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Systemic infection modifies the
neuroinflammatory response in late stage
Alzheimer’s disease
Sonja Rakic1, Yat M. A. Hung1, Matthew Smith1, Denise So1, Hannah M. Tayler2, William Varney1, Joe Wild1,
Scott Harris3, Clive Holmes1,4, Seth Love2, William Stewart5,6, James A. R. Nicoll1,7 and Delphine Boche1*

Abstract

Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer’s disease. Animal models
suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-
mortem human study to determine whether systemic infection modifies the neuropathology and in particular,
neuroinflammation, in the late-stage of the disease.
Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without
a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the
inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2;
and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by
ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively.
Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68
(p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.
047) and decreased IL5 (p = 0.007), IL7 (p= 0.002), IL12/IL23p40 (p = 0.001), IL15 (p= 0.008), IL16 (p < 0.001) and IL17A
(p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this
group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic
infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R
(p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection.
Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However,
rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an
anti-inflammatory, potentially immunosuppressive, environment in the human brain.
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Introduction
Systemic infections lead to the development of “sickness
behaviour”, clinical features of which include fever, depres-
sion, apathy, self-reported ill health and attentional deficits
[18]. At least in animal models this is, in part, mediated by
the transient production of pro-inflammatory cytokines by
microglia, in turn activated by cytokines and other inflam-
matory mediators generated by peripheral immune cells
[17, 18]. In humans, the clinical features of sickness

behaviour are usually considered benign and transitory.
However, animal studies have shown that, when microglia
are “primed” by early neurodegeneration, systemic infec-
tion can switch the central innate immune response from
a hybrid of pro- and anti-inflammatory phenotypes to a
more tissue-damaging environment, with enhanced and
prolonged pro-inflammatory cytokine synthesis in the
brain, symptoms of sickness behaviour, and increased
neuronal death [15, 16].
Microglia are highly plastic and dynamic cells [47] that

adapt their behaviour and morphology to adjust to their
environment, adopting different profiles and morphologies
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[8, 25]. It was proposed that in patients with neurodegen-
erative disease, systemic infection would exacerbate symp-
toms of the disease, increase tissue injury and accelerate
disease progression [54]. In the absence of neurodegenera-
tive disease, post-mortem studies have shown that sys-
temic infection is associated with increased activation of
vascular endothelial cells, perivascular macrophages [65]
and microglia [38, 61]. In prospective clinical studies of
people with Alzheimer’s disease (AD), systemic infection
with raised peripheral pro-inflammatory cytokines is asso-
ciated with a marked increase in the rate of cognitive de-
cline and in the neuropsychiatric features of sickness
behaviour [29, 30]. This supports the hypothesis that
microglia in the diseased brain, in a relatively benign but
primed inflammatory state [55], may be activated by sig-
nalling molecules from systemic infection [59], to produce
cytokines and other molecules that promote neuronal dys-
function and degeneration.
To explore the effects of systemic infection on the

human AD brain, we have conducted a post-mortem
study in which Alzheimer’s cases were selected on the
basis of the presence or absence of systemic infection at
the time of death. We investigated whether systemic
infection modifies the neuroinflammatory environment
and thus the microglial profile, and assessed the poten-
tial consequences on AD-associated pathologies.

Materials and methods
Cases
Autopsy-acquired brain tissue from 108 donors was
sourced from the South West Dementia Brain Bank
(University of Bristol) and BRAIN UK (Queen Elizabeth
University Hospital, Glasgow). Clinical history as in-
cluded in post-mortem reports and information on the
death certificate was used to subdivide cases according
to whether systemic infection was or was not recorded
as cause of death into four subgroups: cognitive and
neuropathological controls (Ctrl), who died without sys-
temic infection (Ctrl-, n = 24) or with systemic infection
(Ctrl+, n = 16); and AD patients, who died without sys-
temic infection (AD-, n = 28) or with systemic infection
(AD+, n = 40). Alzheimer’s cases had a clinical diagnosis
of AD made during life and satisfied post-mortem neuro-
pathological consensus criteria for AD [31] without having
any other significant brain pathologies such as stroke, pri-
mary or metastatic tumour, or traumatic lesions. The
causes of death in the control and AD groups without sys-
temic infection included cardiovascular disease and
non-brain tumours. In the control and AD groups with
systemic infection, death was attributed in most cases to
bronchopneumonia and urinary tract infection. The char-
acteristics of the groups are presented in Table 1.
The inferior parietal lobe (Brodmann area 40), an area

of cerebrum typically affected by AD pathology [45], was

investigated in all cases. Formalin-fixed paraffin embedded
tissue was used for the immunodetection of neuropatho-
logical and neuroinflammatory markers in the control and
AD groups. Fresh frozen tissue available only for the AD
groups with and without systemic infection and selected
on a pH > 6.0 to ensure RNA integrity [4, 56], was used
for detection of synaptic proteins by ELISA, and for detec-
tion of inflammation-related proteins and mRNA by
MesoScale Discovery (MSD) multiplex assays and quanti-
tative (q) PCR.

