. Therefore, the need for a standardized
semantic is once more enforced to be machine readable. In addition to processibility, also the
interpretability of these research datasets has to be preserved during technological transition.
This pushes the PID systems to be the driving medium for global research data management and
exchange. In other words, the concept of persistent identification moves from being a simple
redirection mechanism towards a concept realizing a global virtual research data network with a
common interface for managing and consuming research datasets.

The following three subsections provide examples for such advanced application areas of PIDs.

5.1.1 Advanced PID Usage: Data Integrity Check

For the TextGrid repository PIDs are, in addition to identification and access, also used to ensure
data integrity. This is realized by the TextGridConsistencyCheck [105] component in which spe-
cific object attributes (URL, file size, checksum) of a TextGrid object and the corresponding PID
record are compared. In case of an inconsistency, the repository operators are notified, which then
initiate appropriate steps to solve the inconsistency issue. For more detailed information about the
working principle of this component we refer to the TextGrid documentation [106].
Note that the TextGrid repository constitutes an example for a group (B) repository (cf. Sec-
tion3.2.3), which is not only relying on the locator abstraction function of PIDs, but also on

13https://www.rd-alliance.org
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the individual metadata in the PID records. Therefore, our proposed Research Data Silo Iden-
tifier (DSID) approach is not appropriate for TextGrid.
Figure 5.2 illustrates such a PID record, which corresponds to a TextGrid object. This figure also
provides an example for a PID record imposed with semantic information in addition to the sole
locator (URL).

21.11113/0000-000B-C152-E

Figure 5.2: Handle Record of a TextGrid object composed of eight Handle Values. The first
six Handle Values are specific to the identified object, where the last two (INST,
HS ADMIN) are only used for administrative purposes within the ePIC system and
Handle server.

11022/405d688b2c49779c6ab1

Figure 5.3: Handle Record of a TextGrid object composed of eight Handle Values. The first five
Handle Values have a standardized type, where the type itself is again identified with
a PID of the form (21.T11148/XXX).

5.1.2 Advanced PID Usage: Attribute Type Definition

Another example is the ePIC PID Information Type Registry14 [43], which provides a registry
for data type specification. Based on the these registries, machine actors can automatically de-

14http://dtr.pidconsortium.eu
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termine the encoding of individual types used in a PID record and employ corresponding al-
gorithms to consume the actual data byte stream. In Figure 5.3, we can see a copy of the
TextGrid PID record, which is already depicted in Figure 5.2. Note that this copy is under
the 11022-prefix. The core difference between these PID records is that the data types in the
11022/405d688b2c49779c6ab1 PID record are also specified by PIDs instead of plain text type
names, such as in the previous version shown in Figure 5.2. A machine actor can use these PIDs
(21.T11148/XXX), which specify a type to determine a specification of the actual data byte stream
stored in the data field.
As an example, Listing 5.1 shows the specification of the MD5 checksum, which can be retrieved
by resolving the type PID 21.T11148/ef277087753e8ba2e606 in the Handle Value at index= 4
in Figure 5.3.

1 {
2 "identifier" :"21.T11148/ef277087753e8ba2e606",

3 "name" :"md5sum-string",

4 "description" :"string of md5sum checksum ( context :data_integrity )",

5 "standards" :[{
6 "natureOfApplicability" :"depends",

7 "name" :"1321",

8 "issuer" :"RFC"

9 }],
10 "provenance" :{
11 "contributors" :[{
12 "identifiedUsing" :"Text",

13 "name" :"Ulrich Schwardmann",

14 "details" :"GWDG"

15 }],
16 "creationDate" :"2016-03-02T12:54:34.791Z",

17 "lastModificationDate" :"2018-01-18T15:30:13.279Z"

18 },
19 "properties" :[{
20 "dataType" :"string",

21 "regexp" :"^((md|MD)5( |:|=))?( )*([0-9]|[a-f]){32}$",
22 "flavour" :"ecma-262-RegExp"

23 }],
24 "validationSchema" :"{\"pattern\": \"^((md|MD)5( |:|=))?( )*([0-9]|[a-f])

{32}$\", \"$schema\": \"http://json-schema.org/draft-04/schema#\", \"

type\": \"string\", \"description\": \"md5sum-string@21.T11148/ef2770

87753e8ba2e606\", \"definitions\": {}}"
25 }

Listing 5.1: JSON MD5 Checksum Specification

5.1.3 Advanced PID Usage: Complex Search Index

The imposing of semantic information into PID records offers yet another functionality: A search
index composed of the PID system databases. We have already discussed a search function in con-
junction with PIDs in Section 3.2.7, which was to register the search interface of the underlying
research data repository. The actual query is then delegated from the PID system to the research
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data repository.
Since PID records increasingly contain complex information, the PID systems itself can be ex-
tended to provide sophisticated search functions on top of their underlying databases.
Both, the ePIC PID system and the DOI system already provide a search function based on the
underlying SQL databases. However, with the new database technologies, such as the special
graph databases, it would be also possible to reveal relationships between different PID records.
Moreover, the execution of special SQL queries can be rather slow. Therefore, GWDG is currently
working on a semantic search functionality based on databases, which ensure high-performance
searching. The approach of GWDG is to extend the mirror Handle server software to be able
to support the attachment of a special graph database. This special mirror Handle server then
replicates ordinary Handle Records from multiple primary Handle servers into the attached graph
database. In contrast to the SQL database, attached to the primary Handle server, the graph
database allows more complex queries, which are additionally processed much faster.

So far, we have discussed the increasing importance of PIDs by providing examples of their ad-
vanced usages. Before we address our actual approach of extending the Handle protocol, in the
following section, we provide a comparison between the DNS and Handle System. This is impor-
tant to have a better understanding of the Handle System and its protocol.

5.2 DNS and Handle System Comparison

As already indicated in the earlier chapters, PIDs are technically very well comparable with DNS
domain names. The fundamental operations offered by a PID and DNS system are first a reg-
istration and secondly, a resolution operation. In both systems the registration is accomplished
transactionally and hence, it poses an expensive operation.
A DNS registration agency is usually subjected to a large amount of registration requests by a large
amount of individual registrants. These registrants are often still individual human users. In con-
trast to that, a PID registration agency is often subjected to requests by a relative small number of
registrants, which however are characterized by a high individual request frequency. Furthermore,
these registrants are mostly machine agents of research data repositories. For an individual regis-
trant, where the frequency of registrations or updates is fairly low, an expensive writing operation
is usually acceptable. However, for a research data repository with a high data ingest or modifica-
tion frequency, this can often quickly cause a serious performance degradation in the whole data
management workflow. Therefore, a high-performance PID management protocol is required to
be able to efficiently manage such large amounts of research datasets.
Because of its versatility and sophisticated protocol, in this thesis we particularly concentrate on
the Handle System. Thus, in this chapter we focus on improving the Handle protocol to realize
such a high-performance persistent identifier management protocol. Since the Handle System con-
stitutes the core component of various other PID systems, an improvement of the Handle protocol
can potentially also lead to an improvement of these systems, such as the ePIC system. Moreover,
in Section 4.5.7, we have already indicated that the underlying Handle server and its communica-
tion pattern with the attached database could pose a bottleneck in the ePIC PID system.

Both systems, DNS and Handle, can be considered as a hierarchical distributed database, for
which the global operation is ensured by a specific communication protocol, the DNS and the
Handle protocol respectively. However, there are also significant differences in these systems,
which are revealed by a comparison in the following subsections.
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5.2.1 Namespace

The DNS domain namespace is composed as a hierarchical tree structure consisting of labels
which correspond to individual domains. A single domain name is uniquely addressed by a its
corresponding label including all of its parent labels separated by a dot ”.”.

The Handle System namespace consists of two parts: a prefix and a suffix part. Both parts are
separated by the slash character ”/”. The prefix part is comparable with a domain name since
it consists of hierarchical labels separated by dots. The suffix in turn, is a locally unique name
assigned to an individual research dataset. In conjunction with the prefix, the locally unique suffix
becomes globally unique.

5.2.2 Architecture

Each domain is under the stewardship of exactly one zone. A zone in turn, manages and controls
one or more domains. Each zone consists of one or more master nameservers and zero to many
slave nameservers. There are myriads of globally distributed zones, which are ordered by com-
plying with a certain hierarchy. The root zone of this hierarchy is represented by the zone with the
label ”.”. It holds the information about each responsible Top Level Domain (TLD), which in turn
form the second level in the hierarchy.
A resolution request is therefore delegated beginning from the root zone towards the responsible
zone for an individual domain name.

The architecture of the Handle System has already been described in Section 3.3.1. Nevertheless,
in the Handle System, the counterpart of the DNS root zone is the Global Handle Registry (GHR),
where for a DNS nameserver it is an individual Handle server of a Local Handle Service (LHS).
Likewise, a Handle-PID resolution request is delegated from the GHR towards the responsible
LHS.

5.2.3 Data Model

In the DNS system, the data stored in the nameservers are denoted as Resource Records. In
principle, an individual Resource Record can be reduced to a key-value pair containing a binding
of a domain name and its corresponding IP-address.

Data in the Handle System is stored in Handle Records consisting of multiple Handle Values,
which are comparable with Resource Records of the DNS system. Examples for a Handle Record
have been already provided by Figure 5.2 and Figure 5.3. In addition to that, Figure 5.4 provides
a general representation of a Handle Record and a Handle Value.

The core difference between a Handle Record and a Resource Record is that for Handle Records
there is no restriction on a set of permissible data types as it is the case for Resource Records.
This is a major advantage of the Handle System, which enables it to be positioned in other areas,
especially in the area of the Internet of Things (IoT).

It should be noted that in Chapter 6, which dedicatedly deals with the resolution problem, the
discussion also covers the data model of both systems. However, the focus in the current chapter
is on the composition of Handle Records and Handle Values, whereas in Chapter 6 it is more on
the transformation of Handle Records into Resource Records.
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HandleRecord

HandleValue_0

typeindex data ttl timestamp permission references

HandleValue_N

typeindex data ttl timestamp permission references

Figure 5.4: Generic Handle Record consisting of multiple Handle Values.

5.2.4 Protocol

Initially, the DNS protocol was designed for queries only. This is the reason for the Resource
Records to be stored in a zone file, instead of a real database. However, with the increase of
updating requests, the protocol has been extended by an update operation [107].
In the reference implementation, an update is transactionally appended to a log file, which is
then used for propagating the update to the slave nameservers. Upon the restart of the master
nameserver, the new zone file is constructed with the updated information stored in the log file.
An update operation is always processed by the primary master nameserver.

The Handle protocol in contrast, offers a much richer set of operations with management opera-
tions forming an essential part of the protocol from the beginning on. Also for the Handle System,
a management operation is always accomplished in a transactional procedure.
In the reference implementation of the Handle protocol, a single management operation involves
two transactions: First, the update is transactionally appended to an internal database, which is
used to provision the replication system. This is followed by an access into the attached main
database, which ensures the updates to be persistently written to disk.
The Handle protocol also defines its own authentication and authorization mechanism. By using
the Handle protocol an authenticated user can manage any Handle Record stored at any LHS in the
world, provided that the user is also authorized. In contrast to that, in the DNS system there is no
standardized common mechanism for authentication and authorization, which can considered as
an indication that the DNS system has not been conceived for data management. This also under-
lines that the Handle System, although it appears to be a DNS imitation, is a globally distributed
data management system rather than a data lookup registry such as the DNS system.

5.2.5 Workload

The workload of the DNS system is mainly characterized by resolution operations. On the other
hand, the registration procedure is often still accomplished manually and hence, it usually involves
a relative long delay until a domain name is updated and globally propagated. Moreover, as al-
ready mentioned, these large amounts of registration requests are often still issued by individual
human users. Note that also in DNS there are machine agents issuing requests against DNS reg-
istration agencies. An example for that are the virtualization (Cloud) technologies, in which DNS
entries are registered upon the instantiation of new virtual machines automatically. However, for
an individual user, the instantiation time of a virtual machine is usually not highly critical since
the actual focus is on the performance of the virtual machine itself, rather than on the management
of the instance.
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In the Handle System, the registration operation is increasingly issued by machine agents belong-
ing to research data repositories. Usually, the requests of an individual research data repository can
be grouped into batches sharing common information pattern corresponding to individual research
datasets. However, each of these requests is usually processed in a dedicated, isolated transactional
administration procedure. This often causes a serious performance degradation at the respective
research data repository.
In addition, the communication pattern between an individual research data repository and a PID
system, is usually characterized by a high frequency. This stems from the fact that PID record
administration has become an integral part of the research data management workflow.

After contrasting the Handle System against the DNS system, in the following section, we provide
an abstract description of our core idea to extend the Handle protocol with a bulk operation. The
actual technical implementation of this idea then addressed in the subsequent section.

5.3 Handle Protocol Extension Approach

Based on the previous discussions, especially in Section 5.2.5, for the Handle protocol we propose
an extension, which incorporates a bulk registration operation. This would enable large groups of
research datasets sharing a common descriptive information content to be administered in a com-
mon transactional procedure.
Such a bulk registration is considered successful, when all PID records of the data batch have been
processed successfully. In case of a failure, since the bulk operation is issued by an individual
research data repository, only that individual registrant has to be notified with an error response
message. This individual registrant can then react accordingly on the aborted registration opera-
tion, which for example could be another bulk registration operation attempt.
Generally, the acceleration by means of the bulking concept is well-known in the area of data
management systems. However, our objective is primarily on the conception of a bulk registration
operation for the Handle protocol. This can also be considered as a prerequisite to implement
further bulking strategies into the internal procedures of the Handle server.
A bulk registration operation would greatly improve the ingest workflow of an individual research
data repository, which is heavily communicating with a PID system.

Although administration requests belonging to the same batch are often issued iteratively, an-
other approach could be to issue parallel administration requests from the research data repository
against the PID system. However, at one point in the registration workflow of a PID system, all
these concurrent requests have to be synchronized again to finally ensure transactional processing.
If the synchronization mechanism is used to ensure that an, in terms of processing time, expen-
sive station of the registration workflow is only populated by exactly one request at a time, which
means to achieve an isolated processing in this station, then this could quickly cause the response
time to growth rapidly due to the increasing queuing time. This effect was already analyzed in the
previous Chapter 4.

5.4 Implementation

In this section, we consider the technical conception and implementation of a bulk registration op-
eration into the Handle protocol. This endeavor covers two parts: First, the specification of such
a bulk operation and secondly, the actual implementation into the Handle server. Therefore, we
start with a basic insight into the Handle protocol and investigate the specification of the original
registration operation, including the corresponding registration workflow in the reference imple-
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mentation. Based on this analysis, we deduce a technical conception for a new bulk operation.
So far, we have only provided abstract explanations about the Handle protocol, in this section,
however, we describe the Handle protocol more technically by addressing its composition and the
corresponding encoding and decoding mechanism.

5.4.1 Handle Data Model

The registration process of an individual research dataset at the Handle System can be consid-
ered as a data model mapping, where the research dataset is mapped into a Handle Record. As
previously described, each Handle Record is identified by a Handle (≡ Handle-PID), which is an
immutable and globally unique identifier. Each Handle Record in turn, consists of a set of Handle
Values and each Handle Value is composed of a set of fields (cf. Figure 5.4). The data field is used
to hold the actual content of an individual Handle Value, whereas the type field is used to specify
the syntax for the content. Since a Handle Record is composed of multiple Handle Values, the
index field enables to specially address one of them.
In the usual case, all these Handle Values are then returned upon a resolution request for the cor-
responding Handle-PID. However, the index field also enables the selection of a certain set of
Handle Values to be returned at the resolution.

