
FPGA-based Programmable

Embedded Platform for Image

Processing Applications

Fahad Manzoor Siddiqui

School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast

A thesis submitted for the degree of

Doctor of Philosophy

September 11, 2018

2

3

Abstract

A vast majority of electronic systems including medical, surveillance

and critical infrastructure employs image processing to provide in-

telligent analysis. They use onboard pre-processing to reduce data

bandwidth and memory requirements before sending information to

the central system. Field Programmable Gate Arrays (FPGAs) repre-

sent a strong platform as they permit reconfigurability and pipelining

for streaming applications. However, rapid advances and changes in

these application use cases crave adaptable hardware architectures

that can process dynamic data workloads and be easily programmed

to achieve e�cient solutions in terms of area, time and power.

FPGA-based development needs iterative design cycles, hardware syn-

thesis and place-and-route times which are alien to the software devel-

opers. This work proposes an FPGA-based programmable hardware

acceleration approach to reduce design e↵ort and time. This allows

developers to use FPGAs to profile, optimise and quickly prototype

algorithms using a more familiar software-centric, edit-compile-run

design flow that enables the programming of the platform by software

rather than high-level synthesis (HLS) engineering principles.

Central to the work has been the development of an optimised FPGA-

based processor called Image Processing Processor (IPPro) which ef-

ficiently uses the underlying resources and presents a programmable

environment to the programmer using a dataflow design principle.

This gives superior performance when compared to competing alter-

natives. From this, a three-layered platform has been created which

enables the realisation of parallel computing skeletons on FPGA which

are used to e�ciently express designs in high-level programming lan-

guages. From bottom-up, these layers represent programming (actor,

multiple actors and parallel skeletons) and hardware (IPPro core, mul-

ticore IPPro, system infrastructure) abstraction. The platform allows

acceleration of parallel and non-parallel dataflow applications.

A set of point and area image pre-processing functions are imple-

mented on Avnet Zedboard platform which allows the evaluation

of the performance. The point function achieved 2.53 times better

performance than the area functions and point and area functions

achieved performance improvements of 7.80 and 5.27 times over sin-

gle core IPPro by exploiting data parallelism. The pipelined execution

of multiple stages revealed that a dataflow graph can be decomposed

into balanced actors to deliver maximum performance by hiding data

transfer and processing time through exploiting task parallelism; oth-

erwise, the maximum achievable performance is limited by the slowest

actor due to the ripple e↵ect caused by unbalanced actors. The plat-

form delivered better performance in terms of fps/Watt/Area than

Embedded Graphic Processing Unit (GPU) considering both tech-

nologies allows a software-centric design flow.

Acknowledgements

I would like to express my profound gratitude to my supervisor, Prof.

Roger Woods for giving me the opportunity to undertake part-time

research and in providing me continuous advice, supervision and en-

couragement throughout my research. I am grateful for his systematic

guidance, comprehensive reviews and critical feedback to improve this

thesis. In addition, I am grateful to Dr. Karen Ra↵erty for provid-

ing additional support, reasoning and constructive criticism for my

research. I want to thank Prof. Sakir Sezer for supporting me in

finishing the thesis.

I would like to thank my colleagues at Queen’s University Belfast with

whom I worked during my PhD including Dr. Burak Bardak and

Dr. Moslem Amiri with whom I worked on the Rathlin project, for

sharing their ideas and knowledge to improve my research activities.

Particular thanks go to Dr. Matthew Milford, Dr. Colm Kelly, Umar

Ibrahim Minhas and Tiantai Deng for sharing application use case

results to optimise and improve the platform architecture.

A warm thanks to Margarita Magdenko for her continuous moral sup-

port, encouragement and a↵ection. Above all, I would like to thank

my parents who have given me the strength and wisdom to be sincere

in my work, for setting high moral standards, supporting me through

their hard work and their unconditional love and a↵ection.

Table of Contents

Table of Contents v

List of Tables x

List of Figures xv

1 Introduction 1

1.1 Research problem . 2

1.2 Rathlin Project . 4

1.3 Proposed approach . 5

1.4 Thesis Contributions . 8

1.5 Thesis Outline . 10

2 Background 13

2.1 Parallel embedded architectures 14

2.1.1 FPGA multiprocessor system-on-chip 14

2.1.2 FPGA hardware accelerator design approaches 15

2.1.3 Need for adaptable hardware architectures 19

2.1.4 FPGA memory and computation resources 20

v

TABLE OF CONTENTS

2.1.5 DSP block . 22

2.2 Dataflow model of computation 23

2.2.1 Notion of parallelism in dataflow graphs 24

2.2.2 Dataflow transformation 25

2.3 Parallel computing skeletons . 25

2.3.1 Pipeline . 26

2.3.2 Split, compute and merge 26

2.3.3 Farm . 27

2.4 Related work on FPGA soft processors 28

2.4.1 Scalar Processors . 29

2.4.2 Multicore Processors . 30

2.4.3 DSP Slice Processors . 35

2.5 Summary . 36

3 Rathlin Project 39

3.1 Rathlin Objectives . 40

3.2 Programming workflow . 41

3.3 Cal Actor Language (CAL) . 42

3.3.1 Semantics and execution model 43

3.4 Producer-consumer computing . 45

3.5 Summary . 46

4 Image Processing Processor (IPPro) 48

4.1 Introduction . 48

4.2 Algorithmic characteristics of image processing algorithms 51

4.3 Exploration of e�cient FPGA soft-core processor 52

vi

TABLE OF CONTENTS

4.3.1 Balance between compute and memory resources 53

4.3.2 FPGA-based soft-core processor functionality vs performance

trade-o↵ . 56

4.4 Image Processing Processor (IPPro) 61

4.4.1 Datapath . 63

4.4.2 Branch and conditional execution 64

4.4.3 Instruction set architecture 65

4.4.4 Pipelined stream processing 65

4.4.5 Dataforwarding . 66

4.4.6 Implementation results . 68

4.5 IPPro Optimisations . 69

4.5.1 Minimum and maximum instructions 70

4.5.2 Coprocessor extension . 71

4.6 Comparison of IPPro results . 74

4.7 Application use cases . 75

4.7.1 System architecture . 79

4.7.2 Comparison of IPPro with HLS approach 82

4.7.3 Comparison of IPPro against programmable FPGA-based

architecture . 83

4.7.4 Comparison of IPPro with MicroBlaze 84

4.8 Summary . 85

5 IPPro-based acceleration of dataflow actor 88

5.1 Introduction . 88

5.2 IPPro: A dataflow processor . 90

vii

TABLE OF CONTENTS

5.2.1 Notion of firing an actor 92

5.2.2 Producer-consumer computing model 94

5.2.3 Evaluation of FIFO configurations 95

5.2.4 Mapping and execution of static dataflow actor 97

5.2.5 Supporting multi-port dataflow actor 99

5.2.6 Discussion on hardware acceleration using IPPro over HLS 101

5.3 Management and provisioning of IPPro hardware accelerators . . 103

5.4 Dataflow parallelism and multiple IPPro 108

5.4.1 Configurable data distribution and collection architecture . 111

5.5 Case Study: k -means clustering 115

5.5.1 MPSoC-based heterogeneous system architecture 117

5.5.2 IPPro hardware accelerator designs 118

5.5.3 Acceleration results . 120

5.5.4 Comparison against GPU implementations 122

5.6 Summary . 126

6 FPGA-based programmable hardware acceleration platform 128

6.1 Introduction . 128

6.2 Programmable realisation of parallel skeletons on FPGAs 131

6.3 IPPro core architectural optimisations 132

6.3.1 Dataflow actor firing rule optimisation 133

6.3.2 Scratchpad memory to access non-streaming data 136

6.3.3 Host management of IPPro core using AMBA-AXI4 138

6.3.4 Implementation results of optimised IPPro core 140

6.4 Multicore IPPro . 141

viii

TABLE OF CONTENTS

6.4.1 Exploration of multicore interconnect architecture 142

6.4.2 Impact of interconnect’s core connectivity and core utilisa-

tion on area and performance 145

6.4.3 Multicore IPPro architecture 150

6.4.4 Example: Mapping of dataflow graph onto multicore archi-

tecture . 151

6.5 FPGA-based programmable hardware acceleration platform . . . 153

6.5.1 Parallel distribution and collection of data streams 153

6.5.2 Implementation results . 159

6.6 Parallel implementation of image pre-processing functions 160

6.6.1 Performance analysis . 163

6.7 Summary . 170

7 Conclusion and Future Work 172

7.1 Summary . 172

7.2 Thesis Contributions . 173

7.3 Suggestions for further work . 177

A Author’s Publications 180

B IPPro: Technical details 182

Bibliography 185

ix

List of Tables

2.1 High-level Synthesis (HLS) tools for FPGAs. 18

3.1 Dataflow semantics and their functional requirements to imple-

ment on a hardware architecture. 44

4.1 Categorisation of image processing operations based on their mem-

ory and execution patterns. 51

4.2 Memory and compute resources in 28nm Xilinx FPGA technology. 55

4.3 Correlation of FPGA-based soft-core datapath and dataflow mod-

els with increasing functionality and memory. 58

4.4 Details of supported dataflow features and processor datapath mem-

ory elements in each presented model. 58

4.5 IPPro instruction frame structure. 65

4.6 IPPro supported addressing modes and instructions. 65

4.7 IPPro code to implement func with and without dataforwarding. . 67

4.8 IPPro implementation results on selected Xilinx development boards. 68

4.9 Implementation of Min/Max using native and optimised IPPro

instructions. 71

x

LIST OF TABLES

4.10 Implementation results of optimised IPPro datapath to support

coprocessor extension on ZC706 (Kintex-7). 73

4.11 Comparison of IPPro against other FPGA-based soft-core proces-

sor architectures. 75

4.12 Mathematical representation of image pre-processing functions. . . 76

4.13 Area utilisation results of IPPro hardware accelerator. 81

4.14 Comparison of hardware acceleration results obtained from HLS

and IPPro using Avnet Zedboard (Artix-7). 82

4.15 Comparison of IPPro performance results against programmable

FPGA-based architecture. 83

4.16 Area comparison of IPPro against programmable FPGA-based ar-

chitecture. The normalised per core resource utilisation are re-

ported in the brackets. 84

4.17 Comparison of micro-benchmarks on IPPro and MicroBlaze. . . . 84

4.18 Area comparison of IPPro and MicroBlaze processors. 85

5.1 One-to-one mapping of dataflow semantics onto IPPro datapath. . 91

5.2 IPPro code implementing dataflow actor firing rule. 93

5.3 Implementation results of processor datapath using di↵erent FIFO

configurations on Artix-7 FPGA fabric. 97

5.4 Hardware resource and control requirements to map multi-port

actors onto IPPro core. 100

5.5 Impact of accelerator classes on IPPro-based core, multicore and

system requirements. 104

xi

LIST OF TABLES

5.6 IPPro-based multiple core architectures and their impact on sys-

tem requirements and inter-core communication. 106

5.7 Impact on area utilisation of di↵erent accelerator configurations. . 108

5.8 Output signals of FSM for each state. 114

5.9 Summary of the C functions running on the host processor to pro-

gram and control the underlying architecture. 118

5.10 Dataflow actor mapping and supported parallelism of IPPro hard-

ware accelerator design presented in Figure 5.15. 120

5.11 Performance measurements for design 1� and 2� of Figure 5.15. . 120

5.12 FPGA area utilisation of various designs shown in Figure 5.15.

The relative Zedboard area utilisation is also reported. 121

5.13 Performance with task-level parallelism using designs in Figure 5.15.121

5.14 Power, resource and combined e�ciency comparisons of IPPro-

based k -means implementations on Zedboard. 124

5.15 Power, resource and combined e�ciency comparisons for k -means

using Xilinx Zynq XC7Z045 Kintex-7 FPGA and GPU NVIDIA

GTX980. 124

6.1 IPPro instructions to access scratchpad memory. 137

6.2 Implementation results of the optimised IPPro on Kintex-7 fabric. 140

6.3 Comparison of IPPro against other FPGA-based soft-core processors.141

6.4 Implementation results to evaluate scaling of 4x4 and stream in-

terconnect architectures on area and core utilisation to realise data

(vertical) and task (horizontal) parallel implementations. 148

xii

LIST OF TABLES

6.5 Normalised area utilisation numbers of 4x4 with respect to stream

interconnect realising parallel implementations. 148

6.6 Implementation results of scaled-up stream interconnect designs

with increasing core-connectivity on Artix-7 and Kintex-7 fabrics.

The normalised area utilisation numbers of each design with re-

spect to single-core IPPro are reported within the brackets. 148

6.7 The AXI4-Lite (control) register map of platform hardware modules.157

6.8 Area utilisation results of the system infrastructure. 159

6.9 Estimation of number of multicore IPPro on Xilinx Zynq MPSoCs. 160

6.10 Formal mathematical representation of chosen image pre-processing

functions. 161

6.11 Data parallel performance results of point and area functions using

IPPro on Artix-7 (Zedboard). 165

6.12 Comparison of data parallel implementation of point functions us-

ing IPPro against ARM (-O2,-O3). 165

6.13 Comparison of data parallel implementation of area functions using

IPPro against ARM (-O2,-O3). 165

6.14 Implementation results of HLS generated IPs on Kintex-7 fabric.

(Normalised area and performance results of multicore IPPro to

HLS). 167

6.15 Performance results of task parallel implementations of multiple

dataflow actors on multicore IPPro. 168

6.16 Performance results of heterogeneous decomposed compute func-

tions using multicore IPPro. 169

xiii

LIST OF TABLES

B.1 IPPro supported instruction set and their corresponding DSP48E1

control signals. 182

B.2 IPPro instruction set. 183

B.3 The AXI4-Lite control register map. 184

xiv

List of Figures

1.1 Hierarchical illustration of hardware and software abstraction sup-

ported by each layer of the proposed programmable hardware ac-

celeration architecture. 6

2.1 FPGA-based hardware accelerator design compilation approaches. 16

2.2 Trend of hardware resources, their raw-computation (GMACs) and

memory across di↵erent families of Xilinx FPGAs. 21

2.3 FPGA memory and bandwidth hierarchy of Xilinx Virtex-7 FPGA. 21

2.4 Block diagram of Xilinx dedicated DSP block (DSP48E1). 23

2.5 Illustration of pipeline, task and data parallelism in dataflow graphs. 24

2.6 Illustration of parallel computing skeletons using dataflow actors. 27

2.7 The layered block diagram of Silicon Hive architecture illustrating

Processing Storage Element (PSE), cell and streaming array of cores. 30

2.8 The block diagram of PicoArray processors organised in a two

dimensional grid connected together using a deterministic picoBus

interconnect. 31

2.9 Datapath of a basic pipelined processing node used in GraphSoC. 33

2.10 Datapath of FlexGrip Streaming Multiprocessor (SM). 34

xv

LIST OF FIGURES

3.1 Rathlin workflow of RIPL to IPPro-based platform with alterna-

tive compilation paths. 41

3.2 Block diagram of a CAL dataflow actor and its components. . . . 43

3.3 Producer-consumer driven data exchange patterns. 45

4.1 Impact of DSP48E1 configurations on maximum achievable clock

frequency (fMax) using di↵erent speed grades of Kintex-7 FPGAs.

The DSP48E1 configuration used are: fully pipelined datapath

with no pattern detector (NOPAT), with pattern detector (PAT-

DET), multiply with no output register MREG (MULT NOMREG)

and pattern detector (MULT NOMREG PATDET) and a Multi-

ply, pre-adder, no ADREG (PREADD MULT NOADREG). . . . 54

4.2 Impact of BRAM configurations on the maximum achievable clock

frequency (fMax) of Artix-7, Kintex-7 and Virtex-7 FPGAs for

single and true-dual port RAM configurations. 55

4.3 Dataflow models (a) DFG node without internal storage 1� (b)

DFG actor without internal storage t1 and constant i 2� (c) Pro-

grammable DFG actor with internal storage t1, t2 and t3 and con-

stants i and j 3�. 57

4.4 FPGA datapath models (a) Programmable ALU 1� (b) Fine-grained

processor 2� (c) Coarse-grained processor 3�. 57

4.5 Impact of datapath models 1�, 2�, 3� on fMax across FPGA fabrics. 60

4.6 Block diagram of FPGA-based soft-core processor IPPro datapath. 62

4.7 Implementation of dataforwarding exploiting MACC functionality

of DSP48E1. 66

xvi

LIST OF FIGURES

4.8 Optimisation of IPPro datapath to support dedicated minimum

and maximum instructions. 70

4.9 (a) Input/output interfaces of division coprocessor (b) Coprocessor

extended IPPro datapath. 72

4.10 Pipelined execution of division coprocessor. 73

4.11 Block diagram of programmable video processing platform to im-

plement case-studies using single-core IPPro. 80

5.1 (a) Representation of a CAL dataflow actor (b) Mapping of dataflow

actor onto IPPro datapath. 91

5.2 IPPro datapath supporting firing of dataflow actor. 93

5.3 Producer-consumer data-driven execution using IPPro core. . . . 94

5.4 Impact on fMax of realising FIFOs using di↵erent resources and

configurations. 96

5.5 Mapping of dataflow execution patterns on IPPro core. 98

5.6 Pseudo IPPro code to implement dataflow execution patterns. . . 98

5.7 Block diagram of multi-port input data interface of IPPro datapath. 99

5.8 Impact of multi-port IPPro datapath on execution time (in clock

cycles) of dataflow actor. 101

5.9 Multiple IPPro core-based hardware accelerator designs (a) De-

sign A� (b) Design B� (c) Design C� (d) Design D�. 105

5.10 Multiple IPPro cores as dataflow accelerators deploying dataflow

optimisations (a) One-to-one actor-core mapping (b) 2-way SIMD

mapping per actor. 110

5.11 Cyclic row-wise image/video pixel distribution. 112

xvii

LIST OF FIGURES

5.12 System level data distribution and control architecture. 113

5.13 FSM used to control the architecture of Fig. 5.14. 114

5.14 Block diagram of implemented system architecture for case study. 116

5.15 IPPro hardware accelerator designs to explore and analyse the im-

pact of parallelism on area and performance. 1� Single core IPPro,

2� 8-way SIMD IPPro, 3� Dual core IPPro, 4� Dual core 8-way

SIMD IPPro. 119

6.1 Software and hardware abstraction of the platform. 132

6.2 Block diagram of hardware dataflow actor firing module. 135

6.3 Data processing paths of the IPPro using scratchpad. 137

6.4 AMBA-AXI4 compliant management interfaces of the IPPro. . . . 139

6.5 Theoretical mapping of data exchange patterns on IPPro cores. . 143

6.6 Realisation of data exchange patterns using stream interconnect. . 144

6.7 Stream interconnect architectures with increasing core connectivity. 146

6.8 A dataflow graph example that covers pipelining of multiple data

parallel actors. 151

6.9 Flat illustration of mapping and execution of pipelined multiple

data parallel actors exploiting parallelism using multicore IPPro.

The listed IPPro code shows the read, write and tagging of tokens

for each actor. These tags are used by the interconnect to route

token among cores of the multicore IPPro. 152

6.10 Parallel distribution of row-wise cyclic image pixels. 154

6.11 Generation and distribution of the point or window pixels. 155

xviii

LIST OF FIGURES

6.12 Block diagram of programmable hardware acceleration platform.

The diagram only shows a single multicore IPPro due to space

limitations. Cascading of multiple multicore IPPro cores is possible

permitted to FPGA area resources. 156

6.13 Video processing system architecture using FPGA-based programmable

hardware acceleration platform. 163

xix

Chapter 1

Introduction

Image Processing has been a field of academic research over the past several

decades and is extensively employed to interpret meaning from images or video. A

vast majority of electronic systems from automotive industry to factory automa-

tion, medical and surveillance employs image processing to provide intelligent

analysis of their systems and improve productivity. The processing demands of

such workloads often surpass the capacity of traditional computing architectures.

Video analytics is the branch of embedded vision that analyses human activ-

ity and extracts information from video content that is meaningful as perceived

by the human eye. It is gaining traction in a diverse set of application markets

including retail, transportation, consumer, smart-cities, critical infrastructure,

and enterprise, among others. These systems use smart cameras with on-board

image pre-processing to process data and give a reduction in data bandwidth

and memory requirements before sending it to the centralised, server-based soft-

ware platforms [1], [2]. These platforms are being aided by advanced algorithms

to interpret and analyse meaning of an ever-growing increase of video content.

1

1.1 Research problem

There is a significant amount of investment in industrial and educational research,

which is expected to grow in coming years considerably. The Embedded Vision

Alliance has estimated that the revenue from analytic video hardware, software

and services will increase from $858 million to nearly $3 billion by 2022, repre-

senting a compound annual growth rate (CAGR) of 19.6% [3]. This growth brings

significant challenges to explore new parallel computing architectures in general

and image processing architecture in particular, which are portable, e�cient and

easier to use for a wide range of application developers.

1.1 Research problem

The increasing demands for computation and bandwidth of existing and next-

generation image processing applications pose severe challenges to both hardware

and software solutions. While special purpose, hardware such as theGraphics pro-

cessing unit (GPU) can handle the increasing computational demands of these

data intensive applications, they come at the expense of higher power consump-

tion, longer design times and significant programming e↵ort. However, rapid

advances and changes in state-of-art technology for these applications quickly

make obsolete a dedicated accelerator or chip. The obsolescence is especially true

in case of Application-specific integrated circuit (ASIC).

Field-programmable gate array (FPGA) technology has evolved significantly

over the years from simple regular arrangements of configurable logic blocks and

routing to a heterogeneous system-on-chip (SoC). Much of this improvement has

inevitably been driven by market segments where FPGAs are particularly preva-

lent in signal processing due to pipelining and parallelism that they o↵er. While

2

1.1 Research problem

the technology gap between ASIC and FPGA is widening, most of new ASIC de-

signs lag behind due to overall design e↵ort, time and cost making FPGA more

attractive. FPGAs are proven computing platforms that o↵er reconfigurability,

concurrency and pipelining. GPUs seem a viable highly programmable platform

but, current energy requirements and limitations of Dennard scaling have acted

to limit clock scaling, thus limits processing capabilities [4].

Apart from FPGA being a high performance and power e�cient computing

technology, they have not been accepted as a mainstream computing platform.

The primary inhibitor is the need to use specialist programming tools, describing

algorithms in hardware description language (HDL) and lack of adaptability. Sili-

con vendors started to alleviate this issue by introducing high-level programming

tools such as Xilinx’s Vivado High-level Synthesis (HLS) and Intel’s (Altera’s)

compiler for OpenCL. While the level of abstraction has been raised, a gap still

exists between adaptability, performance and e�cient utilisation of FPGA re-

sources. Nevertheless, the FPGA design flow still requires design synthesis and

place-and-route that can be time-consuming depending on the complexity and

size of the design; this is alien to software and algorithm developers. The devel-

opment of algorithms is usually an experimental process and may require many

design iterations involving quick profiling, design exploration and prototyping.

In such circumstances, an FPGA design flow that requires synthesis, place-and-

route process is not comparable to a more familiar software-centric design flow

that uses edit-compile-run. Therefore, an iterative development of a di↵erent ap-

plication on FPGAs is a complicated and time-consuming process which inhibits

widespread use of the technology.

The changing technology landscape and fast evolution of new application use-

3

1.2 Rathlin Project

cases make it imperative that underlying hardware architecture should be adapt-

able. Such platforms are a significant part of some major research initiatives

where both quick prototyping and reduced design time are of prime importance.

Moreover, the computing platform should allow design exploration possibilities

including decomposition and mapping to optimise applications.

1.2 Rathlin Project

Rathlin research project had undertaken to approach these research problems [5].

The scope of this project was to investigate the rapid developments in image

acquisition/interpretation and intelligent algorithms. As they have not been

matched by sound software engineering principles, to generate e�cient solutions

for time, memory and power e�cient hardware.

A domain-specific image processing language Rathlin Image Processing Lan-

guage (RIPL) for FPGAs was introduced [6]. RIPL supports algorithmic skele-

tons to express image processing components, which functionally inherit a dataflow

model of computation. A RIPL description is converted into an intermediate

dataflow language (CAL) which is mapped on to the FPGA as a network of

stream processing units [7]. Though, one of the project objectives was to facil-

itate iterative development of di↵erent applications by replacing FPGA design

flow to software-centric flow. Therefore, an adaptable FPGA-based hardware ac-

celeration platform architecture was developed that e�ciently maps and executes

parallel CAL dataflow descriptions. This platform aimed to unleash the potential

of state-of-art FPGAs in close synergy with a suitable software representation.

Further discussion on Rathlin programming workflow and relevant background

4

1.3 Proposed approach

work will be discussed in Chapter 3.

1.3 Proposed approach

FPGA heterogeneous system-on-chip (SoC) architectures have addressed some of

the hardware and software programming challenges [8], [9], [10]. However, fit-

ting di↵erent parallel computational tasks onto the underlying FPGA hardware

resources by using more processing nodes integrated into a single-chip is impor-

tant. Besides, the need for architecture specific skills to port and optimise the

applications to the underlying FPGA hardware resources which includes man-

aging and exploiting parallelism and system heterogeneity, is also challenging.

This problem is directly related to the optimal exploration of type and degree

of parallelism among multiple processing nodes available within a heterogeneous

system. Realising parallel applications on these heterogeneous platforms often in-

volves design and development of the processing nodes or hardware accelerators.

They can comprise fixed, reconfigurable or software programmable processors or

combinations thereof. The adaptability of the underlying platform depends on

the flexibility and programmability of its processing nodes. This adaptability can

be present in the device, in the circuit, in the micro-architecture, in the system

or even in the runtime software layer or among all of these.

This research work proposes an FPGA-based programmable hardware acceler-

ation platform. It is a system architecture that takes advantage of heterogeneous

computing. The FPGA glue logic can be used as a programmable hardware accel-

eration architecture that substitutes the traditional FPGA design flow (synthe-

sis and place-and-route) to a software-centric edit-compile-run design flow [11].

5

1.3 Proposed approach

FPGA-based soft-core processor architectures have been used [12], [13], [14],

[15], [16] as they o↵er better software controlled functionalities, system flexi-

bility/portability, and partitioning of hardware-software co-design over other ap-

proaches [17]. The programmable hardware acceleration architecture is a three-

layer architecture as illustrated in Figure 1.1 and outlined below:

• The bottom layer is comprised of a novel FPGA-based soft-core Image Pro-

cessing Processor (IPPro) architecture tailored to accelerate image pre-

processing applications. It supports both shared memory and message

passing data processing models. The IPPro core is an independent, self-

managed, programmable hardware accelerator that handles the exchange

of data among multiple producers and consumers by executing stream in-

structions. It is used as a basic computational unit of the proposed platform

as shown in Figure 1.1.

• The middle layer is composed of multiple IPPro cores connected with an

Figure 1.1: Hierarchical illustration of hardware and software abstraction sup-
ported by each layer of the proposed programmable hardware acceleration archi-
tecture.

6

1.3 Proposed approach

interconnect called multicore IPPro as shown in Figure 1.1. It extends

both shared memory and stream processing and is supported by the lower

layer to realise parallel computing models. The interconnect provides a

deterministic, self-synchronising programmable inter-core communication

mechanism to facilitate implementation of graph modelling various kinds

of parallel/concurrent activities. The shared memory model o↵ers pro-

grammable explicit synchronisation mechanism between each IPPro core

and host processor to realise distributed computing and coprocessor activ-

ities.

• The top layer provides system infrastructure that distributes and collects

data to the bottom layers. These mechanisms are necessary for e�cient

implementation of di↵erent parallel applications exploiting data and task

parallelism as shown in Figure 1.1. Besides, it provides parametric/software

configurable and dynamic data and control mechanisms to use common

parallel algorithmic skeletons (split, compute and merge, farm and pipeline)

and image processing operations (point and area) utilising the architectural

features and processing capability provided by the bottom two layers.

The proposed approach provides a hierarchical abstraction to hardware com-

puting resources, and the relevant communication and data access mechanisms

that help to address the challenges faced by algorithm and software developers

to adopt FPGAs. This approach also enables parallel exploration, profiling and

implementation of di↵erent image processing algorithms to achieve the required

goals.

7

1.4 Thesis Contributions

1.4 Thesis Contributions

The following are the notable contributions presented in this thesis work:

1. Design and development of novel FPGA-based Image Processing Proces-

sor (IPPro) soft-core architecture tailored for acceleration of image pre-

processing applications. The architecture is carefully designed to support

functional computing requirements of image processing while maintaining

e�cient utilisation of FPGA compute and memory resources. The archi-

tecture supports both message passing and shared data models enabling

stream and batch processing of uniform and non-uniform distributed data.

These data processing paths provide architectural features to facilitate im-

plementation of a split, compute, merge, pipeline and farm parallel com-

puting skeletons. Using IPPro as a fundamental computing element makes

the FPGA-based platform flexible and adaptable. It allows deployment of

edit-compile-run flow avoiding design synthesis and place-and-route that

reduces design time.

2. Design and development of IPPro-based hardware accelerator models to

identify the architectural requirements of the accelerator’s management and

provisioning policies, and their impact on the timing results of the proces-

sor. IPPro is designed as an independent, self-managed, programmable

dataflow accelerator. The program code embeds both the actor’s functional

description and its interaction with multiple producers and consumers. It

avoids the need for external control mechanisms necessary to synchronise

interaction between actors while exchanging data tokens and minimises IP-

Pro core management and control overheads. It gives better controllability

8

1.4 Thesis Contributions

on the actor’s token production and consumption rate and implements dif-

ferent data exchange patterns (split and merge). Besides, it enables fine

and coarse-grained mapping and execution of data and control flow graphs

which are commonly found in image processing applications.

3. Development of a multicore IPPro architecture that provides flexible con-

nectivity among multiple IPPro cores and enhances platform’s programmable

computing and mapping capabilities to map dataflow applications. The ar-

chitecture complements the supported features of IPPro core and provides

dynamic routing of dataflow streams among multiple IPPro cores. The con-

nectivity among cores allows adaptable implementations of one-to-many,

many-to-one, many-to-many producer-consumer dataflow graphs utilising

the same hardware resources. These architectural features facilitate appli-

cation profiling, optimisation options to the software and algorithm devel-

oper by exploiting data, task and pipeline parallelism.

4. Design and development of FPGA-based software controlled data distribu-

tion and collection architecture supporting di↵erent image resolutions. It

divides an image stream into a variable number of parallel data streams

that can be fed across multiple IPPro cores to realise a parallel computing

paradigm. The architecture is independent, self-managed and can be inte-

grated with both direct and bu↵ered video processing pipelines to distribute

data across multiple processing elements which are fixed in High-level Syn-

thesis (HLS) system architectures. It facilitates parallel implementation of

a split, compute, merge computing skeleton using multicore IPPro.

5. Design and development of an adaptable FPGA-based hardware accelera-

9

1.5 Thesis Outline

tion platform architecture. It facilitates application exploration possibili-

ties using flexible actor-core mapping, exploiting data and task parallelism,

and realisation of parallel computing skeletons on FPGA technology. The

architecture provides necessary architectural functionalities to deploy edit-

compile-run flow by avoiding synthesis and place-and-route times which is

helpful to profile, optimise and fast prototype both parallel and non-parallel

image processing algorithms on the FPGA.

1.5 Thesis Outline

The remainder of the thesis is organised as follows: Chapter 2 covers the fun-

damental multidisciplinary concepts of FPGA-based hardware design and imple-

mentation, and parallel computing. It includes background on parallel embedded

architectures focusing on FPGA-based hardware design approaches highlighting

the need of adaptable and flexible hardware architectures. This is followed by

the introduction to parallel computing with a primary focus on the notion of

parallelism in dataflow graphs. The literature review on di↵erent FPGA-based

soft-core processor architectures using di↵erent design/programming approaches

will be covered at the end of the chapter.

The presented work is a part of a larger research project called Rathlin and

covers the underlying FPGA-based hardware architecture. Chapter 3 gives an

overview of the project’s scope and programming work-flow. It will help the

reader to understand the bigger picture of the presented research and reasons of

the adopted approach, and some of the design choices made in designing IPPro,

multicore IPPro and the platform architecture.

10

1.5 Thesis Outline

Chapter 4 presents an FPGA-based soft-core Image Processing Processor (IP-

Pro) architecture tailored to accelerate image pre-processing operations. The

processor datapath has been developed after a detailed insight analysis of FPGA

resources, processor functionality and dataflow models. It exploits FPGAs ded-

icated computing and memory resources to achieve the best balance between

performance and area utilisation and enables software recompilation of FPGA

by avoiding synthesis and place-and-route times. The processor datapath imple-

ments dedicated minimum and maximum instructions for optimised implemen-

tation of specific image pre-processing functions. A coprocessor extension is also

implemented to integrate dedicated processing units and o✏oad complex arith-

metic operations transparently. At the end of the chapter, the performance and

area results achieved by single-core IPPro is compared against a fixed high-level

synthesis (HLS), FPGA-based programmable processor architecture and well-

established MicroBlaze soft-core processor. The IPPro core is viable to use as a

basic processing element of a programmable hardware acceleration architecture.

Chapter 5 presents IPPro as a programmable dataflow accelerator architecture

that can map and execute fine and coarse-grained dataflow actor using producer-

consumer computing model. These execution patterns supported by the archi-

tecture provide flexible mapping options to the user and software framework to

explore and deploy di↵erent dataflow graph optimisations. It also presents a

detailed analysis of management and provisioning of hardware accelerator when

used in heterogeneous system architecture and their impact on the system’s ar-

chitectural requirements and resource utilisation.

Chapter 6 presents a heterogeneous FPGA-based programmable hardware ac-

celeration platform architecture that supports a software-controlled implemen-

11

1.5 Thesis Outline

tation of parallel skeletons on hardware. The platform is composed of a host

processor and tightly-coupled homogeneous FPGA-based programmable hard-

ware accelerators (IPPro cores). The platform facilitates the implementation of

the split, compute and merge, pipeline and farm parallel skeletons by provid-

ing software-abstraction to make it easy to use for the software developer. The

platform covers three hardware and software abstraction layers as indicated in

Figure 1.1. At the end of the chapter, the acceleration results of a set of image

pre-processing micro-benchmarks and functions, covering data and task parallel

balanced and unbalanced dataflow actors are presented. This allows the mapping

flexibility and the system’s adaptability to implement di↵erent applications and

computing paradigms to be evaluated.

12

Chapter 2

Background

The changing technology landscape and fast evolution of new application use-

cases raises the need for adaptable and e�cient hardware architectures. These

architectures shall handle the processing of dynamic data workloads and at the

same time provide adaptability to implement di↵erent applications. This research

problem initiated the need for look into di↵erent FPGA-based design approaches

and programmable architectures. This chapter covers the multidisciplinary con-

cepts related to FPGA-based hardware design approaches, dataflow model of

computation and parallel computing and reviews their background and related

work relevant to the thesis.

Section 2.1 covers the background on parallel embedded architectures focusing

on FPGA-based hardware acceleration approaches and details pros and cons. of

the existing approaches. It will discuss benefits of FPGA technology to realise

e�cient hardware acceleration technology to develop programmable/adaptable

architectures. Section 2.2 encompasses the basic concepts of a dataflow model of

computation and presents the notion of parallelism and dataflow transformations

13

2.1 Parallel embedded architectures

to achieve optimised implementations. This is followed by a discussion on parallel

computing skeletons that provide high-level programming constructs suitable for

software and algorithm developers in Section 2.3. Section 2.4 will review the

related work on FPGA soft-core and multicore processor architectures.

2.1 Parallel embedded architectures

During the last decade, multiprocessor architectures have emerged as an impor-

tant computing paradigm for parallel computing [18], [19], [20], [21]. They have

driven the development of advanced parallel embedded architectures [22], [23].

The trend of integrating homogeneous and heterogeneous processing units have

opened various hardware-based parallel application decomposition, mapping and

design exploration possibilities [24], [25], [26], [27]. Hardware architectures com-

posed of tens and hundreds of light-weight compute units have become a com-

monplace not only to optimise performance [12], [13], [14], [15], [16]. At the

same time, these hardware architectures present several challenges such as ar-

chitecture specific skills to port and optimise the applications to the underlying

architecture which includes managing and exploiting parallelism and system het-

erogeneity. This section covers the background study necessary to understand

these challenges and FPGA-based hardware design approaches taken by the re-

search community.

2.1.1 FPGA multiprocessor system-on-chip

Emerging heterogenous multiprocessor system-on-chip (MPSoC) architectures

such as Xilinx Zynq-7000 and Altera Arria-V SoC integrates both software pro-

14

2.1 Parallel embedded architectures

grammability of a general purpose processor (ARM) with the hardware pro-

grammability of an FPGA. The integration of the hardware and software made

MPSoC architectures suitable computing platform to implement mixed function-

ality on a single device, and to develop adaptable embedded architectures [15], [28],

[29].

Nevertheless, these heterogeneous MPSoC platforms have addressed some of

the hardware and software programming challenges. However, fitting of parallel

computational tasks to the underlying hardware resources by using more process-

ing nodes integrated into a single chip is still a challenge. This problem is directly

related to the optimal exploration of type and degree of parallelism among multi-

ple processing nodes available within the heterogeneous system [12], [13], [14], [30].

Besides, optimised realisation of parallel applications using these heterogeneous

platforms, it often involves design and development of hardware accelerators to

meet application requirements. The architecture of these hardware accelerators

can have a dynamic range of flexibility from fixed, reconfigurable, software pro-

grammable or combination of thereof. They reside on the FPGA fabric and are

usually managed by a general purpose processor such as ARM Cortex-A proces-

sors [28], [29]. There are di↵erent FPGA hardware design approaches to realise

such hardware accelerators, Section 2.1.2 will discuss in further details.

2.1.2 FPGA hardware accelerator design approaches

The silicon vendors and the research community have developed and proposed

di↵erent architectures, design tools and software frameworks that ease the devel-

opment of hardware accelerators. The silicon vendors tools provide a cohesive

15

2.1 Parallel embedded architectures

Figure 2.1: FPGA-based hardware accelerator design compilation ap-
proaches [35].

heterogeneous hardware-software co-design solution to develop and integrate the

custom FPGA-based hardware accelerators. However to realise di↵erent appli-

cation use case, requires architectural changes, design synthesis and place-and-

route [20], [21], [31], [32], [33], [34]. These design tools cover both hardware and

software design space which can be divided into the front-end software compila-

tion and back-end hardware compilation tasks as illustrated in Figure 2.1 [35].