Immunohistochemistry
Immunohistochemistry was performed on 4 μm paraffin
sections in several separate batches, with each batch
containing cases from all groups (Ctrl-, Ctrl+, AD-, AD+)
to ensure comparability of immunolabelling. All experi-
ments included a negative control slide incubated in buf-
fer with no primary antibody, and a positive control slide
containing a specific tissue type known to express the
protein of interest (e.g. tonsil). Details of the primary anti-
bodies including immune functions and pre-treatments are
presented in Additional file 1: Table S1. Biotinylated sec-
ondary antibodies rabbit anti-goat and swine anti-rabbit
were from Dako (Glostrup, Denmark) and goat anti-mouse
from Vector Laboratories (Peterborough, UK). Bound anti-
bodies were visualized using the avidin–biotin–peroxidase
complex method (Vectastain Elite, Vector Laboratories)
with 3,3′-diaminobenzidine as chromogen and 0.05%
hydrogen peroxide as substrate (Vector Laboratories).
All sections were counterstained with haematoxylin,
then dehydrated before mounting in DePeX (VWR
International, Lutterwort, UK).

Quantification
Quantification was blinded to the case designation and
performed separately on the grey matter and white mat-
ter in the same sulcus of the inferior parietal lobule for
all cases, as determined by an experienced neuropath-
ologist (JARN). For each case, 30 images of grey matter
were acquired by the Olympus dotSlide virtual micros-
copy system under a × 20 objective. The images were
obtained in a zigzag sequence to ensure sampling of all
six cortical layers as previously published [44, 74]. An
additional 30 images were obtained of the subcortical
white matter. Quantitative image analysis was carried out
using ImageJ (version 1.49u, Wayne Rasband, NIH, USA).
For each antibody, a specific threshold was determined to
quantify the area fraction of each image labelled by the
antibody and expressed as protein load (%), and the mean
value was calculated for each case for each antibody.
For T cells, semi-quantitative analysis was performed

manually and based on assessment of the whole section
under a × 10 objective. CD3+ T-cells were identified as
present or absent in the vasculature and parenchyma of
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the grey and white matter. Subsequent analysis was
based on the percentage of cases with T cells present or
absent in each subgroup.

ELISA
ELISA was carried out to quantify the presynaptic protein
synaptophysin (SYP), postsynaptic density protein 95
(PSD95), and neuron-specific enolase (NSE) – a neuronal
marker used to control for variation in neuronal content
between samples. The ratio of synaptophysin to PSD95 was
calculated as an indicator of selective pre- or post-synaptic
loss. 100 mg of fresh frozen grey matter from AD
cases (n = 67) was homogenised in lysis buffer at a
tissue concentration of 20% w/v [66] and total protein
measured by Pierce Coomassie (Bradford) Protein
Assay Kit (Thermo Fisher Scientific, Waltham, USA).
Non-specific binding was blocked with blocking buffer
(1% BSA-PBS). All measurements were corrected for
total protein concentration. SYP and PSD95 values
were subsequently adjusted for NSE concentration.

SYP and NSE measurements
SYP and NSE were measured by sandwich ELISA and
PSD95 by indirect ELISA [52, 62]. The capture antibody,
SYP (Abcam, Cambridge, UK) or NSE (Enzo Life
Sciences, Exeter, UK), was diluted 1:1000 in coating

buffer and the wells preincubated overnight at 4 °C.
Blocking buffer (1% BSA-PBS) was added for 1 h
followed by the load in duplicate of either serial 5-fold
dilutions of recombinant NSE protein (0.008–5 μg/ml;
Abcam) to generate a standard curve, or 2-fold dilutions
of recombinant SYP protein (0.34–5.5 μg/ml; Abnova,
Taipei City, Taiwan), homogenates at a 1:10 or blanks.
Two hours later, peroxidase-labelled, mouse monoclonal
anti-NSE (Abcam) or biotinylated anti-mouse IgG for
SYP detection (Vector Laboratories), was added and in-
cubated in the dark for 2 h.

Measurement of PSD95
Homogenate samples were diluted 1:20 and incubated in
duplicate alongside blanks and a standard curve, com-
prising 3-fold dilutions of recombinant PSD95 protein
(3.75–910.1 ng/ml; Abnova), for 2 h at 26 °C. Primary anti-
body (PSD95, clone 7E3-1B8, Sigma Aldrich, Gillingham,
UK) diluted to 1:3000 was incubated for 2 h at 26 °C
followed by the addition of a secondary antibody (HRP-la-
belled anti-mouse IgG; Vector Laboratories). The final stage
of each ELISA involved the addition of a peroxidase sub-
strate (R&D Systems, Minneapolis, USA).
For all of the ELISAs, absorbance was read at 450 nm

in a multi-mode microplate reader (FLUOstar OPTIMA,
BMG Labtech) and absolute protein levels (μg/ml) were

Table 1 Demographic, clinical and post-mortem characteristics of controls and Alzheimer’s cases

Cases Ctrl-
(n = 24)

Ctrl+
(n = 16)

AD-
(n = 28)

AD+
(n = 40)

Gender 12F:12M 7F:9M 16F:12M 25F:15M

Age of Death (years, mean±SD) 80.4±10.4 82.1±9.5 81.1±6.1 82±7.4

Age of AD onset (years, mean±SD) n/a n/a 72.7±7.7 74.3±8.9

Duration of AD (years, mean±SD) n/a n/a 8.4±4.3 7.7±4.0

Braak Stage 0-II: 18 0-II: 11 0-II: 0 0-II: 0

III-IV: 2 III-IV: 2 III-IV: 6 III-IV: 6

V-VI: 0 V-VI: 0 V-VI: 22 V-VI: 34

Cause of death

Cardiovascular disease 20/24 (83.3%) 7/28 (25%)