5.4.2 Handle Protocol

In this section, we provide insight into the most relevant aspects of the current specification of
the Handle protocol. For a more detailed and comprehensive explanation we refer to the official
specification [95].

Message Envelope

Message Header

Message Body

Message Credential

Figure 5.5: Handle Message Format

OpCode

ResponseCode

OpFlag

ExpirationTime

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

BodyLength
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Figure 5.6: Handle Message Header Format
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The Handle protocol defines its own messaging format used to enable the communication within
the global Handle System overlay network. Each transmitted message consists of four sections,
each fulfilling a dedicated function. Figure 5.5 provides an illustration of the logical composition
of a single message exchanged in the Handle System.
Each exchanged message begins with a 20-byte sized section, the Message Envelope, whose pri-
mary function is to enable the message reassembly at the Handle server. The overall purpose of
this section is limited to the message delivery.
The actual message begins with the Message Header with a fixed size of 24 bytes. Figure 5.6
provides a depiction of the Message Header. It holds the common data fields for all messages,
with the operation code (OpCode) and the response code (ResponseCode) as the most important
once.
The OpCode, a 4-byte unsigned integer, identifies the operation, which has to be executed by the
Handle server. A subset of the operations offered by the original Handle protocol is listed in
Table 5.1. In principle, the whole set of operations can be categorized into five groups:

OpCode Symbolic Name Remark
1 OC RESOLUTION Handle Resolution

100 OC CREATE HANDLE Create new Handle
101 OC DELETE HANDLE Delete existing Handle
102 OC ADD VALUE Add Handle Value
103 OC REMOVE VALUE Remove Handle Value
104 OC MODIFY VALUE Modify Handle Value
1000 OC GET NEXT TXN ID Get next transaction id
1001 OC RETRIEVE TXN LOG Retrieve current transaction id

Table 5.1: Subset of original Handle protocol operations. The operations highlighted with a grey
background are used to administer Handle Records.

Handle Query: The Handle query operations enable a global resolution of any Handle-PID
stored at the GHR or at any LHS. The corresponding resolution algorithm has already
been discussed in Section 3.3.2.4. The result of a successful query operation is always a
Handle Record.

Handle Management: The Handle management operations enable the administration of indi-
vidual Handle Records. The currently offered management operations are shown in Ta-
ble 5.1 with a grey background.

Authentication: Since only authorized users are permitted to perform managing operations, the
Handle protocol defines its own mechanism for authentication. Only when an authenticated
user also complies with the permission set of an individual Handle Record, the user is able
to perform administration operations on that Handle Record.

Replication: To ensure the database of the mirror Handle servers to be consistent with the
database of the primary Handle server, the Handle protocol additionally offers appropriate
operations. The OC GET NEXT TXN ID operation (cf. Table 5.1) is one such an operation.
It is used internally by the primary Handle server to increase a particular internal counter,
which tracks the number of all so far performed administration operations. This number
in turn, is retrieved by the mirror Handle server, which compares it with its corresponding
internal counter. If its counter is smaller than the number retrieved from the primary, it ini-
tiates the replication of the missing updates. The counter retrieval from the mirror Handle
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server is accomplished with the OC RETRIEVE TXN LOG operation. This operation is used
by the mirror Handle server to periodically poll the primary Handle server.

Handle Service Administration: Another group of operations enables to administer the LHS
itself. These operations include the adding or removing of prefixes, which are controlled
within the LHS.

The ResponseCode, also a 4-byte unsigned integer, is used by a Handle server to inform the
requestor about the status of its requested operation. Any ResponseCode other than zero is con-
sidered to be unsuccessful.
The BodyLength, a 4-byte unsigned integer, determines the number of bytes contained in the fol-
lowing Message Body section.
The Message Header is followed by the Message Body, which contains data specific to each oper-
ation. The data is encoded according to the OpCode and/or ResponseCode in the Message Header.
Hence, the core of any message exchanged within the Handle protocol is composed by the Mes-
sage Header and Message Body.
The last section of a Handle message is the Message Credential. It provides a mechanism for
transport and security for any exchanged message within the Handle protocol.

Until this point, we have described the current (original) Handle protocol and its operations used
to communicate with Handle servers. In the following, we first explain the current registration
operation with its serialized representation and the corresponding processing procedure within the
Handle server. This is important to understand the derivation our conception of the new bulk reg-
istration operation, which is finally proposed following the description of the current registration
operation.

5.4.3 Current Registration Operation

As already indicated, in the current specification of the Handle protocol, new Handle Records are
registered by means of the OC CREATE HANDLE operation. Note that this operation also enables
to overwrite (update) existing Handle Records, which is achieved by a particular flag denoted as
MSG FLAG OVRW. This flag is contained in the Message Envelope.

The actual content for this operation is contained in the message body, for which a particular
serialization structure is defined, as shown in the following subsection. Note that the serialized
representation is necessary to carry out the message transmission within the particular network.

5.4.3.1 Message Body Serialization

INT <handle> <handleValues>INT

Figure 5.7: Serialized Message Body of already built-in OC CREATE HANDLE request.

The serialized representation of the corresponding message body is depicted in Figure 5.7. This
representation describes the message body as a bit-stream representation used to specify the en-
coding/decoding procedure within the receiving end (client / Handle server). Each black INT

field denotes a 4-byte unsigned integer, which are used to specify the number of elements to be
read from the following field. For the <handle> field, it determines the number of characters,
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INT_1
<ttl_type>

INT
<ttl>

INT_1
<perms>

INT
<index>

INT
<ts> INT <type> INT <data> INT

<refs>

Figure 5.8: Already implemented Handle Value serialization.

which form the Handle-PID. Whereas for the <handleValues> field, it specifies the number of
Handle Values, which are transmitted with the message body. Each individual Handle Value itself,
is encoded according to the serialization scheme depicted in Figure 5.8.
In contrast to the black fields, the white INT fields, denote 4-byte unsigned integers, which contain
values specific to the respective Handle Values fields. Note that a INT 1 field occupies only one
byte of memory.
The <type>, <data> and <handle> fields are each preceded by a 4-byte unsigned integer speci-
fying the number of the contained elements composing the respective content.

With this structure, the message is sent to the primary Handle server.

5.4.3.2 Server-Side Registration Algorithm

When the primary Handle server receives a message submitted by a client, the message body
is decoded back based on the information contained in the message header. In the case of a
OC CREATE HANDLE operation, the message body is decoded according to the serialization scheme
described in the previous subsection resulting a Handle-PID and a set of Handle Values. The
message decoding procedure is then followed by the internal registration procedure.
As illustrated in Figure 5.9, the overall registration algorithm includes several steps. The thicker
black lines represent the main path, which is executed for an ordinary successful Handle Record
registration. The black boxes, ”Insert Transaction ID” and ”Write To Database”, represent the
most important steps of the entire registration algorithm.

These black boxes are usually also the most expensive steps in the registration algorithm within the
primary Handle server. In each of these steps, a transactional operation is performed. In step ”In-
sert Transaction ID”, certain information is written transactionally to an internal database used to
ensure the replication system to be provisioned appropriately, including the increase of the previ-
ously explained counter tracking the number of all so far accomplished administration operations
(cf. Section 5.4.2, OC GET NEXT TXN ID). In step ”Write To Database”, the actual Handle Values
are finally persistently stored into the attached main database.
Therefore, these steps are often responsible for a significant performance loss of the overall regis-
tration algorithm, which is then ultimately propagated to the registrants.

However, also the green box, ”User Authorization”, can often be considered as a performance-
relevant step. In this step the authorization process is executed. The internal algorithm of this
process is dedicatedly depicted in Figure 5.10.
Depending on the implemented authorization scheme, it might cause a considerable overhead in
the overall registration algorithm.
The authorization procedure in the Handle System always starts with the prefix Handle Record.
The prefix Handle Record is queried in order to determine the authorized users, which are specified
by HS ADMIN-typed Handle Values. As an example, the prefix Handle-PID of the TextGrid repos-
itory is 0.NA/21.11113, with the corresponding prefix Handle Record depicted in Figure 5.11.
As can be seen (grey Handle Values), for the TextGrid prefix there are four groups of permitted
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Figure 5.9: Algorithm for OC CREATE HANDLE operation, which is already implemented into Han-
dle servers.
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users. One of these is the group listed in the 21.11113/USERLIST-Handle Record (Handle Value
with index=102 in TextGrid prefix).

The list of permitted users is retrieved prior to the actual authorization process at the step repre-
sented by the yellow box, ”getAdminInfo” (cf. Figure 5.9). This list is then used in the authoriza-
tion process, green box, to determine whether the (authenticated) user is also a member of the set
of authorized users.
However, exactly this process can cause a considerable overhead in the registration procedure,
based on additional resolution queries as explained by the following two paragraphs:

Administrative User: Often, a Handle Record managing user is also an administrator of the
Handle server itself. Such a user is directly authorized by a configuration file (config.dct)
of the Handle server. The authorization workflow of this user concept is represented by the
thicker black lines in Figure 5.10.

Non-Administrative User: Another concept is to authorize users based on individual Handle
Records allowing to establish a hierarchy among the managing users. However, the disad-
vantage of this concept is that they entail additional resolution queries against the Handle
server, which finally involve additional load on the attached main database. This is repre-
sented by the blue paths in Figure 5.10. As we have already seen in the previous chapter,
an increased request population at a component can easily lead to an increased processing
time of the component. This user concept, therefore, leads to more load at the database of
the Handle server, which finally could cause a further increase of the overall response time.

Ultimately, when all the steps of the registration algorithm, including the authorization procedure,
are accomplished, the Handle Record finally becomes registered or updated.
Inspired by the principles behind the original registration operation, in the following subsections,
we finally provide our bulk operation extension for the Handle protocol.

5.4.4 New Bulk Registration Operation

We propose to extend the current Handle protocol by a new bulk registration operation with a
symbolic name defined as:

OC CREATE HANDLES BULK.

This new operation is identified by the operation code OpCode=900 in the message header and
enables the registration of multiple Handle Records by one request.
The core difference of this operation is that all the contained Handle Records are processed in one
transactional procedure. The request is considered successful when all Handle Records have been
registered successfully. Otherwise, the request is considered to be failed.
As it is the case for the original OC CREATE HANDLE operation, also with the new bulk operation,
existing Handle Records can be updated by means of the MSG FLAG OVRW flag.

The corresponding data model of our new operation is introduced in the next subsection.

5.4.4.1 New Bulk Data Structure

The message body of our new operation contains the data for the batch of the Handle Records
to be registered. However, due to efficiency reasons, we have also extended the Handle protocol
by an efficient and appropriate data structure, which means that it does not comply with the data



107 5.4 Implementation

User is Server 
Admin

[Yes]

[No]

retrieve AdminLists
from PrefixHandle

[Yes]

send response
[Yes]

response
(TRUE)

[No]

[No]

Is AdminList on 
Local Handle Server

get Handle Record 
from Database resolve globally

check if User is 
permitted

response
(FALSE)

loop through 
AdminLists

Figure 5.10: Original user authorization algorithm. The thicker black path represents the autho-
rization process of an administrative user. The blue path represents the authorization
process of a non-administrative user.
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0.NA/21.11113

Figure 5.11: Prefix Handle Record of 21.11113. The grey Handle Values specify the users or user
groups, which are permitted to perform administration requests against the primary
Handle server.

serialization structure of the original registration operation depicted in Figure 5.7. This extension
is based on the following fact:
Handle Records belonging to the same batch of administration requests issued by an individual
registrant are often characterized by a common Handle Record structure.
Whereas the actual data contained in the data fields is usually unique within the batch of Handle
Records, the overall set of used Handle Value types can often be reduced to a much smaller
Handle Value type set. For example, the type set of a batch of Handle Records belonging to the
TextGrid repository can be reduced to the following set of Handle Values types:
{URL, METADATA URL, FILESIZE, CHECKSUM, PUPDATE, CREATOR, INST, HS ADMIN}
(cf. Figure 5.2).

To exploit such a structure, we have conceived the

HandleRecordsBulk

data structure. It is first of all a container for a Handle Records batch. Moreover, a
HandleRecordsBulk is composed of a set of RecordTypes along with a set of RecordDataSets.
A RecordType includes all unique type identifiers, meaning that the number of RecordTypes to
be less than or equal to the number of Handle Records contained in the batch. The structure of a
RecordType is depicted in Figure 5.12. In principle, it is an ordinary Handle Value without the
data field.
For TextGrid Handle Records, this would result in eight RecordTypes.
A RecordDataSet in turn, is composed of an unique suffix along with a set of TypeDataPairs.
Hence, the number of RecordDataSets equals to the number of Handle Records in the overall
HandleRecordsBulk.
Ultimately, a TypeDataPair is composed of a data field and a type index field. The type index
corresponds to a certain RecordType contained in the set of RecordTypes.
An example for this is provided by Figure 5.13. It provides a representation for the TextGrid
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Handle Record, already depicted in Figure 5.2, complying with our new data model.

HandleRecordsBulk

RecordType

index type permissiontimestamp referencesttl

RecordDataSet

suffix TypeDataPair

data type index

Figure 5.12: Our new HandleRecordsBulk Data Structure.
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Figure 5.13: RecordTypes and RecordDataSets for TextGrid Handle Record from Figure 5.2.

As for the original administration operation, also for this new bulk operation, there is a particular
structure definition for the message body transmission required. This is tackled in the following
subsection.

5.4.4.2 Message Body Serialization

Figure 5.14 illustrates the serialization, including the prefix, of the overall message body of our
new bulk operation. As already indicated in Section 5.4.3.1, the serialized representation deter-
mines the encoding/decoding algorithm within the receiving end (client / Handle server) upon
message transmission/reception.
At the client-side, after the instantiation of a HandleRecordsBulk data object, it is filled with
Handle Records by means of the following method:

add(String suffix, HandleValue [] values)

The prefix is specified at the HandleRecordsBulk data object instantiation.
When this batch Handle Records container is finally provisioned with all the to be administered
Handle Records, it becomes automatically serialized while initiating the sending to the Handle
server. Hence, an individual developer has basically not to deal with the internal RecordTypes
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and RecordDataSets.
The serialization algorithm of these two internal data structures is in principle comparable with
the algorithm for an ordinary Handle Value, which was already described by Figure 5.8.

INT <recordDataSets>INT<prefix> INT <recordTypes>

Figure 5.14: Serialized Message Body of our new OC CREATE HANDLES BULK request.

Finally, the actual HandleRecordsBulk data object is sent with this representation to the primary
Handle server.