The front-end software compilation includes application description and acceler-

ator architecture layers. The application description can be a domain or target

specific, while the accelerator architecture can encompass a wide range of hard-

ware accelerator architectures. On the other hand, the physical mapping layer

uses silicon vendor tools to physically map the chosen hardware accelerator ar-

chitecture onto the FPGA resources to achieve back-end hardware compilation.

To provide programming abstraction, the application can be described in a

high-level language such as C/C++, OpenCL etc. or domain-specific language

16

2.1 Parallel embedded architectures

[15], [20], [36]. This application description is translated, optimised and compiled

into an intermediate representation that can be mapped onto the target-hardware-

accelerator. A wide range of target-hardware-accelerator approaches can be

adopted ranging from a highly optimised application-specific processor, a flexible

and programmable soft-core processor, an overlay architecture or a combination

of thereof as illustrated in Figure 2.1. Each of these approaches has their pros

and cons regarding design flexibility, area and performance [12], [20], [21], [23].

Based on the chosen target-hardware-accelerator architecture, the intermediate

representation can be converted either into a set of dedicated domain-specific

instructions, a program code consisting of mix of a general purpose instructions,

or a hardware description language (HDL) or combination of thereof. The physi-

cal layer takes the HDL description of the target-hardware-accelerator design and

converts into an FPGA mappable form, i.e. to the physical resources of an FPGA

(flip-flops, lookup tables, dedicated DSP and memory blocks). This task requires

technology dependent optimisation and routing mechanisms which are conducted

by automated silicon vendor tools. The tasks involve design synthesis, place-and-

route and bit-stream generation. These steps can be significantly time-consuming

for iterative algorithm developement depending on the complexity and size of the

hardware design [8], [9], [10], [37].

High-level synthesis (HLS)

High-level synthesis (HLS) tools take an application description, use di↵erent

analysis techniques to profile and explore the design space. The majority of

these tools use a dataflow model of computation, therefore Table 2.1 lists both

academic and commercial HLS tools that are widely reported in the open lit-

17

2.1 Parallel embedded architectures

erature [38], [39]. These tools support di↵erent high-level languages such as C,

C++, OpenCL or domain specific languages to describe an application. These

tools profile, explore, optimise and compile the high-level description into an

intermediate representation which is translated into hardware description lan-

guages [7], [40], [41] such as VHDL, Verilog or SystemC as listed in Table 2.1.

These tools take advantage of FPGA deep pipelining to exploit parallelism

and explore performance and resource optimisations by tuning the size of the

first-in-first-out FIFOs [41], [42]. The oversized bu↵er uses more resources than

needed, while small bu↵er can cause additional delays, stalls, and deadlocks dur-

ing execution of the application [40], [43]. Though, all HLS tools generate a

fixed hardware architecture tailored to accelerate a specific application or part

of an algorithm which is not adaptable. To implement di↵erent applications, the

only possibility is to rewrite and go through all front-end and back-end tasks

discussed in Figure 2.1. The back-end tasks can significantly increase the design

time [8], [9], [21], [23], [37] which is not appealing by software and algorithm de-

velopers due to the iterative algorithm development process which requires design

exploration and fast prototyping. Section 2.1.3 discusses this problem in detail.

Table 2.1: High-level Synthesis (HLS) tools for FPGAs. [38], [39].

HLS Tool License Input Output Data Control
flow Flow

Catapult-C Commercial C/C++/SystemC VHDL/Verilog/SystemC 3 3
Bluespec Commercial BSV SystemVerilog 3 3
C-to-Silicon Commercial SystemC/C++ Verilog/SystemC 3 3
MaxCompiler Commercial MaxJ RTL 3 7
ROCCC Commercial C subset VHDL 3 3
GAUT Academic C/C++ VHDL 3 3
Synphony C Commercial BDL VHDL/Verilog 3 3
LegUp Academic C Verilog 3 3
Vivado HLS Commercial C/C++/SystemC VHDL/Verilog/SystemC 3 3
Altera SDK Commercial C/OpenCL VHDL/Verilog 3 3
HIPAcc Academic C++ Embedded DSL C++ 3 7
Merlin Compiler Commercial C/C++ C/OpenCL 3 3

18

2.1 Parallel embedded architectures

2.1.3 Need for adaptable hardware architectures

The emerging versatile application markets raise the demand for high-performance

and e�cient FPGA architectures, that can handle the processing of dynamic data

workloads and at the same time adaptable to accelerate di↵erent applications.

One way to approach this research problem is by developing adaptable FPGA

hardware architecture that enables edit-compile-run flow familiar to software and

algorithm developers instead of hardware synthesis and place-and-route. It can

be achieved by populating FPGA logic with a light-weight and high-performance

soft-core processors used for programmable hardware acceleration. This under-

lying architecture will be adaptable and can be programmed using conventional

software development approaches as illustrated in Figure 2.1. This approach does

not require hardware design synthesis and place-and-route. Instead, it will need

software re-compilation that shall generate a binary code to run on the underlying

soft-core processors.

Though the HLS-based designs are use case optimised as the application is

known before realising the underlying hardware. On the contrary, in processor-

based approach, the underlying hardware architecture is designed, synthesised,

place-and-route in advance. Therefore, the overall area is expected to be more

significant and performance is supposed to be lower than HLS, which will come

at the cost of adaptability and reduction in design time.

This approach provides hardware abstraction of the underlying FPGA pro-

grammable resources by allowing them to reconfigure using traditional software

approaches and exposes it to the software developer. It inherits software benefits

such as portability, partitioning complex hardware-software co-design, decompo-

19

2.1 Parallel embedded architectures

sition and mapping options to achieve desired area and performance goals. Be-

sides, avoiding required iterative process of synthesis and place-and-route would

reduce design time, improve productivity and allow software-controlled design

exploration opportunities. Jain, Rigamonti and Liu have reported an order of

magnitude improvements by compiling applications onto processor architectures

over HDL and partial reconfiguration approaches [23], [44], [45]. Nevertheless one

of the significant challenges is to e�ciently compile, map and execute parallel ap-

plications onto the underlying programmable hardware accelerator architecture.

2.1.4 FPGA memory and computation resources

FPGA fabric provides essential digital components necessary to build any digital

circuit. It has logic blocks, dedicated memory and DSP Blocks, clock management

circuitry and routing resources to connect these digital components. In an FPGA,

the location of these components are fixed and cannot be changed which makes

it essential to consider their layout to obtain area-e�cient and high-performance

hardware architecture. Figure 2.2 shows the available hardware resources, their

raw-computation (GMACs) and the memory resources across di↵erent families of

Xilinx FPGAs. The raw-computation (GMACs) is directly proportional to the

number of DSP blocks. Dinechen et al. show how to map di↵erent arithmetic

operators on FPGA fabric utilising di↵erent approaches including LUT, DSP

block etc. [46]. Similarly others presented mapping of mathematical expressions

to these DSP blocks and achieved performance improvements [47], [48], [49].

While the computing resources and bandwidth are high, the memory in FPGA

is limited compared to other computing technologies. Figure 2.3 shows the distri-

20

2.1 Parallel embedded architectures

Figure 2.2: Trend of hardware resources, their raw-computation (GMACs) and
memory across di↵erent families of Xilinx FPGAs [50], [51].

bution of on-chip memory and bandwidth on the Virtex-7 FPGA. Moving away

from the datapath the memory size increases while the bandwidth get limited.

On-chip memory consists of LUT-based Distributed RAM that are small and close

to the datapath which can provide faster access to data at higher bandwidth. On

the other hand, Block RAM is comparatively larger but limited in bandwidth. It

shows that there is a trade-o↵ between the memory-size and bandwidth.

Focusing on the FPGA technology, the 7 series Xilinx FPGAs comes in three

di↵erent families. The 7 series combine the power reducing process, design tech-

Figure 2.3: FPGA memory and bandwidth hierarchy of Xilinx Virtex-7 FPGA.

21

2.1 Parallel embedded architectures

niques, and architectural enhancements to deliver the lowest-in-class power con-

sumption, compared to the previous generation of Xilinx FPGAs. It covers a

low-cost Artix-7 family, a midrange Kintex-7 family, and a high-end Virtex-7 fam-

ily of FPGAs. All three families uses the same 28nm silicon process technology

and have the basic FPGA building blocks of logic cells, DSP blocks, BlockRAM

making it simpler to migrate designs across FPGA family. The Kintex-7 device

family features a perfect balance of FPGA fabric clock rate performance versus

power consumption, high-speed I/O, capacity and reliability. Artix-7 uses the

same FPGA resources as Kintex-7, but optimized for even lower power consump-

tion and smaller size packages, delivering similar advantages, at the cost of lower

chip price and performance.

2.1.5 DSP block

Most of the digital signal processing applications extensively use multiply and

accumulate operations that can be performed e�ciently using these DSP blocks.

These blocks are uniformly-distributed inside the FPGA fabric. They are capable

of performing basic arithmetic and logic operations on data that is suitable to

design e�cient, high-performance arithmetic logic unit (ALU) of a processor.

Xilinx DSP Block (DSP48E1 and DSP48E2) supports these operations and can

be dynamically configurable in contrast to Altera. Figure 2.4 shows the simplified

functional block diagram of the DSP48E1. It has four main arithmetic blocks:

1. 25-bits Pre-Adder

2. 25x18 bits Multiplier

3. 48-bits Adder, Subtractor, Logical

22

2.2 Dataflow model of computation

Figure 2.4: Block diagram of Xilinx dedicated DSP block (DSP48E1) [52].

4. Comparator and pattern detector

The DSP48E1 is capable of multiply, multiply- accumulate, add, subtract

and other operations. Besides, a set of control registers that allow controlling

the internal datapath on a cycle-to-cycle basis (for details see Appendix B Ta-

ble B.1). There are pipeline registers that enable/disable the internal pipelining

of the DSP48E1 block and improve the timing of the block by reducing the crit-

ical path [52]. Three internal multiplexers allow mapping of input and output

operands to multiplier and adder/subtracter.

2.2 Dataflow model of computation

In early 1970s, various classes of model of a computation (MoC) had been intro-

duced that models the architecture independent functional requirements through

semantics, interfaces and provides synergy between processing units [53], choos-

ing a suitable MoC is one of the key hardware design decision. The dataflow MoC

could possibly be expressive programming and e�cient execution model. It has

the property to express applications as network processes which o↵er parallelism

23

2.2 Dataflow model of computation

scalability, modularity, portability and adaptivity. These characteristics are vital

to unify the system level design of heterogeneous platforms. Moreover, it follows

the principle of stream processing [22] that are suitable for FPGA-based hardware

architectures [54], [55], [56], [57].

2.2.1 Notion of parallelism in dataflow graphs

Stream and dataflow driven programming models allows e�cient implementation

of di↵erent types of parallelism [30], [58], [59]:

Pipeline parallelism A pipeline is a chain of actors a1, . . . , an that are directly

connected in the stream graph. Each pair (ai, ai+1), i 2 {1, . . . , n � 1} has a

producer/consumer relationship, that is, ai consumes items produced by ai�1

and produces items that serve as input for ai+1. Figure 2.5 shows a pipelined

execution of function A and B. It is important to note that the throughput shall

only be as fast as the slowest group of actors in the pipeline [60].

Task parallelism Two actors a1, a2 are task parallel if they are on di↵erent

branches of the stream graph. In contrast to pipelines, there are no input/output

dependencies between a1 and a2. Figure 2.5 shows task parallel actor D and E.

Data parallelism is the property of an actor to have no dependencies between

Figure 2.5: Illustration of pipeline, task and data parallelism in dataflow
graphs [58].

24

2.3 Parallel computing skeletons

one execution and the next. The actor can be replicated by using multiple in-

stances of an actor such as G is replaced twice as shown in Figure 2.5.

2.2.2 Dataflow transformation

Dataflow transformations are frequently used to enhance system performance, by

improving the performance of slower dataflow nodes or part of the graph [24] [26].

These transformations maintain the functionality of original dataflow graph, but

increase the throughput or decrease the latency [26], [30]. Dataflow graphs are

amenable to coarse-grained transformation to exploit data, task and pipeline par-

allelism that can be e�ciently implemented using FPGA [24]. Single instruction

multiple data (SIMD) based hardware architectures had been used to acceler-

ate applications including image pre-processing due to massive pixel process-

ing [61], [62], [63]. The dataflow specific optimisations (decomposition, mapping,

and scheduling) and transformations (fission, fusion, etc.) can be exploited to

improve performance [24], [30], [64]. These transformations allow decomposition

and design space exploration possibilities to achieve desired application goals.

The application can map on a multicore architecture, which will enable exploit-

ing data and task parallelism by supporting edit-compile-run design flow.

2.3 Parallel computing skeletons

Parallel computing skeletons capture common parallel-programming paradigms

and abstract to the programmer as high-level programming constructs equipped

with well-defined functional semantics [12], [65], [66], [67], [68]. They model a

precise parallel pattern to exploit parallelism and hides pattern implementation

25

2.3 Parallel computing skeletons

details from the programmer to exploit parallelism as shown in Figure 2.6. These

patterns are parametric and can be re-used in di↵erent applications. This ap-

proach is adopted by several parallel programming frameworks [31], [69], [70].

2.3.1 Pipeline

The basic idea of the pipeline skeleton is to split processing into a series of se-

quential steps, with storage at the end of each step as shown in Figure 2.6. It

is possible by distributing a sequential application into multiple independent but

sequential tasks, where preceding task feeds data to the following task. It en-

ables concurrency where that tasks can execute in parallel as soon as the data is

available at the processing node. The computational load of tasks may vary and

is not known before run-time unless static model of computation such as static

dataflow is used to define the parallel application. Though, the maximum achiev-

able processing rate depends on the processing rate of the slowest task, which is

faster than the time needed to perform all the steps at once. However, by static

profiling of the application in hand, it is possible to find an e�cient decomposition

that could lead to balanced tasks with bounded memory requirements.

2.3.2 Split, compute and merge

This skeleton is used to process regularly distributed data-based on static decom-

position. The data is divided into a number of equal sized blocks (row-based,

column-based or block-based) where the number of parallel data blocks defines

the level of exploitable data parallelism. In architectural terms, it is know as

scatter-gather or split-compute and merge parallel programming model as shown

26

2.3 Parallel computing skeletons

Figure 2.6: Illustration of parallel computing skeletons using dataflow actors [71].

in Figure 2.6. Moreover, it can also be extended to implement di↵erent derived

multi-stage pipelined skeletons to exploit both data and task parallelism using

the pipeline, split, compute, communication, compute, merge or a combination of

thereof, to achieve better performance. The benefit of pipelining multiple stages

is that it reduces data transfer overhead, improves data bandwidth, avoids mem-

ory bottlenecks in contrast to shared memory model-based acceleration approach

where the bandwidth and cache coherency significantly degrade the performance.

2.3.3 Farm

This skeleton is used to process irregular data. The farmer (host/master proces-

sor) allocates the tasks to the workers until none are left as shown in Figure 2.6.

Then, the farmer waits for a result from a worker and immediately sends another

work item to it. Each worker receives a work packet, process it, and returns the

result to the farmer until it gets a stop condition from the farmer. The advantage

of this approach is that the farmer knows which workers have yielded the results

27

2.4 Related work on FPGA soft processors

of their tasks and are hence idle. Thus, the farmer can forward incoming tasks

to the idle workers.

However, this approach has its disadvantages. It causes substantial overhead

due to the exchange of messages between the farmer and the workers [72]. More-

over, the farmer might become a bottleneck, if the number of workers is large. In

this case, the farmer will not be able to keep all workers busy, leading to wasted

workers. The number of workers which the farmer can keep occupied depends on

the sizes of the tasks and the sizes of the messages the farmer has to propagate.

However, since the process of assigning task is cyclic which could lead to dead-

locks in case of data dependent tasks where the computation of certain workers

might depend on the results of the others leading to deadlocks. On the other

hand, one has to make sure that the farmer reacts as quickly as possible to newly

arriving tasks and workers delivering their results.

This section has discussed the concept of parallel computing skeletons which

will be used to approach the issue of lack of hardware abstraction in FPGA-based

architectures. Since application designers face di�culty, utilising the available

resources e�ciently without hardware knowledge. It involves handling of the

low-level core, inter-core and system communication and system interfaces etc.

Therefore, Chapter 6 will present a detailed multicore and system level architec-

ture that shall support these parallel computing skeletons.

2.4 Related work on FPGA soft processors

This section investigates di↵erent FPGA-based soft processor architectures. Em-

phasis will be placed on the various word sizes, maximum clock frequencies, and

28

2.4 Related work on FPGA soft processors

resource usage to evaluate these processors. Word size is essential parameter be-

cause at least 16-bit words are required to accurately represent the pixel data in

di↵erent colour spaces with some redundancy. Clock frequency directly influences

the maximum throughput of the design, which in turn a↵ects the observed speed-

up. Processors with less resource usage allow more logic to be used for multicore

architectures, which can achieve superior performance.

2.4.1 Scalar Processors

The commercial o↵-shelf o↵ering from leading FPGA vendors Xilinx and Altera

are the MicroBlaze and the Nios II processors respectively. Both are 32-bit soft

processors-based on RISC architecture accompanied by their respective software

development tool-chains. The performance optimised MicroBlaze is capable of

delivering up to 262 DMIPs having a 5-stage pipeline, while Altera’s capable of

delivering 30 DMIPS. Both the Nios II and MicroBlaze are highly configurable

with options including a floating point unit, memory management, and interfacing

to custom hardware accelerators. These commercial soft-core processors have

been investigated and modified in several papers [73], [74]. But, managed to

achieve the maximum operating frequency ranging from 77 - 112 MHz.

Other processors are made available under open source licenses such as the

OpenRISC. It is an open source RISC-based processor with 32 and 64-bit modes

and optional vector support [75]. The LEON3 is a 32-bit SPARC V8 compli-

ant processor described in VHDL which is available under the GNU GPL [76].

It uses 7-stage pipeline, incorporates a floating point unit, supports symmetric

multiprocessing and operates at up to 125 MHz.

29

2.4 Related work on FPGA soft processors

2.4.2 Multicore Processors

In open literature, many FPGA multicore processor architectures have been pre-

sented to accelerate di↵erent applications. Silicon Hive [77] accelerator architec-

ture replaced ASIC accelerators with the reconfigurable cores, making acceler-

ators fully programmable after fabrication and flexible to maintain throughout

the product life-cycle. The basic component of Silicon Hive architecture is the

Processing and Storage Element (PSE) consists of multiple functional units (FU)

connected via interconnect network (IN) as shown in Figure 2.7. It has one or

more operation-issue slots (IS) associated with the FUs, distributed register files

(RF) and an optional local memory storage (MEM). The PSE was designed in

such as way that it ensures easy and clean datapaths for a compiler to handle,

and guaranteeing high-level of programmability. A matrix of one or more PSEs,

together with a controller (CTRL) and configuration memory (CONFIG. MEM),

makes up a cell. The PSEs within a cell can communicate with each other via

Figure 2.7: The layered block diagram of Silicon Hive architecture illustrating
Processing Storage Element (PSE), cell and streaming array of cores [77].

30

2.4 Related work on FPGA soft processors

Figure 2.8: The block diagram of PicoArray processors organised in a two dimen-
sional grid connected together using a deterministic picoBus interconnect [79].

data communication lines (CL). An array of one or more cells connected via

a data-driven communication mechanism forms a streaming array as shown in

Figure 2.7. The communication across cells takes place through blocking FIFOs

accessed from load/store (LD/ST) units within the cells, allowing multiple func-

tions to be concurrently mapped onto the streaming array. Dan et al. extended

the Silicon Hive approach and proposed HiveFlex Moustique-IC2 processor [78]

as a synthesisable soft-RTL core with an I/O subsystem specifically designed

for image processing applications. The Moustique-IC2 was a Single-Instruction-

Multiple-Data (SIMD) machine, which means that the same program simultane-

ously operates on all pixels. By increasing the SIMD factor, the same program

can be used to process more pixels at once, thereby increasing the throughput.

The 24-way SIMD processor achieved the operating frequency of 200 MHz on a

90 nm technology.

Duller et al. have proposed PicoArray [79] which is a massively parallel archi-

tecture designed as an alternative for creating ASIC designs which are complex to

31

2.4 Related work on FPGA soft processors

design, expensive in cost and requires larger design time and e↵ort. The PicoAr-

ray is a tiled processor architecture, composed of a large number of heterogeneous

processing cores. The architecture had been primarily designed for wireless in-

frastructure applications. The processors are organised in a two-dimensional grid

and connected together using a deterministic picoBus interconnect as shown in

Figure 2.8. The inter-processor communication protocol was based on a time di-

vision multiplexing (TDM) scheme, where data transfers between processor ports

occur during automatically scheduled time slots by the tool and controlled by the

bus switches. The communication between the processors is fixed at the compile

time and cannot be changed dynamically. The PicoArray is designed as a 16-bit,

3-way VLIW RISC processor with Harvard memory architecture. It supports four

di↵erent variants of processors (standard, multiply-accumulate, memory and con-

trol). Each variant was designed for a mixture of DSP, stream and block-based

processing and therefore, had di↵erent internal memory distribution. All four

variants use the same RISC instruction set, except the MAC instruction which

can only be executed on standard processor. With the exception of loads and

branches, all instructions execute in a single cycle. Each processor can only ac-

cess its own internal memory (between 1KB and 32KB) and communicates with

other processors using input/output data ports. Each processor was initialised

using a special configuration bus and programmed using assembly language. The

PicoChip PC102 runs at 160 MHz on Xilinx Virtex-4 FPGA [80].

Classical vector processing involves sending a stream of values into pipelined

functional units [81]. Later, there are several architectures have been proposed

including [82] and [83]. Some optimisations have been done to speed up the

performance and to reduce the execution time by incorporating vector chain-

32

2.4 Related work on FPGA soft processors

ing, control flow execution and banked register file etc. The processor runs at a

maximum operating frequency of 200 MHz [83]. Others proposed multiprocessor

architectures to exploit the hidden parallelism in some parts of streaming appli-

cations for e�cient implementation such as VENICE and VectorBlox MXP are

designed to exploit data level parallelism (DLP) by processing vectors [83], [84].

Nachiket et al. has proposed a GraphSoC custom soft processor [16] for accelerat-

ing graph algorithms using Xilinx Zynq SoC. It is 3-stage pipelined processor that

supports graph semantics (node, edge operations). A single FPGA can fit mul-

tiple instances of these processors interconnected using network-on-chip (NoC).

The graphs functional description is stored in the on-chip BRAM for fast local

access. Larger graphs can be partitioned into sub-graphs and loaded one-by-one

or split across multiple processors. The execute stage of the processor is customis-

able and supports four graph specific instructions, i.e. (send, receive, accumulate

and update) which are implemented as micro-coded datapath shown in the Fig-

ure 2.9. The processor datapath has no register file instead, it has special purpose

registers to hold edge and node information. The reported timing results shows

Figure 2.9: Datapath of a basic pipelined processing node used in GraphSoC [16].

33

2.4 Related work on FPGA soft processors

that a fully pipelined design can run at 200 MHz.

Andryc et al. have proposed a FlexGrip [36] a customizable softcore archi-

tecture that allows the execution of general-purpose processing units (GPGPU)

code on an FPGA without the need of design synthesis and place-and-route.

FlexGrip is a 32-bit multicore scalable, configurable processor architecture based

on a single instruction, multiple-thread (SIMT) model in which an instruction is

fetched and mapped simultaneously on multiple scalar processors (SPs) as shown

in Figure 2.10. A streaming multiprocessor (SM) is composed of multiple SP

that enable multi-threaded execution. The number of threads are equivalent to

the number of scalar processors inside a streaming multiprocessor (SM). SM is

a five stage pipelined architecture consists of fetch, decode, read, execute and

write stages as shown in Figure 2.10. The execute stage consists of multiple

scalar processors and a single control flow unit. This unit operates on control

flow instructions such as branch and synchronization instructions. Each thread

is mapped to one scalar processor, enabling parallel execution of threads. The

Write stage stores intermediate data in the vector register file, memory addresses

Figure 2.10: Datapath of FlexGrip Streaming Multiprocessor (SM) [36].

34

2.4 Related work on FPGA soft processors

in the address register file, and predicate flags in the predicate register file. Final

results are stored in the global memory. A design with single SM and 8 SP im-

plemented on Xilinx Virtex-7 device achieved maximum operating frequency of

100MHz.

2.4.3 DSP Slice Processors

In 2009 the concept of using the DSP slice on Xilinx FPGAs as the basis for a soft-

core processor was presented by Milford and McAllister [85]. In this paper, the

authors design the FPGA Streaming Element (fSE) which is 8-stage pipelined and

uses device primitives to maximise the e�ciency of the processor. The instruction

width is 22-bit where, two bits for the opcode, 32-bit data word and 16-bit for real

and imaginary components. They implemented a 16-point FFT and compared it

against the Xilinx dedicated IP core implementation. The processor not only runs

at a faster- operating clock speed (430 MHz) but also uses fewer LUTs (145) and

requires fewer cycles to complete. The same authors adopt this fSE processor

as the basis for a 16-way SIMD processor architecture [47]. They also include

custom units for minimum and switch operations to decrease the instruction

count for their chosen application of a sphere decoder. They have achieved real-

time performance for the 802.11n standard with a clock speed of 265 MHz on a

Xilinx Virtex-5 FPGA.

Cheah et al. have proposed iDEA processor-based on the DSP48E1 primitive

blocks [86]. It is based on a RISC load/store architecture and executes 32-bit

instruction words on 32-bit data. They investigated a range of pipelining con-

figurations and achieved a maximum of operating frequency of 407 MHz with a

35

2.5 Summary

9-stage pipeline on a Virtex-6 FPGA. Their design uses two 36 Kb BRAM primi-

tives, 1 DSP slice, 404 Slice Registers, and 335 Slice LUTs which compares to the

smallest Microblaze. While providing a lower instruction count than the Microb-

laze for three test applications (Fibonacci, FIR, Median), cycle count performance

has impacted by lack of data forwarding requiring leading use of NOPs.

After reviewing di↵erent soft-core processor architectures, the major archi-

tectural challenge to design a light-weight soft-core processor architecture is to

find the best trade-o↵ between functionality (ability to execute di↵erent kernels)

and performance (ability to meet performance requirements). Because the design

choices made at the soft-core level dictates the functionality and performance of

the multicore and hardware acceleration platform.

2.5 Summary

In this chapter, we have discussed the significance of heterogeneous MPSoC plat-

forms in Section 2.1 that provides hardware acceleration opportunities by pro-

viding FPGA programmable logic, which can be used to accelerate computation

intensive portion of an application. However, a major inhibitor to use this technol-

ogy to realise adaptable solutions is the lack of hardware abstraction and complex-

ity of FPGA design flow, especially for software and algorithm developers. Both

commercial and academic research community have developed high-level synthesis

(HLS) tools that allow programming FPGA in high-level programming languages

which are familiar to software and algorithm developers, i.e. (C, C++, SystemC,

OpenCL etc.). But, these tools generate the application description that requires

synthesis, place-and-route which can be significantly time-consuming for iterative

36

2.5 Summary

application development process due to lack of adaptability.

To approach this problem, we propose a multicore processor approach that

shall replace the traditional hardware synthesis, place-and-route to edit-compile-

run design flow. This approach will allow hardware abstraction to the under-

lying FPGA resources and provide adaptability by programming the underlying

architecture using conventional software development approaches. Section 2.4 re-

viewed range of soft-core processor architectures and shows that they are either

not area-e�cient or does not deliver high raw-computation evaluated in terms of

their maximum operating frequency (fMax) essential for hardware acceleration.

It is vital that the soft-core processor shall be light-weight, high-performance

and e�ciently utilises the FPGA resources. Therefore, Chapter 4 will present the

novel Image Processing Processor (IPPro) architecture that will be used as a basic

computational unit to realise the flexible and adaptable multicore architecture.

Section 2.2 has briefly covered the concepts and related-work necessary for

a novel FPGA-based soft-core Image Processing Processor (IPPro) architecture

presented in Chapter 5 to map and execute dataflow actor. Besides, the notion

of parallelism and transformations is covered to set the background for multicore

IPPro architecture presented in Chapter 6.

Section 2.3 has discussed the concept to model parallel patterns to exploit par-

allelism. They hide the pattern implementation details and underlying hardware

peculiarities from the programmer and provides clean and give a clean abstraction

to the programmer to exploit parallelism. These patterns are portable, reusable

and shall be supported in the underlying hardware architecture. Implementation

of these parallel patterns is central to realise our proposed hardware acceleration

approach. Chapter 6 will present a detailed multicore IPPro and system architec-

37

2.5 Summary

ture that support the adaptable hardware implementation of discussed parallel

skeletons.

38

Chapter 3

Rathlin Project

To approach the outlined research problems, a collaborative research project

called Rathlin had undertaken between Queen’s University Belfast and Heriot-

Watt University which was funded by Engineering and Physical Sciences Re-

search Council (EPSRC) [5]. The scope of the project is to investigate the rapid

developments in image acquisition/interpretation and intelligent algorithms. As

FPGA-based hardware architecture development have not been matched by sound

software engineering principles, to generate e�cient solutions for time, memory

and power e�cient hardware.

One of the primary objectives of Rathlin project was to design and develop

an FPGA-based hardware acceleration platform architecture for image process-

ing applications which was my contribution to the project. The aim was to

unleash the potential of state-of-art FPGAs in close synergy with a suitable soft-

ware representation. This representation allows application and a programming

environment to facilitate exploration, profiling and optimisation and parallel im-

plementation of image processing applications using conventional programming

39

3.1 Rathlin Objectives

approaches. Therefore, some design decisions and choices in the presented work

have been driven by the scope of Rathlin to complement its aim and objectives.

This chapter aims to present the key objectives of Rathlin, its programming

workflow and the model of computation. As it gives a bigger picture of the per-

formed research and understand some of the design decisions to derive the Image

Processing Processor (IPPro), multicore IPPro and the FPGA-based hardware

acceleration platform.

3.1 Rathlin Objectives

The primary project objectives are:

• Creation of a dataflow model of computation representation that allows the

processing and data organisation needs of image processing algorithms.

• Design and development of an adaptable FPGA-based hardware acceleration

platform using the IPPro soft-core processor and focusing on the e�cient

utilisation of FPGA resources while matching the computational and mem-

ory requirements of the algorithms/applications.

• Development of a programming environment for a Domain-Specific Lan-

guage (DSL), optimally compiled to the platform using dataflow techniques

and integrated with a standard Application Programming Interface (API)

to execute on the underlying hardware platform.

• An adaptable realisation of a set of image processing algorithms to evaluate

the performance and adaptability of the platform to accelerate di↵erent

image processing applications.

40

3.2 Programming workflow

3.2 Programming workflow

One of the project objectives is the adaptable realisation of image processing

algorithms on a FPGA-based hardware platform. Such a realisation consists

of various stages as illustrated in Figure 3.1. From top to bottom it involves

algorithm development in Rathlin Image Processing Language (RIPL) [6] that

was being developed by Heriot-Watt University, a dataflow language Cal Actor

Language (CAL) [87] and IPPro-based hardware platform.

The programming workflow consists of RIPL DSL, an intermediate representa-

tion and a compiler framework to profile and optimise the IPPro code generation

Figure 3.1: Rathlin workflow of RIPL to IPPro-based platform with alternative
compilation paths [88].

41

3.3 Cal Actor Language (CAL)

that can execute on the platform. The CAL language has been chosen as the in-

termediate dataflow language between the RIPL and a compiler framework that

generates the IPPro code. Because, the CAL compiler (Orcc [89]) allows to gen-

erate application specific implementations for di↵erent target platforms (C/JAVA

for the CPU, VHDL for the FPGA) using the available runtime libraries. This

flexibility has enabled alternative design routes to the project team members to

carry on their research activities by implementing, verifying and benchmarking

di↵erent applications without dependent on the IPPro design route. The in-

teraction and connectivity details between dataflow actors is described as XML

DataFlow (XDF). From the user perspective, the compiled IPPro code can run

on the FPGA-based hardware platform as executable binary code which avoids

the need of synthesis, place-and-route and bit-stream generation.

3.3 Cal Actor Language (CAL)

CAL is a programming language-based on the dataflow MoC where the actor

executes a sequence of discrete computational steps known as actor firing. In

each step, an actor may (a) consume a finite number of input tokens, (b) produce

a finite number of output tokens, and (c) modify it’s internal state if an actor

has any. In CAL, it has specified as one or more actions. Each action describes

the conditions under which it may be fired. It includes the availability and the

values of input tokens, the actor’s state and what happens when the action is

triggered, i.e. how many tokens are consumed and produced at each port, the

values of the output tokens, and how the actor state is modified. The execution

of such an actor consists of two alternating phases: the determination of an actor

42

3.3 Cal Actor Language (CAL)

Figure 3.2: Block diagram of a CAL dataflow actor and its components [7], [54].

firing conditions are fulfilled, and the execution of that actor itself. In this work,

a single action per dataflow actor has been considered scoping the research work

to static dataflow than covering dynamic dataflow graphs.

3.3.1 Semantics and execution model

A CAL actor is defined by a set of input ports (Pin), output ports (Pout), actions,

internal variables and a dataflow network. The dataflow network is composed of

a set of dataflow actors A,B and C, and set of FIFOs depicted in Figure 3.2. An

action is activated according to its input patterns known as actor firing rule. The

patterns are determined by the amount of data required for the input sequences

that need to be satisfied for enabling the execution of an action.

The CAL execution model is the execution of four stages. The execution starts

by checking the actor firing rule which defines the number of expected input

tokens from each port and output tokens produced by an actor. Once the actor

firing rule is satisfied, the CAL actor execution starts sequentially by reading the

input tokens followed by execution of the actor and storing the produced output

tokens into the output FIFO queues. The following are the key advantages of

43

3.3 Cal Actor Language (CAL)

Table 3.1: Dataflow semantics and their functional requirements to implement
on a hardware architecture [7], [54].

CAL semantics Functional req. Description

Components Entry, Exit,

Port, Bus, In-

Buf, OutBuf,

dependency,

control port and

buses

Input/output

FIFOs, control

instructions

It is a node in a data flow graph

that describes a module and the

firing rules

Operations And, or, not,

mux, reg,

ValueOP,

UnaryOP,

BinaryOP

Arithmetic and

logical instruc-

tions

An operation carry out arith-

metic, boolean operations and

generates a single value.

Memory ele-

ments

Allocation,

memory access,

absolute mem-

ory read/write

Read/write

access to local

memory

It is a symbolic representation of

a memory space in a design. The

two primary attributes are the al-

location and access of memory el-

ements.

adopting a dataflow model:

• Intuitive and easily understood by programmers especially in DSP.

• Ability to express concurrency without complex synchronisation.

• Explicitly exposes the natural parallelism (pipeline, task, data).

• Modular programming allows reusability, reconfigurability and hierarchical

composition of processing blocks.

The CAL semantic is list down in Table 3.1, categorised into components, op-

erations and memory elements along with the identified functional requirements

to map each on the FPGA-based hardware architecture. It can observe that

the underlying hardware architecture shall have an input/output FIFOs, ALU

and memory to support execution of CAL programs. These functional require-

44

3.4 Producer-consumer computing

Figure 3.3: Producer-consumer driven data exchange patterns [91].

ments lay down the architecture requirements of the IPPro soft-core processor as

a dataflow accelerator which is discussed in Chapter 5.

3.4 Producer-consumer computing

The producer-consumer model is a data-driven data exchange mechanism which

is widely used by dataflow-based hardware architectures to pipeline multiple ac-

tors and computing stages [55], [56], [57]. Generally, a FIFO data structure is

used to implement and ensure deterministic and deadlock-free access to data to-

kens [90]. The FIFO holds data tokens in the order they have received them

and provides access to data tokens using a first-in-first-out access policy. It also

isolates the execution boundaries which enables concurrent execution of producer

and consumer actors.

There are di↵erent possible data passing patterns among dataflow nodes de-

pending on the number of producer and consumer nodes directly connected. Fig-

ure 3.3 illustrates multiple actor (many-to-one, one-to-many and many-to-many)

data passing patterns [91], [92], [93]. They can further drive other patterns such

as (merge-pipeline-split) to implement tree reduction and expansion dataflow

45

3.5 Summary

graphs. A split and merge can express by Single-Producer-Multiple-Consumers

(SPMC) andMultiple-Producers-Single-Consumer (MPSC) in a producer-consumer

model, or used to implement data parallel computation. Similarly, a feed-forward

can represent by single-producer-single-consumer (SPSC) in producer-consumer

model, or used to achieve pipelining or task parallel computation. Since these

patterns are reusable, di↵erent nested data passing patterns can be derived such

as merge-pipeline-split or split-pipeline-merge as shown in Figure 3.3.

To support fine and coarse-grained mapping and execution of dataflow appli-

cations onto the proposed FPGA-based hardware acceleration platform requires

these data exchange patterns between dataflow actors to be supported by the mul-

ticore IPPro. It would enable application exploration, profiling and optimisation

opportunities which are discussed in Chapter 5 and 6.

3.5 Summary

This chapter outlined the scope and programming workflow of Rathlin project

to di↵erentiate and characterise the novelty of the presented research work be-

yond FPGA-based hardware acceleration platform architecture itself. Since the

platform architecture is one of the parts of the project, some of the architectural

choices have been driven by the programming workflow. It shows the need of:

• Hardware and software abstraction to design and develop an adaptable

FPGA-based hardware architecture to e�ciently utilise them using sound

software engineering principles. This will be discussed in Chapter 4 by

developing FPGA-based soft-core processor architecture.

46

3.5 Summary

• Supporting of familiar software driven edit-compile-run flow would facilitate

profiling, optimisation and fast prototyping of di↵erent image processing

applications by avoiding synthesis, place-and-route times.

• Supporting dataflow model of computation as one of the data processing

models of IPPro and multicore IPPro architecture. Both architectures shall

allow flexible mapping and granular execution of CAL algorithmic descrip-

tion. Architectural details of these dataflow semantics and data passing

patterns will be discussed in Chapter 4 and 5.

• Supporting of parallel computing skeletons (split-compute-merge, farm, pipeline)

to e�ciently map high-level domain specific parallel descriptions on the

platform. Architectural details will be discussed in Chapter 6.