Non-brain tumour 2/24 (8.3%) 5/28 (17.9%)

Other a2/24 (8.3%) a2/16 (12.5%) b16/28 (57.1%) a3/40 (7.5%)

Bronchopneumonia 12/16 (75%) 32/40 (80%)

Urinary Tract Infection 2/16 (12.5%) 5/40 (12.5%)

APOE genotype

ε4/− 2/19 (10.5%) 2/10 (20%) 9/23 (39.1%) 15/36 (41.7%)

ε4/ε4 1/19 (5.3%) 0/10 (0%) 5/23 (21.7%) 8/36 (22.2%)

Post-mortem delay (hours, mean±SD) 34.6±18.5 50.1±27.4 37.8±26.8 48.2±23.3

pH n/a n/a 6.1±0.4 6.1±0.3

Ctrl neurologically/cognitively normal controls, AD Alzheimer’s disease, − died without systemic infection, + died with systemic infection, F female, M male, RIN
RNA integrity number, n/a not-applicable, SD standard deviation
Braak staging and APOE genotyping were not available for all cases
other cause of death included: abowel obstruction, ruptured abdominal aortic aneurysm, fall (fractured femur); bAlzheimer’s disease
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determined by interpolation against the relevant stand-
ard curve.

MesoScale discovery multiplex assay
Inflammatory proteins were measured on the V-Plex
MSD electrochemiluminescence multi-spot assay plat-
form (MesoScale Diagnostics, Rockville USA).100 mg of
fresh frozen grey matter from AD cases (n = 67) was
homogenised at a tissue concentration of 20% w/v in
RIPA lysis buffer (Thermo Fisher Scientific) by use of a
handheld homogeniser (Thermo Fisher Scientific); the
buffer was supplemented with protease inhibitors
(Complete Mini, Sigma Aldrich) and phosphatase inhibi-
tors (Thermo Fisher Scientific). Total protein concentra-
tion in the supernatant was measured by BCA Protein
Assay Kit (Thermo Fisher Scientific). 12.5μl of brain
homogenate (1:4 dilution) was used for each assay ac-
cording to the manufacturer’s protocol. The following
V-PLEX human biomarker 40-PLEX kits were used:
pro-inflammatory panel 1, cytokine panel 1 and vascular
injury panel 2. Each plate was imaged on the Meso
QuickplexSQ120 (MesoScale Discovery) according to
manufacturers’ instructions for 384-well plates to obtain
absolute protein levels (pg/ml). Frozen blocks from 4 con-
trols and 2 multiple sclerosis brains containing chronic in-
active, acute and chronic active lesions were used as
negative and positive controls, respectively.

qPCR
Inflammatory gene expression was determined by qPCR.
mRNA was isolated in TRI-Reagent (Thermo Fisher
Scientific) from 100 mg of fresh frozen grey matter from
Alzheimer’s cases (n = 67). Reverse transcription (RT) was
performed using the high capacity cDNA reverse tran-
scription kit (Thermo Fisher Scientific). Gene expression
was analysed using TaqMan gene expression assays
(Thermo Fisher Scientific; Additional file 1: Table S2) and
TaqMan universal PCR master mix in a 7900HT fast
qPCR system machine (Thermo Fisher Scientific). RT and
qPCR were performed as previously described [43, 52].
The same control and multiple sclerosis tissue as for the
MSD protocol was utilized.
Data were extracted using SDS version 2.13 software

(Thermo Fisher Scientific). The mRNA levels of the in-
flammatory markers were calibrated against GAPDH
mRNA and the fold difference between groups was cal-
culated by the 2−ΔΔCt method.

Statistical analysis
For all immunohistochemistry and assay data, the nor-
mality of distribution across each group was assessed by
examination of quantile-quantile plots (not shown). Im-
munohistochemistry: The means within each group were
compared by two-way ANOVA to assess the effect of

Alzheimer’s disease or/and systemic infection on different
proteins in the grey and white matter. Data were presented
as mean ± standard deviation (SD). If an “Alzheimer’s dis-
ease” or “infection” effect was observed on its own, the con-
trast model was applied. If an interaction Alzheimer’s
disease*infection was found, one-way ANOVA was per-
formed to delineate interaction hierarchy. Correlations be-
tween the grey and white matter were assessed for each
inflammatory marker; based on the normality of the data,
Pearson’s (parametric) or Spearman’s (non-parametric) test
was applied. For the CD3+ T cells, Fisher’s exact test was
used for comparisons between subgroups with respect to
the presence of the cells between group in the parenchyma
or perivascular spaces in the grey or white matter. ELISA,
MSD assay and qPCR: Mann-Whitney U-test was used for
comparisons between AD- and AD+ groups. Data were
presented as median with interquartile range (IQR). All
analyses were performed with SPSS software (version 24,
IBM). P values less than 0.05 for intergroup comparisons
and 0.01 for correlations were considered statistically
significant. Graphs were prepared with GraphPad Prism
software (version 6, La Jolla, CA) and figures with Photo-
shop CS6 (version 13.0 × 64, Adobe).