5.4.4.3 Server-Side Registration Algorithm

After the retrieval of such a message by the primary Handle server, the message is again decoded
back into a HandleRecordsBulk data object. This step is then followed by the corresponding
registration algorithm, which is shown in Figure 5.15.
The main principle of this new registration algorithm is that the second transactional step, ”Write
To Database (Bulk)”, is only initiated when the first transactional step, ”Insert Transaction (Bulk-
Size)”, has been successfully accomplished for all Handle Records. At each of these transactional
steps, each Handle Record of the HandleRecordsBulk is processed consecutively. After the suc-
cessful processing of the last Handle Record, the overall transactional step is committed. Note that
this new operation also requires the introduction of another operation used to increase the number
of the internal transaction counter. Instead of incrementing the transaction counter one by one,
with the new bulk registration operation, it is directly increased by the batch size. Therefore, we
have additionally implemented the OC GET NEXT BULK TXN ID operation with a OpCode=1009,
which is executed within the first transactional step, ”Insert Transaction IDs (BulkSize)”.
The result of this new procedure is a reduced synchronization overhead between the processing of
individual Handle Records.
Further research is required to evaluate various other possible server-side bulk registration algo-
rithms with the goal to determine a more efficient internal bulk processing algorithm. One possible
approach would be to implement a concurrent processing at each of these transactional steps. This
is, however, beyond the scope of this thesis.

Finally, when all these steps of the new registration algorithm has been successfully accomplished,
the administration of all Handle Records of the HandleRecordsBulk is finished. The operation
is then accomplished with a single message sent to the client containing a success message.

5.5 Evaluation

In this section, we provide an evaluation of our extended version of the Handle protocol (current
version: 2.10). Note that our extension [108] only includes modified or additional source files. To
generate a deployable software package, these source files have to be compiled with the complete
Handle software package provided by CNRI15.

15http://www.handle.net/download hnr.html



111 5.5 Evaluation

Arrived Request

OpCode=900

determine OpCode

[Yes]

[No]

User is 
Authenticated

getAdminInfo

LockAll(Handles)
Force Overwrite 

Flag is Set

[Yes]

Insert Transaction 
IDs (BulkSize)

Write To Database
(Bulk)

UnlockAll(Handles)

[Yes]

send response
[No]

[Yes] response
(HANDLE_ALREADY

_EXISTS)

[No]

User Authentication
[No]

response
(SUCCESS)

doCreateHandlesBulk()

OC_GET_NEXT_BULK_TXN_ID

User Authorization
(for creation)

Is User Authorized

response
(INVAILD_ADMIN)

Handle Already 
Existing

loop through 
Handles

User Authorization
(for update)

Is User Authorized

continue in loop

[Yes]

[No]

Figure 5.15: Algorithm for our new OC CREATE HANDLES BULK operation, which has been imple-
mented into our Handle protocol extension.
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After describing our evaluation setup, we provide an analysis of the measurements, which were
gathered from three different evaluation approaches based on three different workload types.

5.5.1 Evaluation Setup

For the evaluation, we established an experimental setup on the Amazon EC2 cloud as depicted
in Figure 5.16. The setup was comprised of four ”c3.xlarge” instances. Among them, the primary
Handle server, located in Frankfurt (FRA), constitutes the core component of the experimental
setup.
The current Handle server implementation supports the attachment of two different databases:
First, a Berkeley Database (BDB), which is an in-process key-value database. Secondly, a MySQL
database, similar to the one used in the previous chapter. However, in contrast to the previous
chapter, in this evaluation, the MySQL database server was installed on the same host (localhost)
as the primary Handle server. Note that the storage engine of our MySQL database was again
InnoDB, ensuring a transactional processing.
Another aspect with the localhost MySQL database is an accelerated insert time in comparison to
an instance from the (non-localhost) GWDG MySQL Appliance cluster. This is mainly based on
the reduced network latency between the Handle server and the database. But also due to a lower
load on the hosting environment of the database itself. As part of the core GWDG infrastructure,
the GWDG MySQL Appliance cluster is usually subjected to high loads. This finally means that
the usage of the localhost database can be considered as an improvement of the database tier, tier
T3 of the setup from the previous chapter.

Finally, in our current evaluation procedure we made use of two databases, a BDB and a localhost
MySQL database, to examine the differences in the administration performance.

To stress the primary Handle server with appropriate load, we placed two load-generator instances.
One of the load-generators was, such as the primary Handle server, located in Frankfurt (FRA),
where the other one in Ireland (IRE). The purpose of the latter was to determine the impact of the
network latency.
Note that the source code of our load-generator can be found at [109].
Furthermore, a research data repository is usually connected to a PID registration agency, which
is located in its relative geographic vicinity. Therefore, this setup can be considered to reflect the
situation for repositories hosted in Europe.

The last instance, which is also located in Ireland, is a mirror Handle server to replicate the pri-
mary’s database.

All these instances were equipped with our extended Handle protocol implementation, which is
based on the reference implementation of the Handle server software with version 8.1.0.

5.5.2 Workload Generation

The load-generator was implemented to produce three kinds of workload types:

(WL-A) Increasing Concurrency Workload: This workload type was used to investigate the
response time decomposition of the Handle server for the original OC CREATE HANDLE reg-
istration operation. By increasing the amount of registration requests, which are concur-
rently processed in the primary Handle server, this workload type enables the analysis of
the impact of each step of the registration algorithm depicted in Figure 5.9.
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Figure 5.16: Amazon EC2 Evaluation Environment

In addition to the two different databases, MySQL and Berkeley DB, we also used two dif-
ferent authorized users. The first user was an administrative user of the primary Handle
server, whereas the second was a non-administrative user. By means of these two users, it is
possible to determine the performance difference for the different authorization mechanisms
already described in Section 5.4.3.2.
For this workload, only the behavior of the primary Handle server was of interest. There-
fore, only the load-generator located in Frankfurt was used.
Finally, we also provide insight into the corresponding throughput measures to reveal the
maximum concurrency level supported by the Handle server.

(WL-B) Isolated Workload: This type of workload was used to examine the performance of
the registration operations without being interfered by any other concurrent operation. In
this workload, dataset batches of three different sizes (1000, 5000, 10.000) were generated
and registered by means of three different approaches:
In the first approach, each dataset was registered iteratively with the original OC CREATE HANDLE

operation. In the second approach, each dataset batch was divided into five sub-batches of
equal size. All these sub-batches were then processed concurrently, where each dataset in a
sub-batch was the registered in the same manner as in the first approach (iteratively). The
number of five sub-batches is based on the throughput analysis of workload type (WL-A).
As we will see in Section 5.5.3.1, it turned out that the maximum throughput of the Handle
server is achieved for the concurrency level of about n = 5.
In the third approach, the whole batch was registered by means of the new OC CREATE HANDLES BULK

operation.
For each dataset batch, this procedure was repeated five times. Moreover, in this workload
type, the performance of the registration from client point of view was of major interest.
Therefore, both load-generators were involved.

(WL-C) Productive Workload: Finally, in this workload type, the primary Handle server was
subjected to a request mixture based on the productive workload. This is especially useful
to investigate the impact of the new OC CREATE HANDLES BULK operation onto the system’s
overall stability. Therefore, only the load-generator located in Frankfurt was used.
Note that for generating productive workload, we analyzed the workload of the PID systems
offered by GWDG.
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It should be noted, that in each workload type, the primary Handle server was stressed with real
world datasets extracted from the databases of GWDG PID systems.

5.5.3 Measurements

In the following, we investigate the measurements gathered in each of three aforementioned work-
load type runs.

5.5.3.1 Workload Type WL-A

The response time decomposition of the primary Handle server for the OC CREATE HANDLE

operation is depicted in Figure 5.17. The bars with a red hue denote the measurements
with the administrative user ”0.NA/21.T11992:index=300”. In contrast to that, the bars
with a yellow/orange hue correspond to the measurements with the non-administrative user
”21.T11992/USER01:index=1”, which belongs to the group of authorized users specified by
the Handle ”21.T11992/USERLIST:index=200”.
Hence, to authorize the user ”21.T11992/USER01:index=1”, it is necessary to retrieve the
Handle ”21.T11992/USERLIST” stored in the database of the primary Handle server.
As can be seen in Figure 5.19, for our prefix used for the evaluation, there are four groups
of authorized users (HS ADMIN-typed Handle Values). Thus, the authorization algorithm starts
with ”0.NA/21.ADMINLIST” and since the user ”21.T11992/USER01:index=1” is member of
”21.T11992/USERLIST”, it terminates at this group Handle.

From Figure 5.17, we can see that the response time of the Handle server is increasing with the
concurrency level. We can also note that, except the response times in the orange colored bars, all
remaining response times are dominated by the processing times of the replication system and the
database. Remember that these steps are highlighted as black boxes in the registration algorithm
illustrated in Figure 5.9.
The response times with the non-administrative user ”21.T11992/USER01:index=1” are always
longer than with the administrative user ”0.NA/21.T11992:index=300”. However, with the
BDB, the difference is only minimal. The response times with the BDB are also always shorter
than with the MySQL database, which is based on the fact that it is running under exactly the same
process as the primary Handle server, wherefore the BDB is also called a ”in-process” database.

In contrast to the measurements from the previous chapter, in this measurements, it is the trans-
actional step to provision the replication system of the primary Handle server which increasingly
dominates, again except the orange bars, the response time. In the previous chapter, it was the
database.
We assume that this is mainly based on the localhost MySQL database. The accelerated process-
ing time of the localhost MySQL database leads to an increased load concentration in the Handle
server itself, causing its internal processing time to increase rapidly.

However, the response times of the registration requests submitted with the non-administrative
user to the Handle server attached to the MySQL database (orange bars) are increasingly dom-
inated by the processing times of the authorization procedure. Note that the contribution of the
authorization procedure is marked as double hatches. Also the step to check whether the to be
registered Handle-PID is already existing in the database (area with black stars), becomes increas-
ingly significant with the non-administrative user in the MySQL database attached Handle server.
This step corresponds to the box with the red hue in Figure 5.9. For the BDB measurements, the
contribution of this step is barely recognizable on the respective bars, which is also true for the
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MySQL measurements with the administrative user.
A comparison of the response times with the MySQL database (administrative and non-
administrative), reveals that with the administrative user (red bars), the processing time of
authorization procedure becomes negligible, whereas the processing times of the replication
system become dominating. With the non-administrative user (orange bars), the processing times
of the replication system are significantly shorter than with the administrative user. This is based
on the load damping effect of the authorization procedure with non-administrative user, which
leads the load to be shifted from the replication system into the authorization procedure.

Finally, we have seen that in particular the expensive transactional steps (replication system
and database), lead to a serious performance degradation of the original registration operation
OC CREATE HANDLE. With the non-administrative user, the response time of the MySQL database
attached Handle server (orange bars) is also mainly composed of the remaining database involving
steps (existence check, authorization) in addition to the contribution of the replication system and
the writing into the database.
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Figure 5.17: Response time decomposition for increasing concurrency level for the original
OC CREATE HANDLE operation. The bars are composed of the following contribu-
tions: database (db), replication system (itrans), authorization (auth), existence check
(exis), Handle server overall response time (HS).
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Figure 5.18: Throughput for increasing concurrency level for the OC CREATE HANDLE operation.
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Figure 5.19: Prefix Handle Record of 0.NA/21.T11992
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Method
BulkSize:1,000 BulkSize:5,000 BulkSize:10,000

MySQL BDB MySQL BDB MySQL BDB
iterative 97 116 104 124 99 126
parallel 186 182 188 205 168 200
bulk 722 16726 755 24639 678 17362

Table 5.2: FRA→FRA Measurements: Throughput [(Handles)/(Sec)] comparison between
Handle servers attached to MySQL and BDB.

The corresponding throughput values are depicted in Figure 5.18. We can see that for the BDB
attached Handle servers the maximum throughput is about 200 [(Handles)/(Sec)], which was
achieved for the concurrency level n ≈ 5. Whereas for the MySQL attached Handle server, the
maximum throughput is approximately 175 [(Handles)/(Sec)], which was also achieved for n≈ 5.

Finally, our new bulk operation enables to significantly improve the throughput of the Handle
server, which is demonstrated in the following subsection.

5.5.3.2 Workload Type WL-B

In this section, we investigate and compare the performance of the new OC CREATE HANDLES BULK

operation with the original registration operation offered by the Handle protocol. Note that in the
remainder of this chapter, we only consider measurements gathered with the administrative user.

The achieved speedup factors for the load-generator located in Frankfurt (FRA→FRA) are de-
picted in Figure 5.20, whereby the underlying measurements are shown in Figure 5.21 and in
Table 5.2.
If we only consider the ratio between the throughputs of the bulk and parallel registration method
(Bulk/Parallel), it reveals that by means of the new OC CREATE HANDLES BULK operation, we have
achieved speedup factor up to 120. With the MySQL database, however, the speedup factor is only
about 4, which, nevertheless, still constitutes a significant speedup.

Usually, research data repositories register new PIDs in an iterative manner. The speedup factor
for this situation is even up to 200 (Bulk/Iterative).
Furthermore, while Figure 5.21(a) illustrates the throughput, Figure 5.21(b) reveals the per Handle
Record response time and its corresponding decomposition in logarithmic scale.

We can see that the tremendous difference in the speedup factors between MySQL and BDB for
the new bulk operation is caused by the processing times of the databases. With the MySQL
attached Handle server, the processing times of the database (left blue bars) is always within the
range of 1×100 and 2×100 milliseconds. Whereas with the BDB attached Handle server (right
blue bars), they are clearly always only in the range of 1×10−2 and 2×10−1 milliseconds.

In order to determine the impact of network latency onto the registration performance, we also
performed the same workload type from the second load-generator, which was located in Ireland.
In the following, due to the superior performance with the BDB, we only consider measurements
with the BDB attached primary Handle server. The following measurements therefore represent a
comparison between the performance of the load-generator located in Frankfurt and Ireland.
Figure 5.22 shows that for the bulk size BZ = 1,000, there is a significant performance loss in
the throughput due to the network latency between the load-generator located in Ireland and the
primary Handle server located in Frankfurt. Moreover, from the corresponding response time
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Figure 5.20: FRA→FRA Measurements: Speedup factors in logarithmic scale.

(a)

(b)

MySQL
FRA

BDB
FRA

MySQL
FRA

MySQL
FRA

BDB
FRA

BDB
FRA

BZ=1,000 BZ=5,000 BZ=10,000

m
s

re
sp

on
se

 ti
m

e

db itrans HSlatency

EPIC
EPICiterative EPIC

EPICparallel EPIC
EPICbulk

FRA->FRA

th
ro

ug
hp

ut
H
an
dl
es

S
ec

Figure 5.21: FRA→FRA Measurements: (a) Throughput in logarithmic scale for different bulk
sizes, registration methods and databases attached to Handle server. (b) Correspond-
ing response time decomposition per Handle Record creation, with the following
contributions: database (db), replication system (itrans), latency, Handle server (HS).
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Method
BulkSize:1,000 BulkSize:5,000 BulkSize:10,000
IRE FRA IRE FRA IRE FRA

iterative 19 116 19 124 19 126
parallel 95 182 95 205 95 200
bulk 5220 16726 12879 24639 15569 17362

Table 5.3: IRE→FRA Measurements: Throughput [(Handles)/(Sec)] comparison between
Handle servers attached to BDB and different client locations

measurements depicted in Figure 5.23(b), we can clearly see that the response times for the itera-
tive and parallel registration method get superposed with the network latency. The impact of the
network latency even dominates the overall response times.
Interesting is that the response times of the iterative and parallel method for the (IRE→FRA)
measurements are always almost identical. In contrast to that, for the load-generator located in
Frankfurt, the response times of the parallel registration method are always longer than for the
respective iterative method.
In comparison to the FRA load-generator, requests which are concurrently sent by the IRE load-
generator have usually a significantly longer network path traversal until they arrive at the primary
Handle server in Frankfurt. A longer distance usually also implies a wider network path variety
with different round trip times. Therefore, we assume that for our applied concurrency level, there
was no concurrent processing at the primary Handle server due to the subsequent arrival times of
the submitted requests. In other words, our assumption is that concurrently submitted requests
arrived subsequently at the primary Handle server, which means that the network also functioned
as a load damper.