47

Chapter 4

Image Processing Processor

(IPPro)

4.1 Introduction

The integration of the hardware and software has made system-on-chip (SoC)

architectures such as Xilinx Zynq-7000 SoC, suitable as a computing platform to

meet the computing demands of wide range of applications. In these architectures,

the FPGA programmable logic is tightly-coupled with a general-purpose processor

which can be e�ciently used by o↵-loading compute intensive tasks. Nevertheless,

the changing technology landscape and fast evolution of new application use cases

make it imperative that the underlying hardware architecture shall be adaptable.

Silicon vendors have alleviated this issue by introducing high-level programming

tools such as Xilinx Vivado high-level synthesis (HLS). While this raises the level

of abstraction, a part of the FPGA design tool-flow still requires lengthy FPGA

synthesis and place-and-route times [10], [37], [44], [45] which are alien to software

48

4.1 Introduction

and algorithm developers.

This research aims to propose a programmable approach that replaces the spe-

cialised HDL-based hardware accelerator design, to software like recompilation

of FPGA resources. It can achieve by populating the underlying FPGA archi-

tecture with multiple light-weight, high-performance soft-core processors. The

user applications are compiled and mapped onto the soft-core processors as a

binary code rather than a FPGA bit-stream. It avoids synthesis and place-and-

route and provides software developers with the familiar edit-compile-run flow

which reduces design time and e↵ort. Compared to the HDL approach, it will be

straight-forward, easy to debug/profile and enable better application optimisa-

tion possibilities. The first step to realise this approach is to develop an e�cient,

light-weight, programmable processing node in the form of soft-core processor

tailored to accelerate image pre-processing functions. Following are the novelties

and contributions of this chapter:

• Exploration of dataflow and FPGA-based soft-core datapath models to

identify the best balance among dataflow graph mapping possibilities, pro-

cessor datapath functionalities and performance. The outcome laid down

the architectural design choices for a high-performance and area e�cient

FPGA-based soft-core processor architecture.

• A novel FPGA-based soft-core Image Processing Processor (IPPro) archi-

tecture tailored to accelerate image pre-processing applications. The archi-

tecture provides a balance between e�cient utilisation of FPGA resources

and performance while enabling deployment of edit-compile-run design flow.

These features make IPPro suitable to be used as a basic computational unit

49

4.1 Introduction

of many and multicore hardware acceleration architecture.

• Optimisation of the IPPro datapath to support additional instructions. It

include coprocessor extension and dedicated minimum/maximum instruc-

tions to improve hardware acceleration results. The optimised datapath

supports parallel execution of variable latency custom coprocessors.

• Acceleration of chosen point and area-based pre-processing image process-

ing functions on an Avnet Zedboard using single core IPPro. The results

of the proposed adaptable hardware acceleration approach are compared

against two programmable approaches including well-established soft-core

processor and a fixed high-level synthesis approach.

In this chapter, Section 4.2 presents the most suitable class of image pre-

processing algorithms considering minimal data-dependency and e�cient utili-

sation of FPGA dedicated hardware resources. Section 4.3 presents a detailed

evaluation of di↵erent dataflow and soft-core processor models to find the best

balance between dataflow mapping possibilities and achievable performance. Sec-

tion 4.4 introduces a novel FPGA-based soft-core Image Processing Processor

(IPPro) architecture tailored to accelerate point and area image processing oper-

ations. Section 4.5 covers the IPPro datapath optimisations supporting dedicated

instructions and coprocessor extension to o↵-load instructions that are computa-

tionally expensive to implement using native IPPro instruction set. At the end of

this chapter, acceleration of chosen point and area image processing functions are

accelerated using proposed approach and compared against hand-coded HLS im-

plementation. In addition, two comparison against programmable FPGA-based

approaches including a well-established MicroBlaze soft-core processor.

50

4.2 Algorithmic characteristics of image processing algorithms

4.2 Algorithmic characteristics of image process-

ing algorithms

In an image processing pipeline, each stage depending on intended use may have

predominant tasks and corresponding pre-processing operations [94], [95], [96].

They operate at the beginning of a processing pipeline and therefore, computa-

tionally data intensive due to heavy pixel processing which makes them a suitable

candidate for hardware acceleration. Table 4.1 shows the categorisation of these

pre-processing image operations, where each class has distinctive data depen-

dency, memory access and execution pattern. These algorithmic characteristics

provide the functional hardware requirements that shall be supported by the Im-

age Processing Processor (IPPro) architecture to accelerate these class of image

pre-processing applications.

To achieve improved acceleration and e�cient utilisation of FPGAs compute

and memory resources, it is crucial to select the most suitable class of image

processing operations. FPGA delivers the best performance for streaming appli-

cations due to spatial locality and minimal data dependency which are common in

point and area image processing operations. They require basic arithmetic, logic

Table 4.1: Categorisation of image processing operations based on their memory
and execution patterns [65].

Operation Output Memory Execution Examples

type depends on Pattern Pattern

Point Single input
pixel

Pipelined One-one Intensity change by factor, Nega-
tive image inversion

Area/Local Neighbouring
pixels

Coalesced Tree Convolution functions: Sobel,
Sharpen, Emboss, Morphology

Geometric Whole frame Recursive non-
coalesced

Large reduc-
tion tree

Rotate, Scale, Translate, Reflect,
Perspective and A�ne

51

4.3 Exploration of e�cient FPGA soft-core processor

and condition operations which can be e�ciently implemented using FPGA logic

which makes point and area image pre-processing operations suitable for hard-

ware acceleration. Also, the development of high performance and area-e�cient

soft-core processor requires analysis of functional configurations of the dedicated

DSP and memory blocks as they impact the maximum achievable operating fre-

quency fMax and balance between FPGA compute and memory resources. More-

over, identification of soft-core processor design choices needs detailed datapath

analysis. Because optimising the design for one design goals very often reduces

the possibility of achieving some of the others.

4.3 Exploration of e�cient FPGA soft-core pro-

cessor

In FPGA fabric, dedicated DSP and memory blocks are hardware optimised

computation and memory blocks. Image processing applications extensively use

multiply and accumulate operation for image segmentation and filtering tasks

which can e�ciently map to the DSP block. The dedicated memory blocks are

placed next to the DSP blocks to minimise timing penalty. Despite the fact that

FPGA has these optimised hardware blocks, the maximum operating frequency

(fMax) of a design depends on the length of the critical path. In case of soft-core

processors, fMax represents the raw-computation rate of the processor. It is one of

the reasons that current many and multicore architectures use simple, light-weight

processing datapaths over complex and large out-of-order processors. However,

to maintain balance among soft processor functionality, scalability, performance

52

4.3 Exploration of e�cient FPGA soft-core processor

and e�cient utilisation of FPGA resources remains an open challenge.

4.3.1 Balance between compute and memory resources

The goal is to build a soft-core processor that implements arithmetic and logic

functions by exploiting DSP and memory blocks where computing is defined as

the raw performance of a soft-core processor is expressed by fMax . Therefore,

this section evaluates di↵erent configurations of Xilinx DSP block (DSP48E1)

and Block RAM (BRAM), and their impact on fMax using di↵erent FPGAs. It

has six configurations that o↵er di↵erent functionalities (multiplier, accumulator,

pre-adder and pattern detector) based on di↵erent internal pipeline configura-

tions of DSP48E1 [52]. Therefore each configuration directly impacts the fMax

of DSP48E1 (central to realise high-performance processor architecture). The

Xilinx Vivado Design Suite v2015.2 is used for each DSP48E1 configuration and

obtained fMax trend is reported in Figure 4.1.

It can be observed that a drastic variation of ⇡ 15 - 52% has recorded for

same speed-grade and reduction of ⇡ 12 - 20% when the same design has ported

from -3 to -1 speed grade. This analysis shows that the configuration of DSP48E1

block significantly impacts the fMax and identifying the optimum configuration

is essential. Therefore, a fully pipelined DSP48E1 block with a pattern detector

PATDET configuration is selected as it gives fully pipelined multiply, accumu-

late, add, subtract and pattern detector functionality with minimal fMax penalty

of ⇡ 12% compared to fully pipelined DSP48E1 block without a pattern detector

NOPAT. The built-in pattern detector allows implementation of condition state-

ment and execution of data dependent instructions which are commonly found

53

4.3 Exploration of e�cient FPGA soft-core processor

in image processing functions. The presented results in Figure 4.1 shows that

soft-core processor could run at 627, 549, 463 MHz for speed grade -3, -2, -1

respectively, if DSP48E1 is used as an ALU.

To analyse the impact of dedicated memory resources on fMax , BRAM is

configured as single and true-dual port RAM [97]. Figure 4.2 shows the fMax

trend across Artix-7, Kintex-7 and Virtex-7 to analyse the impact across di↵er-

ent FPGA fabrics. The true-dual port RAM configuration result fMax reduction

of ⇡ 25%. On the other hand, improvement of ⇡ 16% is possible by migrating

the design from Artix-7 to Kintex-7 FPGA technology. FPGAs are limited in

memory and for e�cient design, it is vital to find the balance between mem-

ory and performance. Table 4.2 shows the distribution of compute (DSP48E1)

-3 -2 -1
Kintex-7 fabric (speed grade)

200

300

400

500

600

700

800

Fr
eq

ue
nc

y
(M

H
z)

NOPATDET
PATDET
PREADD_MULT_NOADREG
MULT_NOMREG
MULT_NOMREG_PATDET

52%15%

Figure 4.1: Impact of DSP48E1 configurations on maximum achievable clock
frequency (fMax) using di↵erent speed grades of Kintex-7 FPGAs. The
DSP48E1 configuration used are: fully pipelined datapath with no pattern detec-
tor (NOPAT), with pattern detector (PATDET), multiply with no output register
MREG (MULT NOMREG) and pattern detector (MULT NOMREG PATDET)
and a Multiply, pre-adder, no ADREG (PREADD MULT NOADREG).

54

4.3 Exploration of e�cient FPGA soft-core processor

Table 4.2: Memory and compute resources in 28nm Xilinx FPGA technology [98].

Product Family
Part BRAM

DSP48E1 GMAC/s
BRAM/

Number (18 Kb each) DSP

Standalone Artix-7 XC7A200T 730 740 929 0.99
Standalone Kintex-7 XC7K480T 1,910 1,920 2,845 0.99
Standalone Virtex-7 XC7VX980T 3,000 3,600 5,335 0.83
Zynq SoC Artix-7 XC7Z020 280 220 276 1.27
Zynq SoC Kintex-7 XC7Z045 1,090 900 1,334 1.21

and memory (BRAM) resources, and present raw performance in GMAC/s (giga

multiply-accumulates per second) across the largest FPGA devices covering both

standalone and Zynq MPSoC chips [98]. A new metric BRAM/DSP ratio is in-

troduced to quantify the balance between compute and memory resource and

reported in Table 4.2. In Zynq MPSoC devices, the BRAM/DSP ratio is higher

than standalone devices because more memory is required to implement substan-

tial data bu↵ers to exchange data between FPGA fabric and the host processor

Virtex-7 Kintex-7 Artix-7
FPGA Fabric

200

250

300

350

400

450

500

Fr
eq

ue
nc

y
(M

H
z)

Single Port RAM
True-Dual Port RAM

Figure 4.2: Impact of BRAM configurations on the maximum achievable clock
frequency (fMax) of Artix-7, Kintex-7 and Virtex-7 FPGAs for single and true-
dual port RAM configurations.

55

4.3 Exploration of e�cient FPGA soft-core processor

while it is close to unity for standalone devices. This comparison shows that

BRAM/DSP ratio can be used to quantify the area e�ciency of FPGA designs.

4.3.2 FPGA-based soft-core processor functionality vs per-

formance trade-o↵

A system composed of light-weight and high-performance soft-core processor ar-

chitecture that supports modular computation with fine and coarse-grained func-

tional granularity is more feasible than fixed dedicated hardware accelerators. A

light-weight soft processor shall allow populating more programmable hardware

accelerators onto a single MPSoC chip which would lead to better acceleration

possibilities by exploiting data and task level parallelism.

Evaluation of processor functionality and dataflow models

This section presents the a design exploration approach to analyse and evaluate

functional granularity of FPGA-based soft-core datapaths while correlating each

model with their realistic dataflow model. Table 4.3 lists three models driven

by previous work [35], [99] which functionally corresponds to soft-core datapath

models 1�, 2� and 3�. These models are used to find a trade-o↵ between the

functionality of soft-core processor and fMax . They also laid the foundation to

find the suitable soft-core datapath to map and execute the dataflow specification.

Gupta et al. have reported di↵erent dataflow graph models [99], as illustrated

in Figure 4.3. The input/output interfaces are marked in red while, the grey

box represents the mapped functionality onto the datapath models shown in

Figure 4.4.

56

4.3 Exploration of e�cient FPGA soft-core processor

(a) (b) (c)

Figure 4.3: Dataflow models [35], [99] (a) DFG node without internal storage 1�
(b) DFG actor without internal storage t1 and constant i 2� (c) Programmable
DFG actor with internal storage t1, t2 and t3 and constants i and j 3�.

(a) (b) (c)

Figure 4.4: FPGA datapath models (a) Programmable ALU 1� (b) Fine-grained
processor 2� (c) Coarse-grained processor 3�.

The first model 1� exhibits datapath of a programmable ALU as shown in

Figure 4.4(a). It has instruction register (IR) that defines a DFG node (OP1)

programmed at system initialisation. At each clock cycle, the datapath explic-

itly reads a token from the input FIFO, process token based on the programmed

operation and stores into the output FIFO that are consumed by the following

dataflow node (OP3). This model only allows mapping of data independent fine-

grained dataflow nodes as shown in Figure 4.3(a) which limits its applicability

due to lack of control and data dependent execution commonly found in image

processing applications where the output pixel depends on the input or neigh-

57

4.3 Exploration of e�cient FPGA soft-core processor

Table 4.3: Correlation of FPGA-based soft-core datapath and dataflow models
with increasing functionality and memory.

Model# Datapath model Dataflow model

1� Programmable ALU Programmable node without memory
2� Fine-grained processor Programmable actor without memory
3� Coarse-grained processor Programmable actor with memory

bouring pixels. Table 4.4 list specific dataflow features supported by 1�. This

model is only suitable for mapping a single dataflow node.

The second model 2� increases the datapath functionality to a fine-grained

processor by including BRAM-based instruction memory (IM), program counter

PC and kernel memory (KM) to store constants as shown in Figure 4.4(b). Con-

versely, 2� can support mapping of multiple data independent dataflow nodes

as shown in Figure 4.3(b). The node (OP2) requires a memory storage to store

variable (t1) to compute output token (C) which feeds back from the output of

the ALU needed for next instruction in the following clock cycle. This model sup-

ports improved dataflow mapping functionality over 1� by introducing IM which

comes at the cost of variable execution time and throughput proportional to the

number of instructions required to implement the dataflow actor. Table 4.4 list

supported dataflow features of 2�. This model is suitable for accelerating combi-

national logic computations.

Table 4.4: Details of supported dataflow features and processor datapath memory
elements in each presented model.

Model
Dataflow features Datapath memory

elements
Dataflow Control

flow
Node mapping Execution

pattern
Token
P/C

IM KM RF

1� 3 7 Single node Feed-forward Fixed 7 7 7
2� 3 7 Multiple nodes Feed-forward Fixed 3 3 7
3� 3 3 Multiple actors Feed-forward,

split, merge,
feedback

Variable 3 3 3

58

4.3 Exploration of e�cient FPGA soft-core processor

The third model 3� increases the datapath functionality to map and execute

data dependent dataflow actor as shown in Figure 4.3(c). The datapath has

memory element as register file (RF) which represents a coarse-grained processor

shown in Figure 4.4(c). The RF stores intermediate results to execute data depen-

dent operations, implements (feed-forward, split, merge and feedback) dataflow

execution patterns and facilitates dataflow transformations (actor fusion/fission,

pipelining etc.) constraints by the size of RF. It can implement modular compu-

tations which are not possible in 1� and 2�. In contrast to 1� and 2�, the token

production/consumption (P/C) rate of 3� can be controlled through soft-core

program code as listed in Table 4.4 and allow software controlled scheduling and

load balancing possibilities.

Functionality vs Performance trade-o↵ analysis

The presented models show that the processor datapath functionality significantly

impacts the dataflow decomposition, mapping and optimisation possibilities, but

at the same time increases the processor critical path length and a↵ects fMax

by incorporating more memory elements and control logic. Table 4.4 lists the

datapath memory elements in each presented model by incrementally allocat-

ing more memory resource (IM, KM, RF). Each presented model has coded in

Verilog HDL, synthesised and place-and-route using Xilinx Vivado Design Suite

v2015.2 on the Xilinx chips installed on widely available development kits which

are Artix-7 (Zedboard), Kintex-7 (ZC706) and Virtex-7 (VC707). The obtained

fMax results are reported in Figure 4.5.

In this analysis, fMax is considered as a performance metric for each proces-

sor datapath model. The implementation result shows that increasing datapath

59

4.3 Exploration of e�cient FPGA soft-core processor

Virtex-7(VC707) Kintex-7(ZC706) Artix-7(Zedboard)
FPGA fabric

250

300

350

400

450

500

550
Fr

eq
ue

nc
y

(M
H

z)
Model (1)
Model (2)
Model (3)

15%7% 5%

4% 14%
25%

8% 23%

Figure 4.5: Impact of datapath models 1�, 2�, 3� on fMax across FPGA fabrics.

functionality resulted in a reduction of fMax by a maximum of ⇡ 8% and 23% for

2� and 3� compared to 1� using same FPGA technology. For 2�, the addition of

memory elements specifically IM realised using dedicated BRAM a↵ected fMax

by ⇡ 8% compared to 1�. Nevertheless, the instruction decoder (ID) which is a

combinational part of a datapath significantly increases the critical path length

of the design. A further 15% fMax degradation from 2� to 3� has resulted by

adding memory elements KM and RF to support control and data dependent ex-

ecution, which requires additional control logic and data multiplexers. Comparing

across di↵erent FPGA fabrics, fMax reduction of ⇡ 14% and 23% is observed for

Kintex-7 and Artix-7. When 3� is ported from Virtex-7 to Kintex-7 and Artix-7,

maximum fMax reduction of ⇡ 5% and 33% is observed.

This analysis has laid firm foundations by comparing di↵erent processor data-

path and dataflow models and how they impact the raw computation rate (fMax

) of the resultant soft processor. The trade-o↵ analysis shows that an area-

e�cient, high-performance softcore processor architecture can be realised that

60

4.4 Image Processing Processor (IPPro)

supports requirements to accelerate image pre-processing applications. Among

the presented models, 3� provides the best balance among functionality, flexi-

bility, dataflow mapping and optimisation possibilities, and performance. This

model is used to develop a novel IPPro architecture in Section 4.4.

4.4 Image Processing Processor (IPPro)

This section presents the novel Image Processing Processor (IPPro) datapath by

mapping it onto FPGA resources. Image pre-processing functions requires grey-

level image where the value of pixel represents the colour contrast. For specific

functions, e.g. image filtering that involves multiply and multiply-accumulate

operations, it is essential to maintain precision. Therefore, IPPro designed as 16-

bit, signed, reduced instruction set (RISC), pipelined soft-core architecture shown

in Figure 4.6.

The IPPro datapath exploits DSP48E1 and BRAM blocks and supports stream

processing using blocking input/output FIFOs that handle a stream of pixels. On

the contrary to out-of-order processor architectures, IPPro is designed as a five-

stage, in-order pipelined processor because: 1) It consumes fewer area resources

and can achieve better timing closure leading to the higher processor operating

frequency fMax . 2) The in-order pipeline execution is predictable and simplifies

scheduling and compiler development. In fact, the area hungry out-of-order pro-

cessor architectures are suitable for ASIC or custom designs where chip resource

are not technologically bounded. Based on the exploration of processor datap-

ath and dataflow models and evaluation of their functionality and performance

trade-o↵ analysis presented in Section 4.3, following memory areas are supported

61

4.4 Image Processing Processor (IPPro)

F
ig
u
re

4.
6:

B
lo
ck

d
ia
gr
am

of
F
P
G
A
-b
as
ed

so
ft
-c
or
e
p
ro
ce
ss
or

IP
P
ro

d
at
ap

at
h
.

62

4.4 Image Processing Processor (IPPro)

in the IPPro datapath:

• Instruction memory (IM) (512x32) to store the dataflow actor functional

description in the form of IPPro program code.

• Register file (RF) (32x16) to map fine and coarse-grained dataflow actors

by storing intermediate results and provide random access to a stream of

tokens or window of pixels stored inside the RF, e.g. 3x3, 3x4, 4x4 etc.

• Kernel memory (KM) (32x16) to save the parameters that are reusable such

as filter coe�cients and constant values.

• The blocking input/output FIFOs to bu↵er data tokens between a producer

and a consumer to realise pipelined processing stages.

4.4.1 Datapath

RISC architecture performs computation on register values in contrast to stack-

based complex instruction set (CISC) architecture. RISC-based architectures

have faster memory access to the registers which involves random access to vari-

ables rather than access of stacked operands [100]. Therefore, a Register file

(RF) of size 32x16 bits is implemented using Xilinx RAM32M primitive that uses

look-up tables (LUT) resources. It provides a quad-port RAM with synchronous

write and three asynchronous read ports compared to dual-port RAM supported

by BRAM primitive. It supports three operand operations such as multiply-add

commonly used for pixel processing. Figure 4.6 shows the detailed IPPro datap-

ath. It has BRAM-based instruction memory (IM) configured as true dual-port

RAM which stores program code. IPPro has a dedicated KM that can store

63

4.4 Image Processing Processor (IPPro)

32x16 bit constant values to accelerate area operations by maximising memory

reuse and avoid reloading of filter coe�cients. The input FIFO stores the incom-

ing stream of data, the GET instruction reads and stores them in the RF. PUSH

instruction reads the processed data from specified RF location and stores it in

the output FIFO.

The IPPro datapath has no stack memory and therefore, does not support

recursive function call as it requires context switching (which involves passing

of parameters between functions and storing the function state/variable). But

as long as the memory requirement of the calling function (number of critical

function variables) matches the size of the register file, limited recursive function

call can be implemented using the branch instructions (JUMP and BZ). From

image processing perspective, the IPPro datapath has been designed to implement

point and area image processing operations which only require neighbouring pixels

and can be stored in the register file.

4.4.2 Branch and conditional execution

IPPro supports branch instructions to handle control flow graphs previously dis-

cussed in Table 4.4 to implement commonly known constructs such as if-else and

case statements. The DSP48E1 block has a pattern detector that compares the

input operands or the generated output results depending on the configuration

and sets/resets the PATTERNDETECT (PD) bit. IPPro datapath uses the PD

bit along with some additional control logic to generate four flag zero (ZF), equal

(EQF), greater than (GTF) and sign (SF) bits. When IPPro encounters branch

instruction, the branch controller (BC) compares the flag status and branch han-

64

4.4 Image Processing Processor (IPPro)

Table 4.5: IPPro instruction frame structure.

BITS

31 30 29 25 24 20 19 15 14 10 9 5 4 0
INSTR TY PE OPCODE RD RB/Kn RA RC 0

dler (BH) updates the PC as shown in Figure 4.6.

4.4.3 Instruction set architecture

IPPro has a 32-bit instruction set architecture (ISA). Table 4.5 shows the simpli-

fied IPPro frame structure where RA, RB, RC , RD andKn represents 5-bit address

fields to point a location in RF or KM. RA, RB, RC , Kn are source registers while

RD is a destination register. The 5-bit OPCODE field represents a unique IP-

Pro instruction. The 2-bit INSTR TY PE field di↵erentiates between supported

addressing modes listed in Table 4.6. (for details on supported instruction set see

Appendix B Table B.2).

4.4.4 Pipelined stream processing

The IPPro datapath is a five stage pipeline soft-core processor composed of fetch,

decode , execute#1 (EXE1), execute#2 (EXE2) and write-back (WB) stages as

shown in Figure 4.6. It starts execution by fetching the instruction from the

instruction memory, the instruction decoder decodes the fetched instruction and

generates required control signals to control the datapath. During this stage

Table 4.6: IPPro supported addressing modes and instructions.

Addressing
Mode

Data abstraction Instructions

FIFO handling Stream access get, push
RF - RF Randomly accessed data str, add, sub, mul, mulacc, muladd etc.
KM - FIFO Stream and fixed data addkm, subkm, mulkm, muladdkm, etc.

65

4.4 Image Processing Processor (IPPro)

based on addressing mode (Table 4.6), IPPro read data operands either from

input FIFO, RF or KM and stores into the pipeline registers and forwards to

DSP48E1 block in EXE1 stage. The DSP48E1 is dynamically reconfigured on a

cycle-to-cycle basis by ID. The configuration of DSP48E1 control signals to imple-

ment IPPro instructions (for details see Appendix B Table B.1). The DSP48E1

processes the data operands and store the results back to the register file in WB

stage. Both EXE1 and EXE2 are DSP48E1 internal pipeline stages. The GET

and PUSH modules shown in Figure 4.6 makes sure that input/output FIFOs are

not empty/full. If any of the conditions persist, the IPPro stop processing and

waits until both input and output FIFO have enough space to store the tokens.

4.4.5 Dataforwarding

Data hazards are common in pipelined processors, IPPro supports internal data

forwarding by exploiting multiply-accumulate (MACC) feature of DSP48E1 to

avoid pipeline stalls and NOP fillers. During instruction decoding, the datapath

checks if the source address of the next instruction is equal to the destination

address of the decoded instruction. If it is true, the dataforwarding path is

Figure 4.7: Implementation of dataforwarding exploiting MACC functionality of
DSP48E1.

66

4.4 Image Processing Processor (IPPro)

enabled by configuring a DSP48E1 control register and the result of DSP48E1 is

forward to the next instruction as shown in Figure 4.7.

To demonstrate the impact of dataforwarding on execution time (clock cycles)

and the program code size, consider the following equation, and the corresponding

IPPro code listed in Table 4.7.

A = func(z � (x+ y) + (y ⇤ z)) (4.1)

This function requires three data dependent computations as listed in Table 4.7.

In case of no dataforwarding, the NOP fillers are required to avoid data haz-

ards due to lack of available data independent instructions which can fill the

pipeline. On the other hand, in case of dataforwarding, the computed data can

be forwarded directly to the next instruction as highlighted by blue and red in

Table 4.7. The IPPro processor with and without dataforwarding takes 18 and

10 clock cycles respectively to process the function. Mathematically, it can be

represented by:

Table 4.7: IPPro code to implement func with and without dataforwarding.

Instr. No Data Forwarding Description Data Forwarding Description

1 GET R1 R1=x GET R1 R1=x
2 GET R2 R2=y GET R2 R2=y
3 GET R9 R9=z GET R9 R9=z
4 NOP NOP
5 NOP NOP
6 NOP NOP
7 ADD R3,R1,R2 R1+R2 ADD R3,R1,R2 R1+R2
8 NOP SUB R4,R3,R9 (R1+R2) - R9
9 NOP MULACC R5,R4,R2 (R9*R2)+(R1+R2)-R9
10 NOP PUSH R5
11 NOP
12 SUB R4,R9,R3 (R1+R2)-R9
13 NOP
14 NOP
15 NOP
16 NOP
17 MULADD R3,R4,R2,R9 (R9*R2)+(R1+R2)-R9
18 PUSH R10

67

4.4 Image Processing Processor (IPPro)

Table 4.8: IPPro implementation results on selected Xilinx development boards.

Resources VC707 ZC706 Zedboard

FFs 447
LUTs 484
BRAMs 1
DSP48E1 1

Freq. (MHz) 372 337 187

t = (n� 1) ⇤ 4 (4.2)

Where n the number of consecutive data dependent instructions and t is the

saved number of clock cycles per iteration. The impact of dataforwarding become

significant when processing images consist of hundreds of thousands of pixels.

Saving tens of clock cycles per pixel results in a significant saving of processing

time. Nevertheless, it also reduces the code size which is ⇡ 45% for the presented

case.

4.4.6 Implementation results

IPPro soft-core processor architecture has written in Verilog, synthesised and

implemented using Xilinx Vivado Design Suite v2015.2. Table 4.8 reports the

implementation results obtained using tool’s default settings. The implementa-

tion results show that IPPro consumes < 1% of Kintex-7 (ZC706) FPGA re-

sources and delivers 337 MIPS while maintaining BRAM/DSP ratio equal to

unity. The IPPro design has ported to various FPGA fabrics to analyse the po-

tential performance, by implementing it on widely available Xilinx development

boards used by research community which are ZedBoard (XC7Z020CLG484-1),

ZC706 (XC7Z045FFG900-2) and VC707 (XC7VX485T-2). Table 4.8 shows the

maximum possible frequency fMax on the selected Xilinx development boards.

68

4.5 IPPro Optimisations

IPPro running on Virtex-7 (VC707) and Kintex-7 (ZC706) can deliver ⇡ 2.00

and 1.80 times improved fMax compared to Artix-7 (Zedboard) by porting on

di↵erent FPGA fabric. The obtained results closely correspond to the results

reported in Table. 4.5 where it was expected to be ⇡ 19% and 48% for ZC706

and Zedboard respectively in Section 4.3.

4.5 IPPro Optimisations

To evaluate performance and identify limitations of the developed IPPro, two

group students have accelerated colour, morphology [101] and two-stages of the

histogram of gradient [102]. Russell et al. have reported 9.6 times performance im-

provement for morphology operations using native IPPro instructions compared

to ARM processor-based implementation. He identified that supporting dedi-

cated minimum and maximum instructions will improve performance. Kelly et

al. have profiled and explicitly translated the first two stages of HOG algorithm

from mathematical expressions to native IPPro instructions. He reported that

77.3% of the total instructions belong to the normalise overlapping spatial blocks

function, out of which 72.2% of the IPPro instructions belong to the division

calculation. He indicated that division function is the computational bottleneck

and o↵-loading division from IPPro to dedicated coprocessor could significantly

improve the acceleration results. To this end, this section presents IPPro opti-

misations by extending IPPro datapath capabilities beyond DSP48E1 supported

instructions to enhance the performance further.

69

4.5 IPPro Optimisations

4.5.1 Minimum and maximum instructions

In image processing applications, morphological operations are applied to the

filtered image to clean up small holes in objects and remove small groups of

pixels which saves processing time for later stages. Morphology involves finding

either the maximum (dilation) or minimum (erosion) value in a set of pixels

contained within a masked region around the input pixel. Russel et al. have

reported that implementation using native IPPro instructions takes ⇡ 48 cycles

for a 3x3 kernel or 81 cycles for a 5x5 kernel. To include dedicated MIN and

MAX instruction, the additional control logic and a 4-1 multiplexer to select the

minimum or maximum result are added into the datapath as shown in Figure 4.8.

The MIN and MAX registers externally hold the operand values. The DSP48E1

block compares the operands and updates the sign flag (SF), which is used to

select either MIN/MAX value and store it into the RF.

Table 4.9 shows the IPPro code to compare the impact of optimised MIN/-

MAX on the execution time. It shows that native implementation first compares

the operands using subtraction followed by branch evaluation to find the mini-

mum and maximum value which takes ⇡ 13 - 20 clock cycles per pixel depending

Figure 4.8: Optimisation of IPPro datapath to support dedicated minimum and
maximum instructions.

70

4.5 IPPro Optimisations

Table 4.9: Implementation of Min/Max using native and optimised IPPro in-
structions.

Instr. Native Description Dedicated Description

FUNCTION: FUNCTION:
1 GET R1 R1=a GET R1 R1=a
2 GET R2 R2=b GET R2 R2=b
3 NOP NOP
4 NOP NOP
5 NOP NOP
6 NOP NOP
7 SUB R3,R2,R1 R3 = a-b ? +ve/-ve MIN R3, R2, R1 R3 = min(a,b)
8 BS MAX MAX R4, R2, R1 R4 = max(a,b)
9 NOP PUSH R3
10 NOP JUMP FUNCTION
11 NOP
12 NOP
13 PUSH R2 send minimum value
14 JUMP FUNCTION
15 ...
16 ...
17 ...
18 MAX:
19 PUSH R1 send maximum value
20 JUMP FUNCTION

on whether the branch has taken or not. On the other hand, optimised implemen-

tation takes ten clock cycles per pixel irrespective of pixel value resulting approx.

50% reduction in execution time which is significant for pixel processing.

4.5.2 Coprocessor extension

In image processing, some of the algorithms require arithmetic operations which

are not supported by the IPPro. For such applications, IPPro has a coprocessor

interface that allows a transparent integration of a custom coprocessor into the

IPPro datapath. In this section, the example of a division coprocessor will be

discussed as Kelly et al. have reported that it is appropriate to o↵-load com-

putationally expensive functions to a coprocessor which adds complexity to the

processor architecture. In case of IPPro, it is adding a coprocessor interface

into the datapath and balancing the pipelined execution while dispatching the

71

4.5 IPPro Optimisations

operands, collecting the processed results and storing them into the RF such

that coprocessor shall execute in parallel and not stall the IPPro to achieve best

possible improvement.

Figure 4.9(a) shows the block diagram of the pipelined division coproces-

sor and Figure 4.9(b) shows the IPPro coprocessor extension datapath. Four

16-bit registers (C IR1, C IR2, C OR1 and C OR2) are incorporated between

input/output interface of coprocessor and the IPPro datapath. The coprocessor

enable signal (C ENABLE) is asserted by instruction decoder once the IPPro

encounters the dedicated coprocessor instruction and writes the input operands

to C IR1 and C IR2 registers. These registers isolate coprocessor and IPPro

datapath and ensure transparent exchange of data and independent parallel ex-

ecution of coprocessor and IPPro. The coprocessor process input operands and

stores result into the output registers (C OR1 and C OR2). The IPPro reads the

coprocessor generated results from these output registers by executing a partic-

ular coprocessor read instruction and stores them into the RF as illustrated in

Figure 4.9(b).

(a) (b)

Figure 4.9: (a) Input/output interfaces of division coprocessor (b) Coprocessor
extended IPPro datapath.

72

4.5 IPPro Optimisations

Figure 4.10: Pipelined execution of division coprocessor.

A division coprocessor has been incorporated into the extended IPPro data-

path to evaluate the coprocessor extension. The division coprocessor takes two

input operands (numerator and denominator) and generates (quotient and re-

minder), which mapped into IPPro datapath via (C IR1, C IR2, C OR1 and

C OR2) registers respectively as shown in Figure 4.9(a). In this implementation,

the coprocessor clock (CLK) is synchronised to the IPPro datapath. Figure 4.10

shows the timing diagram of parallel execution of IPPro and the division copro-

cessor. The operands (C IR1, C IR2) are exchanged and they become valid once

C Enable is asserted. The coprocessor takes a fixed number of clock cycles to

process input data, generate results and store them into output registers. These

processed tokens are then collected using the process described earlier.

The coprocessor extended datapath has implemented using Xilinx Vivado De-

Table 4.10: Implementation results of optimised IPPro datapath to support co-
processor extension on ZC706 (Kintex-7).

Resources Standalone Coprocessor extension

FFs 447 481
LUTs 484 573
BRAMs 1 1
DSP48E1 1 1

Freq. (MHz) 337 302

73

4.6 Comparison of IPPro results

sign Suite v2015.2. Table 4.10 shows the area and performance results. fMax

degradation of 11% is observed compared to standalone IPPro caused by the ad-

dition of multiplexers to feed operands to coprocessor and store generated results

back into the register file. Kelly et al. have reported that the division coprocessor

implementation reduced the instruction count for the division from 160 to 19 in-

structions which caused 82% reduction in the normalisation function [103]. This

saving attributed to the introduction of the coprocessor at the cost of 89 LUTs,

34 FFs per core and 11% reduction in fMax as shown in Table 4.10. This solu-

tion allows the IPPro core to execute in parallel with the coprocessor giving the

scheduler considerable freedom to organise the fine-grained tasks of the algorithm

e�ciently.

4.6 Comparison of IPPro results

Kapre et al. have proposed GraphSoC, a custom soft processor for accelerating

graph algorithms using Zynq MPSoC [16]. It is a 3-stage pipelined processor that

supports graph semantics (node, edge operations). The graphs were stored in on-

chip BRAM for fast local access. A compilation framework developed including

assembler to configure the processor instruction and data memories where each

core uses 9 BRAMs and operates at 200 MHz. Andryc et al. presented an FPGA-

based FlexGrip architecture for compute-intensive streaming applications [36]. It

is composed of an array of streaming multiprocessors (SMs), each SM contains

multiple 5-stage pipelined scalar processor (SP) cores connected in a SIMD com-

puting paradigm. The framework maps pre-compiled CUDA kernels on SP that

operates at 100 MHz.

74

4.7 Application use cases

Table 4.11: Comparison of IPPro against other FPGA-based soft-core processor
architectures.

Resources IPPro GraphSoC [16] FlexGrip 8 SP [36] MicroBlaze

FFs 447 551 12,972=103,776/8 518
LUTs 484 974 8,915=71,323/8 897
BRAMs 1 9 15=120/8 4
DSP48E1s 1 1 19=156/8 3
No .of Stage 5 3 5 5
BRAM/DSP ratio 1.0 9.0 0.76 1.3

Freq. (MHz) 337 200 100 211

* Scaled to a single streaming processor.

Table 4.11 compares the implementation results of IPPro processor against

other processors. The reported area utilisation results of FlexGrip is normalised

to single processing core as each SP is composed of 8 cores connected in SIMD.

The results show that IPPro is compact and delivers ⇡ 1.6x - 3.3x times better

performance, considering fMax . The reported area results show that the FFs

utilisation is relatively similar except FlexGrip uses 18 times more FFs. While

comparing LUTs, IPPro uses 50% fewer LUT resources compared to both Mi-

croBlaze and GraphSoC. Analysing design area e�ciency, a significant di↵erence

0.76 - 9.00 in BRAM/DSP ratio is observed which makes IPPro an area-e�cient

design-based on the proposed metric.

4.7 Application use cases

Two di↵erent comparison approaches are adopted to evaluate the area and perfor-

mance of IPPro architecture by comparing it against HLS, programmable FPGA-

based architecture and softcore processor. Firstly, a set of chosen point and area

operations image pre-processing functions are implemented using IPPro and com-

pared against the hand-coded HLS implementations. Secondly, the chosen image

pre-processing functions will be compared against programmable FPGA-based

75

4.7 Application use cases

Table 4.12: Mathematical representation of image pre-processing functions.