Results
Neuropathology
To investigate whether systemic infection modifies key
neuropathological features of AD, we performed immu-
nohistochemistry to compare Aβ and ptau loads be-
tween the four groups, and ELISA to compare pre- and
post-synaptic proteins in the two Alzheimer’s groups.
Systemic infection did not change Aβ or ptau loads in ei-
ther control or Alzheimer’s patients. However, as expected,
AD was associated with increased Aβ (p < 0.001) and ptau
(p < 0.001) compared to controls, irrespective of systemic
infection (Table 2). Similarly, systemic infection did not
affect the concentration of SYP or PSD95, or the ratio be-
tween these proteins, in AD (AD+ vs. AD-; Table 3).

Neuroinflammatory environment
To assess the effect of systemic infection on the neuroin-
flammatory environment in AD, we used the MSD plat-
form to measure the levels of IFNγ, IL1β, IL2, IL4, IL6,
IL8, IL10, IL12p70, IL13, TNFα, IL1α, IL5, IL7, IL12/
IL23p40, IL15, IL16, IL17A, GM-CSF, TNFβ and VEGF in
AD- and AD+ groups. Significant differences in AD+
cases were as follows: an increase in pro-inflammatory
IL6 (1.5-fold, p = 0.047) and a decrease in cytokines IL5
(2.0-fold, p = 0.007), IL7 (2.6-fold, p = 0.002), IL12/IL23p40
(2.3-fold, p= 0.001), IL15 (1.6-fold, p= 0.008), IL16 (2.4-fold,
p < 0.001) and IL17A (2.4-fold, p < 0.001) (Table 4).
To investigate the role of systemic infection further in

Alzheimer’s cases, we used TaqMan qPCR to compare
the fold difference in mRNA levels between AD+ and
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AD- cases for cytokines and cytokine receptors (IL1b,
IL4R, IL6, IL10, IFNg, TNF, TGFb1), enzymes (ARG1,
COX2, NOS2), receptors (CD86, CD163, CD206, TREM2,)
and the anti-inflammatory marker CHI3L1 (Chitinase
3-Like 1), relative to GAPDH mRNA. An increase in IL4R
(2-fold, p = 0.004) and CHI3L1 (2.2-fold, p = 0.012) mRNA
was detected in AD+ compared to AD- (Fig. 1).

Microglia
Several markers associated with specific microglial functions
were investigated by immunohistochemistry in grey and
white matter. These included: Iba1, a marker of microglial
motility [50, 51]; CD68, a lysosomal/endosomal-associated
transmembrane glycoprotein associated with phagocytosis
[44, 57]; HLA-DR, necessary for antigen-presentation and
involved in the non-self-recognition [44, 63]; and CCR2, a
microglial chemokine receptor involved in mononuclear
phagocyte infiltration in mouse brain [21, 22]. FcγRs, as cen-
tral effectors of immunoglobulin (Ig)G-mediated immune
responses [48] were examined using CD64 (FcγRI), a
high-affinity activating receptor [67]; CD32a (FcγRIIa) and
CD16 (FcγRIII), both low-affinity activating recep-
tors [48]; and CD32b (FcγRIIb) a low affinity inhibi-
tory receptor [28]. In view of the qPCR findings, we
also examined the anti-inflammatory proteins CHI3L1
and IL4R [8, 12].
Immunohistochemistry showed the following main

cell-types expressing these proteins: antibodies to Iba1,
CD68, HLA-DR, CD64 and CD16 immunolabelled micro-
glia and perivascular macrophages; CD32a was also present
in some neurons; CHI3L1 was detectable mainly in micro-
glia as well as CCR2, as expected. CD32b, the only inhibi-
tory FcγR, and IL4R were expressed in neurons, with IL4R

antibody labelling tangles and neuropil threads in the
Alzheimer’s cases (Fig. 2, Additional file 1: Table S1).
Quantification of the immunolabelling (Table 5) in the

grey matter indicated that: (i) CD68 (p = 0.026), CD64
(p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and
CCR2 (p = 0.010) loads were increased in AD irrespect-
ive of systemic infection; and (ii) CD16 load was affected
by both AD and systemic infection (p = 0.027) such that
CD16 expression was lower in AD with systemic infection
(AD+) compared to AD without systemic infection
(AD-). In the white matter, CD32a was decreased by AD
(p = 0.030) independent of systemic infection. Both
CD68 (p = 0.015) and CD64 (p = 0.017) were affected
by systemic infection in AD, with decreased CD68 and in-
creased CD64 loads in AD+ vs. AD-. The other inflamma-
tory markers were not modified by either AD or systemic
infection.
We then explored the possible relationship between

grey and white matter neuroinflammatory markers in the
different subgroups to assess whether some of the markers
were associated with the presence of systemic infection
(Table 6). We found a grey-white matter correlation for
HLA-DR, CD32b, CD16 and CHI3L1 regardless of sub-
group. Grey-white matter correlation for Iba1 was found
only in controls (Ctrl- and Ctrl+); grey-white matter correl-
ation for CD68 and CCR2 was limited to brains affected by
AD (AD- and AD+). Interestingly, the grey-white matter cor-
relation for CD64 was restricted to brains from donors with
systemic infection. (i.e. present in both Ctrl+ and AD+).