However, for the new bulk operation, the impact of the network latency became negligible for
increasing bulk size. This has resulted the speedup factors (Bulk/Iterative) and (Bulk/Parallel) to
become even larger. The maximum speedup between the new bulk and the original registration
operation is about 800, whereas the ratio between (Bulk/Parallel) has its maximum at about 160.
A comparison of the throughput in Figure 5.23(a), however reveals that there is also a significant
slowdown due to the network latency. The maximum throughput for the FRA load-generator is
24,639 [(Handles)/(Sec)], while for the IRE load-generator, it is only 15,569 [(Handles)/(Sec)].
Thus, due to network latency, the throughput of the new bulk operation was approximately halved.
The slowdown factor for the iterative registration methods is about six and, for the parallel regis-
tration methods it was also halved.

Finally, we have seen that our new bulk operation has enabled to achieve enormous performance
gains.

5.5.3.3 Workload Type WL-C

In this section, we analyze the behavior of the primary Handle server equipped with our extended
Handle protocol implementation for productive workload.

The analysis of the workload of the various PID systems provided by the GWDG revealed the
following frequency of operations.

• single OC RESOLUTION operation: every 1.5 seconds
• single OC CREATE HANDLE operations: every 2 seconds
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Figure 5.22: IRE→FRA Measurements: Speedup Factors in logarithmic scale.
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Figure 5.23: IRE→FRA Measurements: (a) Throughput in logarithmic scale for different bulk
sizes, registration methods and databases attached to Handle server. (b) Correspond-
ing response time decomposition per Handle Record creation, with the following
contributions: database (db), replication system (itrans), latency, Handle server (HS).
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• batch of OC CREATE HANDLE operations: These are regular registration operations, which
can be grouped into one batch. For these requests, the batch size is often in the range from
800 and 10,000 handles. However, in most cases the batch size is about 1,000.
Very often such a group of registration operations can be grouped into an one-hour-phase.
Within such an one-hour-phase, between two batches of registration operations, there
is often an interval of 20 seconds in which only single operations (OC RESOLUTION,
OC CREATE HANDLE) appear.
However, often there are also several one-hour-phases, in which only single operations
occur, which can not be grouped into a particular batch.
Finally, the concurrency level of the single operations is usually around five.

Based on this analysis, in our load-generator, the frequency of a resolution and a single regis-
tration operation was set accordingly. In order to determine the stability of the system with the
new bulk operation, approximately every ten seconds a OC CREATE HANDLES BULK operation with
batch size of 1,000 Handle Records was issued. In addition, another OC CREATE HANDLES BULK

operation with a randomly varying batch size ranging from 1,000 to 10,000 Handle Records was
issued every five to 40 seconds.
Ultimately, the primary Handle server was additionally frequently stressed with parallel registra-
tion requests.

The objectives for such an operation mixture were to examine the following metrics:

• Response time behavior of single registration operations,
• Response time behavior of resolution requests,
• Throughput behavior of the new bulk registration operation.

In our measurements, gathered from this workload type, we could not observe any significant
changes in the response time for the resolution operation. The overall response time for the reso-
lution operation was always around a single millisecond, which is also confirmed by the measure-
ments for the BDB attached primary Handle server in Figure 5.17. As can be seen, the response
times for the non-administrative user (yellow bars) are only minimally longer than for the adminis-
trative user (lighter red bars), which is based on the additional reading access required to authorize
the non-administrative user. Hence, this reading access can be considered as to be representative
for a resolution request.

In contrast to that, for the registration operations, there were significant effects, when a registration
operation got interfered by another such an operation.
Figure 5.24(a) shows a boxplot of the response times for the OC CREATE HANDLE operation.
Whereas Figure 5.24(b) depicts a boxplot of the throughputs for the new OC CREATE HANDLES BULK

operation. In both boxplots, the boxes in the greyed area represent a subset of the respective ”in-
terfered” box to the left.
Before we proceed with the actual analysis of these boxplots, we first provide a brief description
of them:

ISOLATED: The boxes with this label, contain the response times / throughputs, when the sys-
tem was processing only a single OC CREATE HANDLE / OC CREATE HANDLES BULK op-
eration.

INTERFERED: These boxes contain the response times / throughputs, when the system was
processing multiple operation concurrently.
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CB: These boxes contain the response times / throughputs, when the system was concurrently
processing a single registration and a single bulk registration operation.

BB: Boxes labeled like this, contain the throughputs, when the system was processing two bulk
registration operations.

OVERALL: These boxes, contain all response times / throughputs measured in the one-hour-
phase measurement phase.

(b)
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Figure 5.24: Operation interference measurements:
(a) Response time behavior of OC CREATE HANDLE operation.
(b) Throughput behavior of new OC CREATE HANDLES BULK operation.

Finally, we continue with the analysis of the measurements from Figure 5.24.

In comparison to the respective ”isolated” state, there was a significant impact on the response time
of the OC CREATE HANDLE operation and on the throughput of the new OC CREATE HANDLES BULK

operation, when such an operation was interfered by another administrative operation.
Even in the particular case, when a single registration operation was processed concurrently with
a bulk registration operation, labeled as ”CB”, for both operations, there was a significant slow-
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down.
In that particular state, for the response time of the single registration operation, the slowdown
factor was in average about five. In contrast to that, for the throughput of the bulk operation, it
was in average around 1.4.
In the state labeled as ”BB”, in which two bulk operations were processed concurrently, the slow-
down factor for the throughput was about 2.

Although, during our one-our-phase, there were significant outliers, especially for the OC CREATE HANDLES BULK

operation, the extended primary Handle server was still operating properly. This means that by
subjecting the primary Handle server with a load level exceeding the productive workload, we
could not achieve a destabilization of the bulk-enabled Handle server. This is also confirmed by
Figure 5.25, which shows 1,800 successful single registration operations during our one-hour-
phase. Remind that the single registration operation was issued in a 2-second frequency, hence
2sec×1800 = 3600sec =̂ 1h.

m
s

re
sp

on
se

 ti
m

e

request ID

Figure 5.25: Response times of OC CREATE HANDLE operations during the one-hour-phase.

5.5.4 Summary

In Section 4.5.7 of the previous chapter, we have assumed the Handle server and its working
principle with the underlying database to pose a bottleneck. This assumption has been confirmed
by the measurements of this chapter. By extending the Handle protocol and the Handle server
implementation with a bulk administration operation, we have achieved a speedup factor up to
160 for Handle Record administration.

Although it turned out, contrary to the previous chapter (Chapter 4), that in the setup of this
chapter, the response time for administering Handle Records was dominated by the processing
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time of the Handle server itself (cf. Figure 5.17), the importance of the underlying database has
been again revealed during the evaluation section, especially with the tremendous difference of the
speedup factors with the MySQL and BDB attached bulk-enabled Handle server. Whereas with
BDB the maximum speedup factor was 160, with the MySQL database, it was only about 4, which,
however, can still be considered as an enormous improvement. And exactly this performance
difference demonstrates again the impact of the database onto the PID administration performance.
Nevertheless, the performance analysis of the original Handle server, conducted in this chapter,
has also revealed that specific internal components of the Handle server itself, can also cause
a significant performance degradation of the overall PID record administration. Therefore, for
future research efforts, we propose to revise the internal processing mechanism of the Handle
server, which can also lead to a further performance gain with our new bulk operation.

Finally, with our new bulk administration operation, for one million PIDs, we have the following
extrapolation:

max(IRE→ FRA)⇒ 15569 [(Handles)/(Sec)]

max(FRA→ FRA)⇒ 24639 [(Handles)/(Sec)]

=⇒ 1,000,000 PIDs =̂ 40−64Sec

In contrast to that, with the parallelized single registration operation, we would have:

max(IRE→ FRA)⇒ 95 [(Handles)/(Sec)]

max(FRA→ FRA)⇒ 205 [(Handles)/(Sec)]

=⇒ 1,000,000 PIDs =̂ 4878−10525Sec

Hence, our Handle protocol extension provides a tremendous acceleration of PID record manage-
ment. This extension can also be beneficial for other important PID systems, which are based on
the Handle System, such as DOI and ePIC.



Chapter6
High-Performance Persistent Identifier
Resolution

So far, in this thesis the objective was mainly on the acceleration of the administration of PIDs.
In contrast to that, in this chapter, the focus is devoted on the performance improvement of PID
resolution.
To achieve an improvement of the resolution time of Handle-PIDs, we propose to resolve Handle-
PIDs through DNS traffic. This is based on the fact that number of DNS proxy resolvers is much
higher than the count of Handle proxy resolvers. This huge number of DNS proxy resolvers
enables to reduce the latency between a requesting application and the resolver (cf. Figure 6.1).
Starting point of our discussion is a description of the resolution time composition of Handle-
PIDs. This is followed by an outline of well-established techniques applied in the DNS system
for resolution acceleration. Although, these techniques are also applied in the Handle System, due
to the small number of Handle proxy resolvers, they are less efficient than in the DNS system.
Therefore, we present a solution, which enables a faster Handle-PID resolution through DNS
proxy resolvers.

DNS
Resolver
DNS

ResolverDNS
Resolver

Naming 
Authority

(PID System)
DNS

Resolver
PID

Resolver PX DX

Figure 6.1: Focus in this chapter: Accelerating the resolution of PIDs by using DNS proxy re-
solvers. This is based on the vast number of globally distributed DNS proxy resolvers.
For this, a PID system has to be extended in order to be able to interpret DNS queries
(DX), which is therefore tackled in this chapter.

The base of our approach has been published in a conference paper at the 2017 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS), in Prague, Czech Republic [110].
In this thesis, however, we provide a revised and extended version.

6.1 Resolution Time Composition

This section describes the composition of the resolution times for DNS domain names and Handle-
PIDs.



High-Performance Persistent Identifier Resolution 126

Due to the global distribution and the hierarchical architecture, the resolution of PIDs is usually a
latency problem. As it is the case for DNS, the resolution is accomplished by a node traversing,
starting from the root node and terminating at a certain responsible node. Figure 6.2 and Fig-
ure 6.3 provide an illustration of the resolution procedures for domain names and Handle-PIDs
respectively:
To resolve a domain name into its IP-address, an application usually starts by querying its operat-
ing system’s stub resolver, depicted as a green box in Figure 6.2. The stub resolver redirects the
resolution request to a pre-configured DNS proxy resolver. Such a proxy resolver then traverses
the hierarchical global DNS system until it reaches a DNS server, which can provide the corre-
sponding DNS Resource Record.
To resolve a Handle-PID, an application has to submit the resolution request to the Global Proxy
Resolver (GPR) (hdl.handle.net), which then traverses the hierarchical architecture of the Handle
System. Remind that the resolution procedure for the Handle System was already discussed in
Section 3.4. Also an improvement of the resolution time was addressed in that section. However,
the discussion was constrained on the resolution of the specific group of Research Data Silo Iden-
tifier (DSID)-prefixed PIDs. In contrast to that, in this chapter, we address a much broader group
of PIDs.

The resolution time composition in both systems, DNS and Handle, includes the communication
overhead between the involved nodes. For the purpose of clarity, in Figure 6.2 and Figure 6.3,
each communication overhead is depicted as directed, numbered graph, while the nodes are
represented by the grey boxes.
The communication overhead itself is usually mainly composed of the network latency be-
tween the communicating nodes. A resolution procedure involving nodes, with high inter-
communication overheads, therefore obviously results in a longer overall resolution time. At the
same time, the contributions of the actual processing times of the involved nodes, usually become
negligible. This implies, that an improvement at the individual nodes would have only a minimal
impact on the overall resolution time.

Another important aspect is that for domain name and Handle-PID resolution, an application has to
involve a particular proxy resolver. The difference between DNS and Handle resolution is the fact
that for DNS there a myriad of publicly available DNS proxy resolvers, while the GPR currently
only consists of five globally distributed proxy servers.

Ultimately, in this section we have pointed out that the resolution of domain names and PIDs
is a network latency problem, rather than a data processing time problem. This means that the
improvement of individual servers will not lead to a significant acceleration of the resolution time.
Instead, only a combination of different techniques can lead to a notable improvement. These
techniques are therefore discussed in the following section.

6.2 Resolution Time Acceleration Techniques

In this section, we provide the base for our idea to resolve Handle-PIDs through DNS proxy
resolvers. Therefore, we outline several techniques, which are applied to accelerate domain name
resolution. In addition, we examine the efficiency of these techniques to improve the resolution
time of Handle-PID. We will see that their efficiency in the DNS system is essentially based on
the high density of DNS proxy resolvers.
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6.2.1 Caching

Caching is primarily applied to hold data in faster, and usually also smaller, storage. However,
in the particular case of DNS, it is applied to shorten the traversal path. This is achieved by tem-
porarily store resolution responses from previous requests at the traversed nodes. A later resolution
request for the same domain name can then be answered directly from a particular node, without
the need to traverse until the responsible nameserver.
Thus, for example, caching at a DNS proxy resolver can enable the resolution request to be di-
rectly responded by the proxy resolver itself. The resolution time then would be composed of the
communication overhead between the requestor and the proxy resolver (Figure 6.2: step 1 and
8 ) including an internal processing time.

Since caching is a well established technique for several use cases, also in the Handle System it
finds its usage.

6.2.2 Load Balancing

In order to ensure high availability and robustness, an individual DNS zone usually consists of
multiple nameservers, on which the incoming resolution requests are distributed on. The applica-
tion of this technique usually results in the reduction of the internal processing times of the name-
servers, which is based on the reduced load. Note that we already discussed the load-dependent
processing times in Chapter 4.

Also this technique is applied in the Handle System, since an individual Local Handle Service
(LHS) is often composed of a primary Handle server and multiple mirror Handle servers.

6.2.3 Anycasting

The technique of anycast is often used to redirect the requests to the nearest possible DNS server.
Anycast is especially suitable for zones, which consists of multiple geographically distributed
nameservers. The Top Level Domains (TLDs) zones are a typical example for that.
The ”de.”-TLD zone for example, consists of many nameservers, which are globally distributed.
A request submitted by an application, which is hosted in Europe will be directed to the European
cluster of nameservers responsible for the ”de.” zone. Whereas a request originating from the USA
will be answered by the nameservers located in the USA.

In anycast, multiple nodes are reachable by exactly the same IP-address. As an example, the public
Google DNS resolver is reachable by the IP-address 8.8.8.8. However, since the public Google
DNS proxy resolver is globally distributed among the world-wide Google data centers, a request
of an individual client will be directed to one of the nearest Google DNS resolvers.
The request routing decision in anycast is made at the network switch level, which choose the
particular path, which corresponds to the shortest hop count (number of to be traversed switches)
among a set of possible other paths. However, the efficiency of anycasting is also highly dependent
on the global distribution of the nodes, which are addressed by a single IP-address.