Function Mathematical representation

Thresholding P(output) = Pinput > Pthreshold?255 : 0

Gaussian P(output) =

2

64
P1 P2 P3

P4 P5 P6

P7 P8 P9

3

75 ⇤

2

64
K1 K2 K3

K4 K5 K6

K7 K8 K9

3

75 =
P

9

i=1
(Pi ⇤Ki)

Sobel P(output) =

2

64
P1 P2 P3

P4 P5 P6

P7 P8 P9

3

75 ⇤

2

64
1 0 �1

2 0 �2

1 0 �1

3

75

Gradient calculation PGradient = |Px|+ |Py |

architecture and lastly, a set of micro-benchmarks are selected to analyse the

IPPro performance against well established MicroBlaze softcore processor.

Image pre-processing functions Image pre-processing algorithms are used

extensively for feature detection, image analysis and noise reduction which in-

cludes image filtering functions [94], [95], [96]. Convolution operation is central

to filtering algorithms that use area image processing operations as previously

identified in Table 4.1. On the other hand point operations are commonly used for

image segmentation. Functions from both classes, i.e. (thresholding, Gaussian,

Sobel and gradient calculation) are accelerated using IPPro processor to evalu-

ate the performance of IPPro architecture. These functions are commonly used

front-end image processing operations [104], [105], [106], [107], [108]. Table 4.12

presents the mathematical representation of chosen functions. These operations

are accelerated by developing a system that implements real-time video pipeline

composed of a camera and VGA output. The obtained acceleration results are

76

4.7 Application use cases

compared against fixed HLS approach.

Processor Micro-benchmarks The performance of a processor can be mea-

sured in many ways, often it is reported inmillions-instructions-per-second (MIPS).

Though it is not always a good metric as one processor may accomplish more work

than an instruction on another processor by issuing a single instruction or nega-

tively impact the performance due to the branch penalty. One of the commonly

used performance metric is the time required to accomplish a defined task. There-

fore, a set of commonly used micro-benchmarks [86], [109] have been chosen and

implemented on the IPPro and the obtained results are compared against well

established MicroBlaze soft-core processor. Each of the chosen micro-benchmarks

are fundamental kernels of larger algorithms and often the core computation of

more extensive practical applications. The following are the details of each chosen

micro-benchmark and the architecture aspects tested by each:

• Digital filter is an important function that signal processors use to modify

and improve signals. In image processing they are used to improve the

appearance of an image by smoothing, blur and removing noise. It allows

to analyse 1D stream processing capabilities of the IPPro architecture. The

implementation of 5-tap FIR function reads an element from an input

stream, computes FIR and push the output to the FIFO for 50 samples.

• Convolution is a stream processing micro-benchmark extensively used in

the image processing. It allows to analyse 2D data processing capability of

a processor. For the IPPro architecture, it would help to analyse the impact

of single cycle MULACC optimisation. The implemented micro-benchmark

77

4.7 Application use cases

reads 3 data elements per iteration, computes the convolution function and

push output to the FIFO.

• Polynomials are one of the most fundamental types of functions gener-

ally used in mathematics as well as in image processing to realise non-

linear filters used for contrast enhancement, texture segmentation and edge

extraction. Usually they are formed entirely by repeated multiplications

and addition. For the IPPro architecture, it allows to analyse the im-

pact of dataforwarding optimisation. The implementation of degree-2

polynomial function reads an element from an input stream, computes

y(x) = ax2 + bx+ c and push output to the FIFO.

• Matrix multiply is a widely used operation in digital signal processing

applications and its non-linear complexity is often the critical part of many

algorithms. It is computational expensive as it requires extensive data

independent multiplications and data dependent additions. This micro-

benchmark allows to analyse the computation capability (MULACC) and

the memory limitations of the IPPro architecture. The implementation of

matrix multiply function reads two matrices from the register file, computes

the product and stores the resultant matrix into the local memory.

• In digital image processing, the Sum Of Absolute Di↵erences (SAD) is a

measure of the similarity between image blocks. It calculates by taking the

absolute di↵erence between each pixel in the original block and the corre-

sponding pixel in the block being used for comparison. It is used for object

recognition, disparity map and motion estimation. This micro-benchmark

allows to analyse the impact of branch operations necessary to compute

78

4.7 Application use cases

the absolute value. The implementation of SAD function reads a window

of elements stored in local memory, computes the absolute di↵erence and

pushes the results to the output FIFO.

• Fibonacci sequence requires adding of the two preceding numbers to gen-

erate the output number which makes it extensively data dependent compu-

tation. It allows to analyse the impact of both the data dependent execution

and the branch penalty on the IPPro architecture. The implementation of

Fibonacci function calculates first 50 numbers of the series and pushes into

the output FIFO.

Section 4.7.1 presents the system architecture used to accelerate the chosen

image pre-processing operations.

4.7.1 System architecture

The system architecture is composed of OV7670 camera (to capture real-time

video stream), single core IPPro (to process the incoming video stream) and

VGA output (to display processed video stream). Figure 4.11 shows the devel-

oped system architecture used to accelerate the chosen point and area operations

by feeding pixel or window of pixels configured during system initialisation. This

system architecture is implemented and tested on Avnet Zedboard development

board has an on-board Xilinx Zynq SoC (XC7Z020-CLG484-1). The Zynq het-

erogeneous MPSoC has on-chip programmable system (PS) tightly-coupled with

programmable logic (PL). The AXI-AMBA communication protocol is supported

between PS and PL. The AXI-Lite interface is used to program the IPPro in-

struction memory, and control register during system configuration.

79

4.7 Application use cases

Figure 4.11: Block diagram of programmable video processing platform to imple-
ment case-studies using single-core IPPro.

The OV7670 is a CMOS colour image sensor that supports configurable VGA

and CIF video resolutions, and RGB 565/555, YUV(4:2:2) and YCbCr(4:2:2)

pixel formats. The camera module is directly connected to the Zynq PL us-

ing PMOD-A and PMOD-B interface on Zedboard. The VGA resolution and

YUV(4:2:2) pixel format is selected where (Y) grey-scale component is used to

accelerate the chosen front-end image processing operations. A dedicated cam-

era controller handles camera initialisation sequence and configurations using I2C

protocol. It captures the incoming video stream and stores them into input frame

bu↵er. The input frame controller sequentially reads the video frame (starting

from address 0 ! 307200) from the input frame bu↵er and converts it into a

stream of pixels based on configured point or window (using line bu↵ers) then

80

4.7 Application use cases

Table 4.13: Area utilisation results of IPPro hardware accelerator.

Module
Resources

FFs LUTs BRAM DSP

Datapath 695 815 1 1
Point/area 349 275 3 0

Total 1044 1090 4 1

store into the input FIFO as shown in Figure 4.11.

The input FIFO isolates the camera and IPPro clock domains which allows

IPPro to run at higher operating frequency 187 MHz than the camera interface.

It also provides handshaking mechanism, to propagate the ripple e↵ect and halts

the input frame controller to avoid data corruption when IPPro executes an

unbalanced actor. As soon as the pixels are available in the input FIFO, IPPro

reads the stream of pixels, sequentially processes and store them into the output

FIFO. The output frame controller reads the processed pixels and converts into

video frame by sequentially storing pixels (starting from address 0 ! 307200).

The VGA controller reads the processed video frame, generates the required VGA

control signals (V-SYNC and H-SYNC) to display it on the VGA monitor.

Table 4.13 reports the implementation results of datapath and point/area

module. The reported datapath is composed of the necessary control logic com-

posed of AXI-Lite control registers. The point/area module composed of line

bu↵ers to organise video data into a point or window of pixels. The point/area

module uses three BRAMs to implement three line bu↵ers required to generate

3x3 pixel window as reported in Table 4.13. Additionally, to support AXI4-Lite

control and configuration register, IPPro datapath consumes 1.55 and 1.68 times

more FFs and LUTs compared to the reported results in Table 4.10.

81

4.7 Application use cases

4.7.2 Comparison of IPPro with HLS approach

The acceleration results of the proposed IPPro-based programmable approach

are compared against high-level synthesis (HLS) approach. The chosen image

processing operations are hand-coded in C++ and compiled using Xilinx Vi-

vado HLS. The implementations exploit pipeline optimisation and the designs

are synthesised and implemented using Xilinx Vivado Design Suite v 2015.2. The

Vivado HLS has generated each operation as intellectual property (IP) which has

AXI4-Lite and AXI4-Stream interfaces for easy integration into the previously

presented system architecture in Figure 4.11. In system architecture, the IPPro

core is replaced with Vivado generated IP.

The HLS implementations achieved 28 and 15 times better than IPPro due

to higher computation rate (MPixel/s) as reported in Table 4.14 at the cost of

software-centric edit-compile-run design flow. In case of IPPro, the computa-

tion rate MPixels/s is inversely proportional to cycles/pixel which depends on

the complexity of the function. Therefore, further comparison of the proposed

IPPro-based programmable approach against other programmable FPGA-based

architecture is presented and analysed in Section 4.7.3.

Table 4.14: Comparison of hardware acceleration results obtained from HLS and
IPPro using Avnet Zedboard (Artix-7).

Acceleration approach Dedicated accel. Proposed IPPro

Performance results fps MPixel/s Freq. fps cycles/pixel MPixel/s Freq.
(MHz) (MHz)

Thresholding 651 200 200 17 42 5.22 187
Gaussian (3x3) 488 150 150 35 20 10.80 187
Sobel (3x3) 488 150 150 43 16 13.20 187
Gradient calculation 651 200 200 24 32 7.37 187

82

4.7 Application use cases

4.7.3 Comparison of IPPro against programmable FPGA-

based architecture

Reichenbach et al. have presented a programmable image processing architec-

ture for smart cameras [110]. The architecture is based on programmable coarse

grained application specific processing elements (PE) that enables fine-grained

configurability to realise algorithmic peculiarities of image processing applica-

tions. Each PE only supports a set of application-specific assembly instructions

that can be used to compute that specific image processing function such as Gaus-

sian, Sobel and Gradient operations. The architecture had been implemented on

heterogeneous Xilinx Zynq XC7Z020 SoC platform where the programmable logic

is used to populate the PEs and process video frames.

Table 4.15: Comparison of IPPro performance results against programmable
FPGA-based architecture.

Function
[110] IPPro

Speed-up
of cores fps fps/core fps

Gaussian 12 295 24 46 1.87
Sobel 6 180 30 54 1.80
Gradient 20 120 6 35 5.83

To compare the performance and resource utilisation results of this architec-

ture against IPPro, the performance and resource utilisation numbers have been

reported in Table 4.15 and Table 4.16 has been normalised to single-core. Fo-

cusing on area utilisation numbers, the PE implementing a Sobel filter consumed

2.8 and 2.6 times less FFs and LUTs respectively than a Gaussian by exploiting

kernel coe�cient optimisation. IPPro has achieved 5.8 and 1.8 times better per-

formance at the cost of approximately equal number of FFs and 1.5 times less

LUT resources over [110] for gradient calculation and Sobel filter respectively.

This performance improvement at reduced area cost by IPPro architecture has

83

4.7 Application use cases

Table 4.16: Area comparison of IPPro against programmable FPGA-based archi-
tecture. The normalised per core resource utilisation are reported in the brackets.

Resources
[110]

IPPro
Gaussian Sobel Gradient

FFs 6177 (1029) 4360 (363) 592 (30) 1044
LUTs 10017 (1669) 7718 (643) 1782 (90) 1090
BRAMs 2 2 2 4
DSPs - - - 1

been achieved by exploiting DSP block optimisation over [110] which can be

clearly observed in Table 4.16.

4.7.4 Comparison of IPPro with MicroBlaze

The selected micro-benchmark results are compared against well established Xil-

inx MicroBlaze soft-core processor. The micro-benchmarks are written in stan-

dard C and implemented using Xilinx Vivado SDK v2015.1. MicroBlaze has been

configured for performance with no debug module, instruction/data cache and

single AXI-Stream link enabled to stream data into the MicroBlaze using getfsl

and putfsl instructions in C which are equivalent to (get and put) in assembly.

Table. 4.17 reports the performance results of micro-benchmarks implemented

using IPPro and MicroBlaze soft-core processors using Kintex-7 FPGA fabric. Ta-

ble. 4.18 shows the area utilisation of proposed IPPro and MicroBlaze soft-core

Table 4.17: Comparison of micro-benchmarks on IPPro and MicroBlaze.

Processor MicroBlaze IPPro

FPGA Fabric Kintex-7

Freq (MHz) 287 337
Micro-benchmarks Exec. Time (us) Speed-up
Convolution 0.60 0.14 4.41
Degree-2 Polynomial 5.92 3.29 1.80
5-tap FIR 47.73 5.34 8.94
Matrix Multiply 0.67 0.10 6.7
Sum of Absolute Di↵erences 0.73 0.77 0.95
Fibonacci 4.70 3.56 1.32

84

4.8 Summary

Table 4.18: Area comparison of IPPro and MicroBlaze processors.

Processor MicroBlaze IPPro Ratio

FFs 746 422 1.77
LUTs 1114 478 2.33
BRAMs 4 2 2.67
DSP48E1 0 1 0.00

processors. IPPro consumes ⇡ 1.7 and 2.3 times fewer FFs and LUTs respec-

tively. It can be observed that for streaming functions (3x3 filter, 5-tap FIR

and Degree-2 Polynomial), IPPro has achieved 1.80, 4.41 and 8.94 times better

performance compared to MicroBlaze due to support of single cycle multiply-

accumulate with dataforwarding and get/push instructions in IPPro processor.

However, as IPPro datapath does not support branch prediction that impacts

IPPro performance implementing data dependent or conditional functions (Fi-

bonacci and Sum of absolute di↵erences), where SAD implementation using IP-

Pro resulted in 5% performance degradation compared to Microblaze. On the

other hand for memory-bounded functions such as Matrix Multiplication, IPPro

performed 6.7 times better than MicroBlaze due to higher operating frequency.

4.8 Summary

This chapter has presented a FPGA-based soft-core processor architecture to

achieve programmable hardware acceleration of front-end image processing oper-

ations and compared the obtained performance and area results against fixed HLS

design approach. The proposed approach has achieved software recompilation of

FPGA by avoiding synthesis, place and route. It has achieved by developing a

FPGA-based soft-core Image Processing Processor (IPPro) architecture tailored

to accelerate front-end image processing operations. The architecture is devel-

85

4.8 Summary

oped after detailed insight analysis of FPGA resources, processor functionality

and dataflow models. The architecture exploited FPGAs dedicated computing

and memory resources to achieve best balance between performance fMax and

area utilisation.

The IPPro datapath supports is a 16-bit signed, 5-stage pipelined RISC

processor that supports basic arithmetic, logical and branch instructions with

dataforwarding to implement data dependent point and area operations. It is

light-weight soft-core processor that consumes less than 1% of Kintex-7 (ZC706)

FPGA fabric resources and delivers 337 MIPS. IPPro running on Virtex-7 (VC707)

and Kintex-7 (ZC706) can deliver ⇡ 2.00 and 1.80 times improved fMax compared

to Artix-7 (Zedboard) by porting IPPro to di↵erent FPGA fabric. The area and

performance results make it viable to be used as basic processing element for

programmable many and multicore architectures.

To evaluate the performance and identify limitations of the developed IPPro

architecture, Russell and Kelly has accelerated morphology filtering and first two-

stages of histogram of gradient (HOG) using native IPPro supported instructions.

They reported that significant performance improvements by extending the dat-

apath capabilities beyond supported instructions o↵ered purely by the DSP48E1

block. Two IPPro optimisations are implemented which are; supporting MIN/-

MAX instruction; and coprocessor extension which resulted in ⇡ 82% reduction

in IPPro instructions for HOG.

In the end, three comparison approaches are adopted to evaluate the per-

formance and area of the IPPro architecture. The obtained results have com-

pared against HLS, FPGA-based programmable architecture and well estab-

lished MicroBlaze soft-core processor. The acceleration of point and area im-

86

4.8 Summary

age pre-processing functions using HLS delivered significant performance com-

pared to IPPro at the cost of programmability. IPPro has achieved 5.8 and 1.8

times better performance over FPGA-based programmable architecture that uses

dedicated programmable processing elements by exploiting DSP block optimisa-

tion. On the other hand, IPPro delivered up to 8.94 times better performance,

and 1.7 and 2.3 times fewer FFs and LUTs resources compared to MicroB-

laze. Analysing the micro-benchmarks, IPPro has outperformed implementing

data independent streaming functions due to the pipelined support of single-

cycle multiply-accumulate operation and dataforwarding. For data dependent

micro-benchmarks, reduction in performance is due to lack of branch prediction.

Although IPPro delivered better performance and results than MicroBlaze, the

results presented in this chapter uses a single-core IPPro. In Chapter 4 further

investigation is carried out to explore performance improvement by exploiting

data and task parallelism in streaming applications.

87

Chapter 5

IPPro-based acceleration of

dataflow actor

5.1 Introduction

Chapter 4 presented the IPPro as a FPGA-based soft-core processor architecture

to achieve programmable hardware acceleration of image pre-processing by ex-

ploiting the FPGAs dedicated computing and memory resources. This chapter

extends this work by looking at the dataflow MoC and how it can e↵ectively

be used to accelerate dataflow actors by supporting it in the IPPro datapath.

Initially, the chapter covers support of a dataflow actor at core-level focusing

on firing actors, handling multi-port dataflow, the impact of FIFO implementa-

tion on the timing results (fMax) and hardware constraints of mapping dataflow

actor onto the IPPro core. It also present the benefits of the IPPro-based pro-

grammable approach over HLS. Then it focuses on a system architecture by inte-

grating multiple IPPro accelerators to exploit dataflow parallelism. To evaluate

88

5.1 Introduction

the performance of discussed core and system level features, a detailed implemen-

tation of a k -means case study is presented, and compared against an equivalent

implementation using an embedded CPU and GPU. The major contributions of

this chapter are:

• Creation of an optimised IPPro core architecture which supports mapping

and execution of static dataflow actor. The architecture is an independent,

self-managed and area-e�cient dataflow accelerator.

• Design and development of IPPro-based hardware accelerator models to

analyse the management and provisioning policies of IPPro as a programmable

dataflow accelerator and their impact on system design and control require-

ments to exploit parallelism.

• Design and implementation of a configurable system architecture that facil-

itates flexible decomposition and mapping of dataflow actors onto multiple

IPPro cores using scatter-gather data distribution and a collection mecha-

nism for image processing.

• Acceleration of distance calculation and averaging stages of the k -means

clustering algorithm using four di↵erent IPPro accelerators exhibiting dif-

ferent actor-core mappings on an Avnet Zedboard. Performance, power,

and resource e�ciency have been compared against embedded CPU and

GPU implementation.

Section 5.2 presents the IPPro core that supports dataflow components, exe-

cution patterns and stream-based producer-consumer model while maintaining a

89

5.2 IPPro: A dataflow processor

balance between area and performance. Section 5.3 explores di↵erent IPPro man-

agement and provisioning possibilities when incorporated in a heterogeneous sys-

tem. It evaluates the impact on the host, inter-core communication and resource

utilisation. Section 5.4 presents coarse and fine-grained mapping possibilities of

dataflow actors onto multiple IPPro cores. It also presents a configurable sys-

tem architecture tailored to accelerate image processing applications. Section 5.5

presents a case study acceleration of k -means clustering computing stages using

IPPro accelerators. The solution uses data and task level parallelism by pipelining

multiple stages. The results achieved with the IPPro accelerators are compared

with the equivalent embedded CPU and GPU implementation in Table 5.15.

5.2 IPPro: A dataflow processor

A CAL dataflow application is a collection of computing units known as actors,

which are composed of components, operations and memory elements as discussed

in Section 2.2 and listed in Table 3.1 Figure 5.1(a) shows a CAL actor represen-

tation consisting of an action, state variables and a finite-state-machine (FSM).

An actor exchange stream of tokens coming from unidirectional data bu↵ers and

starts execution as soon as the actor firing rule is satisfied. Once this happens,

the actor reads token from the input bu↵er, processes it and stores it into the out-

put bu↵er. It is essential that these functional requirements must be supported

by the IPPro datapath to map and execute the dataflow actor. Table 5.1 lists

one-to-one mapping of dataflow semantics onto the IPPro datapath.

The IM stores the functional description of a dataflow actor which contains

the actor’s description and its interaction with other actors, state variables and an

90

5.2 IPPro: A dataflow processor

(a) (b)

Figure 5.1: (a) Representation of a CAL dataflow actor (b) Mapping of dataflow
actor onto IPPro datapath.

FSM which is stored in the form of IPPro program code. The IPPro instruction

set architecture (ISA) implements the dataflow compute nodes defined within the

action using arithmetic, logic and dedicated instructions (MUL, MULACC, MU-

LADD, MULSUB, MIN, MAX, ADD, SUB, etc.). The branch instructions (BZ,

BNZ, BS, BNS, etc.) implements conditional, relational and data dependent

nodes of the actor. RF is a memory element that stores state-variables, intermedi-

ate tokens and results of dependent nodes. One of the benefits of processor-based

dataflow processing is modularity, as it allows fine and coarse-grained hierarchi-

cal decomposition and mapping of an actor onto IPPro core [30]. Figure 5.1(b)

illustrates the mapping of an actor onto the IPPro datapath.

Section 5.2.1 presents the support of actor firing in the IPPro datapath while

Table 5.1: One-to-one mapping of dataflow semantics onto IPPro datapath.

No. Dataflow IPPro datapath Description
semantics (component)

1) Actor Instruction memory (IM) Functionality of dataflow actor
2) State variable Register file (RF) Stores intermediate data for data dependent node
3) Operator node Instruction set (ALU) Arithmetic, logical and conditional operations
4) Input bu↵er Input FIFO Stores input tokens
5) Output bu↵er Output FIFO Stores output tokens

91

5.2 IPPro: A dataflow processor

Section 5.2.2 extends it to support a data-driven computing model. It gives

an analysis of realising FIFO’s using di↵erent FPGA memory resources and their

impact on the overall timing (fMax) of the IPPro datapath. Section 5.2.4 presents

the implementation of basic dataflow execution patterns using IPPro. Usually,

dataflow actors support multiple data ports which are not feasible for IPPro

architecture due to ine�cient utilisation of FPGA resources which is covered in

Section 5.2.5.

5.2.1 Notion of firing an actor

The notion of firing an actor is essential for functional correctness due to the

un-timed behaviour of dataflow MoC. The token consumption and production

rate depends on the functional description of an actor, and it is only known once

the application use case has been chosen by the algorithm developer. Therefore,

the IPPro must provide a flexible/programmable approach to handle actor firing

and support a data-driven control mechanism to exchange data among actors.

The initial IPPro datapath does not support the exchange of data tokens among

multiple actors and is only suitable to map and execute an independent actor. It

uses GET and PUSH instructions to read and write data tokens.

To this end, an actor firing module and a TEST instruction has been added

into the IPPro datapath and instruction set as shown in Figure 5.2. The TEST

instruction allows the algorithm developer to specify the actor’s consumption rate

as a part of the actor firing and defined inside the IPPro program code. This

instruction checks the number of tokens available for consumption by reading

TOKEN COUNT value of the input FIFO and comparing it with the expected

92

5.2 IPPro: A dataflow processor

Table 5.2: IPPro code implementing dataflow actor firing rule.

Instructions Description

1 MAIN: MAIN routine to check actor firing rule
2 STR R1, 4 Set no. of tokens required to fire the actor
3 TEST R2, R1 Check FIFO has more than 4(R1) tokens?
4 BZ FIRE ACTOR If YES fire actor

..

..
10 JMP MAIN else wait until firing rule is satisfied!

..

..
15 FIRE ACTOR:

..

..
30 JMP MAIN The execution of actor is finished. Go back

to MAIN to check firing rule again for next iteration

consumption rate (passed as an argument with the instruction). The result of

this comparison either grants or restricts the execution of the actor.

Table 5.2 presents IPPro code that implements the actor firing rule by ini-

tialising R1 (STR R1,4), where the value stored in R1 represents the actor’s

consumption rate. During program execution, the processor jumps between the

MAIN and FIRE ACTOR sub-routines. In case, the input FIFO has four or

more tokens, the program execution jumps to the FIRE ACTOR, executes a

single iteration and returns to the MAIN sub-routine. Otherwise, the program

execution returns to the MAIN and checks the firing rule. The TEST instruc-

Figure 5.2: IPPro datapath supporting firing of dataflow actor.

93

5.2 IPPro: A dataflow processor

Figure 5.3: Producer-consumer data-driven execution using IPPro core.

tion allows programmable implementation of actor firing. It combines both actor’s

functional description and control (firing rule) in the IPPro code which avoids the

need for an external controller synchronisation mechanism to implement dataflow

actor and its code generation.

5.2.2 Producer-consumer computing model

This section discusses the problem of realising programmable multicore archi-

tecture using IPPro as basic programmable computation unit where some cores

are producers and others are consumers requires control/handshake mechanism.

These control mechanism ensures a continuous flow of data tokens between pipelined

processing stages. The input and output FIFO provides isolation that could be

used to exploit task level parallelism by minimising the maximum execution time

of all stages of a pipeline and improves acceleration by keeping the cores busy in

processing data.

For this purpose, dedicated PUT and GET hardware modules are included at

the input and output data interfaces of the datapath as illustrated in Figure 5.3.

They use EMPTY and FULL signals to check the status of a FIFO to iden-

tify whether input FIFO is empty or output FIFO is full. If this happens, the

94

5.2 IPPro: A dataflow processor

core stops execution and only resumes if both the output FIFO has empty space

to store processed tokens and the input FIFO has tokens available for process-

ing. Therefore, executing unbalanced actors, the slowest actor of an algorithm

defines the worst-case execution time due to the ripple e↵ect. However, there

are di↵erent dataflow optimisations that could improve results by exploiting data

parallelism and chosing a suitable decomposition [24], [30] which will be discussed

in Section 5.4.

5.2.3 Evaluation of FIFO configurations

In an FPGA, FIFO can be realised using Block RAM (BRAM), lookup-table

(DistRAM) or shift register (SR). BRAM is suitable for realising large FIFO

structure similar to a line bu↵er that stores line of pixels, while DistRAM and

SR are e�cient for smaller FIFO realisation [111]. Realisation of FIFO using

shift register exploits the LUT resources of a configurable logic block (CLB) as

a shift register instead of a dual-port RAM. The CLB can be configured either

as distributed 64-bit RAM or as 32-bit shift registers (SRL32) or as two 16-bit

shift registers (SRL16). From a hardware perspective, FIFOs isolate processing

elements running at di↵erent clock frequencies, hence are available in two con-

figurations: common-clock (CC) or independent-clock (IC) depending on write

and read clock sources. Thus, di↵erent FIFO configurations have been imple-

mented on di↵erent FPGA fabrics using Xilinx Vivado v2015.2, and the results

are reported in Figure 5.4.

Comparing common-clock (CC) implementations, the DistRAM delivers best

fMax followed by SR and BRAM where degradation of 8% and 17% have ob-

95

5.2 IPPro: A dataflow processor

IC-DistRAM CC-DistRAM CC-ShiftRegister IC-BRAM CC-BRAM

FIFO Configurations

200

250

300

350

400

450

500

F
re

q
u

e
n

c
y

 (
M

H
z)

Virtex-7

Kintex-7

Artix-7

(64x16) (64x16) (64x16) (512x16) (512x16)

Figure 5.4: Impact on fMax of realising FIFOs using di↵erent resources and con-
figurations.

served on Artix-7 FPGA fabric. Moreover, comparing independent clock (IC)

implementations, the DistRAM delivered best fMax compared to BRAM which

resulted in ⇡ 27% degradation. Realisation of FIFO using DistRAM is only fea-

sible when deployed in the middle of the processing pipeline to store intermediate

data tokens. On the other hand, BRAM-based FIFO are suitable and resource

e�cient for larger memory data structures such as line bu↵ers (640, 1024, 2048,

etc.). The result reported in Figure 5.4 shows the impact of FIFO configurations

across FPGA technologies and can be used to find suitable FIFO configuration

for the IPPro datapath.

For this purpose, the input and output FIFOs of the processor are realised

using BRAM, DistRAM and SR. These designs are implemented using Xilinx

Vivado v2015.2, and the area and timing results are reported in Table 5.3. In

96

5.2 IPPro: A dataflow processor

Table 5.3: Implementation results of processor datapath using di↵erent FIFO
configurations on Artix-7 FPGA fabric.

FIFO (size) FF LUT LUTRAM BRAM DSP48E1 Frequency
(MHz)

BRAM (512x16) 478 422 66 1.5 1 195
Shift Register (64x16) 510 411 90 1 1 237
DistRAM (64x16) 416 459 119 1 1 242

case of DistRAM, the processor datapath can operate up to 242 MHz giving a raw

computation of 242 MIPS utilising 8% more LUTs compared to BRAM design.

A reduction of 3% and 19% in processor operating frequency have observed for

SR and BRAM designs respectively at the cost of 18% more FFs and 10% less

LUTs. The presented processor datapath results show the impact of di↵erent

FIFO configurations on timing and area utilisation. The design choice to realise

FIFO depends on the deployment scenario and the application use case. DistRAM

is e�cient for small data bu↵ers usually in the middle of an image processing

pipeline. On the other hand, BRAM is resource e�cient for large data bu↵er

commonly found at the beginning or end of the image pipeline.

5.2.4 Mapping and execution of static dataflow actor

A static dataflow actor could represent a single operation node, a set of multiple

operation nodes or a complex dataflow graph depending on the chosen decomposi-

tion. Each dataflow node can also have di↵erent execution patterns [90], [17], [25],

[112]. These execution patterns include feed-forward, split, merge and feedback as

illustrated in Figure 5.5 using dataflow nodes A,B,C and D. Figure 5.6 presents

the pseudo IPPro program codes to implement each execution pattern using IP-

Pro core.

In feed-forward, the GET reads the data tokens and stores them into R1

97

5.2 IPPro: A dataflow processor

Figure 5.5: Mapping of dataflow execution patterns on IPPro core.

Figure 5.6: Pseudo IPPro code to implement dataflow execution patterns.

and R2 register of RF and executes function A, stores result into R3 and R4,

and PUSH results to the output FIFO. In case of a split, the tokens produced

by function A (R3 and R4) are fed to B and C. In case of a merge, A and B

produce tokens (R1 and R2) and (R3 and R4) respectively which are fed to

C that computes output tokens R5 and R6. The benefit of supporting these

execution patterns with the help of RF in IPPro core is that, it not only allows

implementation of a dataflow actor but also to provides flexible decomposition

and mapping options to the user and software framework to explore and exploit

dataflow optimisations.

98

5.2 IPPro: A dataflow processor

5.2.5 Supporting multi-port dataflow actor

The dataflow programming languages support multi-port actors. The HLS driven

hardware architectures support an input interface for each computation block,

where each data-port is directly translated into a FIFO structure [43], [17]. How-

ever, the application use case or algorithm to be implemented is known in-advance

before the hardware design is synthesised and implemented. It allows the HLS

tool to profile and find optimal memory requirements for the chosen application.

On the contrary, in a processor-based approach, the underlying hardware archi-

tecture is pre-implemented using generic processing and memory requirements of

the class of applications. Because of this, the number of input/output interfaces

supported by the IPPro datapath must be fixed. The higher number of ports

could lead to ine�cient utilisation of resources and small number of ports could

limit the actor mapping possibilities. Thus, this section discusses this design

problem by increasing number of ports and analysing their impact on resource

requirements and the execution time of an actor.

Figure 5.7 depicts increasing input data interfaces to identify the architec-

Figure 5.7: Block diagram of multi-port input data interface of IPPro datapath.

99

5.2 IPPro: A dataflow processor

tural requirements and theoretically estimate their impact on the actor execution

time. The datapath can be composed of single, dual, triple and quad input ports

(A,B,C, and D). Each input port can receive tokens produced by di↵erent pro-

ducers via ports An, Bn, Cn and Dn, where n distinguishes each unique producer.

For functional correctness, the order of tokens is important. Therefore, a dedi-

cated FIFO channel is required for each producer core to avoid token re-ordering

problem.

Table 5.4 lists the architectural and control requirements for the input inter-

face illustrated in Figure 5.7. A number of FIFO channels and multiplexers are

required to connect the cores and receive data produced by the connected cores.

It can be observed that the required number of FIFO channels are multiple of

producers and input ports and the number of multiplexers required are directly

proportional to the input ports. In FPGA design, a multiplexer is implemented

using combinational logic which increases the critical path length of the design

which a↵ects the timing results. Therefore from both resource utilisation and

timing point-of-view, a multi-port IPPro datapath is not a suitable design choice.

Figure 5.8 depicts cycle-based execution of func(X) using Single, dual, triple

and quad input ports. A single port design sequentially reads token from input

FIFO compared to dual, triple and quad port designs. The DFG node processing

time tx (execution time of single iteration) is greater than time to read/write

Table 5.4: Hardware resource and control requirements to map multi-port actors
onto IPPro core.

Resource
Dataflow Actor

Single-port Dual-port Triple-port Quad-port

Producer cores 4 4 4 4
FIFO channels 4 8 12 16
No. of multiplexers 1 2 3 4
Source port addressing No 1-bits 2-bits 3-bits

100

5.2 IPPro: A dataflow processor

Figure 5.8: Impact of multi-port IPPro datapath on execution time (in clock
cycles) of dataflow actor.

token t1, t2, t3, t4 and tout (which is single clock cycle each) and has a negligible

impact on the total execution time of an actor. In the best case scenario, the

multi-port designs could save maximum of two or three clock-cycles as illustrated

in Figure 5.8, at the cost of using more resources. Therefore, a single input port

datapath is selected that can handle multiple operands using time multiplexing.

5.2.6 Discussion on hardware acceleration using IPPro

over HLS

Usually, FPGA-based dataflow programming frameworks and HLS-based tools

take a dataflow description, using static timing analysis techniques to profile and

find a suitable decomposition that meets the application requirements. After

finding proper decomposition, further FPGA/hardware specific optimisations are

carried out and then equivalent HDL circuit is generated. On the contrary, in

IPPro approach, the dataflow specification is statically profiled based on the

IPPro mapping constraints. The following are major IPPro mapping constraints:

101

5.2 IPPro: A dataflow processor

• The number of instructions to implement a dataflow actor - inst(actor). The

IPPro has IM of 512x32 bit (because it e�ciently exploits the distribution

of BRAM resources by using exactly half of the BRAM block (18 KB)

and allows a maximum of 512 instructions. This metric drives the level of

decomposition of an actor. The framework must describe actor operations

within 512 or less IPPro instructions.

• Actor execution time - t(exec.) It is a measure of time needed for IPPro to

execute a single iteration of an actor. fMax is the IPPro system maximum

clock frequency where each instruction takes one clock cycle to complete.

This metric facilitates the framework during decomposition, when balancing

actors and avoids blocking.

t(exec.) =
inst(actor)
Fmax

(5.1)

• Register utilisation - RF(util): It is the measure of registers used by single

execution of an actor. It covers storage of input, intermediate and output

variables used in a single iteration. This metric can aid the algorithm

developer to find a suitable actor decomposition.

This section has presented IPPro core as FPGA-based soft-core dataflow ac-

celerator supporting flexible mapping and execution of static multi-port dataflow

actor. Besides, IPPro specific mapping constraints have been outlined that are

essential for software profiling, mapping and compilation of dataflow actors onto

IPPro. Section 5.3 investigates IPPro accelerator from a system level perspective,

where multiple IPPro cores are connected and exchange tokens. The focus is to

102

5.3 Management and provisioning of IPPro hardware accelerators

identify the system level management and control requirements, the inter-core

communication mechanisms and their impact on the resource utilisation.

5.3 Management and provisioning of IPPro hard-

ware accelerators

Hardware accelerators are used in data intensive computing systems, including

many and multicore processors architectures [22], [23], [12], [43], [17]. Generally,

in MPSoC-based systems, hardware accelerators are managed by a host/mas-

ter processor. It handles system configuration, communication, data and con-

trol among accelerators that impacts the performance [113], [114]. It is vital

to minimise host intervention not only in managing control and data transfer

but also managing the hardware accelerators to achieve better acceleration. The

hardware accelerators can be classified based on management policies into three

classes [113]:

• Class I: Host managed dependent accelerator

• Class II: Host managed independent accelerator

• Class III: Self-managed independent accelerator

Table 5.5 lists the core, multicore and system level control and management

requirements of each class of accelerators. To identify the desired synchronisation

and inter-core communication mechanisms and analyse their impact on the area

of each class of accelerator, four multiple IPPro core designs A�, B�, C�, D� have

been implemented as shown in Figure 5.9.

103

5.3 Management and provisioning of IPPro hardware accelerators

T
ab

le
5.
5:

Im
p
ac
t
of

ac
ce
le
ra
to
r
cl
as
se
s
on

IP
P
ro
-b
as
ed

co
re
,
m
u
lt
ic
or
e
an

d
sy
st
em

re
qu

ir
em

en
ts

[1
13
].

A
c
c
e
le

r
a
t
o
r

IP
P
r
o

a
r
c
h
it
e
c
t
u
r
e

F
u
n
c
t
io

n
a
l
r
e
q
u
ir
e
m

e
n
t
s

P
a
r
a
ll
e
li
s
m

M
a
n
a
g
e
m

e
n
t

P
a
r
a
ll
e
l

S
k
e
le

t
o
n

C
o
r
e

le
v
e
l

M
u
lt
ic

o
r
e

le
v
e
l

M
e
m

o
r
y

m
o
d
e
l

C
o
n
t
r
o
l
m

a
n
a
g
e
m

e
n
t

C
o
d
e

S
y
n
c
.