T lymphocytes
We used immunohistochemistry for the pan-T cell marker
CD3 [9] to investigate the relationship between systemic in-
fection and T cell recruitment into the perivascular com-
partment and brain parenchyma in the grey and white
matter. Systemic infection influenced T cells recruitment,
with fewer cases displaying T cells in AD+ vs. AD- (grey
matter: blood vessels, p = 0.039; white matter: blood
vessels, p = 0.042; parenchyma, p = 0.003). In the ab-
sence of systemic infection, we confirm the presence of
sparse T cells in AD brain [59] (Fig. 3).

Vascular damage
To investigate whether the neuroinflammatory changes
after systemic infection might reflect vascular damage,

Table 2 Quantification of the neuropathological changes. Amyloid (A)β and hyperphosphorylated (p)tau loads (%) in control and
Alzheimer’s disease cases detected by immunohistochemistry

Protein load (%) Ctrl- Ctrl+ AD- AD+ Mean difference (95% CI) P value

Aβ load 2.66 ± 3.38 2.97 ± 3.91 7.49 ± 3.37 6.46 ± 2.95 4.15 (2.82, 5.48) < 0.001

pTau 0.01 ± 0.20 0.04 ± 0.11 2.20 ± 3.52 2.02 ± 2.20 2.09 (1.18, 2.98) < 0.001

Values are mean ± SD; p value by 2-way ANOVA test; significant p value in italic
Ctrl neurologically/cognitively normal controls, AD Alzheimer’s disease cases, − died without infection, + died with infection, SD standard deviation, CI
confidence interval

Table 3 Quantification of the neuropathological changes. Synaptic
proteins synaptophysin (SYP) and PSD-95 in Alzheimer’s disease
cases revealed by ELISA (μg/ml)

Protein concentration (μg/ml) AD- AD+ P value

SYP 1.06 (0.71, 1.74) 1.39 (0.74, 2.46) 0.242

PSD-95 1.95 (0.10, 3.35) 1.92 (1.04, 2.48) 0.374

SYP/PSD-95 0.54 (0.34, 1.15) 0.76 (0.40, 1.50) 0.269

Values are median ± IQR; p value by Mann-Whitney test
SYP Synaptophysin, AD Alzheimer’s disease cases, − died without systemic
infection, + died with systemic infection, IQR interquartile range
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Table 4 Comparison of inflammatory proteins in Alzheimer’s cases detected by V-PLEX Meso Scale Discovery Multiplex Assays

AD- AD+ P value Fold change

Pro-inflammatory Panel 1 (pg/ml)

IFN γ 0.18 (0.00, 0.87) 0.00 (0.00, 0.63) 0.266

IL1 β 0.00 (0.00, 0.65) 0.36 (0.00, 0.95) 0.097

IL2 0.32 (0.16, 0.56) 0.24 (0.00, 0.51) 0.393

IL4 0.33 (0.27, 045) 0.33 (0.25, 0.40) 0.834

IL6 2.74 (1.48, 4.35) 4.09 (2.14, 11.45) 0.047 1.5

IL8 15.35 (9.77, 31.44) 17.44 (11.46, 41.99) 0.242

IL10 0.05 (0.00, 0.21) 0.08 (0.00, 0.20) 0.747

IL12p70 1.60 (1.25, 2.21) 1.81 (1.17, 2.06) 0.736

IL13 10.95 (9.50, 16.72) 11.70 (9.51, 15.29) 0.869

TNFα 0.49 (0.37, 0.69) 0.57 (0.23, 0.72) 0.874

Cytokines Panel 1 (pg/ml)

IL1α 0.67 (0.00, 2.42) 0.46 (0.00, 2.64) 0.781

IL5 0.08 (0.04, 0.18) 0.04 (0.01, 0.08) 0.007 −2.0

IL7 1.32 (0.81, 1.88) 0.54 (0.26, 1.09) 0.002 −2.6

IL12/IL23p40 0.70 (0.45, 1.14) 0.31 (0.13, 0.76) 0.001 − 2.3

IL15 6.32 (4.95, 8.24) 3.88 (2.42, 6.95) 0.008 −1.6

IL16 614.82 (404–13, 1031.83) 261.12 (151.69, 468.25) < 0.001 −2.4

IL17A 4.57 (3.53, 5.04) 1.90 (1.05, 4.03) < 0.001 −2.4

GM-CSF 0.70 (0.03, 0.14) 0.04 (0.00, 0.14) 0.463

TNFβ 0.00 (0.00, 0.05) 0.00 (0.00, 0.02) 0.561

VEGF 10.94 (4.78, 21.70) 7.75 (2.70, 17.52) 0.242

Values are median with IQR; p value by Mann-Whitney test; significant p values in italic
Fold change, AD+ vs. AD-
AD Alzheimer’s disease cases, − died without systemic infection, + died with systemic infection, IQR interquartile range

Fig. 1 Expression of inflammatory molecules in the presence of systemic infection in Alzheimer’s disease using quantitative real-time PCR. The
levels of indicated transcripts are normalised to GAPDH, and the mRNA Alzheimer’s disease without systemic infection (AD-) levels are arbitrary set
as 1. The bar graph shows the fold difference in mRNA of inflammatory markers and indicates significant increased anti-inflammatory gene
transcripts CHI3L1 (p = 0.012) and IL4R (p = 0.04) in Alzheimer’s disease with (AD+) compared to without systemic infection (AD-)
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we used the MSD platform to compare the levels of
CRP, ICAM1, SAA, and VCAM1 between AD+ and
AD- brains. No significant differences were observed
(Additional file 1: Table S3).