In the Handle System, there is currently no significant use of anycasting. It is currently only
applied within a testbed of the GPR. However, it is less efficient, because of the already indicated
low number of GPR servers.
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6.2.4 Content Distribution Networks

In content distribution networks (CDNs), however, a request routing solely relying on anycasting
is usually not efficient enough. This is due to the fact, that static routing decisions based on the hop
count, do not cover the dynamic load behavior in CDNs. Therefore, in CDNs, special DNS servers
( [111]) have proven to provide a reliable request routing for redirecting an individual requestor
to the current most efficient content server. These special DNS servers are usually equipped with
probing information, collected from previous requests. Based on these probing information, these
special DNS servers enable to apply various complex routing decision algorithms, which take far
more parameters than only the sole hop count into account.

The Handle System is currently not deployed within a CDN. However, a CDN can also not be
considered as a reasonable platform to improve the resolution time of Handle-PID. The request
routing based on DNS would again cause a considerable overhead into the overall Handle-PID
resolution time. In addition, the usage of a CDN is often associated with high costs.

6.2.5 Proxy Resolver Latency Reduction

Proxy resolver latency reduction means to reduce the network latency between a requesting appli-
cation and the proxy resolver.
In DNS, there are myriads of publicly available proxy resolvers offered by specific service
providers, which also apply anycasting for their cluster of proxy resolvers. Moreover, institutes
belonging to a larger organization usually also have their own domain name zone including a DNS
proxy resolver, which can be used by all the participants within the internal network infrastructure.
A similar situation can be found for the private Internet connections, where individual users are
connected with the Internet via the network provided by a specific Internet Service Provider (ISP).
Also within such a network, there are multiple DNS proxy resolvers provided by the ISP.
This means that an individual application can usually choose a DNS proxy resolver in its close
vicinity (in terms of network latency).

As already mentioned, the number of proxy resolvers within the Handle System is currently only
five. Therefore, in contrast to the DNS system, an individual application can often not choose a
Handle proxy resolver with a low network latency.
The result is that from the perspective of an individual application, in particular the technique of
caching at the Handle proxy resolvers has a usually a much lower efficiency than with the DNS
proxy resolvers, which is also true for the technique of anycasting.
Therefore, to globally reduce the communication overhead between an application and the GPR,
it is first of all necessary to increase the number of globally distributed proxy resolvers. This
could be done by a manual setup, which is theoretically possible but associated with high costs
and administration efforts.
The next option would be to make use of an already publicly available and globally widespread
resolution infrastructure: the DNS proxy resolvers. The great benefit of this option is that one
can make use of the myriad of globally available public DNS proxy resolvers without additional
costs and administrative overheads. The result would be an increased efficiency of the technique
of caching at the proxy resolver for Handle-PID resolution. The downside, however, is that it
requires a translation process between the Handle and DNS protocol.

Finally, in this chapter, we emphasize on:

• The realization of Handle-PID resolution through DNS proxy resolver.
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Therefore, the following section discusses the possibilities to enable this approach.

6.3 Handle-PID Resolution over DNS Approach

In this section, we provide an abstract description of the two options, which enable the resolution
of Handle-PIDs through DNS proxy resolvers. Note that a concrete realization is presented in the
subsequent section, Section 6.4.

6.3.1 Option (A): Embedding DNS Proxy Resolvers into the Handle System

For this option, the public DNS proxy resolvers have to be extended with an additional mod-
ule, which first detects resolution requests containing Handle-PIDs and secondly, implements the
Handle protocol in order to be able to communicate within the Handle System to retrieve the cor-
responding Handle Record.
The main obstacle of this option is based on the fact that there are various different, and often
proprietary implementations of DNS proxy resolvers. For the realization of our proposed idea, it
is necessary that all these publicly available DNS proxy resolvers have to be upgraded with such a
Handle protocol module. This might be theoretically possible but it is rather unlikely in practice.

6.3.2 Option (B): Embedding the Handle System into the DNS System

With this option, excluding the GPR, all the LHS and the Global Handle Registry (GHR), have to
extended with a DNS protocol module, which enables to operate with DNS traffic.
In contrast to the DNS system, all components of the Handle System are based on a common
software package: the reference implementation of the Handle protocol. Thus, by extending this
software package, it is by far easier to achieve a global adoption of this option. Furthermore, there
are no modifications in the DNS proxy resolvers required. Another advantage of this approach is
that the GPR basically becomes obsolete, which is beneficial for the CNRI16, the organization who
controls the servers of the GPR. Instead, the CNRI could use the freed-up resources to increase
the number of GHR servers.
Due to this major advantages with this option, in the remaining we focus on its technical imple-
mentation.

6.4 Implementation

In this section, we consider the implementation of option (B) for enabling Handle-PID resolution
over DNS traffic. The realization of this approach covers the following four parts:

(1) Handle server with DNS interface,

(2) Mapping of Handle Values into DNS Resource Records,

(3) Representation of Handle-PIDs as domain names,

(4) Appropriate resolution procedure,

for which we provide insight in the following.

16http://www.cnri.reston.va.us
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6.4.1 Handle Server with DNS Interface

Since our idea is to embed the Handle System into the DNS system, it is necessary to extend the
Handle servers with a DNS interface.
It should be noted that the Handle software package already includes a DNS interface implemen-
tation, which can be enabled in Handle servers for listening on DNS traffic. However, this DNS
interface implementation is intended to enable Handle servers to act as ordinary DNS nameservers.
It does not enable the resolution of ordinary Handle Records over DNS traffic, which is our objec-
tive. This stems from the fact that a DNS Resource Record is limited to a specific set of permitted
data types, whereas Handle Records can contain Handle Values with any type of data. A deeper
discussion on this aspect is provided in the following subsections.
With this built-in DNS interface, original DNS Resource Records can be stored as Handle Values
in the attached database of the Handle server. Only Handle Values containing real DNS Resource
Records can be resolved through this interface. In contrast to that, our approach is to enable the
resolution of any type of Handle Value.
The key challenge for this endeavor is to transform Handle Values containing arbitrary data types
into Resource Records with a limited ability for data typing.

Nevertheless, we make use of the already built-in DNS interface for request and response en-
coding/decoding and transmission. The algorithm, however, for requests received at the DNS
interface has to be modified in order to realize our proposed approach, which is also discussed in
the following subsections.

6.4.2 DNS Resource Record Types

ResourceRecord
typename rdatattl class

Figure 6.4: Generic DNS Resource Record

The composition of a DNS Resource Record is depicted in Figure 6.4. As already indicated in
Section 5.2.3, a Resource Record can basically be reduced to a key-value pair, where the type and
rdata fields represent the key and the data respectively.
Initially, DNS has been conceived for providing human-friendly addressing for computer hosts,
which are actually addressed by IP-addresses. Therefore, most DNS Resource Records contain
data, which is specifically related with computer hosts. Among them, the Resource Record with
the type ”A” can be considered as the most common one, since its corresponding data field contain
an IP-address.

Regarding the core function to store a key-value pair, a Handle Value is pretty similar to a Resource
Record. However, the main difference between both data structures is that Resource Records are
limited to the data type set [112], which is controlled by the Internet Assigned Numbers Author-
ity (IANA), whereas Handle Values are not restricted on a specific data type set.
None of the permitted Resource Record types is specifically designated to hold descriptive in-
formation about digital datasets. This ability of providing meta information, however, would
transform DNS from a simple resolution system into a real global data dissemination system.

To realize our approach, either the permitted set of Resource Records has to be extended by addi-
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tional types for data dissemination, or it is required to exploit specific types of the permitted set.
To core problem of extending the set of permitted types is based on the requirement that public
DNS resolvers would also have to be upgraded to support these new types. This is rather chal-
lenging, since many public DNS resolvers even lack in the support of all the currently permitted
types. Therefore, we emphasize on the exploitation of already permitted types. For that, we have
identified a specific set of relevant Resource Record types:

NAPTR Resource Records: NAPTR typed Resource Records have been introduced to enable
DNS to act as a rule database for the Dynamic Delegation Discovery System (DDDS) [113].
DDDS is basically an abstract concept for applications to enable resource access through
applying rules on input strings. The rules are provided by the NAPTR Resource Records,
which are then applied by the requesting DDDS applications to compose the locators of
resources.
Hence, DDDS applications are compelled to implement a specific algorithm in order to
apply the rules contained in NAPTR Resource Records. In contrast to that, in ordinary
PID systems, the locator is retrieved directly through the resolution process. Furthermore,
with this Resource Record type, it is not possible to retrieve individual metadata about the
datasets.

SRV Resource Records: SRV Resource Records are used to describe the available services on
hosts. They allow to specify the service, its protocols and the corresponding ports on which
the service is listening on at the host. Hence, this Resource Record type does not at all
enable to address individual datasets.

URI Resource Records: The URI Resource Record is an alternative to the SRV Resource
Record. Although, it allows to hold the URI for a dataset, it lacks in the support of revealing
the corresponding metadata.

TXT Resource Records: The TXT Resource Record is intended to transfer arbitrary textual
information with DNS traffic. However, in principle it is also possible to transfer any kind
of data encoded as a character string. As such, its pretty well suitable for transferring Handle
Values.

Finally, among the listed types, the TXT Resource Record type constitutes the most appropriate
option. Another beneficial aspect with this type is that it is widely supported by the public DNS
proxy resolvers.
The idea of using TXT Resource Records to store key-value pairs is actually not new, as can be
seen by [114]. However, so far it has been never considered in conjunction with PIDs.

Ultimately, in the following we provide the actual mapping from a Handle Value into a TXT typed
Resource Record.

6.4.3 Mapping of Handle Values into DNS Resource Records

The working principle of our algorithm for mapping a Handle Value into a TXT type Resource
Records is depicted in Figure 6.5. In addition, a schematization of the algorithm, which we have
implemented into the Handle server is provided by Figure 6.6.

In principle, the mapping of Handle Values into DNS Resource Records constitutes the core part
of our approach. Since we have identified the TXT typed Resource Record as the most reasonable
option, each Handle Value is mapped into such a Resource Record. The resulting data field (rdata)
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ResourceRecord

TXTdnsHandle “type=data“ttl class

HandleValue

typeindex data ttl timestamp permission references

Figure 6.5: Working principle of our implemented mapping algorithm to map Handle Values into
TXT typed Resource Records.

then incorporates both, the Handle Value type and its corresponding data field, which are separated
by a equal character ”=”. This is illustrated in the right most (yellow) field in Figure 6.5.
The ttl field of a Handle Value is mapped into the corresponding ttl field of the Resource Record
(cf. Figure 6.5).
An important aspect at this mapping algorithm is it that Handle Records may also contain Handle
Values, which are not allowed for public consumption. All these restricted Handle Values, which
are recognized by the permission field, are discarded at the mapping algorithm. Moreover, since a
Handle Record can contain multiple Handle Values, the index field is actually used as an unique
internal identifier within the Handle Record. This, however, is not foreseen for Resource Records
and therefore, the index field is also not considered in the mapping algorithm.
The name field of the Resource Record is substituted by the domain name representation of the
corresponding Handle-PID string. This is dedicatedly addressed in the next subsection.

6.4.4 Representation of Handle-PIDs as Domain Names

Another important aspect for the resolution of Handle-PIDs through DNS traffic is their repre-
sentation as domain names. The working principle of our transformation algorithm is depicted in
Figure 6.7. The name field of the corresponding Resource Record is denoted as dnsHandle (cf.
Figure 6.5).
The deduction of this algorithm is based on the discussion of the following three subsections:

6.4.4.1 Character Set

A Handle-PID can consist of any character from the Unicode character set. In contrast to that, a
domain name can only contain letters from A to Z, the digits from 0 to 9, a hyphen ”-” and a dot
”.”, which is used as a separator.
In order to represent each possible Handle-PID as a domain name, there is an additional encoding
algorithm necessary. For internationalized domain names (IDNs), which also consist of Uni-
code characters, there is already such an algorithm available to convert them into regular domain
names. This conversion algorithm could be extended to encode a general Handle-PID as a regu-
lar domain name. Since, Handle-PID strings are usually composed of known identifiers, such as
UUIDs, which are representable as regular domain names without additional encoding efforts, in
this thesis, we only focus on such Handle-PIDs. For general Handle-PIDs, there is future research
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doResolution(
Handle)

[Yes]

return 
ResourceRecord 

Array

[No]

is HandleValue
public

loop through
HandleValues

compose TXT 
ResourceRecord

rdata=
“hType=hData“

ttl=hTTL

extract hType, 
hData, hTTL

addTo
ResourceRecord

Array

discard
continue in loop

Figure 6.6: Our mapping algorithm to generate TXT typed Resource Records from Handle Values
implemented into Handle servers.

Handle-PID:

dnsHandle:

21.T11996/8246adba-163e5aee7b5d

8246adba-163e5aee7b5d.T11996.21.handle.pid.

Figure 6.7: Working principle of our implemented domain name representation algorithm for
Handle-PIDs.
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necessary in order to deduce an appropriate conversion algorithm.

6.4.4.2 Namespace Hierarchy

Domain names are composed as hierarchically dot separated labels. From an individual label
point of view the label next to the right denotes its parent label. For example, in the domain name
”handle.gwdg.de.” the ”gwdg” label represents the parent of the ”handle” label.
In Handle-PIDs in turn, also the prefix incorporates hierarchically dot separated labels. In contrast
to domain names, in the prefix, the rightmost label denotes the lowest level of the hierarchy.
Moreover, the prefix is terminated by the slash character ”/”, which is followed by the suffix. For
example, in the Handle-PID ”21.T11996/8246adba-163e5aee7b5d”, the ”21” label constitutes the
parent for the ”T11996” label, where ”8246adba-163e5aee7b5d” represents the suffix.
In summary, this means that a Handle-PID incorporates two different separators: dots for the prefix
and a slash to distinguish the suffix. In order to represent a Handle-PID as a domain name, it is
first of all necessary to replace the slash by a character which is allowed for domain names. In our
implementation, the slash is replaced by a dot.
A further aspect is that the resulting Handle-PID has to reversed to preserve the correct hierarchy
at the resolution procedure through a DNS proxy resolver (cf. Figure 6.7).

6.4.4.3 Global Handle DNS Zone

For the resolution of both, domain names and Handle-PIDs, it is necessary to traverse to the re-
sponsible nameserver or LHS respectively.
The prefix of a Handle-PID is controlled at the GHR, which holds the address of the (next) re-
sponsible LHS for each individual prefix. Therefore, it is essential that the resolution procedure of
Handle-PIDs through DNS proxy resolvers involves the GHR in order to determine the address of
the LHS.
This means that the domain name representation of Handle-PIDs has to include a common DNS
zone name specifying the GHR. This zone is then composed of the same servers, which form the
GHR. We denote this zone as: the Handle Zone.
Currently there is only the ”hdl.handle.net.” zone, which is composed of the proxy resolvers of the
GPR. For the realization of our approach it is instead necessary to register an additional zone for
the GHR, e.g. ”handle.pid.”.

Finally, the resulting domain name of an individual Handle-PID is depicted in Figure 6.7.

6.4.5 Resolution Procedure

In this section, we explain the last part of the implementation of our approach, which is dealing
with an appropriate resolution procedure, such as depicted in Figure 6.8.