D
a
t
a

T
a
s
k

I
)

D
e
p
e
n
d
e
n
t

h
o
s
t

m
a
n
a
g
e
d

P
i
p
e
l
i
n
e

H
o
s
t

m
a
n
a
g
e
s

b
o
t
h

d
a
t
a

a
n
d

c
o
n
t
r
o
l

m
e
c
h
a
n
i
s
m
s

A
l
l
a
c
c
e
l
e
r
a
t
o
r
s
a
r
e
d
i
-

r
e
c
t
l
y

c
o
n
n
e
c
t
e
d

a
n
d

m
a
n
a
g
e
d

b
y

h
o
s
t
p
r
o
-

c
e
s
s
o
r

(
N
o

i
n
t
e
r
-
c
o
r
e

c
o
m
m
u
n
i
c
a
t
i
o
n
)

S
h
a
r
e
d

m
e
m
o
r
y

H
o
s
t

c
o
n
t
r
o
l
l
e
d

(
c
o
m
-

p
l
e
x

h
o
s
t
a
p
p
l
i
c
a
t
i
o
n
)

Y
e
s
(
h
o
s
t
s
h
a
l
l
s
y
n
c
h
r
o
-

n
i
s
e
o
r
d
e
r
o
f
e
x
e
c
u
t
i
o
n
)

N
o

Y
e
s

I
I
)

I
n
d
e
p
e
n
d
e
n
t

h
o
s
t

m
a
n
a
g
e
d

P
i
p
e
l
i
n
e
,

S
p
l
i
t
-

c
o
m
p
u
t
e
-

m
e
r
g
e

I
n
s
t
r
u
c
t
i
o
n

d
r
i
v
e
n

d
a
t
a

m
e
c
h
a
n
i
s
m

T
E
S
T
,
G
E
T
,
P
U
S
H

P
r
o
g
r
a
m
m
a
b
l
e

i
n
t
e
r
-

c
o
r
e

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
n
t
r
o
l
l
e
r

M
e
s
s
a
g
e

p
a
s
s
i
n
g

S
e
p
a
r
a
t
e

c
o
d
e

f
o
r
i
n
t
e
r
-

c
o
r
e

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
n
t
r
o
l
l
e
r

Y
e
s

(
b
e
t
w
e
e
n

i
n
t
e
r
-
c
o
r
e

c
o
n
t
r
o
l
l
e
r

a
n
d

e
a
c
h

a
c
-

t
o
r
)

Y
e
s

Y
e
s

I
I
I
)

I
n
d
e
p
e
n
d
e
n
t

s
e
l
f
-

m
a
n
a
g
e
d

P
i
p
e
l
i
n
e
,

S
p
l
i
t
-

c
o
m
p
u
t
e
-

m
e
r
g
e

I
n
s
t
r
u
c
t
i
o
n

d
r
i
v
e
n

d
a
t
a

a
n
d

c
o
n
t
r
o
l

m
e
c
h
a
n
i
s
m

T
E
S
T
,

G
E
T

C
H
#
,

P
U
S
H

C
H
#

S
e
l
f
-
m
a
n
a
g
e
d

i
n
t
e
r
-

c
o
r
e
c
o
m
m
u
n
i
c
a
t
i
o
n

M
e
s
s
a
g
e

p
a
s
s
i
n
g

E
m
b
e
d
d
e
d
w
i
t
h
i
n
I
P
P
r
o

c
o
d
e

N
o

Y
e
s

Y
e
s

104

5.3 Management and provisioning of IPPro hardware accelerators

(a) (b)

(c) (d)

Figure 5.9: Multiple IPPro core-based hardware accelerator designs (a) Design A�
(b) Design B� (c) Design C� (d) Design D�.

The Class I accelerator represents a ”host managed dependent accelerator”

which has been common in hardware solutions where the compute intensive part

of the application is o↵-loaded on the dedicated IPs. The host assigns a job to the

worker and is solely responsible for managing data distribution via shared memory

using an appropriate control mechanism. IPPro is a stream accelerator that uses

GET and PUSH instructions and does not require explicit data management by

the host; therefore, Class I accelerators is not relevant. The designs A�, B� and

C� functionally exhibit Class II accelerators as per Table 5.5. The di↵erence

105

5.3 Management and provisioning of IPPro hardware accelerators

Table 5.6: IPPro-based multiple core architectures and their impact on system
requirements and inter-core communication.

System requirement Inter-core communication
No. of Host-core Communication Progra- Token Token Inter-core

Design cores Synchro- Management mmble re-ordering deter- connectivity
nisation needed ministic

A� 8 Yes Static configuration No Yes No 1-1, 1-2, 2-1
B� 8 Yes Static configuration No Yes No 4-way split,

merge,
feed-forward

C� 8 Yes Inter-core controller Yes Yes No
D� 8 No Self-managed Yes No Yes

between A� and B� is the level of inter-core connectivity of 2x2 and 4x4 between

producer and consumer cores as shown in Figure 5.9(a) and (b). In A� and B�, the

host processor statically configures the multiplexers during system configuration

by setting a configuration word which remains fixed for the rest of the system

operation. To map a tree-based dataflow actor, B� requires 4N computing stages

compared to A�, where N is the level of connectivity between cores which is 2x2

for A� and 4x4 for B�. When multiple cores are exchanging data simultaneously,

both designs need collision avoidance mechanisms.

Kelly et al. have proposed a solution to address this issue by scheduling actors

with a fixed o↵set [60]. This mechanism is common in HLS-based fine-grained ar-

chitectures where the connectivity of dataflow actors are identified at compile time

before realising hardware [22], [25], [43], [115]. On the other hand, C� supports

dynamically configurable inter-core connectivity of 4x4 managed by an external

inter-core controller as shown in Figure 5.9(c) which allows runtime configuration

of the inter-core communication using routing program produced by the compiler

extracted from the XDF. However, this increases hardware complexity as it re-

quires synchronisation between IPPro cores and the controller. Lastly, design D�

illustrates a Class III hardware accelerator where each IPPro core itself manages

the inter-core communication. At the input interface, each core has FIFO queues

106

5.3 Management and provisioning of IPPro hardware accelerators

(equal to the number of producers) which ensures deterministic token, resolve to-

ken re-ordering and avoids the collision. The design minimises host intervention

and system level control compared to previous designs due to the absence of an

external controller as shown in Figure 5.9(d). It has achieved this by attaching

additional information (FIFO channel) along with a data token and forwarded

to the interconnect where, each FIFO channel number represents the producer of

data token.

This solution simplifies the system architecture by avoiding distributed con-

trol and data mechanisms and integrating them into a single point of control.

It has been achieved by making IPPro an independent self-managed dataflow

accelerator. It provides flexibility to explore and implement applications only

by changing the IPPro program code that contains information related to data

processing, control/synchronisation mechanism and exchange of tokens among

multiple producer and consumer. Therefore, the application developer or soft-

ware compiler has to generate only the IPPro code, instead of additional code for

the inter-core controller as required by C�.

Implementation Results

Table 5.7 reports the implementation results obtained from Xilinx Vivado Suite

v2015.2. Statically managed inter-core communication designs B� consumes 1.25

and 1.94 times more FFs and LUTs compared to A� by increasing the level

of core connectivity from 2x2 to 4x4. On the other hand, using an inter-core

controller to dynamically manage the inter-core communication further increases

the FFs and LUTs utilisation by 1.07 and 1.20 times compared to B� in addition

107

5.4 Dataflow parallelism and multiple IPPro

Table 5.7: Impact on area utilisation of di↵erent accelerator configurations.

Design FF LUT DSP BRAM

A� 1902 709 8 8
B� 2381 1376 8 8
C� 2549 1632 8 8
D� 7616 5989 8 8

to complex system level synchronisation mechanism. Besides, D� result in ⇡

2.30 and 3.67 times increased in FFs and LUTs. Though, comparing D� with

previously reported IPPro core results in Table 5.3, the presented functionalities

and reduced management overhead come at the maximum cost of approx. 2.88

and 1.54 times of FFs and LUTs.

The presented area results in Table 5.7 shows that the increasing level of

connectivity and avoiding o↵-loading host management tasks come at the cost of

higher resource utilisation while the BRAM/DSP ratio remains constant.

5.4 Dataflow parallelism and multiple IPPro

Dataflow is a stream driven MoC that allows exploiting data and task level par-

allelism using di↵erent parallel computing paradigms as previously discussed in

Section 2.2.1. IPPro is a light-weight programmable architecture that can use

to realise programmable parallel dataflow computing system architecture by con-

necting multiple IPPro cores to exploit parallelism. In contrast to the pipelined

parallel architectures, the iterative execution of a dataflow actor is a sequential

operation which could take a variable number of clock cycles depending on the

complexity of an actor. Therefore, to achieve acceleration, the computation load

and data transfer load are chosen as application constraints which are defined as

the actor execution time and token production-consumption rate. These applica-

108

5.4 Dataflow parallelism and multiple IPPro

tion constraints shall be used by the compiler framework to find out the suitable

application decomposition and mapping on the IPPro cores for the user. Frames

per second fps has been chosen as a performance metric for image processing

applications. Because it will be used as the input parameter to the compiler

framework to start profiling and optimising the application. Mathematically, it

can be represented using Equation 5.2.

fps =
f(IPPro)

t(actor) ⇤
N(total pixels)

N(pixel consumption)

(5.2)

where f(IPPro) is IPPro operating frequency (extensively discussed previously as

performance metric in IPPro core level discussions and analysis development of

IPPro core), t(actor) is the execution time (in clock cycles) of the slowest dataflow

actor, N(total pixels) the number of pixels in a frame and N(pixel consumption) the

number of pixels consumed by an actor in each iteration. To improve the fps,

the following options are possible as depicted in Figure 5.10:

• Reducing the actor’s execution time by decomposing it into multiple

pipelined stages, thus reducing t(actor) to improve fps. Shorter actors can

be merged sequentially to minimise the data transfer overhead by localising

data into FIFOs between processing stages.

• Vertical scaling to exploit data parallelism by mapping an actor on

multiple IPPro cores thus, reducing (n ⇤ N(total pixels)

N(pixel consumption)

). Though, it re-

quires an additional system level data distribution, control, and collection

mechanisms.

Figure 5.10 shows two actor-core mapping examples to elaborate both optimi-

109

5.4 Dataflow parallelism and multiple IPPro

(a)

(b)

Figure 5.10: Multiple IPPro cores as dataflow accelerators deploying dataflow
optimisations (a) One-to-one actor-core mapping (b) 2-way SIMD mapping per
actor.

sations. The first example focuses on the pipelined one-to-one actor-core mapping

of dataflow actors as shown in Figure 5.10(a) where individual actors A�G are

mapped on separate IPPro cores. The actors are unbalanced and have di↵erent

execution times represented by t(actor). The inter-core communication architecture

is used to exchange data among cores. This example illustrates pipelined map-

ping of dataflow actors using IPPro cores. It enables implementation of dataflow

optimisation by dividing complex actor into multiple small actors and reduce the

110

5.4 Dataflow parallelism and multiple IPPro

overall actor execution time.

The second example focuses on exploiting parallelism using vertical scaling

of IPPro cores as shown in Figure 5.10(b). An actor is replicated onto multiple

IPPro cores to exploit data parallelism. The level of connectivity supported by

the interconnect defines the exploitable degree of data parallelism. This issue will

be further discussed in Chapter 6.

5.4.1 Configurable data distribution and collection archi-

tecture

To realise parallel computing paradigms, scatter-gather is used to exploit data and

task level parallelism [116], [71]. It uses the static decomposition of data where

data is divided up into many equal-sized parts where each part can be processed

by a separate processing core as shown in Figure 5.11. The research community

has reported various image data distribution patterns driven by row, column

and block-based static decomposition that result in row-strip, column-strip, row-

cyclic, column-cyclic, block-wise and window-wise distributions [40], [117], [118].

In this thesis, the row-cyclic data distribution has been chosen because it allows

bu↵ering of pixels in a pattern suitable for point and area operations after storing

them into the line bu↵ers. It simplifies the reading process of pixels from the

image bu↵er. The system level architecture composed of line bu↵ers, a scatter

module to distribute the bu↵ered pixels, gather module to collect the processed

pixels and a finite state machine to manage and synchronise these modules as

shown in Figure 5.12.

The host processor uses control and data interfaces to configure, manage and

111

5.4 Dataflow parallelism and multiple IPPro

Figure 5.11: Cyclic row-wise image/video pixel distribution.

distribute pixels through a programmable host application. The host sequen-

tially feeds the pixels into the line bu↵ers using IN interface as shown in Fig-

ure 5.12. The width of the line bu↵er is configurable by loading a suitable value in

LINE WIDTH register using AXI4-Lite interface. It makes the system infras-

tructure adaptable to various image sizes. As soon as line bu↵ers fill, the Scatter

starts feeding data to the cores by storing it into the input FIFOs. The cores

begin to process data as soon the actor firing rule is satisfied and pushes the pro-

cessed data into the output FIFO. Gather reads processed data and feed it back

to host processor using OUT interface. Figure 5.12 shows Control interface that

is used to control the FSM presented in Figure 5.13 by the host processor and

relevant output control signals for each state listed in Table 5.8. The following

are the details of FSM states:

• RESET resets the programmable logic, i.e. IPPro cores, multicore inter-

connect and data distribution and collection mechanisms.

• CONFIGURE SYSTEM enables the system SY S EN and assigns a

user-defined value to LINE WIDTH register (as defined in the host ap-

plication) which configures the line bu↵er, scatter and gather modules. The

112

5.4 Dataflow parallelism and multiple IPPro

Figure 5.12: System level data distribution and control architecture.

value stored in the LINE WIDTH register specifies the number of pixels

stored in each line bu↵er.

• IDLE waits for host program to dispatch data by asserting FILL LINES.

• FILL BUFFERS initiates filling of the line bu↵ers by asserting start fill,

waits until all line bu↵ers are filled and assert Finish fill.

• SCATTER asserts start scatter and IPPro core en signals. The scatter

module reads the line bu↵ers and loads data into the input FIFOs. The

core process data in parallel and stores processed data into respective output

FIFOs. The gather compares the FIFO token count with LINE WIDTH

value and asserts DAvailable signal which triggers the GATHER state.

• GATHER asserts start read signal and starts reading the output FIFOs of

each core. It controls the multiplexer based on the defined LINE WIDTH

113

5.4 Dataflow parallelism and multiple IPPro

Figure 5.13: FSM used to control the architecture of Fig. 5.14.

value by checking the FIFO token count. The host reads processed data

via OUT interface.

The presented stream-based data distribution and collection architecture ab-

stracts the low-level hardware implementation details from the user and simplifies

the application development process by providing underlying functionality via a

control register. This approach provides task-level optimisations by pipelining

multiple computing stages and localising data within the programmable logic

Table 5.8: Output signals of FSM for each state.

FSM
output

FSM State
RESET CONFIGURE SYSTEM IDLE FILL BUFFERS SCATTER GATHER

set LineW 0 LINE WIDTH
start fill 0 0 0 1 0 0
start scatter 0 0 0 0 1 0
start read 0 0 0 0 0 1
coreN rst 1 0 0 0 0 0
coreN en 0 0 0 0 1 1

114

5.5 Case Study: k-means clustering

before sending it back to a host processor thus reducing data transfer overhead.

To evaluate IPPro as a dataflow accelerator and implement some of the

discussed dataflow optimisations (data and task level parallelism), Section 5.5

present the acceleration of k -means clustering.

5.5 Case Study: k-means clustering

Image segmentation is the process of partitioning an image into multiple seg-

ments. Three recognised methods by scientists and researchers are image thresh-

olding, edge detection and clustering [119]. k -means belongs to image clustering,

which is an unsupervised image segmentation method that classifies the image

into a finite number of clusters. It has been chosen because of its simple con-

trol flow, data dependent execution and inherent fine-grained parallelism which

makes it suitable for FPGA-based hardware acceleration [120]. It involves two

stages which are Distance Calculation and Averaging. The distance calculation

is mathematically represented as:

Y =
nX

i=1

kX

j=1

(||Pi � Cj||)2 (5.3)

Where, (||Pi � Cj||) is the Euclidean distance between a data point (pixel) Pi

and a centroid value Cj, iterated over n points in the cluster for all k clusters.

Averaging is used to calculate the updated centroid values for the next iteration

by finding the average of clustered data/pixels in the dimension to find the new

centroid value. In this case study, 512x512 resolution of images have been clus-

tered by accelerating both stages of the k -means algorithm. To explore di↵erent

115

5.5 Case Study: k-means clustering

Figure 5.14: Block diagram of implemented system architecture for case study.

data and task parallelism and actor-core mapping possibilities, four IPPro hard-

ware accelerator designs have been implemented. These designs cover single-core,

dual-core, 8-way SIMD and dual 8-way SIMD-based IPPro acceleration architec-

tures and allow evaluating the impact of exploiting data and task parallelism

on area and performance. The system has implemented on Avnet Zedboard

(XC7Z020CLG484-1) and the same k -means implementation has been realised

on the desktop NVIDIA GTX980 GPU, embedded ARM Mali-T628 GPU and

ARM Cortex-A7 CPU to compare the technologies.

116

5.5 Case Study: k-means clustering

5.5.1 MPSoC-based heterogeneous system architecture

Xilinx Zynq MPSoC is composed of a host processor known as programmable

system (PS) and FPGA programmable logic (PL). The system architecture is

used to accelerate the distance calculation and averaging using IPPro as shown

in Figure 5.14. PS configures and controls the underlying architecture while PL

is used to implement image processing pipeline and IPPro hardware accelerator

as illustrated in Figure 5.14. The AMBA-AXI bus transfers the data between

PS and PL using the AXI-DMA protocol. The Xillybus IP core [121] is deployed

as a bridge between PS and PL to feed data into the image processing pipeline.

It gives an intuitive DMA-based end-to-end turnkey solution for transporting

data between PL and PS while running the Linux Operating System (OS) on

an ARM host processor thus reducing engineering and device driver development

e↵ort [121]. The IPPro hardware accelerator interacts with the Xillybus IP core

via FIFOs. The Linux application running on PS streams data between the FIFO

and the file handler opened by the host application. The Xillybus-Lite interface

allows control registers from the user space program running on Linux to manage

the underlying hardware architecture.

Figure 5.14 shows the implemented system architecture which consists of the

necessary control and data infrastructure. The data interfaces involve stream

(Xillybus-Send and Xillybus-Read); uni-directional memory mapped (Xillybus-

Write) to program the IPPro cores; and Xillybus-Lite to manage Line bu↵er,

scatter, gather, IPPro cores and the FSM. Xillybus Linux device drivers are used

to access each of these data and control interfaces. An additional layer of C

functions is developed using Xillybus device drivers to configure and manage the

117

5.5 Case Study: k-means clustering

system architecture, program IPPro cores and exchange pixels between PS and

PL. Table 5.9 presents the developed C functions that the host application uses

to program IPPro cores and control the system architecture are presented in

Figure 5.14.

The Linux host application uses these C functions to feed image pixels into a

line bu↵er module. These functions allow to control/manage the data distribu-

tion and collection architecture and program the IPPro cores using the process

discussed in Section 5.4.1.

5.5.2 IPPro hardware accelerator designs

The case study is implemented to explore the di↵erent acceleration possibilities of

distance calculation and averaging. Therefore, both stages are accelerated indi-

vidually as an independent dataflow actor using single and multiple IPPro cores

realised in design 1� and 2� as shown in Figure 5.15. Later, both stages are accel-

Table 5.9: Summary of the C functions running on the host processor to program
and control the underlying architecture.

C function Description

int open system (void);

int close system (int fd);

The host uses Linux User I/O (UIO) interface

to access the IPPro core as a device file by its

memory map. This function is used to get the

address of the PL hardware blocks by OS.

int system reset (int fd, int addr); It sets the SYS RST bit

int system enable (int fd, int addr); It clears SYS RST and set SYS EN bit.

int set line size (int fd, int addr, short int

value);

It sets the size of line bu↵er.

int fill lines (int fd, int addr); It sets the FILL LINES bit.

int program core (FILE *fp); It programs the IPPro core by reading a .hex

file using AXI-MM interface

int send stream (short int *sdata, int len);

int read stream (short int *rdata, int len);

They are used to send/receive stream of data

from host to PL using the Xillybus-Send and

Xillybus-Read interfaces.

118

5.5 Case Study: k-means clustering

Figure 5.15: IPPro hardware accelerator designs to explore and analyse the im-
pact of parallelism on area and performance. 1� Single core IPPro, 2� 8-way
SIMD IPPro, 3� Dual core IPPro, 4� Dual core 8-way SIMD IPPro.

erated together as pipelined dataflow actors using dual and multiple-dual-IPPro

cores realised in design 3� and 4�. Figure 5.15 illustrates the block diagram of all

four designs, and their data and control interfaces. Each design is used as a IP-

Pro hardware accelerator illustrated earlier in Figure 5.14 and incorporated into

the presented IPPro-based heterogeneous system architecture. These designs are

selected as they enable di↵erent acceleration paradigms, dataflow actor mapping

possibilities and parallelism options as listed in Table 5.10. Moreover, they al-

low the analysis of di↵erent algorithmic decompositions and their impact on the

execution time and area utilisation.

119

5.5 Case Study: k-means clustering

Table 5.10: Dataflow actor mapping and supported parallelism of IPPro hardware
accelerator design presented in Figure 5.15.

Design Acceleration Paradigm Dataflow mapping
Parallelism
Data Task

1� Single core IPPro Single actor No No
2� 8-way SIMD IPPro Single actor Yes No
3� Dual core IPPro Dual actor No Yes
4� Dual 8-way SIMD IPPro Dual actor Yes Yes

5.5.3 Acceleration results

The presented IPPro hardware accelerator designs have used di↵erent sample

images for classification due to the data dependent characteristics of the clustering

algorithm. Table 5.11 and Table 5.13 report the average execution time and fps

numbers while, the area utilisation results have been reported in Table 5.12.

Table 5.11 reports the results obtained by individually accelerating the stages

of k -means clustering using 1� and 2�. In each iteration, distance calculation takes

two pixels and classifies them into one of the four clusters which take an average of

45 cycles/pixel. To classify the whole image, it takes 118.2 ms which corresponds

to 8.45 fps. On the other hand, the averaging takes four tokens and produces four

new cluster values, which takes an average of 55 clock cycles/pixel results in 145

ms or 6.88 fps. Both the stages involve point-based pixel processing. Therefore

design 2� is developed and used to exploit data level parallelism. As a result, the

execution time is reduced to 23.32 ms and 27.02 ms for distance calculation and

averaging respectively. This is an improvement of 5.06 and 5.37 times over 1�. It

came at the cost of 4.1, 2.3 and 8.0 times more BRAMs, LUTs and DSP blocks

Table 5.11: Performance measurements for design 1� and 2� of Figure 5.15.

Single Actor
1� Single-core IPPro 2� 8-way SIMD IPPro
Exec. (ms) fps Exec. (ms) fps

Distance Calculation 118.21 8.45 23.37 42.78
Averaging 145.17 6.88 27.02 37.00

120

5.5 Case Study: k-means clustering

Table 5.12: FPGA area utilisation of various designs shown in Figure 5.15. The
relative Zedboard area utilisation is also reported.

Design FF LUT BRAM DSP

1� Single-core IPPro 5197 (4.89) 4736 (8.90) 4.5 (3.21) 1 (0.45)
2� 8-way SIMD IPPro 12279 (11.54) 10941 (20.57) 18.5 (13.21) 8 (3.63)
3� Dual-core IPPro 5737 (5.19) 5215 (3.21) 7.5 (3.21) 2 (0.90)
4� Dual 8-way SIMD IPPro 16106 (15.14) 13864 (26.06) 34 (13.21) 16 (7.27)

respectively as reported in Table 5.12. The major contributor to increased area

utilisation is data distribution and control infrastructure. Theoretically, scaled

up design has been expected to give eight times increase in performance, which

is not achieved in 2� because, the data transfer overhead involved in filling the

line bu↵ers, collecting the processed pixels and sending them back to the host is

not negligible.

Table 5.13 reports the execution time and performance (fps) numbers of both

stages together to exploit task-level parallelism using designs 3� and 4�. The

reported results of 1� and 2� obtained by combining the execution time of both

stages previously reported in Table 5.11. Using design 3�, the e↵ect of task-

level parallelism implemented via intermediate FIFO result in an average of 63

clock cycles/pixel which is 163 ms and 6 fps. By pipelining both actors, 3� has

achieved 1.6 times better performance compared to 1� at the cost of 1.6 and 2.0

times more BRAM and DSP blocks using the same Xillybus IP infrastructure

as 1�. The reason for the improvement is the localisation of intermediate data

Table 5.13: Performance with task-level parallelism using designs in Figure 5.15.

k-Means Acceleration
Performance

Exec. (ms) fps

1� Combined stages using Single-core IPPro 263.38 3.8
2� Combined stages using 8-way SIMD IPPro 50.39 19.8
3� Dual-core IPPro 163.2 6
4� Dual 8-way SIMD IPPro 35.9 28
Software implementation on ARM 286 3.49

121

5.5 Case Study: k-means clustering

within FPGA fabric using an intermediate FIFO, which hides the data transfer

overhead to and from host processor as shown in Figure 5.15.

Analysing the impact of exploiting both task and data level parallelism using

4� results in average 14 clock cycles/pixel and execution time of 35.9 ms or 28

fps. It is 1.4, 4.5 and 7.3 times better than 2�, 3� and 1� respectively. For

comparison, both stages are coded in C language and executed on an embedded

ARM Cortex-A7 processor that achieved execution time of 286 ms and 3.49 fps

which is 8 times slower than the performance achieved by 4�.

5.5.4 Comparison against GPU implementations

This section presents the details of adopted power measurement methods and

compares the IPPro-based implementation to the equivalent k -means GPU imple-

mentations. The IPPro power measurements obtained by running post-implementation

timing simulation. A Switch activity interchange format (SAIF) file is used to

record the switching activity of designs data and control signals of each presented

IPPro designs. Xilinx Power Estimator (XPE) takes SAIF file and reports the

power consumption. At Queens University Belfast (QUB) Minhas, a research

student doing research on big data computing has coded an equivalent version of

k -means in CUDA and OpenCL which is implemented and profiled on nVIDIA

GeForce GTX980 and ODRIOD-XU3, due to in-house availability of both GPU

platforms.

The nVIDIA desktop GPU card supports 2048 CUDA cores running at a base

frequency of 1126 MHz. OpenCL and CUDA have used for programming the

GPU, and both stages merged into the single kernel. For performance measure-

122

5.5 Case Study: k-means clustering

ment, OpenCL’s profiling function clGetEventProfilingInfo is used which returns

the execution time of kernel in nanoseconds. The power consumption during ker-

nel execution was logged using nVIDIA System Management Interface (nvidia-

smi) which allows to measure the power consumed by the GPU and the host

processor separately. It is a command line utility, based on top of the nVIDIA

Management Library (NVML), intended to aid the management and monitoring

of nVIDIA GPUs.

To set the base line figures and for fair comparison of the FPGA against

the GPU technology, an embedded CPU (ARM Cortex-A7) and an embedded

GPU (ARM Mali-T628) implementation has been carried out on ODROID-XU3

platform. This is a heterogeneous multi-processing platform that hosts 28nm

Samsung Exynos 5422 application processor which has on-chip ARM Cortex-A7

CPUs and ARM Mali-T628 embedded GPU. The platform is suitable for power

constraint application use cases where ARM Cortex-A7 CPU and mid-range ARM

Mali-T628 GPU runs at 1.2 GHz and 600 MHz respectively. The platform have

separated current sensors to measure the power consumption of ARM Cortex-A7

and ARM Mali-T628, thus allow component-level power measurement capability.

Table 5.14 shows the results of IPPro-based accelerator designs running on

Zedboard where both data and task parallel implementation achieved 4.6 times

better performance over task only implementation at the cost of 1.57 times higher

power consumption. Table 5.15 shows the performance results of the k -means

implementation on Kintex-7 FPGA and compares them against equivalent em-

bedded CPU (ARM Cortex- A7), embedded GPU (ARM Mali-T628) and desk-

top GPU (nVIDIA GeForce GTX680) implementation. The presented embedded

CPU results has been considered as baseline figures for the comparison.

123

5.5 Case Study: k-means clustering

T
ab

le
5.
14
:
P
ow

er
,
re
so
u
rc
e
an

d
co
m
b
in
ed

e�
ci
en
cy

co
m
p
ar
is
on

s
of

IP
P
ro
-b
as
ed

k
-m

ea
n
s
im

p
le
m
en
ta
ti
on

s
on

Z
ed
-

b
oa
rd
.

Im
p
le
m

e
n
ta

ti
o
n

P
o
w
e
r
(m

W
)

F
re

q
.

E
x
e
c
.

fp
s

P
o
w
e
r

A
p
p
ro

x
.

R
e
so

u
rc

e
C
o
m
b
in

e
d

S
ta

ti
c

D
y
n
a
m

ic
T
o
ta

l
(M

H
z
)

(m
s)

e
�

c
ie
n
c
y

tr
a
n
si
st
o
r

e
�

c
ie
n
c
y

e
�

c
ie
n
c
y

(f
p
s/

W
)

u
ti
li
se

d
(T

U
)

(x
1
06

)

(f
p
s/

T
U
)

(x
1
0�

8
)

(f
p
s/

W
/
T
U
)

(x
1
0�

9
)

D
u
a
l-
c
o
re

IP
P
ro

1
1
8

1
8

1
3
6

1
0
0

1
6
3
.2

6
4
4
.1

5
9
1
(9
%
)

1
.0

7
4
.6

D
u
a
l
8
-w

a
y
S
IM

D
IP

P
ro

1
2
2

9
2

2
1
4

1
0
0

3
5
.9

2
8

1
3
0
.8

1
5
6
4
(2
3
%
)

1
.8

8
3
.6

T
ab

le
5.
15
:
P
ow

er
,
re
so
u
rc
e
an

d
co
m
b
in
ed

e�
ci
en
cy

co
m
p
ar
is
on

s
fo
r
k
-m

ea
n
s
u
si
n
g
X
il
in
x
Z
yn

q
X
C
7Z

04
5
K
in
te
x-
7

F
P
G
A

an
d
G
P
U

N
V
ID

IA
G
T
X
98
0.

P
la
tf
o
rm

Im
p
le
m

e
n
ta

ti
o
n

P
o
w
e
r
(m

W
)

F
re

q
.

E
x
e
c
.

fp
s

P
o
w
e
r

A
p
p
ro

x
.

R
e
so

u
rc

e
C
o
m
b
in

e
d

S
ta

ti
c

D
y
n
a
m

ic
T
o
ta

l
(M

H
z
)

(m
s)

e
�

c
ie
n
c
y

tr
a
n
si
st
o
r

e
�

c
ie
n
c
y

e
�

c
ie
n
c
y

(f
p
s/

W
)

u
ti
li
se

d
(T

U
)

(f
p
s/

T
U
)

(f
p
s/

W
/
T
U
)

(x
1
06

)
(x
1
0�

8
)

(x
1
0�

9
)

F
P
G
A

D
u
a
l-
c
o
re

IP
P
ro

1
5
8

2
6

1
8
4

3
3
7

4
8
.4
3

2
1

1
1
4
.1

5
9
1
(9
%
)

3
.6

1
9
3
.1

D
u
a
l
8
-w

a
y
S
IM

D
IP

P
ro

1
6
0

1
5
3

3
1
3

3
3
7

1
0
.6
5

9
4

3
0
0
.3

1
5
6
4
(2
3
%
)

6
.0

1
9
2
.0

G
P
U

O
p
e
n
C
L

3
7
0
0
0

2
7
0
0
0

6
4
0
0
0

1
1
2
7

1
.1
9

8
4
0

1
3
.1

1
3
3
1
(2
6
%
)

6
3
.1

9
.8

C
U
D
A

3
7
0
0
0

2
2
0
0
0

5
9
0
0
0

1
1
2
7

1
.5
8

6
3
2

1
0
.7

1
2
2
7
(2
4
%
)

5
1
.5

8
.7

E
m
b
e
d
.
G
P
U

A
R
M

M
a
li
-T

6
2
8

1
2
0

-
1
5
6
0

6
0
0

3
.6
9

2
7
1

1
7
3

-
-

-
E
m
b
e
d
.
C
P
U

A
R
M

C
o
rt
e
x
-A

7
2
5
0

-
6
7
0

1
2
0
0

2
8
6

3
.4
9

5
.2

-
-

-

124

5.5 Case Study: k-means clustering

Comparing the performance results (fps), both FPGA implementations achieved

6 and 27 times over the embedded CPU, while the embedded GPU delivered 6.7

times better performance over the FPGA by exploiting parallelism and higher

operating frequency. Focusing on the power consumption results, the FPGA con-

sumed 2.1 and 4.9 times less power than both the embedded CPU and embedded

GPU respectively. It shows that the FPGA technology delivers power-optimised

solution while, the GPU technology provides performance-optimised solution.

Though by considering both performance and power together, the power e�-

ciency (fps/W) numbers shows that FPGA and embedded GPU implementations

are 57 and 33 times more power e�cient than embedded CPU. These results

shows that FPGA implementation is 24 times more power e�cient than embed-

ded GPU. Nevertheless, this power e�ciency edge can be further improved by

applying dataflow transformations and increasing the number of IPPro cores.

Table 5.15 also compares the FPGA results against desktop GPU and re-

ports resource e�ciency as a metric due to significant di↵erence in the power

consumption numbers. The resource e�ciency has been presented in terms of

frames-per-second-per-Transistor-Utilisation (fps/TU) which is 6 and 63 for 28nm

FPGA and GPU technologies. For embedded CPU and GPU, these results are

not reported due to unavailability of transistor count numbers by the ARM. The

reported resource e�ciency results shows that GPU utilises area resources more

e�ciently than FPGA when power is kept out of the equation. Combining all

three metrics (fps/W/TU) shows that the advantage gained from FPGA designs

is significant which is 22 times more e�cient than GPU. This advantage becomes

more valuable considering the fact that presented FPGA-based MPSoC design is

adaptable, allows exploration, profiling and implementation of di↵erent dataflow

125

5.6 Summary

transformation possibilities over dedicated FPGA approaches to accelerate image

processing applications where energy is vital.

5.6 Summary

This chapter presented IPPro as a programmable dataflow accelerator that sup-

ports dataflow MoC. The presented IPPro architecture implements multi-port

static dataflow actors supported with notion of firing actor and execution pat-

terns using producer-consumer computing model. These execution patterns pro-

vide flexible mapping options to the user and software framework to explore and

deploy dataflow optimisations. The input and output FIFOs of IPPro are realised

and implemented using BRAM, DistRAM and SR. IPPro implementation using

DistRAM-based FIFO has achieved timing of ⇡ 242 MHz, utilising ⇡ 8% more

LUTs compared to BRAM-based implementation. On the other hand a degrada-

tion of 3% and 19% in operating frequency has observed for SR and BRAM-based

FIFO implementations.

To use IPPro as basic dataflow computation unit in heterogeneous MPSoC-

based system architecture requires communication between the accelerator and

the host. Four multiple IPPro core designs have been implemented to evaluate the

impact of host-accelerator communication and inter-core communication mecha-

nism on area utilisation. These designs cover the di↵erent level of connectivity

between producer and consumer cores, as well as static and dynamic handling

of inter-core connectivity managed either by the host or the core itself. The last

design D� has o↵ered desired functionalities with reduced management overhead

at the maximum cost of 2.88 and 1.54 times more FFs and LUTs.

126

5.6 Summary

To deploy dataflow optimisations (decomposition, mapping, and scheduling)

using multiple IPPro cores di↵erent actor-core mapping possibilities are discussed

supported with inter-core communication. A configurable stream-based data dis-

tribution and collection system architecture has proposed to deploy and realise

the selected optimisations. The architecture abstracts the low-level hardware

implementation details from the user and simplifies application development pro-

cess by providing underlying functionality via C-APIs. The design facilitates

exploitation of discussed dataflow optimisations including multi-stage pipelined

and parallel computing models (split, compute, and merge).

To evaluate the proposed architecture deploying dataflow optimisations, dis-

tance calculation and averaging stages have implemented on Avnet Zedboard.

Four IPPro hardware accelerator designs have realised that cover single-actor,

dual-actor, data and task level parallelism. The obtained results show that by

exploiting both data and task level parallelism, it is possible to achieve 7.3 times

better performance than task parallelism alone. Comparing against other tech-

nologies, FPGA achieved 27 times better performance over the embedded CPU

by exploiting parallelism and consumes 4.9 times less power than the embedded

GPU. Moreover, the power e�ciency (fps/W) numbers shows that FPGA imple-

mentation is 57 and 24 times more power e�cient than embedded CPU and GPU

respectively.

127

Chapter 6

FPGA-based programmable

hardware acceleration platform

6.1 Introduction

Many and multicore hardware accelerators have been used in data intensive com-

puting systems [22], [23]. Despite the e�ciency of the heterogeneous system, the

designers and system architects are facing challenges to quickly implement tai-

lored applications on FPGA-based platforms to meet design goals [12], [43], [17].

One of the shortfalls in these parallel architectures is the scarcity of hardware

abstraction, which makes it di�cult for application designers to e�ciently use

the available FPGA compute resources [17], [122]. It requires a certain level

of hardware knowledge which software and application developers lack in or-

der to maximise e�ciency and reusability of the available parallel architecture

as, it involves handling of the low-level core, inter-core and system communi-

cation and system interfaces etc. To approach this problem is by designing an

128

6.1 Introduction

FPGA-based multicore processor using an IPPro core that allows an e�cient,

high-performance, fine and coarse-grained mapping and execution of dataflow

actors. This multicore processor extends the flexibility provided by the IPPro

core and allows both pipelined and parallel execution of dataflow actors to realise

programmable streaming networks. Multiple instances of these multicore proces-

sors can be cascaded together to achieve a FPGA-based programmable hardware

acceleration platform. This platform facilitates exploration, profiling and acceler-

ation of image processing applications to software and algorithm developers using

software-centric edit-compile-run flow by avoiding synthesis and place-and-route

design flow. In addition, it supports implementation of parallel computing skele-

tons that provide higher programming abstraction of parallel structures which

can be e�ciently realised on the underlying architecture to implement parallel

applications. The resulting platform allows software-controlled adaptable execu-

tion of parallel skeletons, by abstracting the underlying hardware architecture to

the developer which gives better granularity to the application programmer re-

alising parallel applications using FPGA technology. The following are the main

contributions :

• Creation of an optimised IPPro core architecture which supports message

passing and shared data models to process uniform and non-uniform dis-

tributed data. These data models enable realisation of split, compute and

merge, pipeline and farm parallel skeletons.

• A novel multicore IPPro architecture that supports dynamic routing of data

streams among cores, exploiting parallelism using horizontal and vertical

scaling. It includes one-to-many, many-to-one, many-to-many producer-

129

6.1 Introduction

consumer data passing patterns for flexible actor-core mapping possibilities.

• A software configurable data distribution and collection architecture to re-

alise parallel implementation on heterogeneous architecture. It handles dif-

ferent image resolutions, provides flexible control on data stream generation

and distribution and can be integrated in direct and bu↵ered video pipelines.

• Software abstraction of the proposed programmable platform and its hard-

ware supported features to realise software driven parallel implementations.