Discussion
Our aim was to examine whether terminal systemic
infection modified AD pathology, synaptic proteins
and neuroinflammation. We found that systemic infection

Fig. 2 Illustration of the immunostaining obtained with the different inflammatory markers in Alzheimer’s disease. Counterstaining: Haematoxylin,
Scale bar = 20 μm
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was associated with downregulation of a range of
pro-inflammatory markers and reduced T cell recruitment
in the brain, but had no effect on Aβ, ptau, or synaptic
proteins. In addition, systemic infection was associated
with upregulated expression of the anti-inflammatory

genes IL4R and CHI3L1, in keeping with an immunosup-
pressive environment [11, 24].
Our study has limitations. Firstly, this was a retrospect-

ive observational study rather than a prospective experi-
mental study. As an end-stage study, it was not possible to

Table 5 Comparison of the inflammatory protein loads (%) in control and Alzheimer’s cases

Ctrl- Ctrl+ AD- AD+ Mean difference (95% CI) P value

Grey Matter

Iba1 1.63 ± 0.88 1.81 ± 1.14 1.31 ± 0.75 1.35 ± 1.14 ns

CD68a 0.21 ± 0.08 0.25 ± 0.05 0.29 ± 0.14 0.28 ± 0.14 0.06 (0.007, 0.103) 0.026

HLA-DR 0.03 ± 0.05 0.04 ± 0.07 0.12 ± 0.16 0.11 ± 0.27 ns

CD64a 2.01 ± 0.85 2.26 ± 1.35 3.16 ± 1.57 2.97 ± 1.55 0.93 (0.36, 1.45) 0.002

CD32a 0.43 ± 0.33 0.46 ± 0.61 0.45 ± 0.58 0.36 ± 0.46 ns

CD32ba 0.08 ± 0.10 0.10 ± 0.10 0.29 ± 0.52 0.42 ± 1.00 0.27 (−0.001, 0.54) ns

CD16b 0.35 ± 0.39 0.86 ± 1.25 0.98 ± 0.90 0.67 ± 0.93 Ctrl+: 0.51 (− 0.07, 1.08) 0.084

AD-: 0.62 (0.13, 1.12) 0.014

AD+: 0.31 (−0.15, 0.78) 0.179

CHI3L1a 0.24 ± 0.22 0.37 ± 0.36 0.57 ± 0.62 0.73 ± 0.96 0.34 (0.07, 0.62) 0.016

IL4Ra 0.09 ± 0.08 0.07 ± 0.06 0.23 ± 0.33 0.20 ± 0.24 0.14 (0.04, 0.23) 0.005

CCR2a 0.12 ± 0.14 0.09 ± 0.08 0.74 ± 1.49 0.38 ± 0.50 0.46 (0.11, 0.80) 0.010

White Matter

Iba1 1.46 ± 1.03 2.13 ± 1.52 1.27 ± 1.02 1.43 ± 1.13 ns

CD68b 0.11 ± 0.10 0.23 ± 0.17 0.36 ± 0.22 0.28 ± 0.24 Ctrl+: 0.12 (− 0.01, 0.25) 0.076

AD-: 0.25 (0.14, 037) < 0.001

AD+: 0.17 (0.06, 0.27) 0.003

HLA-DR 0.05 ± 0.08 0.03 ± 0.06 0.15 ± 0.24 0.09 ± 0.23 ns

CD64b 0.70 ± 0.42 1.95 ± 1.46 1.36 ± 0.89 1.65 ± 1.02 Ctrl+: 1.25 (0.63, 1.87) < 0.001

AD-: 0.66 (0.12, 1.2) 0.017

AD+: 0.95 (0.45, 1.45) < 0.001

CD32aa 0.58 ± 0.67 0.48 ± 0.52 0.34 ± 0.46 0.27 ± 0.37 −0.23 (− 0.43, 0.02) 0.030

CD16 0.10 ± 0.14 0.31 ± 0.51 0.28 ± 0.30 0.23 ± 0.49 ns

CHI3L1 0.23 ± 0.26 0.50 ± 0.57 0.69 ± 0.73 0.62 ± 1.12 ns

CCR2 0.06 ± 0.11 0.12 ± 0.13 0.30 ± 0.55 0.18 ± 0.46 ns

Values are mean ± SD; significant p value in italic
aAlzheimer’s effect
bOne-way ANOVA test performed following significant Alzheimer’s disease*infection interaction on the 2-way ANOVA analysis
ns, non-significant following the 2-way ANOVA analysis
Ctrl neurologically/cognitively normal controls, AD Alzheimer’s disease cases, − died without systemic infection, + died with systemic infection, SD standard
deviation, CI confidence interval

Table 6 Correlations of neuroinflammation-related markers between the grey and the white matter in control and Alzheimer’s cases

Grey vs white matter Iba1 CD68 HLA-DR CD64 CD32a CD16 CHI3L1 CCR2

Ctrl- ρ = 0.641*** ns ρ = 0.731*** ns ρ = 0.666*** ρ = 0.893*** ρ = 0.849*** ns

Ctrl+ r = 0.724** ns ρ = 0.766*** r = 0.763*** ρ = 0.707** ρ = 0.903*** ρ = 0.768*** ns