To resolve a Handle-PID over DNS, the Handle-PID identifier has to be first transformed into its
domain representation, which is accomplished in step 0 . For a Java-based application, we have
implemented a transformation module (HandleDNSResolver) [115] on top of an already existing
Java DNS module (dnsjava). The method:

getTypesByName(String handle)

returns all type-data pairs as JSON string. Another method:
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root zone

DNS 
Proxy

App
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32

Stub
„pid.“
zone
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Handle Interface

LHS
21.T11996

DNS Interface
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handle.pid

„handle.pid.“
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T11996.21.handle.pid.

resolve hdl=21.T11996/8246adba-163e5aee7b5d
8246adba-163e5aee7b5d.T11996.21.handle.pid.

Figure 6.8: The resolution procedure for Handle-PIDs via DNS proxy resolvers.
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getTypeValueByName(String handle, String type)

returns only the type-value pairs for a specified type.
The steps 1 to 5 , are required to be traversed until the actual Handle DNS Zone is reached. In
these steps, the DNS proxy resolver communicates with ordinary DNS servers. At step 6 , the
DNS proxy resolver queries the GHR through its enabled DNS interface to determine the author-
itative Handle servers for a specific prefix. The GHR then responds with a referral to the (next)
responsible Handle server. At step 8 , the DNS proxy resolver sends the resolution request to the
DNS interface of the (next) responsible Handle server.
At the (next) responsible Handle server, the queried domain name is re-transformed into its
Handle-PID representation, for which then the Handle Values are retrieved from the database.
After applying the mapping algorithm (cf. Figure 6.5) to generate DNS Resource Records from
the retrieved Handle Values, the Handle server responds with the TXT typed Resource Records
(step 9 ).
Finally, the Resource Records containing corresponding the Handle Values are sent back to the
requesting application (step 10 ).

6.4.6 Overall Algorithm

Our complete algorithm [116] behind the DNS interface of the Handle server is schematized in
Figure 6.9. In this illustration, the grey box with the label ”getHandleRecord” represents the
Handle Value mapping algorithm (cf. Figure 6.6).
For an overall example we refer to Figure 6.10 and Figure 6.11: Figure 6.10 illustrates a Handle
Record associated with a TextGrid object. Whereas its representation as a set of DNS Resource
Records is depicted in Figure 6.11.

6.5 Evaluation

In this section, we conduct an evaluation of different resolution approaches, including our pro-
posed DNS-based Handle-PID resolution method. The evaluation procedure is comprised of two
parts:
The first part covers two aspects:

• the examination of the response time composition of the regular resolution method,
• an analysis to reveal whether the productive proxy resolvers of the GPR are overloaded by

the current resolution request load.

Whereas in the second part the objective is on:

• the analysis and comparison of the distinct resolution approaches for different geographical
situations (proximity situations).

It should be noted that our extension [116] only includes modified or additional files. Therefore,
for compilation, it has to be merged with the complete implementation provided by CNRI17.

6.5.1 Evaluation Setup

For each evaluation part, we made use of a distinct evaluation setup:

17http://www.handle.net/download hnr.html
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Arrived Request at 
DNS Interface

getZoneStorage for 
Domain Name

[Yes]

send response

[No]

getHandleZone

Storage for Domain 
Name is NULL

cut HandleZone 
from Domain Name

transform Domain 
Name to Handle

server is LHS

getHandleRecord

accumulate
Answer

response(answer)

response(
A_ROOT_REFERRAL)

getPrefixHandle 
from Handle

getNSRecords from 
SiteInfo

doResolution(Prefix
Handle)

extract host 
address

accumulate
AuthoritativeAnswer

response(
REFERRAL)

[Yes][No]

Figure 6.9: Our algorithm at DNS interface of Handle server, which has been implemented to
realize our approach.
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21.T11996/60afd6dd-7ebf-48d4-9837-566fdddd2e62-dnstest

Figure 6.10: Example Handle Record consisting of seven Handle Values associated with a
TextGrid object.

The first setup, depicted in Figure 6.12, is described by the following paragraphs:

Productive Proxy: We made use of the two GPR proxy resolvers (white circles) located in Eu-
rope: the first, hosted at GWDG and the second, hosted on an Amazon EC2 instance in
Ireland, which is under the control of CNRI.

Testing Proxy: We placed an additional testing proxy resolver (grey circles) instance in close
proximity to each of the two European productive proxy resolvers. These testing resolvers
were not involved in the GPR for the resolution of real-world requests.

LHS: The resolution requests were made against 21.T11996-prefixed Handle-PIDs, which are
managed by a LHS hosted at GWDG. The LHS is composed of a primary and a mirror
Handle server.

Load-Generator: The resolution requests were generated by a load-generator (black box) hosted
on an Amazon EC2 instance located in Frankfurt. Note that the aforementioned testing
proxy resolvers were only subjected to requests from our load-generator.

As already indicated, in the second evaluation part, we investigate the resolution approaches for
different proximity situations. By proximity situation, we mean the relative proximity between
a requesting application, a GPR proxy resolver and the target LHS. In principle, there are three
possible constellations:

Proximity Situation (A): In this situation, the requesting application, the GPR proxy resolver
and the target LHS are all close to each other.

Proximity Situation (B): In this situation, there is a GPR proxy resolver in the vicinity of the
requesting application, while the target LHS is located significantly outside of this vicinity.

Proximity Situation (C): In this situation, all these three nodes are significantly distanced to
each other.
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Figure 6.12: First Evaluation Setup

Furthermore, by the following listing, we provide an overview about the different used resolution
methods:

• native Handle protocol resolution (OC RESOLUTION operation, cf. Table 5.1)
• resolution through the GPR proxy resolvers
• resolution through pre-configured internal EC2 instance DNS proxy resolver
• resolution through public Google DNS proxy resolver

Finally, Figure 6.13 provides an overview about the second evaluation setup, where the individual
components are described by the following paragraphs:

Testing GHR: We setup a testing instance of the GHR, which was equipped with the DNS inter-
face. This testing GHR was composed of a primary server, hosted at GWDG, and a mirror
server hosted on an Amazon EC2 instance located in US east. These servers were also the
nameservers for our experimental Handle DNS Zone ”hx.gwdg.de.”, a sub zone under the
GWDG zone ”gwdg.de.”.

LHS: As the target LHS, we used the DNS interface extended version of the LHS of the first eval-
uation setup. Since this LHS was responsible for Handle-PIDs under the 21.T11996 prefix,
the Handle servers were at the same time the nameservers for the ”T11996.21.hx.gwdg.de.”
zone.

Load-Generator: We positioned three load-generator instances at different geographical loca-
tions: The first, in Frankfurt (LG-FRA), the second, in US east (LG-US) and the third, in
Singapore (LG-AS). All of them were hosted on an Amazon EC2 c3.xlarge instance at the
respective region.
Each of the load-generators was equipped with three different modules: The first module
was used to resolve Handle-PIDs through the native Handle protocol (OC RESOLUTION),
which is represented by the grey paths in Figure 6.13. The second module was used to
resolve Handle-PIDs via the GPR, the current standard resolution approach, which is repre-
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sented by the red paths in Figure 6.13. The third module made use of our HandleDNSRe-
solver to resolve Handle-PIDs over DNS traffic, our proposed new resolution approach,
which is represented by the blue paths in Figure 6.13.

GPR Proxy Resolver: To achieve the above defined proximity situations, each load-generator
was configured to submit resolution requests against a specific set of proxy resolvers of the
GPR.
The LG-FRA was configured to issue requests against the two European proxy resolvers.
Since in this constellation the load-generator, the proxy resolvers and the target LHS can be
considered to be close to each other (all hosted in Europe), this setup represents the proxim-
ity situation (A).
In contrast to that, the LG-US (US east) was configured to sent resolution requests for
Handle-PIDs stored at a LHS hosted in Europe against the three remaining proxy servers
located in the US east region, which therefore represents the proximity situation (B).
Finally, the LG-AS (Asia) was configured to resolve the Handle-PIDs stored at a LHS hosted
in Europe via the regular DNS round-robin proxy resolver selection method. Hence, all re-
solvers of the GPR (US east / Europe) were involved. This setup can be considered as to be
representative for proximity situation (C).

DNS Proxy Resolver: To resolve Handle-PIDs over DNS traffic, we made use of two different
DNS proxy resolvers. The first one was the internal Amazon DNS proxy resolver, which
was pre-configured in the EC2 instances.
The second one was the well-known public Google DNS proxy resolver, which is reachable
via the 8.8.8.8 IP-address.

LG-
FRA

GPR

DNS
Proxy

GHR

DNS Interface

Handle Interface

LHS
21.T11996

DNS Interface
Handle Interface

hx.gwdg.de

T11996.21.hx.gwdg.de

LG-
US

LG-
AS

hdllib

„hx.gwdg.de.“
zone

Figure 6.13: Second Evaluation Setup. Each colored graph denotes a distinct resolution method.
Note that in addition to LG-FRA also the remaining load-generators were involved in
this evaluation part.

6.5.2 Part 1: Measurements of the First Setup

In this section, we analyze the measurements gathered from the first setup:

In Figure 6.14, we can see, when we compare the resolution times of the European productive
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Figure 6.14: First Setup: Resolution times for European GPR proxy resolvers. The contributions
of the LHS and the proxy resolver are represented as hatched areas on the bars. The
black bars represent the resolution times for Handle-PIDs, which are cached at the
proxy resolvers
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Figure 6.15: First Setup: Boxplot of resolution times for European GPR proxy resolvers.
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proxy resolvers with the resolution times of the respective testing resolvers (orange bar with yel-
low bar and red bar with lighter red bar), that the productive GPR resolvers are basically not
overloaded with the current request load. Remember that these testing proxy resolvers were only
subjected to iterative resolution requests from the load-generators only. In contrast, the productive
proxy resolvers are subjected to many resolution requests from various requestors.
Only for the proxy resolvers located in Ireland, the resolution time of the productive proxy resolver
is slightly higher than for the respective testing resolver, which, however, can not be considered as
an indication for overloading.
In addition, the boxplot in Figure 6.15 shows that the productive and the respective testing proxy
resolvers have quite similar distributions in the resolution times, also confirming that the produc-
tive proxy resolvers are currently not overloaded.

The response time contributions are represented in Figure 6.14 by the hatched areas on the bars.
And since the hatched areas represent the contribution of the proxy resolvers and the LHS, the
remaining areas correspond to the latency between the load-generator and the respective proxy
resolver. However, the contribution of the LHS is barely identifiable, which means that the actual
database lookup has only a minimal impact onto the overall resolution time.

Ultimately, this means that by only positioning additional proxy resolvers at a specific region will
not lead to an improvement of the resolution time for Handle-PIDs. Instead, it is necessary to
place significantly more proxy resolvers around the world, wherefore we propose to utilize the
DNS proxy resolvers for Handle-PID resolution.

6.5.3 Part 2: Measurements of the Second Setup

The actual evaluation of our proposed DNS approach is tackled in this section. In the following
subsections, we analyze the measurements gathered for each of the defined proximity situations.

6.5.3.1 Measurements of Proximity Situation (A)

Figure 6.16 reveals that the resolution via the OC RESOLUTION operation (labeled as ”HDLLIB”)
is the fastest resolution method. Since this approach directly communicates with the GHR and
LHS, there is no overhead caused by the involvement of any proxy resolver of the GPR. The
disadvantage of this approach is the requirement for the implementation of the Handle software
package into the respective application. This, however, could entail a significant redesign for
the application due to appropriate handling of the requests and the responses through the Handle
protocol.

In this constellation (proximity situation (A)), the resolution through the GPR proxy resolver lo-
cated in Ireland has the longest resolution time (red bar), even for cached (black area) Handle
Records.
The resolution via the GWDG proxy resolver consists mostly of the latency between the Amazon
EC2 instance and the proxy resolver (black area on orange bar). Note that for cached Handle
Records (at the proxy resolver), the resolution time mainly consists of the communication over-
head between load-generator and the proxy resolver.
In contrast to that, the resolution time with the pre-configured Amazon DNS resolver primarily
consists of the latency between the LHS and the DNS proxy resolver (green area on the ”EC2
DNS” labeled bar). Although the resolution times with the these two resolvers (GWDG PROXY
and EC2 DNS) are similar, with caching, the resolution time via the EC2 DNS proxy resolver is
significantly shorter.
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We can also see that our DNS algorithm implementation does not cause any additional overhead
into the resolution time. Otherwise, the resolution time with the EC2 DNS proxy resolver would
be longer than with the GWDG Handle proxy resolver.
Also remarkable is that the resolution times with the EC2 DNS are more stable than with the proxy
resolver hosted at GWDG, which can be seen from the deviation whiskers plotted on the bars.

The resolution time with the public Google DNS proxy resolver (blue bar) reveals to be the second
slowest in this measurement. However, again with caching, for Handle Records which have been
previously requested, the resolution time becomes significantly reduced. In our setup, apart from
the resolution via the Handle protocol, the resolution time with the Google DNS resolver was even
the second fastest method for cached Handle Records (black area on blue bar). From the deviation
whiskers, we can also see that with this DNS proxy resolvers, the resolution times are quite stable.

6.5.3.2 Measurements of Proximity Situation (B)

The measurements of this proximity situation are illustrated in Figure 6.17.

With the internal EC2 DNS proxy resolver, the resolution time is only minimally longer than with
the native Handle protocol resolution operation. In principle, this is also true for the remaining
proxy resolver involving resolution methods (”HDL PROXY” and ”Google DNS”). All corre-
sponding resolution times are basically of similar magnitude. With ”HDLLIB” and ”EC2 DNS”
the resolution time for cached Handle Records is barely recognizable, which underlines again the
benefit of our DNS-based resolution idea. Although the resolution time for cached Handle Records
with ”HDL PROXY” and ”Google DNS” are also of similar magnitude, with ”Google DNS” the
resolution times are more stable than with the former.

Ultimately, for this proximity situation, although there is again an improvement of the resolution
time, it is not that significant than in proximity situation (A).

6.5.3.3 Measurements of Proximity Situation (C)

Figure 6.18 represents the measurements of this proximity constellation.

As can be seen, the resolution time of the proxy resolver involving resolution methods are sig-
nificantly higher than with the native OC RESOLUTION operation, which is especially true for the
internal Amazon EC2 DNS proxy resolver. The resolution time with this proxy resolver is the
longest and the most unstable among the remaining resolution time bars. In contrast to that, the
regular GPR proxy resolvers and the Google DNS proxy resolver revealed to have similar resolu-
tion times, which is also true for the stability, which can be seen from the corresponding deviation
whiskers.
However, the resolution times for cached Handle Records with both DNS proxy resolvers are sig-
nificantly shorter than with the regular GPR proxy resolvers. Note that due to the small resolution
times of cached Handle Records at the DNS proxy resolvers, compared to the remaining resolution
times, the contribution of their resolution times (≈ 10ms) (black areas on green and blue bars) are
barely identifiable in Figure 6.18.