This chapter presents IPPro core-level optimisations in Section 6.3. It covers

incorporation of data and control mechanisms required to implement parallel

skeletons, hardware-optimised implementation of dataflow actor firing rule to

minimise control overhead, and implementation results of the optimised IPPro

core architecture. Section 6.4 presents the multicore IPPro architecture focusing

on the identification of multicore architectural features, exploration of a suitable

stream-based multicore interconnect design and their impact on performance and

core utilisation. Section 6.5 presents the FPGA-based programmable hardware

acceleration platform with focus on dynamic data distribution and collection

requirements for parallel implementations. Section 6.6 discusses the performance

results of the chosen image processing functions exploiting data/task parallelism,

and heterogeneous computing to evaluate the flexibility of the platform. Each

IPPro acceleration result is compared against the equivalent optimised ARM

implementation.

130

6.2 Programmable realisation of parallel skeletons on FPGAs

6.2 Programmable realisation of parallel skele-

tons on FPGAs

Parallel skeletons are pre-defined generic components derived from higher-order

functions which can be parametrised in sequential problem-specific code and can

be e�ciently implemented on hardware architectures [116], [123]. In this re-

search, a data-driven producer-consumer computing paradigm has been adopted

which can be used to exploit data and task parallelism. Therefore, the underlying

architecture must support the desired data exchange and synchronisation mech-

anisms and the functional requirements of skeletons. For this purpose, Figure 6.1

presents three-layer programming (actor, parallel actors and parallel skeletons)

and hardware (IPPro core, Multicore IPPro, System Infrastructure) abstraction.

From bottom-up, a programmable streaming unit supports the functional re-

quirements of a dataflow actor and, a programmable streaming network supports

dataflow driven data exchange patterns across multiple actors to enable flexible

mapping possibilities to implement parallel actors. The top layer allows paramet-

ric implementation of a parallel skeleton by supporting stream and non-stream

data access and control mechanisms that are necessary to exploit parallelism.

Figure 6.1 shows the hardware abstraction to realise the programmable hard-

ware acceleration platform. The IPPro core is used to implement a programmable

dataflow actor, the multicore IPPro gives algorithm exploration possibilities using

di↵erent actor-core mappings of multiple actors. The system infrastructure allows

the necessary software configurable data distribution and collection mechanisms

to support control and data requirements of parallel skeletons.

To this end, the IPPro core already supports some architectural features as

131

6.3 IPPro core architectural optimisations

Figure 6.1: Software and hardware abstraction of the platform.

presented in Chapter 4 and 5. The architectural features which are required and

not supported by existing IPPro datapath are highlighted in Figure 6.1. Sec-

tion 6.3 presents IPPro core optimisations focusing on data and control mecha-

nisms needed to implement parallel skeletons and the hardware-optimised imple-

mentation of dataflow actor firing rule.

6.3 IPPro core architectural optimisations

The existing IPPro datapath supports a message-passing data communication

model which is only suitable for stream and uniformly distributed data process-

ing to realise split, compute, merge and pipeline skeletons. On the other hand, the

132

6.3 IPPro core architectural optimisations

farm skeleton requires access to non-uniform distributed data which need data

memory. This memory would serve as a data exchange path between master

(host) and worker (IPPro) as abstracted in Figure 6.1. It facilitates the imple-

mentation of global functions (subject to the size of data memory) using IPPro

cores. Based on the functional requirements, the following optimisations have

been identified:

1. Optimisation of dataflow actor firing rule minimising control overhead to

implement multiple-consumer and multiple-producer dataflow actors (Sec-

tion 6.3.1).

2. IPPro scratchpad memory to exchange data between IPPro and the host

processor to realise a farm skeleton (Section 6.3.2).

3. IPPro core interfaces compliance with industry standard MPSoC communi-

cation protocols for easy integration and portability within SoC and other

systems as IP (Section 6.3.3).

6.3.1 Dataflow actor firing rule optimisation

Chapter 5 presented a programmable software solution to handle actor firing

rule which is not suitable for multi-port actors (MPMC and MPSC). It adds

execution overhead directly proportional to the number of producer nodes as

shown in Listing 6.1. During code execution, the core iteratively checks the firing

rule dedicated to each producer node using branch instructions. As a result, the

actor’s execution time is dependent on the number of producer nodes.

A hardware actor firing module has been designed and integrated into IPPro

datapath to reduce execution overhead as shown in Figure 6.2. The control inter-

133

6.3 IPPro core architectural optimisations

face allows configuration of eight set token count registers (STC Q0 - STC Q7)

to check the number of tokens available from each producer. From the multicore

architecture perspective, it allows actor mapping opportunities for up to eight

producers feeding an actor by storing tokens into their appropriate FIFO queues.

Also, an actor firing mask (AFMR) register holds the information about the

number of producer nodes connected to the actor while values stored in (STC Q0

- STC Q7) registers define the number of tokens expected from each producer.

Listing 6.1: IPPro code of un-optimised actor firing rule.
1 ; Check i f the expected number o f tokens (1 , 2 , 1) in FIFO queues coming from
2 ; source nodes (0 , 1 , 2) are a v a i l a b l e ? I f yes , f i r e the ac to r
3 # Store expected number o f tokens from each producer node
4 STR R1 , 1 ;
5 STR R2 , 2 ;
6 STR R3 , 1 ;
7 . . .
8 # Check producer#1 ru l e
9 CHECK RULE1:

10 TEST R20 , R1 , #0
11 BNZ CHECK RULE1
12 . . .
13 # Check producer#2 ru l e
14 CHECK RULE2:
15 TEST R20 , R2 , #1
16 BNZ CHECK RULE2
17 . . .
18 # Check producer#3 ru l e
19 CHECK RULE3:
20 TEST R20 , R3 , #0
21 BNZ CHECK RULE3
22 . . .
23 ACTOR FIRED:
24 . . .

These registers are initialised by the host. During actor execution, the actor

firing module concurrently reads the token counts of input FIFO queues, com-

pares them against (STC Q0 - STC Q7), masks it with AFMR, and updates

the result in firing status register (FSR) as shown in Figure 6.2. This allows

software integration of an actor firing rule into the IPPro code using TEST in-

struction. Individual bits of the FSR shows the availability of expected number

134

6.3 IPPro core architectural optimisations

Figure 6.2: Block diagram of hardware dataflow actor firing module.

of tokens from each producer. It compares the value of FSR against the set

ACTOR FIRING MASK defined in IPPro code as shown in Listing 6.2.

Once an actor has fired, execution of GETRx,CHANNEL# reads the token

from the addressed FIFO queue and stores it into the addressed location of the

register file. Similarly, PUSHRx,CHANNEL# reads token from the register

file and forwards it to the output FIFO. The output FIFO controller shown in

Figure 6.2 encodes SRC ID and DEST ID tags, required to re-order and route

tokens to the di↵erent consumer node. The SRC ID and DEST ID specifies a

source node (producer) and a destination node (consumer) of the token.

By comparing the execution time of the presented IPPro code Listing 6.1 and

6.2 shows that optimised implementation takes a fixed number of clock cycles

135

6.3 IPPro core architectural optimisations

which is independent of the number of producer nodes. The proposed hard-

ware actor firing module enables programmable implementation of both fixed

and multi-rate actor firing rule using IPPro by merely changing the program

code. On the contrary, high-level synthesis approaches generates a fixed archi-

tecture [25], [43], [124] that needs design recompilation, synthesis and place-and-

route to deploy small changes such as actor firing rule.

Listing 6.2: IPPro code of optimised actor firing rule.
1 ; Check i f the expected number o f tokens s e t by the host STK Qx expect ing from
2 ; source node 0 , 1 , 2 , 3 , 4 , 5 are a v a i l a b l e in r e s p e c t i v e FIFO queues ?
3 ; I f yes , f i r e the ac to r
4 CHECK FIRING RULE:
5 STR R15 , #0000 0000 0011 1111 ; Set ACTOR FIRING MASK
6 TEST R30 , R15 ; Check FSR
7 BNZ CHECK FIRING RULE
8 . . .
9 ACTOR FIRED:

10 GET R10 ,#0 ; Read token from node # 0
11 PUSH R20 ,#1 ; Send token to node # 1
12 . . .
13 JMP CHECK FIRING RULE

6.3.2 Scratchpad memory to access non-streaming data

Section 6.3 outlined the importance of data memory in the IPPro datapath, pro-

viding a path between the host processor and the IPPro core to implement farm

parallel computing skeleton. For this purpose, a scratchpad memory of size 512x16

bits configured as true dual-port RAM has been added into the IPPro datapath.

This design choice has been made to e�ciently utilise the BRAM resources as,

512x16 bits size maps well on 18KB BRAM block (half of the BRAM). The other

half of the BRAM has been used for the instruction memory. One of the port

is connected to the host processor via an AXI4 interface, and the other to the

datapath using a native interface as shown in Figure 6.3.

136

6.3 IPPro core architectural optimisations

Figure 6.3: Data processing paths of the IPPro using scratchpad.

To maintain a balance among better functionality, area and timing, six addi-

tional instructions have been supported by IPPro to access scratchpad memory

as listed in Table 6.1. These instructions allow reading and writing data into

the scratchpad memory and return assigned task status to the host processor.

Direct (LDSP, STSP) and in-direct (LDSPI, STSPI) addressing modes facilitates

iterative access to memory locations using loops and o↵sets, which are commonly

practised by software programmers. Listing 6.3 shows the example code using

direct and indirect addressing modes to access the scratchpad memory.

This optimisation has also improved the data processing capabilities of IPPro

core by processing stream and non-streamed data simultaneously using four sup-

Table 6.1: IPPro instructions to access scratchpad memory.

IPPro Instruction Description

TASK FINISHED Inform host that task is completed
SP VALID Inform host that scratchpad is valid
LDSP, STSP Load/store data to/from directly addressed location
LDSPI, STSPI Load/store data to/from indirectly addressed location

137

6.3 IPPro core architectural optimisations

ported data execution paths as highlighted in Figure 6.3. These data execution

paths facilitate a flexible dataflow actor to IPPro core decomposition and map-

ping options. It has been done in such a way that the stream execution path has

minimal data transfer overhead compared to non-stream execution path. This is

because the FIFO-based transfers exploits pipelining compared to memory-based

transfers via a host processor where cache coherency latencies can be significant.

Listing 6.3: Code demonstrating direct and in-direct access to the scratchpad.
1 # Ind i r e c t a c c e s s to scratchpad memory us ing loop
2 INIT :
3 STR R31 ,#1 ; Loop i n i t i a l va lue / i n d i r e c t address po in t e r
4 STR R1 , #1 ; Loop increment constant value
5 STR R20 , #10 ; Loop terminate count value
6 . . .
7 LOOP:
8 LDSPI R21 , R31 ; R21 <= SP [R31]
9 ADD R31 , R31 , R1 ; Increment loop count

10 SUB R22 , R31 , R20 ; Check whether Loop cond i t i on
11 BNZ LOOP
12 . . .
13 # IPPro core as a hardware a c c e l e r a t o r (farm worker)
14 # c = FUNC(a⇤b)
15 # I t i s pre�de f ined that SP(0) = a ; SP(1) = b ; SP(3) = c
16 FUNC:
17 LDSP R1 , #1 ; Load a
18 LDSP R2 , #2 ; Load b
19 . . .
20 MUL R3 , R1 , R2
21 STSP R3 , #3 ; Store c
22 SP VALID
23 . . .
24 JMP FUNC

6.3.3 Host management of IPPro core using AMBA-AXI4

A vital aspect of any SoC solution is not only the hardware components it houses,

but also the way these components are connected. The ARM Advanced Micro-

controller Bus Architecture (AMBA) is an open-standard on-chip interconnect

specification. Most leading SoC chips supports the fourth generation AMBA-

AXI4. In these systems, a host processor configures, manages and in some cases

138

6.3 IPPro core architectural optimisations

Figure 6.4: AMBA-AXI4 compliant management interfaces of the IPPro.

feeds data to the slaves. AMBA-AXI4 specification supports three protocols:

1) AXI4-Lite to provide register-based control mechanisms 2) AXI4-Stream to

feed a stream of data 3) AXI4-memory mapped to exchange random access data

between the host and the underlying architecture.

IPPro supports all three AMBA-AXI4 protocols where AXI4-Lite interface

is used to configure actor firing module, SRC ID decoder and DEST ID encoder

using nine AXI4-Lite IPPro registers (for details see Appendix B Table B.3).

It has two AXI4-memory-mapped interfaces that allow the host processor to

program instruction memory and access scratchpad memory. Two AXI4-Stream

interfaces allow sending/receiving a data stream into the core, which can be either

the host processor via direct memory transfer or system architecture. The AXI4

Slave and Master wrapper modules are added into the IPPro datapath as shown

in Figure 6.4 that convert a native FIFO handshaking to AXI4-Stream interface.

They use native EMPTY and FULL handshake signals to generate respective

AXI4 master and slave handshake signals (TREADY and TVALID). The modules

also handle separation of the data payload (TDATA), routing tags (TDEST),

and the generation of reading and writing control signals to a native DIN, DOUT

139

6.3 IPPro core architectural optimisations

Table 6.2: Implementation results of the optimised IPPro on Kintex-7 fabric.

Resources Initial IPPro Optimised IPPro

Flip Flops 447 884
LUTs 484 755
BRAMs 1 1
DSP48E1 1 1

Freq. (MHz) 337 300

ports. C-APIs have been developed to abstract control and management of the

core (for details see Appendix B).

6.3.4 Implementation results of optimised IPPro core

The optimised IPPro datapath is synthesised and implemented using Xilinx Vi-

vado v2016.4 design suite. Table 6.2 summarises the results and compares them

against the initial IPPro core indicated in Table 1.12. The critical path has in-

creased approx. 11% and resulted in operating frequency of 300 MHz. This fMax

reduction come at the cost of fix actor firing execution time (Section 6.3.1), and

data compute capability of both stream and non-streamed data (Section 6.3.2).

The optimised datapath consumes 1.9 and 1.5 times more FFs and LUTs, while

the BRAM/DSP ratio remains constant. Generally, an FPGA fabric has two

times more FFs than LUTs and therefore, the maximum number of cores that

can be populated on the chip will be a↵ected by the FF/LUT ratio. Regarding

mapping possibilities, an actor with up to eight producer nodes which has been

reflected in the reported LUT utilisation. This increase in LUT utilisation is

caused by eight 16x32 FIFO queues to re-order received data tokens from multi-

ple producers. Similarly, increase in FF utilisation occurred due to FIFO count

registers used by the hardware actor firing module, and AXI4-Lite registers which

were absent in initial IPPro. However, the area utilisation represents < 1% of

140

6.4 Multicore IPPro

Table 6.3: Comparison of IPPro against other FPGA-based soft-core processors.

Resource IPPro Graph-SoC [16] FlexGrip [36]* MicroBlaze

Flip-flops 884 551 12972 518
LUTs 755 974 8916 897
BRAMs 1 9 15 -
DSP48E1 1 1 19.5 3
Stages 5 3 5 5

Freq. 300 200 100 211

* Scaled to a single streaming processor.

the available on-chip resources.

Table 6.3 compares the results of optimised IPPro core against other FPGA-

based soft-core processors. The optimised IPPro delivers 1.4 - 3.0 times bet-

ter fMax compared to other processors. Comparing area utilisation numbers,

IPPro has used 37% and 41% more FFs than GraphSoC and MicroBlaze but

lower than FlexGrip. On the other hand, IPPro consumed ⇡ 15% and 22% less

LUTs than MicroBlaze and GraphSoC.

Section 6.3 has presented IPPro datapath optimisations to minimise execution

overhead to implement multi-port actor and achieve essential data and control

mechanisms to map and execute stream and non-stream data processing. The

control of supported mechanisms is abstracted by developing C-APIs to maintain

flexibility.

6.4 Multicore IPPro

The low-level communication and synchronisation mechanisms must be managed

by the multicore architecture itself that created the need of a flexible multicore

interconnect. It facilitates adaptability to exploit di↵erent dataflow transforma-

tions, provide flexible level of connectivity and essential data exchange patterns

among cores to map parallel dataflow actors. It will help not only to map dif-

141

6.4 Multicore IPPro

ferent pipelined dataflow graphs onto multicore architecture but also to exploit

data and task parallel implementation adopting a horizontal and vertical scaling

approach. Considering these architectural features the following design require-

ments are identified:

• Software controlled connectivity among cores of multicore IPPro to realise

one-to-many, many-to-one, many-to-many consumer-producer data passing

patterns, to have flexible actor-core mapping possibilities (Section 6.4.1).

• Dynamic routing of data streams among IPPro cores to achieve area-e�cient

horizontal and vertical scaling of the architecture (Section 6.4.1).

6.4.1 Exploration of multicore interconnect architecture

In a multicore architecture, the multicore interconnect defines connectivity across

IPPro cores. In the open literature, the research community has proposed and

analysed di↵erent types of interconnect architectures such as bus, crossbar and

network-on-chip (NoC) [125]. Each interconnect architecture has pros and cons

based on the supported connectivity, flexibility, area and performance [112], [125].

From an application mapping point-of-view, the chosen level of connectivity can

limit data exchange possibilities among cores, leading to a restrained actor-core

mapping and realising parallel possibilities. From a hardware design point-of-

view, it could significantly impact performance and area utilisation.

This section discusses the dataflow data passing patterns and highlight their

importance to achieve better actor-core mapping possibilities, and horizontal and

vertical scaling. Besides, it presents the dynamic routing of the data streams

approach to achieve flexible mapping possibilities onto multicore IPPro.

142

6.4 Multicore IPPro

Figure 6.5: Theoretical mapping of data exchange patterns on IPPro cores.

Data passing patterns and core connectivity

Section 6.2 has emphasised the significance of supporting dataflow data passing

patterns which must be supported by the multicore architecture to realise adapt-

able implementations. It includes multiple actor (many-to-one, one-to-many and

many-to-many) data passing patterns (MPSC, SPMC, MPMC) [92], [93], [91].

Figure 6.5 models the required connectivity among cores that shall be sup-

ported by the multicore interconnect to map and execute di↵erent dataflow

graphs. This architecture will provide both horizontal and vertical connectiv-

ity among cores which was absent in the 4x4 interconnect architecture. A split

and merge can be expressed by SPMC and MPSC in producer-consumer model,

or used to implement data parallel computation. Similarly, a feed-forward can be

represented by SPSC in producer-consumer model, or used to achieve pipelining

or task parallel computation. Since these patterns are reusable, di↵erent nested

data passing patterns can be derived such as merge-pipeline-split or split-pipeline-

merge as shown in Figure 3.3.

It shows that the multicore interconnect should support the identified data

exchange patterns to improve actor mapping possibilities and maximise core util-

143

6.4 Multicore IPPro

isation for parallel implementations.

Dynamic routing of data streams

One of the set design requirement of multicore interconnect is the dynamic routing

of data streams across multiple cores by sharing resources. It requires data-

channel arbitration to avoid data collision, resource starvation and to ensure

balanced bandwidth distribution across cores. For this purpose, a Xilinx AXI4-

Stream switch IP is chosen as multicore interconnect that supports M x N crossbar

connectivity between AXI-Stream master and slave channels. It uses an address

control signal (TDEST) to route a stream of data between a master and a slave.

It supports slave decoding and master arbitration mechanisms (fixed and round-

robin) where each master is statically assigned a TDEST value.

Figure 6.6 illustrates the realisation of identified dataflow data passing pat-

terns in Section 6.4.1 using TDEST signal. To maintain the balance between

area utilisation and the level of connectivity among cores, the maximum support

Figure 6.6: Realisation of data exchange patterns using stream interconnect.

144

6.4 Multicore IPPro

of up to eight cores (IPPro#0 - IPPro#7) is considered as shown in Figure 6.6.

This configuration would allow realising parallel implementations up to the 7-way

split, 7-way merge, 8-way SIMD, 8-stage pipeline or a combination of thereof. The

arrow shows the flow of data from producer to the consumer core. Section 6.3.1

has detailed the process of tagging tokens with DEST ID whenever IPPro en-

counters PUSH CHANNEL# instruction. This tag specifies the destination core

(consumer) and is used as TDEST.

This multicore interconnect architecture compliments, the features supported

by IPPro and extend actor-core mapping possibilities using dynamic routing of

data streams. The level of core connectivity supported by the interconnect defines

the granularity of exploitable parallelism by the resultant multicore IPPro which

in this case is 8-way SIMD.

6.4.2 Impact of interconnect’s core connectivity and core

utilisation on area and performance

Three designs have been selected using 4x4, 8x8 and 16x16 cross-bar configura-

tions to accommodate 2, 4 and 8 IPPro cores as illustrated in Figure 6.7. These

designs express an increasing level of core connectivity allowing better actor-core

mapping possibilities by providing both horizontal and vertical connectivity nec-

essary to realise tree expansion and reduction while maximising core utilisation

(CU) as illustrated in Figure 6.6.

Each design has AXI4-stream master and slave interfaces (Mx and Sx). Half of

the interfaces of each design, are assigned to the number of supported IPPro cores

while remaining interfaces are used to feed data in and out of the multicore IPPro.

145

6.4 Multicore IPPro

Figure 6.7: Stream interconnect architectures with increasing core connectivity.

Each input and output interface has an internal 32x24-bit FIFO realised using

FPGA’s LUT resources that bu↵er data locally to avoid congestion during channel

arbitration while, the interconnect is serving other cores. The data payload of

each channel is three bytes TDATA (2-bytes data token, 1-byte source/destination

tag). The interconnect uses round-robin scheduling to avoid resource starvation

and provide equal bandwidth to all cores. The size of TDEST has been fixed to 2,

3 and 4-bits for 4x4, 8x8 and 16x16 designs respectively to uniquely address each

slave channel (input interface of IPPro core). The designs have been synthesised

and implemented using Vivado v2016.4 for Artix-7 and Kintex-7 FPGA. The area

and timing results are reported in Table 6.6.

Impact of scaling on the interconnect architecture Table 6.4 details area

and CU of stream interconnect and compares it against 4x4 interconnect. The

stream interconnect provides a software controlled implementation of data passing

patterns as illustrated in Figure 6.6.

Table 6.4 presents resource utilisation where both data parallel mappings

146

6.4 Multicore IPPro

have achieved 100% core utilisation (CU). The task parallel mappings of 4x4

interconnect have achieved 25% CU due to lack of vertical connectivity among

cores. It shows that stream interconnect provides flexible actor-core mapping

options to exploit both data and task parallelism using the same underlying

architecture.

Table 6.5 presents the normalised area results of Table 6.4. The normalised

FF and LUT utilisation is close to unity for data parallel implementations and

consumes twice the number of BRAMs and DSP48E1s. On the other hand, a

significant di↵erence approx. 1.67 to 2.19 times in LUTs and FFs utilisation, is

observed for task parallel implementations and four times number of BRAMs and

DSP48E1s. The results show that the stream interconnect architecture is flexible,

supports better actor-core mapping possibilities suitable for data and task parallel

implementations, and area e�cient than the 4x4 interconnect architecture.

Performance Analysis Table 6.6 compares the implementation results of stream

interconnect on Artix-7 and Kintex-7. Using Artix-7, 4x4 connectivity has re-

sulted in fMax 200 MHz, which reduced ⇡ 1.33 and 1.66 times when connectivity

is scaled-up to 8x8 and 16x16 respectively due to larger cross-bar connections

implemented using multiplexers. When the same 4x4 connectivity is ported to

Kintex-7, the design has achieved fMax 285 MHz which is 1.09 and 1.29 times

lower when scaled-up to 8x8 and 16x16 respectively. It can be observed that

Kintex-7 delivered 1.45 times better timing than Artix-7 because, Kintex-7 FPGA

technology is optimised for performance, which comes at higher chip cost.

It is important that the cores do not require full bandwidth of the interconnect

as they sequentially process data and their execution time is directly proportional

147

6.4 Multicore IPPro

T
ab

le
6.
4:

Im
p
le
m
en
ta
ti
on

re
su
lt
s
to

ev
al
u
at
e
sc
al
in
g
of

4x
4
an

d
st
re
am

in
te
rc
on

n
ec
t
ar
ch
it
ec
tu
re
s
on

ar
ea

an
d
co
re

u
ti
li
sa
ti
on

to
re
al
is
e
d
at
a
(v
er
ti
ca
l)
an

d
ta
sk

(h
or
iz
on

ta
l)
p
ar
al
le
l
im

p
le
m
en
ta
ti
on

s.

Im
p
l.

4
x
4

In
te

rc
o
n
n
e
c
t

S
tr
e
a
m

In
te

rc
o
n
n
e
c
t

C
o
re

s
C
o
n
n
.

F
F
s

L
U
T
s

B
R
A
M

s
D
S
P
4
8
E
1

C
o
re

C
o
re

s
C
o
n
n
.

F
F
s

L
U
T
s

B
R
A
M

s
D
S
P
4
8
E
1

C
o
re

U
ti
l.

U
ti
l.

4
-s
ta

g
e

1
6

4
x
4

1
5
2
6
6

1
1
9
9
1

1
6

1
6

4
/
1
6

4
4
x
4

6
9
5
0

6
4
3
4

4
4

4
/
4

8
-s
ta

g
e

3
2

4
x
4

3
0
5
2
8

2
3
9
8
8

3
2

3
2

8
/
3
2

8
8
x
8

1
5
3
3
8

1
4
3
0
6

8
8

8
/
8

4
-w

a
y

8
4
x
4

7
6
1
6

5
9
8
9

8
8

8
/
8

4
4
x
4

6
9
5
0

6
4
3
4

4
4

4
/
4

8
-w

a
y

1
6

4
x
4

1
5
2
3
2

1
1
9
7
8

1
6

1
6

1
6
/
1
6

8
8
x
8

1
5
3
3
8

1
4
3
0
6

8
8

8
/
8

T
ab

le
6.
5:

N
or
m
al
is
ed

ar
ea

u
ti
li
sa
ti
on

nu
m
b
er
s
of

4x
4
w
it
h
re
sp
ec
t
to

st
re
am

in
te
rc
on

n
ec
t
re
al
is
in
g
p
ar
al
le
l
im

p
le
-

m
en
ta
ti
on

s.

R
e
so

u
rc

e
T
a
sk

P
a
ra

ll
e
l

D
a
ta

P
a
ra

ll
e
l

4
-s
ta

g
e

8
-s
ta

g
e

4
-w

a
y

8
-w

a
y

F
F

2
.1
9

1
.9
9

1
.0
9

0
.9
9

L
U
T
s

1
.8
6

1
.6
7

0
.9
3

0
.8
3

B
R
A
M

4
4

2
2

D
S
P
4
8
E
1

4
4

2
2

T
ab

le
6.
6:

Im
p
le
m
en
ta
ti
on

re
su
lt
s
of

sc
al
ed
-u
p
st
re
am

in
te
rc
on

n
ec
t
d
es
ig
n
s
w
it
h
in
cr
ea
si
n
g
co
re
-c
on

n
ec
ti
vi
ty

on
A
rt
ix
-7

an
d
K
in
te
x-
7
fa
b
ri
cs
.
T
h
e
n
or
m
al
is
ed

ar
ea

u
ti
li
sa
ti
on

nu
m
b
er
s
of

ea
ch

d
es
ig
n
w
it
h
re
sp
ec
t
to

si
n
gl
e-
co
re

IP
P
ro

ar
e
re
p
or
te
d
w
it
h
in

th
e
b
ra
ck
et
s.

C
o
n
n
e
c
ti
v
it
y

F
F
s

L
U
T
s

L
U
T
R
A
M

f
M

a
x
(M

H
z
)

A
rt
ix
-7

K
in
te

x
-7

4
x
4

1
5
2
4
(1
.7
)

1
0
9
2
(1
.9
)

1
6
0
(0
.9
)

2
0
0

2
8
5

8
x
8

3
4
1
4
(3
.9
)

2
8
4
0
(5
.0
)

3
2
0
(1
.7
)

1
5
0

2
6
0

1
6
x
1
6

8
2
6
6
(9
.4
)

8
3
3
5
(1
4
.6
)

7
6
8
(4
.2
)

1
2
0

2
2
0

148

6.4 Multicore IPPro

to the complexity of the actor. The implementation of a simple dataflow actor

on IPPro requires atleast approx. 12 instructions. The stream interconnect arbi-

trates data channels and routes data from source to destination in a round-robin

fashion on a cycle-to-cycle basis. Due to this reason, the bandwidth requirements

per core is less than what is usually expected in a fully pipelined FPGA architec-

tures (where a slower data transfer rate could limit the performance). Moreover,

deployment of input/output FIFOs at interconnect boundaries allow data bu↵er-

ing and isolates clock boundaries which allow interconnect and IPPro cores to

operate at di↵erent operating frequencies. Therefore, the operating frequency of

the multicore interconnect (fInterconnect) is not necessarily required equal to the

operating frequency of the IPPro core (fIPPro). Based on this fact, the maximum

fMax degradation of 1.66 and 1.29 times at the cost of flexible core connectivity

among cores is a viable choice.

Area Analysis Table 6.6 reports the area utilisation of 4x4, 8x8 and 16x16

designs. The di↵erence margin between LUTs and FFs of 5.00 and 3.19 is higher

due to FIFO bu↵ers realised using LUT resources. The normalised area utilisation

of 4x4, 8x8 and 16x16 interconnect to single-core IPPro has been reported in

Table 6.6. They consume 1.7, 3.9 and 9.4 times more FFs, and 1.9, 5.0 and 14.6

times LUTs respectively. This show that stream interconnect fulfils the identified

requirements of the multicore interconnect identified in Section 6.4, and provides

a balance between area and performance.

149

6.4 Multicore IPPro

6.4.3 Multicore IPPro architecture

Considering the performance and area analysis results of multicore interconnect,

the multicore IPPro is composed of eight IPPro cores, connected through 16x16

stream interconnect as shown in Figure 6.12. The AXI4-Lite interface allows

to manage and AXI-MM to program dataflow actors onto IPPro cores. The

interfaces (S8 - S15) and (M8 - M15) allow data in and out of the multicore

IPPro. Depending on TDEST value, the incoming data stream is dynamically

routed to the destination core realising multi-level split, merge implementations

using the same underlying hardware architecture.

The interconnect interfaces (S0 - S7) and (M0 - M7) connected to the IP-

Pro cores has 32x24 bits FIFO bu↵ers. These bu↵ers serve three purposes: 1)

It temporarily stores data tokens produced/consumed by the cores which keep

cores in processing due to data bu↵ering. 2) It gives interconnect necessary time

to arbitrate and route data streams among cores. 3) It isolates the clock domain

boundaries allowing IPPro cores and multicore interconnect to run on indepen-

dent clock frequencies. The bu↵ering of data hides the data transfer time between

cores by storing data tokens at input and output interfaces of the cores. It is pos-

sible to run IPPro cores (fIPPro) at a maximum of 300 MHz while the multicore

interconnect (fInterconnect) can run up to 220 MHz which is 1.83 and 1.90 times

higher compared to Artix-7 respectively as reported in Table 6.2.

150

6.4 Multicore IPPro

6.4.4 Example: Mapping of dataflow graph onto multi-

core architecture

The chosen dataflow graphs cover the parallel and pipeline dataflow transforma-

tions. Consider an example dataflow graph composed of actors (A, B, C, D, E, F

and G) as shown in Figure 6.8. The graph is decomposed such that A, D, E and

F are mapped onto separate cores but, actor B, C and G require di↵erent data

parallel granularity 3-way and 4-way SIMD to implement (B1, B2, B3), (C1, C2,

C3) and (G1, G2, G3, G4) which needs split and merge. Figure 6.9 shows the

mapping onto multicore IPPro, the interconnect interfaces used by each core are

shown explicitly for a clear understanding of data execution flow. The dataflow

graph is decomposed and mapped onto two multicore IPPro to demonstrate scal-

ability and parallel implementation of actors.

A receives input data stream at M0 routed from input interface S8. The

stream is processed by core#0 as defined by A and fed to B1, B2, B3 when

encountering (PUSH Rx, 1, PUSH Rx, 2 and PUSH Rx, 2) instructions. Each

core has a dedicated FIFO queue to receive tokens from other cores (Section 6.3.1

Figure 6.8: A dataflow graph example that covers pipelining of multiple data
parallel actors.

151

6.4 Multicore IPPro

and Figure 6.2) residing within multicore IPPro. B1, B2, B3 can concurrently

read tokens (processed by A) into CHANNEL#0 of their respective FIFO queues

using (GET Rx, 0). This process continues until D push the processed tokens

to M8 output interface of the multicore interconnect. This interface is statically

connected to S8 of the following multicore IPPro as indicated in Figure 6.9.

Therefore, the tokens processed by D are received by E at S8, routed to M0 by

the interconnect. The execution continue till reach the split (G1, G2, G3, G4)

where the cores concurrently process the tokens and send processed tokens out

of multicore IPPro using output interface (M8, M9, M10, M11).

Figure 6.9: Flat illustration of mapping and execution of pipelined multiple data
parallel actors exploiting parallelism using multicore IPPro. The listed IPPro
code shows the read, write and tagging of tokens for each actor. These tags are
used by the interconnect to route token among cores of the multicore IPPro.

152

6.5 FPGA-based programmable hardware acceleration platform

6.5 FPGA-based programmable hardware accel-

eration platform

The data distribution and collection requirements depend on the application in-

hand, and the adopted decomposition and mapping which are not known at

design time [32], [40]. A flexible hardware-based data distribution and collection

architecture is needed so the following design requirements are supported by the

system infrastructure to parallel skeletons:

• Split, compute and merge, and pipeline skeleton require parallel streams

which raises the need of parametrised distribution of multiple data streams.

• Farm skeleton require access to parallel data blocks which needs programmable

distribution of data blocks into the cores scratchpad memories.

6.5.1 Parallel distribution and collection of data streams

Scatter-gather has widely adopted as a parallel data distribution and collection

paradigm for regularly distributed data which makes it suitable for pixel pro-

cessing [116], [126]. It uses static decomposition and divides data into multi-

ple equal-sized blocks as illustrated in Figure 6.10 for parallel processing using

multiple cores. In open literature, various image processing data distribution

patterns driven by row, column and block-based static data decomposition are

reported [32], [40], [117], [118]. However, these hardware architectures handle

fixed image sizes and parallel distribution of streams. The software or applica-

tion developer needs granular control on both stream generation and distribution

using software APIs without dealing with low-level data and control mechanisms.

153

6.5 FPGA-based programmable hardware acceleration platform

Figure 6.10: Parallel distribution of row-wise cyclic image pixels.

Besides, each parallel data stream can be converted into a form necessary for

point and area processing.

Parallel point and window generation

Image pre-processing functions are composed of point and window/area oper-

ations. Figure 6.10 shows the row-wise scatter and gather process of an image

with the maximum parallel granularity of eight for both operations. Compared to

point operations, overlapping of multiple lines of pixels (two lines in case of a 3x3

window) is required for window operations. Therefore, dedicated software con-

figurable point and area-based data distribution architecture has been proposed

in Figure 6.11. The value of programmable P A REG register defines whether a

stream or window of pixels is feeding to the core. Bu↵ering of three incoming lines

of pixels into LINE BUFFER#1, LINE BUFFER#2 and LINE BUFFER#3 al-

lows generation of 3x3 window. The window controller iteratively reads the line

bu↵ers and generates a stream of window pixels which can be fed to the cores of

multicore IPPro through (S8 - S15) input interfaces as shown in Figure 6.12.

154

6.5 FPGA-based programmable hardware acceleration platform

Figure 6.11: Generation and distribution of the point or window pixels.

This approach gives software control on data generation and mapping of point

and area operations on IPPro cores. On the contrary, the HLS-based hardware

architectures require code rewriting, verification, synthesis, place-and-route.

Configurable scattering and gathering of data streams

Software configurable scatter and gather hardware blocks have been designed with

a FIFO interface to easily integrate with other image processing system [127]:

1. Direct video streaming An incoming video stream is stored into an on-

chip frame bu↵er. A controller sequentially reads pixels from the frame

bu↵er and stores into the data FIFO.

2. Bu↵ered video streaming An incoming video stream is stored into an

o↵-chip frame bu↵er. The host processor initiates a direct-memory-access

(DMA) to read pixels from the frame bu↵er and stores into the data FIFO.

Both hardware blocks have AXI4-Lite registers to provide controllability on

data distribution as shown in Figure 6.12 and listed in Table 6.7. The host

processor must configure these registers during platform initialisation process.

Scatter and Gather blocks have five and three programmable registers where

155

6.5 FPGA-based programmable hardware acceleration platform

F
ig
u
re

6.
12
:
B
lo
ck

d
ia
gr
am

of
p
ro
gr
am

m
ab

le
h
ar
d
w
ar
e
ac
ce
le
ra
ti
on

p
la
tf
or
m
.

T
h
e
d
ia
gr
am

on
ly

sh
ow

s
a
si
n
gl
e

m
u
lt
ic
or
e
IP

P
ro

d
u
e
to

sp
ac
e
li
m
it
at
io
n
s.

C
as
ca
d
in
g
of

m
u
lt
ip
le

m
u
lt
ic
or
e
IP

P
ro

co
re
s
is

p
os
si
b
le

p
er
m
it
te
d
to

F
P
G
A

ar
ea

re
so
u
rc
es
.

156

6.5 FPGA-based programmable hardware acceleration platform

Table 6.7: The AXI4-Lite (control) register map of platform hardware modules.

AXI4-Lite Registers Bits

Addr. 31 - 28 27 - 24 23 - 20 19 - 16 15 - 12 11 - 8 7 - 4 3 - 0

Scatter Module
0x00 CONTROL xxx PAREG RST
0x04 SRC ID REG LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0
0x08 DEST ID REG LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0
0x0C LINE REG xxx LINE WIDTH
0x10 SCA MASK xxx MASK

Gather Module
0x00 CONTROL xxx RST
0x04 LINE REG xxx LINE WIDTH
0x08 GAT MASK xxx MASK

CONTROL, LINE REG and MASK registers are common. LINE REG de-

fines the width of line bu↵ers to support di↵erent image/video resolutions up

to 2048, e.g. (640x480, 800x600). MASK defines data distribution granular-

ity to generate parallel streams to exploit data parallelism. SRC ID REG and

DEST ID REG register stores control tags (line bu↵er - FIFO queue) and (line

bu↵er - core) mappings respectively. Listing 6.4 and 6.5 presents the C-APIs

developed to configure scatter and gather blocks. These C-API hides the under-

lying implementation details of scatter and gather modules, provides transparent

software interface (driver) that shall be used by the compiler framework to deploy

di↵erent data and task parallel optimisations and hidden from the user.