AD- ns ρ = 0.699*** ρ = 0.917*** ns ρ = 0.956*** ρ = 0.842*** ρ = 0.821*** ρ = 0.892***

AD+ ns ρ = 0.771*** ρ = 0.925*** r = 0.620*** ρ = 0.866*** ρ = 0.801*** ρ = 0.896*** ρ = 0.851***

ρ, Spearman; r, Pearson; **p ≤ 0.01; ***p ≤ 0.001
Ctrl neurologically/cognitively normal controls, AD Alzheimer’s disease cases, − died without systemic infection, + died with systemic infection
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explore the temporal relationship between the different
markers investigated, and thus the analysis was limited to
assessment of the late-stage consequences of AD and sys-
temic infection present at the time of death. Case selection
with respect to the presence or absence of terminal infec-
tion relied on post-mortem findings and death certificates,
and it is possible that the groups without systemic infec-
tion may have included some individuals with early, un-
recognised infections. Conversely, in the groups with
systemic infection, the infective process may have been
too acute (i.e. short-lived) to have had major effects on
brain inflammation. In addition, the lack of cytokine and
protein measures in the control groups meant we could
not provide information on the environment induced by
systemic infection in the absence of Alzheimer’s disease.
Nevertheless, to our knowledge, this is the first neuro-
pathological study of the effects of systemic infection on
the neuroinflammatory environment and disease response
in human AD. The major advantage of studying the hu-
man brain in this way is that it is a study of the disease it-
self rather than an experimental model of the disease. The
novelty of our study resides in the combined quantitative
assessment of multiple microglial markers with known
functions, the neuroinflammatory environment and the
neuropathological features of AD.

The neuroinflammatory environment in systemic infection
In AD, systemic infection was associated with increased
IL6 and decreased levels of several pro-inflammatory cy-
tokines. IL6 has been extensively studied in AD, in
which there are elevated levels in the blood and brain

[39], associated with cognitive decline [35]. In the con-
text of systemic infection in AD, raised serum IL6 was
related to increased neuropsychiatric symptoms charac-
teristic of sickness behaviour [29], consistent with our
observation of a 1.5-fold elevation in IL6 in the brain in
the Alzheimer’s cases with systemic infection.
Systemic infection in AD was also associated with a re-

duction in several pro-inflammatory cytokines, mainly
associated with the adaptive immune system. The few
studies that have examined their role in AD have found:
(i) elevated serum IL7 in early to mild AD [20]; (ii) ele-
vated IL12p40 levels in the cerebrospinal fluid (CSF) of
Alzheimer’s patients [68]; (iii) administration of IL12p40
subunit blocker enhanced microglial phagocytosis and
reduced inflammation in Aβ transgenic mice [68]; (iv)
raised IL15 levels in the CSF and serum of Alzheimer’s
patients correlated with severity of cognitive dysfunction
[6, 58]; (v) increased peripheral IL16 in AD [19]; and
overexpression of IL17A decreased soluble Aβ levels
without exacerbating neuroinflammation in a mouse
model of Aβ accumulation [73].
Our observed decrease in expression by more than

50% of several pro-inflammatory proteins with systemic
infection should be considered in relation to the upregu-
lation of the anti-inflammatory genes IL4R and CHI3L1.
The role of IL4 in AD is uncertain: higher peripheral IL4
was found in mild cognitive impairment patients but not
in dementia; increased disease severity was associated
with lower levels of IL4 [36]. These findings may reflect
a role for inflammation early in the disease process, con-
sistent with genetic studies [33]. The significance of our

Fig. 3 Quantification of the CD3-positive T cells as percentage of cases presenting T cells in the blood vessels and/or the parenchyma in the grey
and white matter, in the controls and Alzheimer’s cases in the presence or absence of systemic infection at the time of death. The effect of
Alzheimer’s disease was detected in the white matter with increased T cells in the blood vessels (p = 0.025) and parenchyma (p = 0.010). An effect
of infection was observed in Alzheimer’s disease with fewer T cells in the Alzheimer’s disease with systemic infection group in the grey matter
blood vessels (p = 0.039), and the white matter (blood vessels: p = 0.042; parenchyma: p = 0.003)
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observation of increased IL4R in AD with a similar
immunolabelling pattern to that of ptau in AD brains is
unclear. Loss of the normal immunoregulatory interaction
between microglia and neurons, possibly through loss of
the microglial regulatory protein CD200 [69], could lead
microglia towards an anti-inflammatory profile, as sug-
gested by previous studies [13, 34]. CHI3LI downregulates
the cellular responses to pro-inflammatory cytokines
TNFα and IL1β in vitro [40], implying an important role
in regulating the inflammatory processes [37]. In AD,
CHI3L1 was reported upregulated in the brain [13], and
detected in the CSF of patients [72], and has been
suggested as a biomarker for preclinical [14] and early
AD [10, 26]. Interestingly, CHI3L1 raised levels were asso-
ciated with markers of neurodegeneration in the preclin-
ical stages of AD [2] and more specifically with tau-related
neurodegeneration [3], perhaps related to IL4 expression.
Indeed, BV2 mouse microglia treated with IL4 and IL13
upregulated the alternative activation genes [13], consist-
ent with an association between IL4/IL4R and CHI3L1.
IL4R and CHI3L1 seem usually to be expressed together
and associated with an immunosuppressive environment.