This once more underlines the real benefit with the new DNS resolution approach for Handle-
PIDs. With the DNS proxy resolvers, the caches are in the vicinity of the requesting applications,
which in conjunction with the proximity principle can globally lead to a significant reduction of
the Handle-PID resolution time.
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Figure 6.16: Proximity Situation (A): Resolution times for different resolution methods, recorded
at the load-generator located in Frankfurt.
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Figure 6.17: Proximity Situation (B): Resolution times for different resolution methods, recorded
at the load-generator located in US east.
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Figure 6.18: Proximity Situation (C): Resolution Times for different resolution methods,
recorded at the load-generator located in Singapore. The resolution time of cached
Handle Records with the current standard resolution method through the GPR (”HDL
PROXY”), reveals the inefficiency of caching due to the small number of GPR proxy
resolvers.
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6.5.4 Summary

We have seen that the actual benefit of the resolution through DNS traffic is based on the reduced
latency between a requesting application and the caches. This in turn is based on the myriad of
globally distributed DNS proxy resolvers. This approach enables the technique of caching to be
much more efficient than in the regular resolution approach. For important and frequently used
Handle Records in a specific region, our DNS approach can profoundly improve the performance
of the research data dissemination.
But also for Handle Records which not cached, our DNS-based has proven to useful, especially
for the proximity situations (A) and (B). For proximity situations (C), the benefit highly depends
on the proper choice of the DNS proxy resolver, which is actually not critical due to their high
density distribution.
As an example, for a group of research data repositories hosted in Asia, which consume/exchange
a common set of research datasets addressed by Handle-PIDs, our DNS approach can lead to a
significant performance improvement. Often research data repositories process data in so called
sessions, wherein a certain number of interlinked external research datasets are used.

Based on the measures in Figure 6.18, for a session requiring 100 interlinked external datasets, our
DNS approach enables the following extrapolation for the overall processing time of the session:

• session time with Handle Records cached in GPR proxy resolver:

– 100×500ms = 50sec

• session time with Handle Records cached in (Google) DNS proxy resolver:

– 100×10ms = 1sec

This means that the overall session time would have been improved about 98%(= 50−1
50 ×100).

Furthermore, we have also seen that the current GPR proxy resolvers are not overloaded. This
means that by simply adding a few more proxy resolvers to the GPR will not lead globally to a
significant improvement of the Handle-PID resolution time.
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Discussion

In this section, we discuss the results of this thesis by answering the research questions defined at
the beginning in Section 1.2. In addition, for each approach, we provide a discussion about the
respective limiting aspects. In the final section of this chapter, we also provide a discussion about
the future design of PID systems based on our results.

7.1 Answers to Research Questions Concerning the Concept of
Persistent Identification

The deduced answers are based on the discussion in Chapter 3.

In summary, the concept of persistent identification is performance relevant, because it poses a
particular additional maintenance overhead, which is composed of a certain number of expensive
transactional administration operations (RQ 1).
In Section 3.1.2 we have identified the overall goal of the concept of persistent identification (RQ
1.1) to be persistent naming and persistent access. This is achieved by an overlay network on top
of the current Internet, which is composed of specific naming authorities. Each naming authority
in turn, is used to register and manage a particular set of PID-to-locator bindings.
Since with the concept of persistent identification, data mobility has to be continuously tracked at
specific naming authorities, persistent access results in a continuous maintenance problem. The
continuous maintenance of the PID-to-locator bindings, causes a particular overhead consisting of
a number of expensive transactional administration operations. This constitutes the origin of the
performance problem of persistent identification (RQ 1.2).
A reduction of this maintenance overhead (RQ 1.3) can be achieved by two approaches: The first
approach is to reduce the number of these expensive transactional administration operations. The
second approach in turn, is to improve the performance of the transactional administration opera-
tion itself.
In Chapter 3, we focused on the reduction of the number of the administration operations by
introducing Research Data Silo Identifiers (DSIDs). A DSID allows to specify the data access in-
terface, which is currently supported by the respective research data repository. By this approach,
the overhead for administering individual PID records associated with research datasets can be-
come eliminated. This solution is particularly appropriate for research data repositories which
are only relying on the locator abstraction function of PIDs, rather than on individual metadata
imposed into PID records.
The improvement of the performance of the transactional administration operations itself in turn,
is tackled in Chapter 4 and Chapter 5. The focus in these chapters was to accelerate the respective
procedures within the naming authorities.
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A limitation of our DSID approach, is that it reduces PIDs to a sole redirection mechanism, which
is only suitable for a specific group of research data repositories. This group usually only relies
on the locator abstraction function of PIDs. For research data repositories, which also rely on
the ability of PID records to hold semantic information about the identified research datasets, our
proposed DSID approach can only be used in combination of individual PID records.
Another limiting aspect is that this approach requires a modification of the software package of the
Handle System. First of all it is necessary to enable to distinct between a real individual Handle
Record containing individual information and a dynamically generated Handle Record based on
the registered composition rule. We have realized this by extending the native resolution operation
of the Handle protocol with a ”force” flag, which, when set to true, prevents the execution of the
dynamic composition rule. Secondly, it is necessary to extend the pre-defined set of Handle Values
by another Handle Value type (HS RDS URL) to realize the DSID approach without the need for a
naming authority (Local Handle Service (LHS)).

7.2 Answers to Research Questions Concerning the Performance
Analysis of Multi-Tier Internet Systems

Chapter 4 provides the basis for the deduced answers.

These naming authorities form specific, local PID systems, which are often regular multi-tier In-
ternet systems. In addition to the overhead posed by these systems, their offered administration
operations are usually accomplished transactionally. For a transactional system it is important to
continuously improve its response time especially in the advent of technological progress. There-
fore, the goal is to achieve a best possible benefit-effort ratio for the response time improvement.
This can be supported by a model, which enables the analysis of effects caused by improvements
in individual tiers onto the overall system’s response time (RQ 2).
An appropriate model for a multi-tier Internet system (PID system) is queuing network of succes-
sively chained simple queuing systems (RQ 2.1), which was also proposed by other authors, in
particular by Urgaonkar et al. [79].
Such a queuing network is then analyzed by the established Mean Value Analysis (MVA) algo-
rithm. The fundamental performance behavior of the MVA algorithm is a monotonous behavior
for the load on specific queues. In a queuing network, which includes a set of dominating service
times corresponding to particular queues, with an increasing concurrency level, the weighting
factors of these queues are monotonically increasing, while the weighting factors of the remain-
ing queues are decreasing (RQ 2.2). This monotonous behavior is specifically addressed in Sec-
tion 4.2.3.
An improvement at an individual tier leads to a redistribution of the load within the remaining
tiers. The overall response time, therefore, highly depends on the load at the individual tiers. The
improvement of the dominating tiers can result in a significant speedup of the response time. In
contrast to that, improving a tier with a relative short service time, according to our model, con-
trarily results for a high concurrency level in no improvement (RQ 2.3).
The effect of an improvement endeavor is described by Theorem 4 in Section 4.3.3. It basically
determines the load relation for an individual tier between the old and improved overall system
(RQ 2.4).
Since an improvement at an individual tier leads to a redistribution at the remaining tiers, in the
worst case, this can cause the capacities at one of the remaining tier to become exceeded. This ef-
fect is called overloading and is discussed in Section 4.5.5.6 (RQ 2.5). Overloading can contrarily
even cause the response time to increase after an improvement effect, which is demonstrated in
Figure 4.11.
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Management Protocol

Considering our contributions in Chapter 4, the main limitation is the restriction on (Ti ≡ Qi)-
multi-tier systems. Such multi-tier systems are characterized by the fact, that each tier can be
modeled as a single queuing system (Ti ≡ Qi).
However, in a general multi-tier system, each tier often possess multiple resources, which in-
corporate their own queuing effects. The load within such a single tier is then often distributed
among the internal queues of these resources, which leads our deduced formulas to yield inac-
curate values. We have demonstrated this by evaluating the ePIC PID system on two different
hosting environments: an ideal environment and a productive environment.
In the ideal environment, the assumption of the ePIC PID system to be a (Ti ≡ Qi)-multi-tier sys-
tem, proofed to be right, since our formulas provided accurate results. However, in the productive
environment, additional internal queuing effects within the tiers have led the load within the over-
all multi-tier system to be distributed differently than expected. Therefore, in this environment,
the values provided by our formulas could only be considered as a heuristic.
A further aspect is that our approach only considers tiers, which only offer a single operation,
instead of a set of different operations. In a multi-tier system offering multiple different service
operations, these operations, usually also incorporate distinct queuing effects into the overall pro-
cessing time of an individual tier, which again lead to a different load distribution than expected.
This finally, means that also for such systems, our formulas would yield inaccurate results.

7.3 Answers to Research Questions Concerning the
High-Performance Persistent Identifier Management Protocol

Our answers to the corresponding research questions are based on Chapter 5.

Handle servers are often subjected to bulky administration requests originating from individual
research data repositories. The fundamental performance problem is based on the fact that each of
these administration requests, although they can usually be grouped into a common request batch,
is processed in a dedicated transactional procedure within the Handle server. This often leads to
significant performance losses at the administration of large amounts of PID records (RQ 3.1).
Therefore, to mitigate these performance losses, we have extended the Handle protocol by a bulk
registration operation, which can be used to administer multiple Handle Records by a single re-
quest, which is then accomplished by a single transactional procedure within the Handle server
(RQ 3.2).

The major limitation of this approach is that it requires the modification of the Handle protocol and
its reference implementation, which impedes the global adoption. However, since our extension
is fully backward-compatible, individual LHSs, equipped without extension, can directly operate
within the current global infrastructure of the Handle System.
Another limiting aspect of our proposed bulk registration operation is that it entails the restriction
of the maximum supported concurrency level threshold at a Handle server. Otherwise, it is possible
that multiple concurrent bulk registration requests containing large amounts of Handle Records can
lead to instabilities at the Handle server. Although, in our evaluation we had subjected the Handle
server with workloads larger than the current productive load level, future loads can still cause the
Handle servers, equipped with our extension, to become instable.
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7.4 Answers to Research Questions Concerning the
High-Performance Persistent Identifier Resolution

The answers to the corresponding research questions are originated from Chapter 6.

To achieve a high-performant PID resolution we have proposed to utilize the existing and estab-
lished DNS system (RQ 4).
Since the resolution is accomplished by involving a specific proxy resolver, which is tasked with a
node traversal within the hierarchical architecture, the resolution time is often mainly composed of
the network latencies between the traversed nodes (including the latency between the requesting
application and proxy resolver) (RQ 4.1). In DNS, the main technique to reduce these latencies
is to heavily employ caching at the DNS servers. In addition, a requesting application can make
use from one the myriads available DNS proxy servers, which ensures a relative low latency to the
proxy resolver. However, for PID systems, such as the Handle System, there are only very few
proxy resolvers globally available (RQ 4.2), which means that the latency between a requesting
application and the PID proxy resolver has usually a contribution in the overall resolution time.
This finally leads to an unsatisfactory resolution performance even when caching is employed.
To improve the PID resolution time, we have proposed to resolve PIDs through DNS traffic (RQ
4.3). For the Handle System, this is accomplished by extending the Handle servers with a DNS in-
terface, which enables them to answer on incoming DNS resolution requests containing resolution
requests for Handle-PIDs.

A disadvantage of our approach of resolving Handle-PIDs over DNS traffic is the need to run a
Handle server, equipped with a DNS interface, in ”Kernel-Mode”, instead of ”User-Mode”. This
stems from the fact that DNS traffic is always transferred through port 53 which is obviously below
1024. Remind that all processes listening on a port number lower than 1024 require to be run in
”Kernel-Mode”. This can pose additional security risks, which have to be taken into account.
A further limitation is that the combination of {IP-ADDRESS}:{PORT} can only be used by
a single process: Since a DNS nameserver always requires the port 53, it would be necessary
to assign multiple Ip-addresses to a single host to enable the hosting of multiple Handle servers
equipped with a DNS interface. Another hindering aspect is the need for common global zone for
the entire Handle System used to delegate domain names containing Handle-PIDs to the servers
of the Handle System. Note that have proposed to use the ”handle.pid.” zone. For our evaluation,
however, we made use of the ”hx.gwdg.de.” zone, which is a testing sub-zone under the GWDG
DNS zone.

7.5 Achieving High-Performance with Persistent Identification

We have proposed several approaches which can significantly improve the performance of PID
administration and resolution. To underline our results, for each proposal, we have provided a
publicly available implementation into the Handle System and a corresponding comprehensive
evaluation.
All these results can be used in combination to achieve an overall high performing PID system
based on the Handle System. To demonstrate such a combination, in the following we consider
the PID service provided by the ePIC consortium18:

Within the ePIC consortium each research data repository is usually assigned a dedicated prefix
of the form 21.XXXXX. For the administration of the corresponding PID records, the consortium

18http://www.pidconsortium.eu
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Figure 7.1: PID record administration interfaces of the ePIC PID system: (a) Through the ePIC-
API v2 (blue path). (b) Directly through the bulk interface extended Handle server (red
path), without involving the ePIC-API v2.

provides several instances of the ePIC PID system. Since this PID system is based on the Han-
dle System, it includes a primary Handle server, which can be also directly used to manage the
PID records stored in the underlying database. In Figure 7.1, this is represented by the red path.
Although the blue path represents the usual way of involving the ePIC-API v2 for managing PID
records associated with ePIC-PIDs, the direct communication (red path) is increasingly used by
research data repositories due to the new REST interface of the Handle server (as of version 8.0).
However, the blue path is especially useful to ensure the PID records to comply with a predefined
structure.

By means of the dedicated prefix, for a research data repository it is appropriate to employ our
DSID approach (first approach) for the group of datasets, for which only the locator abstraction
function is relevant. All occurring changes in the data access syntax of the repository have to be
directly adapted at the HS NAMESPACE typed Handle Value in the prefix Handle Record. All PIDs
for the remaining datasets, which require individual PID records, can be either be individually
administered through the response time improved ePIC PID system (second approach) or when
the number of individual PID records is large, the new bulk interface (third approach) of this PID
system can be utilized.
While the first and second approach (remember that the improved version of the ePIC system is
already in productive operation) are already applicable, the third approach requires an additional
effort: The underlying Handle servers of the ePIC PID system instances can be easily equipped
with our publicly available bulk extended version. Hence, the bulk administration through the ”red
path” (cf. Figure 7.1) requires only a little effort for productive support. However, the ”blue path”
requires a redesign in the ePIC-API v2 (T1) to support the new bulk interface of the underlying
Handle server (T2).
On the other, the global resolution time of these PIDs can be significantly improved with our
DNS-based resolution approach (fourth approach). However, also for this approach there is an
additional effort necessary: First of all, our DNS-based Handle-PID resolution requires a common
Handle System domain name (The Handle Zone), which is appended to the domain name repre-
sentation of the PIDs. However, it is also possible that the ePIC consortium defines a dedicated
DNS zone for its 21.XXXXX-prefixed Handle-PIDs entailing a respective setup of nameservers
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representing the root zone for the prefix 21.XXXXX. Further information on this can be found in
Section 6.5 about the setup of our experimental root zone ”hx.gwdg.de”. Secondly, the underlying
Handle servers (T2) have to be also upgraded with our publicly available special DNS interface,
which is relatively easy to achieve. And thirdly, this requires also the requesting applications to
issue Handle-PID resolution requests through a specific DNS proxy resolver. Since for DNS there
are numerous software libraries available, also the support in the requesting applications is realiz-
able at a maintainable effort. For Java-based applications, we have provided a publicly available
implementation of such a DNS software library.