Listing 6.4: C-APIs to manage scatter and gather blocks.
1 //��//
2 // Sp l i t , compute and merge sk e l e t on //
3 //��//
4 // Sca t t e r f un c t i on s
5 i n t i n i t S c a t t e r (Sca t t e r ⇤ i n s t , u i n t 32 t ScatterBase) ;
6 i n t ScatterWri te (Sca t t e r ⇤ i n s t , ScatterAddr addr , u i n t 32 t command) ;
7 // Gather f unc t i on s
8 i n t in i tGathe r (Gather⇤ i n s t , u i n t 32 t GatherBase) ;
9 i n t GatherWrite (Gather⇤ i n s t , GatherAddr addr , u i n t 32 t command) ;

10 //��//
11 // Farm ske l e t on //
12 //��//
13 // Scratchpad read /wr i t e f un c t i on s
14 i n t writeSP (Core⇤ i n s t , u i n t 32 t ⇤data , u i n t 32 t n) ;
15 i n t readSP (Core⇤ i n s t , u i n t 32 t addr , u i n t 32 t n) ;

157

6.5 FPGA-based programmable hardware acceleration platform

Listing 6.5: Software controlled granularity of data distribution and collection
functions of parallel streams.

1 // Set v ideo ho r i z on t a l r e s o l u t i o n (640)
2 ScatterWrite (&Scatter , LINE WIDTH, 640) ;
3 GatherWrite (&Gather , LINE WIDTH, 640) ;
4 // One to one (l i n e bu f f e r � core) mapping
5 ScatterWrite (&Scatter , SRC ID REG , 0x000000) ;
6 // LINE#2 to CORE#2 Queue#1
7 ScatterWrite (&Scatter , SRC ID REG , 0x000010) ;
8 // S ing le�core , s i n g l e a c t i v e l i n e bu f f e r and no SIMD
9 ScatterWrite (&Scatter , DEST ID REG , 0x00000000) ;

10 ScatterWrite (&Scatter , SCATTERMASK, 0x01) ;
11 GatherWrite (&Gather , GATHERMASK , 0x01) ;
12 // Dual�core , 2�way SIMD
13 ScatterWrite (&Scatter , DEST ID REG , 0x00000010) ;
14 ScatterWrite (&Scatter , SCATTERMASK, 0x03) ;
15 GatherWrite (&Gather , GATHERMASK , 0x03) ;
16 // 3�way SIMD
17 ScatterWrite (&Scatter , DEST ID REG , 0x00000210) ;
18 ScatterWrite (&Scatter , SCATTERMASK, 0x07) ;
19 GatherWrite (&Gather , GATHERMASK , 0x07) ;
20 // 7�way SIMD
21 ScatterWrite (&Scatter , DEST ID REG , 0x06543210) ;
22 ScatterWrite (&Scatter , SCATTERMASK, 0x7F) ;
23 GatherWrite (&Gather , GATHERMASK , 0x07F) ;
24 // 8�way SIMD
25 ScatterWrite (&Scatter , DEST ID REG , 0x76543210) ;
26 ScatterWrite (&Scatter , SCATTERMASK, 0xFF) ;
27 GatherWrite (&Gather , GATHERMASK , 0xFF) ;

During execution, scatter block sequentially reads data stream from the input

data FIFO, divides it into equal blocks (defined by LINE WIDTH), and con-

secutively stores into the line bu↵ers (LINE BUFFER#0 - LINE BUFFER#7)

depending on the SCA MASK value. Each bit of SCA MASK corresponds

to the individual line bu↵er. The asserted bits specify that line bu↵er shall fill

during scatter. Once the data is available into the line bu↵ers, it is ready for

consumption for point or window operation based on the value of PAREG as

discussed in section 6.5.1. The cores concurrently process data while scatter re-

fills line bu↵ers as soon as there is a space into the line bu↵ers. The gather

block reads a stream of processed pixels from output line bu↵ers defined by the

LINE WIDTH. GAT MASK specifies how many output line bu↵ers shall be

read consecutively to reconstruct the output video stream. The C-APIs that pro-

158

6.5 FPGA-based programmable hardware acceleration platform

Table 6.8: Area utilisation results of the system infrastructure.

Module FFs LUT BRAM

Multicore Interconnect 9085 9965 0
AXI-Lite scatter control 576 1163 0
Scatter point only 594 980 8
Scatter point and window 2665 2300 20
AXI-Lite gather control 169 208 0
Gather 559 717 8
AXI-Interconnect 221 221 0
Reset processing system 1 48 30 0
Reset processing system 2 48 31 0

grammer shall use in the host application to adjust the underlying architecture

depending on the requirements of the application. The user does not have to deal

with underlying hardware mechanisms.

6.5.2 Implementation results

Table 6.8 presents the area results of system infrastructure implemented on Avnet

Zedboard using Xilinx Vivado v2016.4. The multicore interconnect uses 10.27 and

13.19 times more FFs and LUTs than a single IPPro core and 1.28 and 1.64 times

more FFs and LUTs than 8 IPPro cores. The cost of flexible multicore intercon-

nect is close to the programmable pipelined implementation of eight dataflow

actors. The AXI-Lite control modules consume 1.53 and 1.54 times fewer FFs

and LUTs respectively than a single IPPro core. Thus, the cost of incorporating

software-driven control and management is marginal.

The cost of scattering parallel windows (area) resulted in 4.48 and 2.34 times

more FFs and LUTs compared to scattering parallel point lines. The impact of

triple bu↵ered line bu↵ers to generate pixel windows is evident in the reported

BRAM utilisation. A consistent area usage has been observed by point scatter

and gather, as the process of scattering line bu↵ers is similar to the gathering

of processed pixels. The AXI-interconnect and reset processing system blocks

159

6.6 Parallel implementation of image pre-processing functions

Table 6.9: Estimation of number of multicore IPPro on Xilinx Zynq MPSoCs.

Area Resources FF LUT BRAM DSP48E1 # of multicore
IPPro’s (cores)

Multicore IPPro 12279 (1) 10941 (1) 18.5 (1) 8 (1) 1 (8)
XC7Z045 343800 (28) 171900 (16) 545 (30) 900 (112) 16 (128)
XC7Z100 554800 (45) 277400 (25) 755 (41) 2020 (252) 25 (200)

are mandatory system components. They allow to receive data from the host

processor and route it to the addressed slave devices. System infrastructure has

two clock domains (AXI4 bus and IPPro clock) which require two reset processing

systems to ensure synchronous reset of the slaves. These are the costs of making

FPGA-based hardware acceleration platform adaptable which abstracts the FPGA

resources and improves design time by avoiding synthesis, place-and-route.

So far, it is considered that the proposed platform is composed of single mul-

ticore IPPro. But, Zynq Kintex-7 chips could accommodate more instances of

multicore IPPro. Table 6.9 reports the available area resources of Zynq XC7Z045

and XC7Z100 chips, and the numbers normalised to single multicore IPPro are

reported in the brackets. These normalised numbers give an estimate that Zynq

chips could potentially accommodate up to ⇡ 16 to 25 instances of multicore

IPPro.

6.6 Parallel implementation of image pre-processing

functions

Table 6.10 lists the mathematical representation of chosen functions that are

fundamental kernels of larger algorithms and often represent the core compu-

tation of more extensive practical image processing applications [104], [105],

160

6.6 Parallel implementation of image pre-processing functions

T
ab

le
6.
10
:
F
or
m
al

m
at
h
em

at
ic
al

re
p
re
se
nt
at
io
n
of

ch
os
en

im
ag
e
p
re
-p
ro
ce
ss
in
g
fu
n
ct
io
n
s.

C
a
t.

F
u
n
c
ti
o
n
s

M
a
th

e
m

a
ti
c
a
l
re

p
re

se
n
ta

ti
o
n

A
c
to

r-
c
o
re

m
a
p
p
in

g

P
o
in
t

•
C
o
n
tr
a
st

•
T
h
re
sh

o
ld
in
g

•
G
ra
d
ie
n
t

ca
lc
.

•
H
is
to
gr
am

•
P
(
o
u
tp

u
t)

=
P
in

p
u
t
+

C
o
n
t
r
a
s
t
v
a
l

•
P
(
o
u
tp

u
t)

=
P
in

p
u
t
>

T
h
r
e
s
h
o
ld

v
a
l?
2
5
5
:
0

•
P
(
g
r
a
d
ie

n
t)

=
|P

x
|+

|P
y
|

•
I
m
a
g
e
(
h
is

to
g
r
a
m

)
=

P
n i=

0
B
i
n
(P

i)

A
re
a

•
G
a
u
ss
ia
n

•
S
o
b
el

•
M
or
p
h
ol
og

y

•
P
(
o
u
tp

u
t)

=
P

9 i=
1
(P

i
⇤
K

i)

•
G

x
=

2 4
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

3 5
⇤

2 4
1

0
�
1

2
0

�
2

1
0

�
1

3 5

•
P
(
e
r
o
s
io

n
)
=

m
in

9 i=
1
(P

i
⇤
K

i)

•
P
(
d
il
a
ti
o
n
)
=

m
a
x
9 i=

1
(P

i
⇤
K

i)

T
a
sk

•
S
o
b
el

ed
g
e

•
W

av
el
et

•
P
(
g
r
a
d
ie

n
t)

=
|S
o
b
e
lG

x
|+

|S
o
b
e
lG

y
|

•
P
(
lo

w
�
p
a
s
s
)
=

P
9 i=

1
(P

i
⇤
K

i)

H
et
er
o.

•
A
d
ap

ti
ve

T
h
re
sh

o
ld

•
S
u
m
-o
f-

a
b
so
lu
te

d
i↵
er
en

ce

•
P
(
S
A
D

)
=
=

P
9 i=

1
|P

i
�

R
i|

161

6.6 Parallel implementation of image pre-processing functions

[106], [107], [108], [128]. The adopted actor-core mapping of each onto multi-

core IPPro are detailed below:

Data parallel - balanced actor Point and area functions are individually

mapped on the cores to realise 2 ! 8-way data parallel implementations as shown

in Table 6.10. This actor-core mapping impersonates split, compute and merge

parallel skeleton as scatter-gather modules distribute and collect lines of pixels.

Task parallel - unbalanced actors They pipeline the point and area func-

tions, where each core maps and executes separate actor as shown in Table 6.10.

Sobel edge uses CORE#0-2 to perform area and CORE#3 to perform point op-

erations. Wavelet transform uses six cores CORE#0-5 for pipelined implemen-

tation of area-based Gaussian low and high pass filters. Each core has window

generation module as previously presented in Section 6.5.1.

Data parallel - heterogeneous computing The chosen heterogeneous func-

tions demonstrate stream and non-stream computing possibilities necessary to

realise the farm parallel skeleton on the proposed platform. Adaptive thresh-

old requires image histogram to compute the new threshold value that involves

floating-point calculation which is viable to be implemented on the host processor.

The memory-mapped in and out execution paths of IPPro (Figure 6.3) have used

to pass image histogram and receive new threshold value from the host proces-

sor as shown in Table 6.10. Similarly, for SAD implementation, during platform

configuration, the host processor writes the 3x3 kernel value into the scratchpad

memory of each IPPro. This kind of decomposition and execution impersonates

realisation of farm parallel skeleton.

162

6.6 Parallel implementation of image pre-processing functions

Figure 6.13: Video processing system architecture using FPGA-based pro-
grammable hardware acceleration platform.

The discussed functions have implemented on Avnet Zedboard that has Xilinx

Zynq SoC (XC7Z020-CLG484-1). Figure 6.13 shows the simplified block diagram

of the realised video processing system which is similar to previously presented in

Chapter 4, except the middle processing block has replaced with programmable

hardware acceleration platform as shown in Figure 6.13. A FPS Monitor module

has been implemented in FPGA logic to measures a time between start and

end of frame to calculate the achieved VGA (640x480) frame processing time in

frames/second (fps).

6.6.1 Performance analysis

Point functions Table 6.11 reports the acceleration results of point functions

using multicore IPPro on Avnet Zedboard. The single-core results a�rm a direct

relationship between the average cycles/pixel and actor’s execution time, which

signifies that smaller (decomposed) dataflow delivers better performance. Both

163

6.6 Parallel implementation of image pre-processing functions

gradient and threshold are data dependent functions and require branch instruc-

tions compared to data independent histogram and contrast functions. This is

evident in the reported results as histogram and contrast have achieved 1.18 and

1.90 times better performance over threshold and gradient due to lack of branch

executions leading to fixed execution time/pixel.

The point functions have been implemented with increasing data parallel gran-

ularity from 2 ! 8-way SIMD using 2 - 8 cores are reported in Table 6.11 to

analyse the performance improvements. It has achieved a maximum of 7.8 times

improvement over single-core implementation because of direct streaming video

pipeline which avoided host-to-accelerator data transfer times and achieved a

maximum of 75 and 149 fps for gradient and contrast.

Area functions Table 6.11 reports the acceleration results of area functions on

Avnet Zedboard. In contrast to the point, all three functions are data indepen-

dent, Morphology uses min and max instructions to compute dilate and erode im-

age operations. As min and max do not support dataforwarding, they have taken

more execution time than Gaussian and Sobel. Implementation of both Gaussian

and Sobel filter has taken advantage of single-cycle multiply-accumulate, more-

over, the zero kernel values has further optimised Sobel allowed to save four clock

cycles per pixel more than Gaussian. Therefore, Sobel has achieved 1.12 and 1.20

times better performance over Morphology and Gaussian filters.

Each function has implemented with increasing data parallel granularity from

2 ! 6-way using 2 - 6 cores and the results are reported in Table 6.11. It achieved

a maximum performance of 5.27 times which is 2.53 times less than point due

to parallel scattering of windows. The direct streaming video pipeline delivered

164

6.6 Parallel implementation of image pre-processing functions

T
ab

le
6.
11
:
D
at
a
p
ar
al
le
l
p
er
fo
rm

an
ce

re
su
lt
s
of

p
oi
nt

an
d
ar
ea

fu
n
ct
io
n
s
u
si
n
g
IP

P
ro

on
A
rt
ix
-7

(Z
ed
b
oa
rd
).

F
u
n
c
ti
o
n
s

P
o
in
t

P
o
in
t

C
o
n
tr
a
st

T
h
re

sh
o
ld

G
ra

d
ie
n
t

H
is
to

g
ra

m
G
a
u
ss
ia
n

S
o
b
e
l

M
o
rp

h
o
lo
g
y

A
v
g
.
C
y
c
le
s/

P
ix
e
l

3
7

4
9

5
6

3
3

3
9

3
5

4
4

E
x
e
c
u
ti
o
n

ti
m

e
(m

s)
5
3

6
1

1
0
0

5
2

6
1

5
7

6
6

P
e
rf
o
rm

a
n
c
e

F
ra

m
e
s
p
e
r
se

c
o
n
d

(f
p
s)

S
in

g
le
-c
o
re

1
9

1
6

1
0

1
9

1
6

1
8

1
5

2
-w

a
y

3
6

3
0

1
8

3
6

2
8

2
9

2
4

3
-w

a
y

5
4

4
5

2
7

5
5

4
1

4
4

3
8

4
-w

a
y

7
3

6
1

3
7

7
3

5
8

6
0

5
4

5
-w

a
y

9
2

7
6

4
6

9
1

7
4

7
8

6
8

6
-w

a
y

1
1
1

9
2

5
6

1
0
9

9
1

9
5

8
4

7
-w

a
y

1
2
9

1
0
8

6
5

1
2
7

-
-

-
8
-w

a
y

1
4
9

1
2
3

7
5

1
4
5

-
-

-

T
ab

le
6.
12
:
C
om

p
ar
is
on

of
d
at
a
p
ar
al
le
l
im

p
le
m
en
ta
ti
on

of
p
oi
nt

fu
n
ct
io
n
s
u
si
n
g
IP

P
ro

ag
ai
n
st

A
R
M

(-
O
2,
-O

3)
.

P
o
in
t
F
u
n
c
ti
o
n
s

C
o
n
tr
a
st

T
h
re

sh
o
ld

G
ra

d
ie
n
t

H
is
to

g
ra

m

A
rc

h
it
e
c
tu

re
IP

P
ro

A
R
M

IP
P
ro

A
R
M

IP
P
ro

A
R
M

IP
P
ro

A
R
M

O
p
ti
m

is
a
ti
o
n

-O
2

-O
3

-O
2

-O
3

-O
2

-O
3

-O
2

-O
3

E
x
e
c
.
ti
m

e
(m

s)
3
3
.2
0

4
5
.9
0

4
5
.7
1

3
8
.3
0

4
5
.6
9

4
5
.6
7

6
2
.2
0

4
9
.4
1

4
8
.4
7

3
3
.2
0

5
3
.9
6

4
9
.4
4

P
e
rf
o
rm

a
n
c
e

F
ra

m
e
s
p
e
r
se

c
o
n
d

(f
p
s)

S
in

g
le
-c
o
re

3
0

2
1
.7
8

2
1
.8
7

2
6

2
1
.8
8

2
1
.8
9

1
6

2
0
.2
3

2
0
.6
2

3
0

1
8
.5
2

2
0
.2
2

2
-w

a
y

5
7

-
-

4
8

-
-

2
9

-
-

5
7

-
-

3
-w

a
y

8
5

-
-

7
3

-
-

4
3

-
-

8
7

-
-

4
-w

a
y

1
1
6

-
-

9
9

-
-

5
9

-
-

1
1
7

-
-

5
-w

a
y

1
4
5

-
-

1
2
3

-
-

7
4

-
-

1
4
5

-
-

6
-w

a
y

1
7
5

-
-

1
4
9

-
-

9
0

-
-

1
7
4

-
-

7
-w

a
y

2
0
4

-
-

1
7
5

-
-

1
0
4

-
-

2
0
3

-
-

8
-w

a
y

2
3
5

-
-

2
0
0

-
-

1
2
0

-
-

2
3
2

-
-

T
ab

le
6.
13
:
C
om

p
ar
is
on

of
d
at
a
p
ar
al
le
l
im

p
le
m
en
ta
ti
on

of
ar
ea

fu
n
ct
io
n
s
u
si
n
g
IP

P
ro

ag
ai
n
st

A
R
M

(-
O
2,
-O

3)
.

A
re

a
F
u
n
c
ti
o
n
s

G
a
u
ss
ia
n

S
o
b
e
l

M
o
rp

h
o
lo
g
y

A
rc

h
it
e
c
tu

re
IP

P
ro

A
R
M

IP
P
ro

A
R
M

IP
P
ro

A
R
M

O
p
ti
m

is
a
ti
o
n

-O
2

-O
3

-O
2

-O
3

-O
2

-O
3

E
x
e
c
.
ti
m

e
(m

s)
6
1
.0
0

7
1
.6
1

7
0
.6
9

5
7
.0
0

6
6
.1
6

6
5
.0
3

6
6
.0
0

6
6
.5
6

6
4
.7
4

P
e
rf
o
rm

a
n
c
e

F
ra

m
e
s
p
e
r
se

c
o
n
d

(f
p
s)

S
in

g
le
-c
o
re

1
6

1
3
.9
6

1
4
.1
4

1
8

1
5
.1
1

1
5
.3
7

1
5

1
5
.0
2

1
5
.4
4

2
-w

a
y

2
8

-
-

2
9

-
-

2
4

-
-

3
-w

a
y

4
1

-
-

4
4

-
-

3
8

-
-

4
-w

a
y

5
8

-
-

6
0

-
-

5
4

-
-

5
-w

a
y

7
4

-
-

7
8

-
-

6
8

-
-

6
-w

a
y

9
1

-
-

9
5

-
-

8
4

-
-

7
-w

a
y

-
-

-
-

-
-

-
-

-
8
-w

a
y

-
-

-
-

-
-

-
-

-

165

6.6 Parallel implementation of image pre-processing functions

approx. 84 and 95 fps for Morphology and Sobel respectively using six cores.

By porting the platform to Kintex-7 fabric as reported in Table 6.12 and

Table 6.13, further improvements up to ⇡ 1.60 times is possible for both point

and area functions due to higher operating frequency of IPPro cores and the

multicore interconnect at 300 MHz and 220 MHz respectively (Table 6.3 and

Table 6.6).

Performance comparison of IPPro against embedded ARM Cortex-A9

CPU implementation To set the baseline figures and compare the IPPro per-

formance, both point and area image processing functions has been implemented

on embedded ARM Cortex-A9 CPU operating at 667 MHz. Two compiler opti-

misations -O2 (high) and -O3 (maximum) have been used which are supported

by the ARM GCC compiler available in Xilinx Vivado Software Development Kit

(SDK).

The detailed results are reported in Table 6.12 and Table 6.13 respectively.

For point and area functions, the average performance of 20 and 14 fps have been

achieved irrespective of the fact that ARM CPU operates at 2.23 times faster

than IPPro core. The performance is limited due to the fact that ARM uses

AXI4-DMA to read and write pixels which takes maximum 40 ms data transfer

time for a 640x480 video frame configured as maximum burst size of 256x32 bits

per DMA transfer. By exploiting ARM compiler optimisations from -O2 to -O3,

the maximum performance improvement (excluding the data transfer times) of

1.47 times has been observed. However, this performance improvement become

insignificant, as fixed data transfer overhead is ⇡ 5.4 times larger than the func-

tion’s processing time which limits the best achievable theoretical performance

166

6.6 Parallel implementation of image pre-processing functions

Table 6.14: Implementation results of HLS generated IPs on Kintex-7 fabric.
(Normalised area and performance results of multicore IPPro to HLS).

IP Operations
Freq. Area Utilisation Exec.

fps
(MHz) FF LUT BRAM DSP48E1 (ms)

Point Add, Subtract
And, Or, Xor 250 1526 1266 0 2 2.36 423
Mul, Min, Max (8.04) (8.64) (18.5) (4) (0.55)

Area Convolution 222 5444 3350 2.5 18 2.76 361
Morphology (2.08) (2.94) (13) (0.33) (0.43)

up to 25 fps.

By comparing the obtained ARM CPU results against IPPro, the single-core

IPPro implementation achieved maximum of 1.48 times better performance over

ARM which is operating at 2.23 times lower operating frequency. Because, IPPro

exploits stream processing and avoids reading and writing data transfer over-

heads. In addition, the data parallel IPPro implementations achieved further

performance improvements of 11.47 and 6.43 times using 8 and 6 cores for point

and area functions respectively.

Cost analysis of proposed adaptable approach against HLS The point

and area IPs have been developed by Deng (a research student) using Xilinx

Vivado HLS v2016.4. Both IPs have AXI4-Lite interface to select operations as

listed in Table 6.14 and fully pipelined. The area is 1.12 times slower than point

due to necessary line bu↵ering that reduced performance from 423 and 361 fps.

The area used 3.56 and 2.64 more FFs and LUTs compared to the point.

Table 6.14 also presents the normalised performance and area numbers. The

IPPro implementation is 1.8 and 2.36 times slower than HLS developed IPs, at

the cost of 8.04 and 8.64 times more FFs and LUTs respectively. This increase

come at the cost of flexible and programmable architecture that not only allows

software programmer to map and execute multiple dataflow actors. But also,

167

6.6 Parallel implementation of image pre-processing functions

provide software controlled granularity to exploit desired data and task parallel

implementations using skeletons. This area cost is narrow down to ⇡ 2.08 and

2.94 times for area IP and the memory utilisation gap is reduced approx. by 1.43

times. This performance gap can be reduced using multiple multicore IPPro as

estimated and reported in Table 6.9.

Pipelining multiple tasks Table 6.15 reports the performance results of pipelin-

ing multiple dataflow actors exploiting task parallelism. The Wavelet transform

consists of pipelined execution of balanced area actors, i.e. (high and low-pass

filter) as illustrated in Table 6.10 while, Sobel edge represents pipelined execution

of unbalanced gradient actor.

During execution of Wavelet Transform, the first-stage cores pass processed

pixels to the second-stage cores. As the actors are balanced, no ripple-e↵ect

has been observed as balanced execution hides the data transfer times to second

stage cores. Therefore, the average cycles/pixel is close to the Gaussian. Though

the computation requirement of the Wavelet transform is six times more than

the Gaussian, similar performance has achieved exploiting task parallelism which

can further be improved by exploiting data parallelism.

In case of Sobel Edge, the gradient takes average of 56 cycles/pixel due to data

dependent operations which is 1.43 and 1.60 times higher than Gaussian and the

Table 6.15: Performance results of task parallel implementations of multiple
dataflow actors on multicore IPPro.

Pipelined
Tasks

Artix-7 (Zedboard) Kintex-7 (ZC706)
Wavelet Sobel Edge Wavelet Sobel Edge

No. of cores 6 4 6 4
Avg. Cycles/Pixel 38 64 38 64
Execution Time (ms) 62 133 38 82

Performance (fps) 16 8 25 12

168

6.6 Parallel implementation of image pre-processing functions

Table 6.16: Performance results of heterogeneous decomposed compute functions
using multicore IPPro.

Heterogeneous
Operations

Artix-7 (Zedboard) Kintex-7 (ZC706)
Adaptive SAD Adaptive SAD
threshold threshold

Avg. Cycles/Pixel 49 260 49 260
Execution time 61 515 38 319

Performance Frame per second (fps)

Single-core 16 2 26 3
2-way 30 3 48 4
3-way 45 5 73 6
4-way 61 7 99 8
5-way 76 9 123 10
6-way 92 11 149 12
7-way 108 - 175 -
8-way 123 - 200 -

Sobel as reported in Table 6.11. Therefore, during execution the gradient stage

forces a backward ripple e↵ect which propagates to Sobel and Gaussian limiting

overall performance to 8 fps. The pipelined implementation of unbalanced actors

delivered 2.03 times improvement over non-pipelined implementation which sug-

gests that decomposition of dataflow graph into balanced actors is vital to gain

maximum advantage of task parallelism.

Heterogeneous computing tasks Table 6.16 presents the results of hetero-

geneously decomposed Adaptive Threshold and Sum of absolute di↵erence (SAD)

functions illustrated in Table 6.10. The SAD takes 8.44 times more time than

adaptive threshold due to a nested execution of data dependent branch instruc-

tions necessary to compute absolute values of Gx and Gy produced by Sobel filter.

The data parallel implementation of SAD has achieved maximum improvement

of 5.50 times using six cores of multicore IPPro.

In Adaptive threshold, the host processor takes 10µs and 25µs to read the image

histogram bins from the scratchpad memory and compute the new threshold value

respectively. Since the execution of the host processor and the multicore IPPro

169

6.7 Summary

are concurrent, a maximum performance improvement of 7.6 times has achieved

using eight cores which can be improvement by 1.60 times using Kintex-7.

6.7 Summary

This chapter presented an FPGA-based programmable hardware acceleration plat-

form that supports a software-controlled implementation of parallel skeletons.

The platform provides three layers of software programming abstractions to the

software and algorithm developers. Each layer complements the adaptable fea-

tures supported by the following layer. These layers allow to explore, optimise,

map and implement parallel dataflow applications onto the FPGA using IPPro

core, multicore IPPro and system infrastructure. The platform enables deploying

software-centric edit-compile-run flow that improves design time.

The IPPro core sits at the bottom layer implementing a programmable dataflow

actor, the multicore IPPro lies in the middle implementing programmable mul-

tiple dataflow actors. Middle layer supports producer-consumer data exchange

patterns to explore and exploit parallelism. The top layer provides software

controlled data distribution and collection mechanisms necessary to support the

functional requirements of bottom layers.

The implementation results show that platform’s adaptability and flexibility

come at the cost of area where, significant amount is consumed by the interconnect

followed by software-controlled distribution of window of pixels. The interconnect

used 10.27 and 13.19 times more FFs and LUTs than a single IPPro core, and

1.28 and 1.64 times more FFs and LUTs than eight IPPro cores. Similarly, the

scattering of pixels consumed ⇡ 3 times FFs and LUTs than a single IPPro core.

170

6.7 Summary

The platform operates in two separate clock domains and the maximum fIPPro

and fInterconnect are 300 MHz and 220 MHz respectively.

A set of point and area image pre-processing functions are implemented on the

platform using Avnet Zedboard (Artix-7), to evaluate and analyse the flexibility

and performance. The decomposition and mapping possibilities cover acceleration

of balanced and unbalanced actors exploiting both data and task parallelism. The

implementation results show that data independent functions deliver better per-

formance over data dependent functions because of the non-linearity introduced

by branches. The point functions maps better on the platform and provides ⇡

2.53 times better acceleration than area functions, due to the absence of line

bu↵ering mandatory to obtain window of pixels. It can further improve by real-

ising data parallel implementation which can deliver a maximum of 7.80 and 5.27

times for point and area functions. Comparison of results with embedded ARM

Cortex-A9 CPU shows that single-core IPPro has achieved maximum of 10 times

better performance while operating at 2.23 times less frequency by avoiding data

transfer overheads. In addition, by exploiting data parallelism maximum perfor-

mance improvements of 11.47 and 6.44 times using 8 and 6 cores for point and

area functions respectively over ARM CPU.

The results of pipelined execution show that balanced actors implementation

had achieved maximum performance, as they hide the data transfer and process-

ing time of the following stages. In case of unbalanced actors, the maximum

achievable performance is limited by the slowest actor due to the ripple e↵ect.

These results suggest that it is essential to decompose the dataflow graph into

balanced actors to achieve maximum benefit of task parallelism and avoid the

ripple e↵ect.

171

Chapter 7

Conclusion and Future Work

7.1 Summary

FPGAs have not accepted as mainstream computing platform due to longer de-

sign times and need of specialist programming tools which can be challenging for

use by algorithm and software developers. As existing FPGA-based design ap-

proaches struggle to approach the discussed challenges while providing a balance

between adaptability and performance, this thesis has proposed an FPGA-based

programmable hardware acceleration platform architecture implementing di↵er-

ent image pre-processing applications. It is maintained that the approach o↵ers

a balance between performance and e�cient resource utilisation by reducing de-

sign time. The platform can be programmed using conventional software devel-

opment approaches. It enables software and algorithm developers to accelerate

applications on an FPGA using edit-compile-run flow rather than time-consuming

synthesis, place-and-route design flow, thus reducing design time.

The major architectural challenge has been to find a balance between the

supported hardware and software abstraction while maintaining the concurrency

and pipelining benefits of the FPGA technology. A hierarchical hardware and

172

7.2 Thesis Contributions

software abstraction layers have been used to achieve flexibility where each layer

provides unique features that allow hardware platform to implement di↵erent

high-level application descriptions down to low-level FPGA resources. This al-

lows fine-and coarse-grained mapping and exploitation of data and task parallel

realisations on the platform.

7.2 Thesis Contributions

This work has presented an approach to make FPGA-based hardware acceleration

easier for software and algorithm developers using software-centric edit-compile-

run flow with reduced design time.

1. Design and development of novel FPGA-based Image Processing Processor

(IPPro) soft-core architecture tailored for acceleration of image process-

ing applications. The architecture has been carefully designed to allow

the functional computing requirements to be supported and FPGA com-

pute and memory resources to be e�ciently utilised. It comprises a 16-bit

signed, 5-stage pipelined RISC processor that supports basic arithmetic,

logical and branch instructions with dataforwarding that implements data

dependent point and area image processing operations. It is then used

as a basic programmable processing element of the proposed FPGA-based

hardware acceleration platform. The IPPro operates maximum at 300 MHz

and delivers up to three times better raw-computation considering the op-

erating frequency over other soft-core processor architectures by exploiting

dedicated DSP block and minimises use of FPGA resources. Results show

that the IPPro has achieved up to 5.8 times better performance by util-

173

7.2 Thesis Contributions

ising approximately same amount of FPGA resources compared to other

FPGA-based programmable architecture. In addition, comparison of cho-

sen micro-benchmarks shows that IPPro has achieved up to 8.94 times bet-

ter performance over well established MicroBlaze soft-core processor and

consumes fewer resources.

2. The processing capabilities of the IPPro datapath has been extended be-

yond supported purely by the dedicated DSP48E1 block. Specialised min,

max and coprocessor instructions are included in the datapath where copro-

cessor extension allows complex arithmetic operations to be o↵-loaded to

the coprocessor. The coprocessor executes in parallel and does not stall the

execution of IPPro datapath to maximise performance. This optimisation

has increased the length of the critical path which reduced the maximum

operating frequency of the datapath by 11% and consumed 89 LUTs, 34

FFs.

3. Creation of the IPPro as an independent, self-managed, programmable

dataflow accelerator that receives tokens from multiple producers and sends

the processed token to multiple consumers by executing stream instructions.

The architecture supports fine-and coarse-grained mapping and execution

of dataflow nodes using producer-consumer computing model. The actor

firing rule is software programmable as the IPPro code consists of both ac-

tor’s functional description and control (firing rule). It avoids the need for

an external controller, token re-ordering and synchronisation mechanisms

and which are necessary for high-level synthesis (HLS) and HDL-based de-

sign approaches. In addition, stream instructions based on data and control

174

7.2 Thesis Contributions

mechanisms avoid data-transfer overheads and simplify multicore synchro-

nisation problems by avoiding the intervention of both the host processor

and communication controller.

4. The IPPro datapath supports both message-passing and shared memory

data models which allows for processing of both uniform and non-uniform

distributed data or combinations thereof. These data processing paths al-

low the IPPro to implement split, compute, merge, pipeline and farm par-

allel computing skeletons on the FPGA. It facilitates better programming

abstraction which can be used to explore, profile, optimise and evaluate

di↵erent mapping possibilities and deploy them on the underlying architec-

ture using software-centric edit-compile-run flow to find a suitable solution

to the problem.

5. Creation of a multicore IPPro architecture that allows mapping and exe-

cution of multiple dataflow actors using dynamic routing of data streams

among IPPro cores. The architecture facilitates both data and control

mechanisms supported by the underlying IPPro cores. It uses the stream

routing information issued by the producer core to forward data tokens to

the consumer cores. The supported data passing patterns are one-to-many,

many-to-one, many-to-many which are essential to map tree reduction and

expansion structures e↵ectively. This flexible connectivity among cores en-

ables the adaptable realisation of a pipelined dataflow graph exploiting task

parallelism, vertical scaling of a dataflow actor to exploit data parallelism

or combinations thereof in order to maximise resource re-use. It enables

a wide range of application profiling, exploration and optimisation options

175

7.2 Thesis Contributions

for the user. It comes at the cost of 10.27 and 13.19 times more FFs and

LUTs than a single IPPro core. The multicore IPPro has two separate clock

domains, where maximum frequencies of the IPPro and interconnection are

300 MHz and 220 MHz respectively.

6. Implementation of k -means algorithm using multiple IPPro cores on Avnet

Zedboard has been achieved which allows exploration of actor-core mapping

possibilities and their evaluation on area, performance, power and resource

e�ciency. Four IPPro-based hardware accelerator designs composed of sin-

gle, dual, 8-way-SIMD and dual 8-way-SIMD cores have been realised. The

results have been compared against equivalent HLS and GPU implementa-

tions. The results shows that up to 7.3 times performance improvements

over single-core is possible by exploiting both data and task parallelism at

the cost of increased area. Comparing against other technologies, FPGA

achieved 27 times better performance over the embedded CPU by exploit-

ing parallelism and consumes 4.9 times less power than the embedded GPU.

Moreover, the power e�ciency (fps/W) numbers shows that FPGA imple-

mentation is 57 and 24 times more power e�cient than embedded CPU and

GPU respectively.

7. Point and area image pre-processing functions are implemented on Avnet

Zedboard to evaluate performance and analyse flexibility of the platform.

The selected decomposition and mapping possibilities cover acceleration of

both balanced and unbalanced, data independent and dependent dataflow

actors exploiting data and task parallel implementations. They exhibit im-

plementation of a split, compute, merge, pipeline and farm parallel skeletons

176

7.3 Suggestions for further work

on FPGA technology. The results show that data independent functions

deliver better performance over data dependent functions because of the

non-linearity introduced by branches. Comparison of results with embedded

ARM Cortex-A9 CPU shows that single-core IPPro has achieved maximum

of 10 times better performance while operating at 2.23 times less frequency

by avoiding data transfer overheads. In addition, by exploiting data paral-

lelism maximum performance improvements of 11.47 and 6.44 times using

8 and 6 cores for point and area functions respectively over ARM CPU.

7.3 Suggestions for further work

The presented work was intended to propose a novel FPGA-based programmable

hardware acceleration platform soft processor that is adaptable, and facilitates

fast-prototyping and exploration possibilities for software and algorithm develop-

ers using software-centric edit-compile-run flow. Some suggested future directions

to extend this work:

1. Extension IPPro datapath to support execution of dynamic dataflow

graphs where an actor can produce and consume the di↵erent number of

tokens in each firing. One possible solution is to extend the data payload

(ACTION TRIGGER, SRC ID, DEST ID, DATA) and include additional

instruction similar to TEST to decode control information generated by

preceding actor nodes.

2. Syntactic extension of high-level programming language to e↵ec-

tively exploit the underlying supported parallel skeletons. It can be an ex-

tension of well-established high-level languages such as OpenCL and OpenMP.

177

7.3 Suggestions for further work

3. Software-based profiling framework that uses static analysis techniques

to profile the execution and interaction among actors of the dataflow appli-

cation. This profiling information can be used to optimise di↵erent process-

ing stages. It shall also provide data dependent analysis capability to profile

and analyse the impact of control and data dependent dataflow nodes on

the performance. This can be achieved by determining their computational

load, data transfers and storage load. The computational load can be de-

termined by recording the execution of control statements. Data-transfer

and storage load can be determined by the rate of token production/con-

sumption and inter-stage bu↵er utilisation.

4. Extending the IPPro platform to modern FPGA architecture such

as Xilinx Znyq UltraScale+ MPSoC. The programmable hardware acceler-

ation platform uses IPPro softcore processor to implement di↵erent ap-

plications that exploits hardened DSP block. In terms of performance, the

modern DSP48E2 block in the Zynq UltraScale+ delivers ⇡ 16% better tim-

ing (fMax) compared to DSP48E1 block and provides ⇡ 20% more blocks.

This would allow the IPPro cores not only to operate at higher operating

frequency (improving raw-computation capacity) but also the possibility to

accommodate more IPPro cores within the FPGA fabric. A high density

UltraRAM has been introduced in the Zynq UltraScale+ memory hierarchy

to extend the on-chip memory capabilities. It enables up to 500Mb of total

on-chip storage which is equivalent to a 6 times increase in on-chip mem-

ory resource compared to Zynq-7000. It is a dual-port synchronous memory

block similar to the dual-port true Block RAM with higher memory density.

178

7.3 Suggestions for further work

The scratchpad memory in the IPPro architecture can be realised using Ul-

traRAM that would allow to store/bu↵er large images and implement global

image processing functions within the FPGA fabric. In terms of power, the

Zynq UltraScale+ provides 3.5 times better performance/Watt compared

to Zynq-7000 MPSoC. It supports clock gating, frequency scaling and abil-

ity to assign di↵erent computational units into multiple power domains,

i.e. (Full power, Low power, Battery power). These features gives better

power optimisation opportunities to the designer to realise power optimised

domain specific applications.

179

Appendix A

Author’s Publications

1. F. Siddiqui, M. Russell, B. Bardak, R. Woods & K. Ra↵erty, ”IPPro: FPGA

based Image Processing Processor”, in Proceedings of IEEE International

Workshop on Signal Processing Systems (SiPS), Belfast, United Kingdom,

21-22 Oct,2014. (Published)

2. C. Kelly, F. Siddiqui, B. Bardak & R. Woods, ”Histogram of Oriented

Gradients front end processing: an FPGA Based Processor Approach”, in

Proceedings of IEEE International Workshop on Signal Processing Systems

(SiPS), Belfast, United Kingdom, 21-22 Oct, 2014. (Published)

3. B. Bardak, F. Siddiqui, C. Kelly & R. Woods, ”Dataflow toolset for soft-core

processors on FPGA for image processing applications”, in Proceedings of

28th IEEE Asilomar conference on Signal, Systems and Computers, Asilo-

mar, USA, 2-5 Nov, 2014. (Published)

4. C. Kelly, F. Siddiqui, B. Bardak, Yun Wu & R. Woods, ”FPGA Soft-core

Processors, Compiler and Hardware Optimisations validated using HOG”,

in Proceedings of 12th International Symposium on Applied Reconfigurable

Computing (ARC), Rio de Janeiro, Brazil, 22-24 Mar, 2016. (Published)

180

5. M. Amiri, F. Siddiqui, C. Kelly, R. Ra↵erty, R. Woods & B. Bardak,

”FPGA-based soft-core processors for image processing applications”, in

Journal of VLSI Signal Processing (JVSP), 2016, vol 87, no. 1, pp. 139-156.

(Published)

6. T. Deng, F. Siddiqui, D. Crookes & R. Woods, ”Accelerating Image Algo-

rithm Development using Soft Co-Processors on FPGAs”, in Proceedings of

29th IEEE Irish Signals and Systems Conference (ISSC), Belfast, United

Kingdom, 21-22 Jun, 2018. (Published)

181

Appendix B

IPPro: Technical details

Implementation of DSP48E1-based ALU

The IPPro datapath uses dedicated DSP48E1 block to implement arithmetic

and logical instructions. The DSP48E1 can be dynamically configured using

OPMODE, INMODE and ALUMODE control and CEA2, CEB2, CEC, CEM

and CEP pipelined registers. Table B.1 shows the detailed configuration use by

the IPPro.

Table B.1: IPPro supported instruction set and their corresponding DSP48E1
control signals.

Instruction INMODE OPMODE ALUMODE CEA2 CEB2 CEC CEM CEP

Add 00000 110011 0000 1 1 1 0 1
Sub, Min, Max 00000 110011 0011 1 1 1 0 1
Mul 10001 000101 0000 0 0 1 1 1
Muladd 10001 110101 0000 0 0 1 1 1
Mulsub 10001 110101 0011 0 0 1 1 1
Mulacc 10001 100101 0000 0 0 1 1 1
land 00000 110011 1100 1 1 1 0 1
Lxor 00000 110011 0100 1 1 1 0 1
Lxnr 00000 110011 0101 1 1 1 0 1
Lor 00000 110011 1100 1 1 1 0 1
Lnor 00000 110011 1110 1 1 1 0 1
Lnot 00000 110011 1111 1 1 1 0 1
Lnand 00000 110011 1110 1 1 1 0 1
Lsl, Lsr 10001 000101 0000 0 0 1 1 1

182

Instruction Set

IPPro supports a 32-bit instruction set architecture (ISA) to process stream and

non-stream data. Table B.2 lists the supported instruction set.

Table B.2: IPPro instruction set.

Addressing mode Instruction Description

NOP No Operation
Register File ADD RD = RB + RC

SUB RD = RC - RB
MUL RD = RA * RB
MULADD RD = RC + (RA * RB)
MULSUB RD = RC - (RA * RB)
MULACC RD = (RA * RB) + RD-1
LAND RD = RB & RC
LXOR RD = RB ˆRC
LXNR RD = ⇠ (RB ˆRC)
LOR RD = RB — RC
LNOR RD = ⇠(RB — RC)
LNOT RD = ⇠RB
LNAND RD = ⇠(RB & RC)
MIN RD = MIN(RB, RC)
MAX RD = MAX(RB, RC)

Data Handling LDWM RD = WMn(ADDRESS)
STWM WMn(ADDRESS) = RC
LDWMI RD = WM(R31)
STWMI WM(R31) = RC
PUSH FIFO(output) = RA
GET RD = FIFO (input)
TEST Checks no. of input tokens available in FIFO
STR RD = IMM (16-bit signed value)

BRANCH JMP 16-bit code memory address
BNEQ* Branch if equal flag is clear
BEQ* Branch if equal flag is set
BZ* Branch if zero flag is set
BNZ* Branch if zero flag is clear
BS* Branch if Sign flag is set
BNS* Branch if Sign flag is clear

* The branch instructions have been added at no extra cost and included in

the IPPro instruction set, as the IPPro flags (zero, sign and equal) have been gen-

erated using a pattern-detect and a sign-bit produced by the embedded DSP48E1

block.

183

AXI4 Control Registers

IPPro has AMB-AXI4-Lite interface that allows configuration of actor firing,

source-ID and destination-ID encoder modules necessary to implement multi-

rate dataflow actors. The datapath has nine registers listed in Table B.3 that

stores the configurations.

Table B.3: The AXI4-Lite control register map.

AXI4-Lite Registers Bits

Addr. IPPro Core 31 - 28 27 - 24 23 - 20 19 - 16 15 - 12 11 - 8 7 - 4 3 - 0

0x00 CONTROL xxx RST
0x04 FIRING MASK xxx FIRING MASK
0x08 Tk CONSUMPTION Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
0x0C Tk PRODUCTION xxx Tk
0x10 IM ADDRESS WR EN xxx IM ADDR
0x14 IM DATA IM DATA
0x18 SP ADDRESS WR EN xxx SP ADDR
0x1C SP DATA IN xxx SP DATA IN (16-bits)
0x20 SP DATA OUT xxx SP DATA OUT

Software-based control interface

C-APIs has been developed to ease programming and control of supported fea-

tures. The IPPro datapath has nine AXI4-Lite control registers. Listing A.1

shows these functions:

Listing B.1: C-APIs to control and manage IPPro core.
1 // Core Reg i s t e r read /wr i t e f un c t i on s
2 i n t IPProWrite (IPPro⇤ i n s t , IPProRegAddr addr , u i n t 32 t command) ;
3 u in t 32 t IPProRead (IPPro⇤ i n s t , IPProRegAddr addr) ;
4 i n t IPProSetTokenConsumption (IPPro⇤ i n s t , IPProRegAddr addr , u i n t 32 t ⇤qCount) ;
5 i n t IPProSetTokenProduction (IPPro⇤ i n s t , IPProRegAddr addr , u i n t 32 t command) ;
6 i n t IPProSetFiringMask (IPPro⇤ i n s t , IPProRegAddr addr , u i n t 32 t command) ;
7

8 // I n s t r u c t i o n memory func t i on s
9 i n t IPProIMWrite (IPPro⇤ i n s t , u i n t 32 t addr , u i n t 32 t program) ;

10 i n t IPProIMInit (IPPro⇤ i n s t , u i n t 32 t ⇤code , u i n t 32 t n) ;
11

12 // Scratchpad memory func t i on s
13 i n t IPProSPWrite (IPPro⇤ i n s t , u i n t 32 t addr , u i n t 32 t data) ;
14 u in t 32 t IPProSPRead (IPPro⇤ i n s t , u i n t 32 t addr) ;
15 i n t IPProSPInit (IPPro⇤ i n s t , u i n t 32 t ⇤data , u i n t 32 t n) ;

184

Bibliography

[1] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu,

and B. Amos, “Edge Analytics in the Internet of Things,” IEEE Pervasive

Computing, vol. 14, no. 2, pp. 24 – 31, 2015.

[2] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, meth-

ods, and analytics,” International Journal of Information Management

(IJIM), vol. 35, no. 2, pp. 137 – 144, 2015.

[3] (2016) Video Analytics Hardware, Software, and Services

Revenue to Reach $3 Billion by 2022. [Online]. Available:

https://www.embedded-vision.com/industry-analysis/market-analysis/

video-analytics-hardware-software-and-services-revenue-reach-3-bil

[4] I. L. Markov, “Limits on Fundamental Limits to Computation,” Coputing

Research Laboratory (CoRR), vol. abs/1408.3821, 2014. [Online]. Available:

http://arxiv.org/abs/1408.3821

[5] “Programmable embedded platforms for remote and compute intensive

image processing applications (EP/K009583/1).” [Online]. Available:

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K009583/1

185

BIBLIOGRAPHY

[6] R. Stewart, K. Duncan, G. Michaelson, P. Garcia, D. Bhowmik, and A. Wal-

lace, “RIPL: A Parallel Image Processing Language for FPGAs,” ACM

Transactions on Reconfigurable Technology and Systems (TRETS, vol. 11,

no. 1, Mar. 2018.

[7] E. Bezati, “High-level synthesis of dataflow programs for heterogeneous

platforms,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2015.

[Online]. Available: https://infoscience.epfl.ch/record/207992/files/EPFL

TH6653.pdf

[8] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA Programming for the

Masses,” ACM Queue Magazine, vol. 11, no. 2, pp. 40 – 52, Feb. 2013.

[9] M. Gort and J. Anderson, “Design re-use for compile time reduction in

FPGA high-level synthesis flows,” in Proc. IEEE International Conference

on Field-Programmable Technology (FPT), Shanghai, China, Dec. 2014, pp.

4 – 11.

[10] G. Stitt and J. Coole, “Intermediate Fabrics: Virtual Architectures for

Near-Instant FPGA Compilation,” IEEE Embedded Systems Letters, vol. 3,

no. 3, pp. 81 – 84, 2011.

[11] R. Baxter, S. Booth, M. Bull, G. Cawood, K. D’Mellow, X. Guo, M. Par-

sons, J. Perry, A. Simpson, and A. Trew, “High-Performance Reconfig-

urable Computing - the View from Edinburgh,” in Proceedings of the Sec-

ond NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

Washington, USA, 2007, pp. 373 – 279.

186

BIBLIOGRAPHY

[12] H. Chenini, J. P. Dérutin, R. Aufrère, and R. Chapuis, “Parallel embed-

ded processor architecture for FPGA-based image processing using parallel

software skeletons,” EURASIP Journal on Advances in Signal Processing,

vol. 2013, no. 1, p. 153, 2013.

[13] L. Natvig, A. Iordan, M. Eleyat, M. Jahre, and J. Amundsen, Multi- and

Many-Cores, Architectural Overview for Programmers, 2017, ch. 1, pp. 1 –

27.

[14] A. Vajda, Multi-core and Many-core Processor Architectures, Boston, USA,

2011, ch. 2, pp. 9 – 43.

[15] K. Andryc, T. Thomas, and R. Tessier, “Soft GPGPUs for Embedded

FPGAs: An Architectural Evaluation,” CoRR, vol. abs/1606.06454, 2016.

[Online]. Available: http://arxiv.org/abs/1606.06454

[16] N. Kapre, “Custom FPGA-based soft-processors for sparse graph accel-

eration,” in Proc. 26th IEEE International Conference on Application-

specific Systems, Architectures and Processors (ASAP), Toronto, Canada,

Jul. 2015, pp. 9 – 16.

[17] T. Lieske, M. Reichenbach, B.Ringlein, and D. Fey, “Dataflow optimization

for programmable embedded image preprocessing accelerators,” in Proc.

IEEE International Conference on ReConFigurable Computing and FPGAs

(ReConFig), Cancun, Mexico, Nov. 2016, pp. 1 – 8.

[18] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Gar-

side, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Hu-

ber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Pu�tsch,

187

BIBLIOGRAPHY

P. Puschner, A. Rocha, C. Silva, J. Spars, and A. Tocchi, “T-CREST:

Time-predictable multi-core architecture for embedded systems,” Journal

of Systems Architecture (JSA), vol. 61, no. 9, pp. 449 – 471, 2015.

[19] J. Heisswolf, A. Zaib, A. Weichslgartner, M. Karle, M. Singh, T. Wild,

J. Teich, A. Herkersdorf, and J. Becker, “The invasive network on chip -

a multi-objective many-core communication infrastructure,” in Proc. IEEE

International Workshop on Architecture of Computing Systems (ARCS),

Luebeck, Germany, Feb. 2014, pp. 1 – 8.

[20] D. She, Y. He, L. Waeijen, and H. Corporaal, “A Co-Design Framework

with OpenCL Support for Low-Energy Wide SIMD Processor,” Journal of

Signal Processing Systems (JSPS), vol. 80, no. 1, pp. 87 – 101, Jul. 2015.

[21] S. Fernando, F. Siyoum, Y. He, A. Kumar, and H. Corporaal, “MAMPSx:

A design framework for rapid synthesis of predictable heterogeneous MP-

SoCs,” in Proc. IEEE International Symposium on Rapid System Prototyp-

ing (RSP), Montreal, Canada, Oct. 2013, pp. 136 – 142.

[22] J. Sérot, F. Berry, and C. Bourrasset, “High-level dataflow programming

for real-time image processing on smart cameras,” Journal of Real-Time

Image Processing (JRTIP, vol. 12, no. 4, pp. 635 – 647, 2016.

[23] C. Liu, H. C. Ng, and H. K. H. So, “QuickDough: A rapid FPGA loop accel-

erator design framework using soft CGRA overlay,” in Proc. IEEE Interna-

tional Conference on Field Programmable Technology (FPT), Queenstown,

New Zealand, Dec. 2015, pp. 56 – 63.

188

BIBLIOGRAPHY

[24] R. Stewart, D. Bhowmik, A. Wallace, and G. Michaelson, “Profile Guided

Dataflow Transformation for FPGAs and CPUs,” Journal of Signal Pro-

cessing Systems (JSPS), vol. 87, no. 1, pp. 3 – 20, 2017.

[25] C. Sau, P. Meloni, L. Ra↵o, F. Palumbo, E. Bezati, S. Casale-Brunet, and

M. Mattavelli, “Automated Design Flow for Multi-Functional Dataflow-

Based Platforms,” Journal of Signal Processing Systems (JSPS), vol. 85,

no. 1, pp. 143 – 165, Oct. 2016.

[26] P. R. Schaumont, Data Flow Modeling and Transformation, Boston, USA,

2013, pp. 31 – 59.

[27] J. Su, F. Yang, X. Zeng, D. Zhou, and J. Chen, “E�cient Memory Parti-

tioning for Parallel Data Access in FPGA via Data Reuse,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 10, pp. 1674 –

1687, 2017.

[28] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and Performance

Exploration of Accelerator Coherency Port Using Xilinx ZYNQ,” in Proc.

10th FPGAworld Conference (FPGAworld ’13), Stockholm, Sweden, 2013,

pp. 5:1–5:8.

[29] K. Vipin and S. A. Fahmy, “ZyCAP: E�cient Partial Reconfiguration Man-

agement on the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3,

pp. 41 – 44, Sep. 2014.

[30] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-grained

Task, Data, and Pipeline Parallelism in Stream Programs,” Proc. 12th In-

ternational conference on Architectural support for programming languages

189

BIBLIOGRAPHY

and operating systems (ASPLOS XII), vol. 41, no. 11, pp. 151 – 162, Oct.

2006.

[31] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language for

Streaming Applications,” in Proc. in International Conference on Compiler

Construction, Berlin, Heidelberg, Mar. 2002, pp. 179 – 196.

[32] M. Schmid, N. Apelt, F. Hannig, and J. Teich, “An image processing library

for C-based high-level synthesis,” in Proc. 24th IEEE International Con-

ference on Field Programmable Logic and Applications (FPL), Gernoble,

France, Sep. 2014, pp. 1 – 4.

[33] A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus:

E�cient Realization of Streaming Applications on FPGAs,” in Proc. 25th

ACM International Conference on Compilers, Architectures and Synthesis

for Embedded Systems (CASES ’08), New York, NY, USA, Oct. 2008, pp.

41 – 50.

[34] O. Reiche, K. Häublein, M. Reichenbach, F. Hannig, J. Teich, and

D. Fey, “Automatic Optimization of Hardware Accelerators for Image

Processing,” CoRR, vol. abs/1502.07448, 2015. [Online]. Available:

http://arxiv.org/abs/1502.07448

[35] H. K.-H. So and C. Liu, FPGA Overlays, 2016, pp. 285 – 305.

[36] K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU for

FPGAs,” in Proc. IEEE International Conference on Field-Programmable

Technology (FPL), Kyoto, Japan, Dec. 2013, pp. 230 – 237.

190

BIBLIOGRAPHY

[37] G. Stitt, “Are Field-Programmable Gate Arrays Ready for the Main-

stream?” IEEE Micro, vol. 31, no. 6, pp. 58 – 63, 2011.

[38] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Sur-

vey and Evaluation of FPGA High-Level Synthesis Tools,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591 –

1604, Oct. 2016.

[39] F. Hannig, A Quick Tour of High-Level Synthesis Solutions for FPGAs,

2016, pp. 49 – 59.

[40] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,

A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling High-

level Image Processing Code into Hardware Pipelines,” ACM Transactions

on Graphics (TOG), vol. 33, no. 4, pp. 144:1–144:11, Jul. 2014.

[41] S. C. Brunet, M. Mattavelli, and J. W. Janneck, “Bu↵er optimization based

on critical path analysis of a dataflow program design,” in Proc. IEEE

International Symposium on Circuits and Systems (ISCAS), Beijing, China,

May 2013, pp. 1384 – 1387.

[42] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen, “High-level

Synthesis: Productivity, Performance, and Software Constraints,” Journal

of Electrical and Computer Engineering (JECE), vol. 2012, Jan. 2012.

[43] E. Bezati, S. C. Brunet, M. Mattavelli, and J. W. Janneck, “High-level sys-

tem synthesis and optimization of dataflow programs for MPSoCs,” in Proc.

191

BIBLIOGRAPHY

50th IEEE International Conference on Signals, Systems and Computers,

California, USA, Nov. 2016, pp. 417 – 421.

[44] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Are Coarse-Grained Overlays

Ready for General Purpose Application Acceleration on FPGAs?” in Proc.

14th IEEE International Conference on Dependable, Autonomic and Secure

Computing(DASC), Auckland, New Zealand, Aug. 2016, pp. 586–593.

[45] R. Rigamonti, B. Delporte, A. Convers, and A. Dassatti, “Transparent

Live Code O✏oading on FPGA,” in Proc. 3rd International Workshop on

FPGAs for Software Programmers (FSP), Aug. 2016, pp. 1 – 10.

[46] F. de Dinechin and B. Pasca, Reconfigurable Arithmetic for High-

Performance Computing, 2013, pp. 631 – 663.

[47] X. Chu and J. McAllister, “FPGA based soft-core SIMD processing: A

MIMO-OFDM fixed-complexity sphere decoder case study,” in Proc. IEEE

International Conference on Field-Programmable Technology (FPL), Bei-

jing, China, Dec. 2010, pp. 479 – 484.

[48] C. E. LaForest and J. G. Ste↵an, “OCTAVO: an FPGA-centric proces-

sor family,” in Proc. ACM/SIGDA International Symposium on Field pro-

grammable gate arrays (FPGA), Monterey, USA, Feb. 2012, pp. 219 – 228.

[49] B. Ronak and S. A. Fahmy, “Evaluating the e�ciency of DSP block syn-

thesis inference from flow graphs,” in Proc. IEEE International Conference

on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012,

pp. 727 – 730.

192

BIBLIOGRAPHY

[50] Xilinx, “All Programmable 7 Series: Product Selection Guide,” Xilinx Inc.,

Tech. Rep., 2018.

[51] ——, “UltraScale+ FPGAs: Product Tables and Product Selection Guide,”

Xilinx Inc., Tech. Rep., 2018.

[52] ——, “7 Series DSP48E1 Slice,” Xilinx Inc., User Guide: UG479(v1.10),

2018.

[53] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of

the IEEE, vol. 83, no. 5, pp. 773 – 801, May 1995.

[54] S. Casale-Brunet, “Analysis and optimization of dynamic dataflow

programs,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2015.

[Online]. Available: https://infoscience.epfl.ch/record/207992/files/EPFL

TH6653.pdf

[55] A. Azarian and J. M. Cardoso, “Pipelining data-dependent tasks in FPGA-

based multicore architectures,” Microprocessors and Microsystems, vol. 42,

pp. 165 – 179, 2016.

[56] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical Modeling

of Pipeline Parallelism,” in Proc. 18th International Conference on Paral-

lel Architectures and Compilation Techniques (PACT), Raleigh, USA, Sep.

2009, pp. 281 – 290.

[57] A. Turjan, B. Kienhuis, and E. Deprettere, “Solving Out-of-Order Com-

munication in Kahn Process Networks,” Journal of VLSI signal processing

193

BIBLIOGRAPHY

systems for signal, image and video technology, vol. 40, no. 1, pp. 7 – 18,

2005.

[58] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A Catalog

of Stream Processing Optimizations,” ACM Jounral on Computing Surveys

(CSUR), vol. 46, no. 4, pp. 46:1 – 46:34, Mar. 2014.

[59] F. Otto, V. Pankratius, and W. F. Tichy, “XJava: Exploiting Parallelism

with Object-Oriented Stream Programming,” in Proc. 15th European Con-

ference on Parallel Processing (Euro-Par), Delft, Netherlands, Aug. 2009,

pp. 875 – 886.

[60] C. Kelly, “Design exploration of image processing algorithms using FPGA

based soft-core processors,” Ph.D. dissertation, Queens University Belfast,

May 2016.

[61] X. Chu, J. McAllister, and R. Woods, “A Pipeline Interleaved Heteroge-

neous SIMD Soft Processor Array Architecture for MIMO-OFDM Detec-

tion,” in Proc. 7th IEEE International Conference on Reconfigurable Com-

puting: Architectures, Tools and Applications (ARC), Belfast, UK, 2011,

pp. 133 – 144.

[62] X. Wang and S. Ziavras, “Exploiting mixed-mode parallelism for matrix

operations on the HERA architecture through reconfiguration,” IEE Pro-

ceedings - Computers and Digital Techniques, vol. 153, pp. 249 – 260(11),

Jul. 2006.

[63] P. P. Jonker, “Why linear arrays are better image processors,” in Proc. 12th

IEEE International Conference on Pattern Recognition.

194

BIBLIOGRAPHY

[64] D. G. Bailey and C. T. Johnston, “Algorithm Transformation for FPGA Im-

plementation,” in Proc. 5th IEEE International Symposium on Electronic

Design, Test and Applications (DELTA), Ho Chin Minh City, Vietnam,

Jan. 2010, pp. 77 – 81.

[65] C. Nugteren, H. Corporaal, and B. Mesman, “Skeleton-based automatic

parallelization of image processing algorithms for GPUs,” in Proc. IEEE

International Conference on Systems, Architectures, Modeling, and Simu-

lation (SAMOS), Samos, Greece, Jul. 2011, pp. 25 – 32.

[66] K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High Level Program-

ming for FPGA Based Image and Video Processing Using Hardware Skele-

tons,” in Proc. 9th Annual IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), Mar. 2001, pp. 219 – 226.

[67] P. A. Nelson, “Parallel Programming Paradigms,” Ph.D. dissertation, 1987.

[68] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fastflow:

High-level and E�cient Streaming on Multi-core, 2017, ch. 13.

[69] M. Vanneschi, “The programming model of assist, an environment for par-

allel and distributed portable applications,” Parallel Computing, vol. 28,

no. 12, pp. 1709 – 1732, 2002.

[70] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107 –

113, 2008.

195

BIBLIOGRAPHY

[71] H.-W. Loidl, “Parallel Program Design & Algorithmic Skeletons,”

Heriot-Watt University, Edinburgh, Tech. Rep., 2017. [Online]. Available:

https://www.macs.hw.ac.uk/⇠hwloidl/Courses/F21DP/l08 handout.pdf

[72] M. Poldner and H. Kuchen, “On implementing the Farm skeleton,” Parallel

Processing Letters, vol. 18, no. 1, pp. 117 – 131, 2008.

[73] F. Plavec, B. Fort, Z. Vranesic, and S. Brown, “Experiences with Soft-

Core Processor Design,” in Proc. 19th IEEE International Proceedings on

Parallel and Distributed Processing Symposium, Denver, USA, Apr. 2005,

pp. 167b – 167b.

[74] T. Kranenburg and R. Van Leuken, “MB-LITE: A robust, light-weight soft-

core implementation of the MicroBlaze architecture,” in Proc. IEEE Inter-

national Conference & Exhibition on Design, Automation Test in Europe

(DATE), Dresden, Germany, Mar. 2010, pp. 997 – 1000.

[75] (2013) Open Cores Main Page. [Online]. Available: http://opencores.org/

or1k/Main Page

[76] (2013) Aeroflex Gaisler AB. Leon3. [Online]. Available: http://gaisler.

com/index.php/products/processors/leon3

[77] S. Hive, “Silicon Hive Technology Primer: Reconfigurable accelerators

that bring computational e�ciency (MOPS/W)and programmability

together, to displace ASIC and DSP co-processors in Systems-on-

Chips,” Silicon Hive, Tech. Rep., 2003. [Online]. Available: https:

//www.scribd.com/document/26948963/Silicon-Hive

196

BIBLIOGRAPHY

[78] E. V. Dalen, S. G. Pestana, and A. V. Wel, “An Integrated, Low-Power

Processor for Image Signal Processing,” in in Proc. of 8th IEEE Interna-

tional Symposium on Multimedia (ISM’06), San Diego, US, Dec. 2006, pp.

501–508.

[79] A. Duller, G. Panesar, and D. Towner, “Parallel Processing-the picoChip

way,” Communicating Processing Architectures, pp. 125–138, 2003.

[80] (2007) BDTI Releases Benchmark Results for Massively Parallel picoChip

PC102. [Online]. Available: https://www.bdti.com/InsideDSP/2007/09/

26/Pico

[81] R. M. Russell, “The CRAY-1 computer system,” Communications of the

ACM - Special issue on Computer Architectures, vol. 21, no. 1, pp. 63 – 72,

Jan. 1978.

[82] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G.

Lemieux, “VEGAS: soft vector processor with scratchpad memory,” in

Proc. ACM/SIGDA International Symposium on Field programmable gate

arrays (FPGA), Monterey, USA, Feb. 2011, pp. 15 – 24.

[83] A. Severance and G. Lemieux, “VENICE: A compact vector processor for

FPGA applications,” in Proc. IEEE International Conference on Field-

Programmable Technology (FPT), Seoul, Korea, Dec. 2012, pp. 261 – 268.

[84] A. Severance and G. G. Lemieux, “Embedded supercomputing in FP-

GAs with the VectorBlox MXP matrix processor,” in Proc. IEEE Inter-

national Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), Montreal, Canada, Oct. 2013, pp. 1 – 10.

197

BIBLIOGRAPHY

[85] M. Milford and J. McAllister, “An ultra-fine processor for FPGA DSP chip

multiprocessors,” in Proc. 43rd Asilomar Conference on Signals, Systems

and Computers, Belfast, UK, Nov. 2009, pp. 226 – 230.

[86] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA

DSP Block-Based Soft Processor for FPGAs,” ACM Transactions on Re-

configurable Technology and Systems (TRETS, vol. 7, no. 3, pp. 19:1–19:23,

2014.

[87] J. Eker and J. Janneck, “CAL language report: Specification of the CAL

actor language,” University of California, Berkelry, Tech. Rep., 2003.

[Online]. Available: https://ptolemy.berkeley.edu/papers/03/Cal/

[88] B. Bardak, R. Stewart, and D. Bhowmik, “Data-flow modeling to capture

the processing and data organisation of image processing algorithms in

language representation,” Project Rathlin, Tech. Rep., Feb. 2014. [Online].

Available: http://rathlin.hw.ac.uk/images/documents/report/D1 report.

pdf

[89] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet,

“Orcc: Multimedia Development Made Easy,” in Proceedings of the 21st

ACM International Conference on Multimedia, ser. MM ’13. ACM, 2013,

pp. 863–866.

[90] A. Azarian and J. M. P. Cardoso, “Coarse/Fine-grained Approaches for

Pipelining Computing Stages in FPGA-Based Multicore Architectures,” in

Proc. European Conference on Parallel Processing Workshops (Euro-Par),

Porto, Portugal, 2014, pp. 266 – 278.

198

BIBLIOGRAPHY

[91] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph

reduction techniques,” Information Systems, vol. 25, no. 2, pp. 117 – 134,

2000.

[92] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. of the

IEEE, vol. 77, no. 4, pp. 541 – 580, Apr. 1989.

[93] D. Buono, M. Danelutto, S. Lametti, and M. Torquati, “Parallel Patterns

for General Purpose Many-Core,” in Proc. 21st Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing (PDP),

Belfast, UK, Feb. 2013, pp. 131 – 139.

[94] D. Nguyen, D. Halupka, P. Aarabi, and A. Sheikholeslami, “Real-time face

detection and lip feature extraction using field-programmable gate arrays,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics), vol. 36, no. 4, pp. 902 – 912, Aug. 2006.

[95] R. O. Chavez-Garcia and O. Aycard, “Multiple Sensor Fusion and Classifi-

cation for Moving Object Detection and Tracking,” IEEE Transactions on

Intelligent Transportation Systems (ITS), vol. 17, no. 2, pp. 525 – 534, Sep.

2016.

[96] F. Bounini, D. Gingras, V. Lapointe, and H. Pollart, “Autonomous Vehicle

and Real Time Road Lanes Detection and Tracking,” in Proc. IEEE Vehicle

Power and Propulsion Conference (VPPC), Montreal, Canada, Oct. 2015,

pp. 1 – 6.

[97] Xilinx, “7 Series FPGAs Memory Resource,” Xilinx Inc., User Guide:

UG473 (v1.12), 2016.

199

BIBLIOGRAPHY

[98] T. Feist, “Zynq-7000 All Programmable SoC (Z-7010, Z-7015, and Z-7020):

DC and AC Switching Characteristics,” Xilinx Inc., DataSheet: DS187

(v1.20), 2017.

[99] S. Gupta, “Comparison of di↵erent data flow graph models,” University

of Stuttgart, Tech. Rep., 2010. [Online]. Available: http://www.iti.

uni-stuttgart.de/⇠radetzki/Seminar06/11 report.pdf

[100] G. Martin and S. Leibson, “Beyond the Valley of the Lost Processors:

Problems, Fallacies, and Pitfalls in Processor Design,” in Processor Design.

Springer, 2007, pp. 27 – 67.

[101] F. M. Siddiqui, M. Russell, B. Bardak, R. Woods, and K. Ra↵erty, “IP-

Pro: FPGA based image processing processor,” in Proc. IEEE International

Workshop on Signal Processing Systems (SiPS), Oct. 2014, pp. 1 – 6.

[102] C. Kelly, F. M. Siddiqui, B. Bardak, and R. Woods, “Histogram of oriented

gradients front end processing: an FPGA based processor approach,” in

Proc. IEEE Workshop on Signal Processing Systems (SiPS), 2014, pp. 1 –

6.

[103] C. Kelly, F. M. Siddiqui, B. Bardak, Y. Wu, R. Woods, and K. Ra↵erty,

“FPGA Soft-Core Processors, Compiler and Hardware Optimizations Val-

idated Using HOG,” in Proc. International Symposium on Applied Recon-

figurable Computing (ARC), Rio de Janeiro, Brazil, Mar. 2016, pp. 78 –

90.

[104] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and J. W. Jeon,

“FPGA Design and Implementation of a Real-Time Stereo Vision System,”

200

BIBLIOGRAPHY

IEEE Transactions on Circuits and Systems for Video Technology, vol. 20,

no. 1, pp. 15 – 26, Jan. 2010.

[105] W. He and K. Yuan, “An improved Canny edge detector and its realiza-

tion on FPGA,” in Proc. 7th World Congress on Intelligent Control and

Automation, Chongqing, China, Jun. 2008, pp. 6561 – 6564.

[106] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and M. Chawathe,

“Accelerated image processing on FPGAs,” IEEE Transactions on Image

Processing, vol. 12, no. 12, pp. 1543 – 1551, Dec. 2003.

[107] R. Harinarayan, R. Pannerselvam, M. M. Ali, and D. K. Tripathi, “Fea-

ture extraction of Digital Aerial Images by FPGA based implementation of

edge detection algorithms,” in Proc. International Conference on Emerg-

ing Trends in Electrical and Computer Technology (ICETECT), Nagercoil,

India, Mar. 2011, pp. 631 – 635.

[108] D. G. Bailey, Local Filters, 2011, ch. 8, pp. 233 – 273.

[109] P. Schleuniger, S. A. McKee, and S. Karlsson, “Design Principles for Syn-

thesizable Processor Cores,” in Proc. 25th International Conference on Ar-

chitecture of Computing Systems (ARCS), Munich, Germany, Mar. 2012,

pp. 111 – 122.

[110] M. Reichenbach, T. Lieske, S. Vaas, K. Haublein, and D. Fey, “FAUPU - A

design framework for the development of programmable image processing

architectures,” in 2015 International Conference on ReConFigurable Com-

puting and FPGAs (ReConFig), Dec 2015, pp. 1–8.

201

BIBLIOGRAPHY

[111] Xilinx, “FIFO Generator v13.0, LogiCORE Product Guide,” Xilinx Inc.,

Product Guide: PG057, 2015.

[112] D. Capalija and T. S. Abdelrahman, “A high-performance overlay archi-

tecture for pipelined execution of data flow graphs,” in Proc. 23rd IEEE

International Conference on Field programmable Logic and Applications

(FPL), Porto, Portugal, Sep. 2013, pp. 1 – 8.

[113] M. Mustafa Rafique, A. R. Butt, and D. Nikolopoulos, Programming and

Managing Resources on Accelerator-Enabled Clusters, 2015, ch. 20.

[114] H. Wei, J. Yu, H. Yu, M. Qin, and G. R. Gao, “Software Pipelining for

Stream Programs on Resource Constrained Multicore Architectures,” IEEE

Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2338 – 2350, Dec. 2012.

[115] L. Li, T. Fanni, T. Viitanen, R. Xie, F. Palumbo, L. Ra↵o, H. Huttunen,

J. Takala, and S. S. Bhattacharyya, “Low power design methodology for

signal processing systems using lightweight dataflow techniques,” in Proc.

IEEE Conference on Design and Architectures for Signal and Image Pro-

cessing (DASIP), Rennes, France, Oct. 2016, pp. 82 – 89.

[116] K. Hammond, M. Aldinucci, C. Brown, F. Cesarini, M. Danelutto,

H. González-Vélez, P. Kilpatrick, R. Keller, M. Rossbory, and G. Shainer,

The ParaPhrase Project: Parallel Patterns for Adaptive Heterogeneous Mul-

ticore Systems, 2013, pp. 218 – 236.

[117] G. J. Garca, C. A. Jara, J. Pomares, A. Alabdo, L. M. Poggi, and F. Torres,

“A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Re-

202

BIBLIOGRAPHY

configurable Low-Power Sensors for Computer Vision, Control and Signal

Processing,” Sensors, vol. 14, no. 4, pp. 6247 – 6278, 2014.

[118] K. M. A. Ali, R. B. Atitallah, S. Hanafi, and J. L. Dekeyser, “A generic

pixel distribution architecture for parallel video processing,” in Proc. IEEE

International Conference on ReConFigurable Computing and FPGAs (Re-

ConFig), Cancun, Mexico, Dec. 2014, pp. 1 – 8.

[119] Chen, Chang Wen and Luo, Jiebo and Parker, Kevin J, “Image segmen-

tation via adaptive K-mean clustering and knowledge-based morphologi-

cal operations with biomedical applications,” IEEE Trans. Image Process.,

vol. 7, no. 12, pp. 1673 – 1683, 1998.

[120] F. Winterstein, S. Bayliss, and G. A. Constantinides, “FPGA-based K-

means clustering using tree-based data structures,” in Proc. 23rd IEEE

International Conference on Field programmable Logic and Applications

(FPL), Porto, Portugal, Sep. 2013, pp. 1 – 6.

[121] Xillybus, “Getting started with Xillybus on a Linux host,” Guide, Version

2.2, 2017. [Online]. Available: http://xillybus.com

[122] M. Danek, J. Kadlec, R. Bartosinski, and L. Kohout, “Increasing the level

of abstraction in FPGA-based designs.”

[123] A. Ernstsson, L. Li, and C. Kessler, “SkePU 2: Flexible and Type-Safe

Skeleton Programming for Heterogeneous Parallel Systems,” International

Journal of Parallel Programming, vol. 46, no. 1, pp. 62 – 80, 2018.

203

BIBLIOGRAPHY

[124] L. Verdoscia and R. Giorgi, “A data-flow soft-core processor for accelerating

scientific calculation on FPGAs,” Mathematical Problems in Engineering,

2016.

[125] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in Multi-

Core Architectures: Understanding Mechanisms, Overheads and Scaling,”

in Proc. 32nd International Symposium on Computer Architecture (ISCA),

Madison, USA, Jun. 2005, pp. 408 – 419.

[126] M. Aldinucci and M. Danelutto, “Skeleton-based parallel programming:

Functional and parallel semantics in a single shot,” Computer Languages,

Systems & Structures, vol. 33, pp. 179 – 192, 2007.

[127] S. Neuendor↵er, T. Li, and D. Wang, “Accelerating OpenCV Applications

with Zynq-7000 All Programmable SoC using Vivado HLS Video Libra

ries,” Xilinx Inc., Application Note: XAPP1167 (v3.0), 2015.

[128] S. Wong, S. Vassiliadis, and S. Cotofana, “A sum of absolute di↵erences

implementation in FPGA hardware,” in Proc. 28th IEEE Euromicro Con-

ference, Dortmund, Germany, Sep. 2002, pp. 183–188.

204