Finally, these four approaches, can enable the ePIC consortium to become a high-performance
persistent identification service provider.

Also the Digital Object Identifier (DOI) system for example, can employ a set of our proposed
solutions, to a achieve a significant performance improvement. Especially our bulk interface ex-
tended Handle server can lead to an enourmous speedup of the PID record management. However,
as for the ePIC PID system, the new bulk interface requires a redesign in the components, which
are communicating with the underlying Handle server.
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Conclusion

In this section, we conclude this thesis by providing a short summary of the derived results. In
addition, for the outlook, we provide indications for possible future research aspects.

8.1 Summary

This thesis provides performance improvements for the concept of persistent identification. We
have particularly focused on the Handle System, which can be considered as the most established
and elaborated PID system.
We have shown that the concept of persistent identification is realized as an overlay network on top
of the current Internet. Such a PID system overlay network is composed of naming authorities (lo-
cal PID systems) used as distributed registries for holding PID records containing PID-to-locator
bindings for individual research datasets. The administration of PID records at these naming
authorities is usually accomplished by expensive transactional procedures. In addition, the PID
concept requires a continuous maintenance of the PID records to keep them valid. This causes a
certain overhead affecting the performance.

To improve the performance, our first approach is to reduce the maintenance overhead by reducing
the number of the transactional management procedures required for PID record administration.
This is achieved by a novel identification concept (Research Data Silo Identifier (DSID)), which
directly identifies the research data repository instead of its research datasets. This results in the
elimination of all the transactional management operations required for administering individual
PID records. The DSID is associated with a locator composition rule specifying the currently
supported data access syntax of the research data repository. This rule is then used to dynamically
compose the corresponding locator of a PID upon a resolution request. However, this concept is
usually only suitable for research data repositories which are only relying on the locator abstrac-
tion function of PIDs.
For research data repositories which also impose PID records with individual semantic informa-
tion, the transactional administration operations to maintain the individual PID records are still
necessary. Our second approach is therefore focused on the improvement of the response time
of PID systems, which usually can be considered as ordinary transactional multi-tier Internet sys-
tems.

To improve the response time of PID systems in the advent of fast technological advance, we
have provided a mathematical approach, which enables the analysis of the impact of a costly
improvement endeavor. Our approach is based on the analysis of the asymptotic behavior of the
established Mean Value Analysis (MVA) algorithm, which has enabled us to derive estimation
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formulas, which can be used to support an improvement endeavor of multi-tier Internet systems
by predicting the resulting effects.
In the course of this approach, we have achieved a speedup factor of approximately 1.77 for the
response time improvement of the ePIC PID system. This improved version of the ePIC PID
system is currently also deployed in the productive PID systems within the ePIC consortium.

In the third approach, we have analyzed the specific workload PID systems are usually subjected
to. We have shown that PID systems are often subjected to bulky PID record management requests
originating from individual research data repositories. To improve the maintenance overhead with
such bulky requests, we have proposed PID systems to offer a bulk management operation, which
processes multiple PID records in one transactional management operation. Therefore, we have
conceived an extended version of the Handle protocol incorporating such a bulk management
operation. With this extension, we have achieved a speedup factor up to 160 for the throughput of
the Handle server for PID record administration.

In the last part of this thesis, the focus is devoted on the resolution time improvement of PIDs. Our
approach is to enable PID resolution through DNS traffic. The idea is based on the fact there are
myriads of publicly available DNS proxy resolvers, whereas the number of PID proxy resolvers is
currently very limited, leading globally to long PID resolution times. The result of resolving PID
through DNS proxy resolvers is the reduction of the latency between the requesting application
and the proxy resolver. This is particularly beneficial for the resolution time of PIDs, which are
cached at a particular DNS proxy resolver. For such PIDs, the resolution time basically only
consists of the low latency between the requesting application and the DNS proxy resolver.

8.2 Outlook

Another potential of PIDs is to establish a central index enabling the search for research datasets.
This means that PIDs systems have the potential to create a ”Google” for research datasets. This
aspect was indicated in Section 3.2.7. Within the data-management group of the GWDG, there are
currently efforts to provision a graph database with information gathered from the databases of the
provided Handle servers. This is realized by a special mirror Handle server, which retrieves Handle
Records from different primary Handle servers. The difference between this special and a regular
mirror Handle server is based on the attached database: As already mentioned, the Handle server
natively only supports the attachment of a Berkeley DB or a SQL database. The special mirror
Handle server was been extended to also support a graphs database enabling complex queries on
Handle Records. Currently this only considers databases of Handle servers provided by GWDG.
Further research is required to establish a global search service on top of various Handle servers
provided by various Handle-based PID system providers.

In the context of our performance analysis approach, we have only considered a multi-tier system
wherein the individual tiers offer a single operation. Therefore, future work is necessary to inves-
tigate systems, which offer a diverse set of operations. Our approach can also be considered as an
methodology, which emphasizes on the analysis of the load distribution within a specific group of
multi-tier systems. The applicability on a broader group of multi-tier systems requires a respec-
tive analysis of the load distribution within such systems. After determining the asymptotic load
distribution behavior, it is possible to derive estimation formulas, which can be used in practical
situations to understand a system’s behavior and to apply according measures to optimize it. Fi-
nally, this means, that our approach provides a fundamental base for further research of multi-tier
systems, which is based on a system’s asymptotic load distribution behavior.
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Furthermore, our bulk registration operation extension is only focused on the message transmis-
sion aspect between a client/application and a Handle server. In the current implementation of our
extended Handle server, the Handle Records transmitted with the new bulk operation are processed
iteratively and committed in a single transaction within the Handle server. With the original single
registration operation, each Handle Record is first processed separately and more importantly also
committed individually causing a high overhead for increasing concurrency levels. We assume that
further research can reveal an improved processing algorithm for our new bulk operation within
the Handle server, which can lead to a further throughput increase. One idea would be that the
received batch of Handle Records (via the new bulk interface), are processed in parallel but (again)
committed in a single transaction. This is can be especially useful for the two transactional steps,
in which first, the replication system is provisioned and second, the Handle Records are written to
the attached database (cf. Figure 5.15). The result would be that in each of these two steps, the
data insert time would be decreased, while the commit time would basically stay the same as for
the initial version of our bulk operation. The ultimate result would be an additional increase of the
throughput. In contrast to the original single registration operation, the parallel processing of the
batch would not require a synchronization mechanism.
In addition, with the recent versions (>8.0) of the Handle server implementation, it is possible to
compose a multi-primary setup consisting of a number MM > 1 of primary Handle servers. This
opens a further possibility two improve the performance for Handle-PID record administration,
especially in conjunction with our bulk operation. This can be realized with a special algorithm,
which first, efficiently groups numerous Handle Records into multiple batches of a certain size
and secondly, distributes these groups via the new bulk operation onto the multiple primary Han-
dle servers. We expect a throughput speedup of factor MM with this setup.

As already indicated in Section 6.4.4, further research is also required to deduce a more gen-
eral transformation algorithm which maps general Handle-PID identifier strings into DNS domain
names.
Due to the huge number of globally distributed DNS proxy resolvers, it is often reasonable to
consider the location of the proxy resolver as be to representative for the requesting application.
This can be used to enable an efficient selection among a set of geographically distributed redun-
dant datasets. Since, the number of Handle Records which include multiple locators is increasing,
our DNS-based Handle-PID resolution can therefore also be used to determine the ”best” copy
of an individual dataset. This requires further elaboration in the software of the Handle servers:
A Handle server, receiving a resolution request for a certain Handle-PID at its DNS interface,
can use the IP-addresses of the locators of the corresponding Handle Record together with the
IP-address of the requestor (DNS proxy resolver) to initiate a special algorithm, which selects the
”best” locator. The simplest form of such a special algorithm can be based on a simple lookup for
the originating countries or continents of the IP-addresses at a special IP-address database such
as [117]. This would enable PIDs in conjunction with DNS proxy resolvers to provide an efficient
data consumption in addition to persistent access and identification.
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bara Bazzanella, and Paolo Bouquet. Interoperability Knowledge Base for Persistent Iden-
tifiers Interoperability Framework. In Signal Image Technology and Internet Based Systems
(SITIS), 2012 Eighth International Conference on, pages 868–875. IEEE, 2012.

[33] Tobias Weigel, Stephan Kindermann, and Michael Lautenschlager. Actionable Persistent
Identifier Collections. Data Science Journal, 12(0):191–206, 2014.

[34] Barbara Liskov and Stephen Zilles. Programming with Abstract Data Types. In Proceed-
ings of the ACM SIGPLAN Symposium on Very High Level Languages, pages 50–59, New
York, NY, USA, 1974. ACM.

[35] EUDAT Project. https://eudat.eu. [Accessed: 2018-05-26].

[36] Chi Harold Liu, Bo Yang, and Tiancheng Liu. Efficient naming, addressing and profile
services in Internet-of-Things sensory environments. Ad Hoc Networks, 18:85 – 101, 2014.

[37] EU-China Joint White Paper on Internet-of-Things Identification. http://www.miit.

gov.cn/n1146312/n1146909/n1146991/n1648536/c3489529/part/3489530.pdf,
2014. [Accessed: 2018-05-26].

[38] Lukasz Bolikowski, Aleksander Nowinski, and Wojtek Sylwestrzak. A System for Dis-
tributed Minting and Management of Persistent Identifiers. The International Journal of
Digital Curation, 10(1):280–286, 2015.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,. http://bitcoin.

org/bitcoin.pdf. [Accessed: 2018-05-26].

[40] August E Evrard, Christopher Erdmann, Jane Holmquist, James Damon, and Di-
anne Dietrich. Persistent, Global Identity for Scientists via ORCID. arXiv preprint
arXiv:1502.06274, 2015.

[41] Oliver Wannenwetsch and Tim A. Majchrzak. On constructing persistent identifiers with
persistent resolution targets. In 2016 Federated Conference on Computer Science and In-
formation Systems (FedCSIS), pages 1031–1040, Sept 2016.

[42] BitTorrent. http://www.bittorrent.org. [Accessed: 2018-05-26].

[43] Ulrich Schwardmann. Automated schema extraction for PID information types. In 2016
IEEE International Conference on Big Data (Big Data), pages 3036–3044, Dec 2016.

[44] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos Fotiou, Christos
Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros, and George C. Polyzos. A
Survey of Information-Centric Networking Research. IEEE Communications Surveys Tu-
torials, 16(2):1024–1049, Second 2014.

https://tools.ietf.org/html/rfc2141
https://eudat.eu
http://www.miit.gov.cn/n1146312/n1146909/n1146991/n1648536/c3489529/part/3489530.pdf
http://www.miit.gov.cn/n1146312/n1146909/n1146991/n1648536/c3489529/part/3489530.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.bittorrent.org


Bibliography 162

[45] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim,
Scott Shenker, and Ion Stoica. A Data-oriented (and Beyond) Network Architecture. In Pro-
ceedings of the 2007 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications, SIGCOMM ’07, pages 181–192, New York, NY, USA,
2007. ACM.

[46] Named Data Networking Project. http://www.named-data.net. [Accessed: 2018-06-
25].

[47] FP7 PURSUIT Project. http://www.fp7-pursuit.eu/PursuitWeb. [Accessed: 2018-
06-25].

[48] FP7 SAIL Project. http://www.sail-project.eu. [Accessed: 2018-06-25].

[49] FP7 COMET Project. http://www.comet-project.org. [Accessed: 2018-06-25].

[50] FP7 CONVERGENCE Project. http://www.ict-convergence.eu. [Accessed: 2018-
06-25].

[51] MobilityFirst Project. http://mobilityfirst.winlab.rutgers.edu. [Accessed:
2018-06-25].

[52] Karen R. Sollins. Pervasive Persistent Identification for Information Centric Networking.
In Proceedings of the Second Edition of the ICN Workshop on Information-centric Network-
ing, ICN ’12, pages 1–6, New York, NY, USA, 2012. ACM.

[53] Andreas Karakannas and Zhiming Zhao. Information Centric Networking for Delivering
Big Data with Persistent Identifiers. https://doi.org/10.5281/zenodo.889603. [Ac-
cessed: 2018-06-25].

[54] Oliver Schmitt, Tim A Majchrzak, and Sven Bingert. Experimental Realization of a Per-
sistent Identifier Infrastructure Stack for Named Data Networking. In Networking, Archi-
tecture and Storage (NAS), 2015 IEEE International Conference on, pages 33–38. IEEE,
2015.

[55] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS Performance and the
Effectiveness of Caching. IEEE/ACM Trans. Netw., 10(5):589–603, October 2002.

[56] Edith Cohen and Haim Kaplan. Proactive Caching of DNS Records: Addressing a Perfor-
mance Bottleneck. Comput. Netw., 41(6):707–726, April 2003.

[57] Edith Cohen and Haim Kaplan. Prefetching the Means for Document Transfer: A New
Approach for Reducing Web Latency. In INFOCOM, 2000.

[58] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. Authority server selection in
DNS caching resolvers. Computer Communication Review, 42:80–86, 2012.

[59] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. On the Use of Anycast in DNS.
In Proceedings of 15th International Conference on Computer Communications and Net-
works, pages 71–78, Oct 2006.

[60] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of DNS-based server selection.
In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twen-

http://www.named-data.net
http://www.fp7- pursuit.eu/PursuitWeb
http://www.sail-project.eu
http://www.comet-project.org
http://www.ict-convergence.eu
http://mobilityfirst.winlab.rutgers.edu
https://doi.org/10.5281/zenodo.889603


163 Bibliography

tieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213), volume 3, pages 1801–1810 vol.3, 2001.

[61] Jianping Pan, Y. Thomas Hou, and Bo Li. An overview of DNS-based server selections in
content distribution networks. Computer Networks, 43(6):695 – 711, 2003.

[62] Janet L. Wiener and Jeffrey F. Naughton. OODB Bulk Loading Revisited: The Partitioned-
List Approach. In Proceedings of the 21th International Conference on Very Large Data
Bases, VLDB ’95, pages 30–41, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

[63] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti. In-
cremental Organization for Data Recording and Warehousing. In Proceedings of the 23rd
International Conference on Very Large Data Bases, VLDB ’97, pages 16–25, San Fran-
cisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[64] Adam Silberstein, Brian F. Cooper, Utkarsh Srivastava, Erik Vee, Ramana Yerneni, and
Raghu Ramakrishnan. Efficient Bulk Insertion into a Distributed Ordered Table. In Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 765–778, New York, NY, USA, 2008. ACM.

[65] Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay Gade-
pally, Matthew Hubbell, Peter Michaleas, Julie Mullen, Andrew Prout, Albert Reuther,
Antonio Rosa, and Charles Yee. Achieving 100, 000, 000 database inserts per second using
Accumulo and D4M. CoRR, abs/1406.4923, 2014.

[66] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Concepts.
McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

[67] Raj Jain. The art of computer systems performance analysis - techniques for experimental
design, measurement, simulation, and modeling. Wiley professional computing. Wiley,
1991.

[68] David J. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, New York, NY, USA, 2000.

[69] U. Narayan Bhat. An Introduction to Queueing Theory: Modeling and Analysis in Applica-
tions. Statistics for Industry and Technology. Birkhäuser Boston, 2008.
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