Microglia and T cells in systemic infection
Systemic infection in Alzheimer’s disease was associated
with decreased CD68, CD16 (FcγRIII) and increased CD64
(FcγRI) proteins. The activating and inhibitory FcγRs,
together generate a balanced immune response, asso-
ciated with the production of a mixture of pro- and
anti-inflammatory mediators [42, 46] and increased phago-
cytic activity [70]. FcγR expression was observed on micro-
glia in normal and Alzheimer’s human brain [53]; however,
that study did not distinguish between the activating and
inhibitory receptors. Modulation of microglial FcγRs was
reported after acute systemic infection in chronic neu-
rodegenerative disease in rodents: prion-infected mice
challenged with a single intra-peritoneal lipopolysacchar-
ide (LPS) injection upregulated FcγRIII and FcγRIV, but
not other microglial receptors including the inhibitory
FcγRII [41]. Our data are consistent of an effect of sys-
temic infection on FcγRs in AD and support a role for
these receptors in the disease pathogenesis, but decrease
in FcγRs in AD with systemic infection group again em-
phasizes the difference between the human disease and
experimental models of neuroinflammation. The de-
creased CD16 and CD68, reflecting reduced phagocytic
activity, is consistent with an immunosuppressive environ-
ment that might incapacitate the immune system so that
it cannot respond appropriately to the disease. The in-
crease in CD64, the FcγR with the highest affinity for IgG,
in the white matter in the presence of systemic infection,
may reflect the presence of more susceptible/primed or
less immunosuppressive microglia in the white than in the

grey matter, perhaps due the absence of pathology in the
white matter, or differences in the blood-brain barrier.
The number of T Cells in AD [64, 74] is diminished in

the presence of systemic infection, as would be expected
in the context of an immunosuppressive environment
and with a dynamic communication between the sys-
temic and brain immune systems. Measurement of CRP
in serum is used clinically as a marker of systemic in-
flammatory processes but blood samples were not avail-
able for our cases. We performed the CRP measurement
in brain tissue, but of note, the presence of systemic
infection in the AD subjects was not reflected in. It is
acknowledged that the cardinal signs of infection in the
elderly may be absent or blunted in 20–30% of patients
[1, 49]. In the elderly, serum CRP begins to rise 6 h after
a bacterial infection with the peak reached after 48 h
and a half-life of 19 h [5]. Our CRP finding may be due to
(i) absence of a rise in serum CRP in our patients, (ii) a di-
lution effect resulting from the much lower concentration
of the protein in brain than serum or (iii) an inadequate
survival time for a CRP response to have developed.
Interestingly, associations between microglial markers in

the grey and white matter highlighted (i) Iba1 associated
with control groups independently of systemic infection,
maybe reflecting microglial motility, a function essential
to healthy brain [44, 47]; (ii) CD68 (phagocytosis) and
CCR2 (monocyte recruitment) as markers of neurodegen-
eration in AD independently of systemic infection; and
(iii) CD64 as a potential marker of systemic infection
whatever the disease status [44].

The neuroinflammatory environment in AD
We observed increased anti-inflammatory CHI3L1, IL4R,
CD64 and CD32b proteins, potentially highlighting an
anti-inflammatory maybe immunosuppressive environ-
ment in AD independent of systemic infection. Another
study reported upregulation of alternative activation genes
in experimental models and AD brains [13], and we previ-
ously showed in the Cognitive Function in Ageing (CFAS)
cohort that CD64 was associated with dementia [44]. AD
was also associated with increased phagocytosis (CD68),
monocyte recruitment (CCR2), and immune responses
mediated by CD64 receptor, mainly in the grey matter, in
keeping with the distribution of Alzheimer’s pathology
and as previously reported in human and experimental
studies [7, 23, 27, 32, 44].

Systemic infection and Alzheimer’s neuropathology
Systemic infection did not affect Aβ, ptau or synaptic
protein levels. This could be explained by (i) a saturation
effect with the proteins having reached a plateau at
late-stage disease [60]; (ii) a short interval between the on-
set of systemic infection and death not allowing time for
the infection to modify protein levels via an altered
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neuroinflammatory environment; (iii) the immunosup-
pressive environment already present in AD and enhanced
with systemic infection; or (iv) the absence of a relation-
ship between the two events and these proteins.

Conclusion
In conclusion, our study suggests that end-stage AD is
associated with an anti-inflammatory (i.e. reducing or coun-
teracting inflammation) brain environment, potentially im-
munosuppressive in the context of systemic infection.
This underlines the difference between human disease
and experimental models, that latter suggesting that a
pro-inflammatory environment with enhanced neuronal loss
is driven by systemic infection, and the assumption that sick-
ness behaviour associated with raised peripheral TNFα and
accelerated cognitive decline is due to an enhanced cerebral
inflammation. Factors that could contribute to the difference
in immune responses include the specific-pathogen-free
environment in which the experimental animals are bred
(unlike the human patients, who have been subjected to a
lifetime of infections), and the experimental design. Indeed, a
recent study in mice demonstrated that repeated peripheral
LPS injections modified microglia and induced immune tol-
erance within the brain [71]. Based on the current know-
ledge, we suggest that early in the development of AD,
microglia primed by systemic infection respond to the dis-
ease in a detrimental manner (i.e. causing sickness behaviour,
neuronal loss, increased pathology), but that over time, re-
peated systemic infections may induce an immunosuppres-
sive environment within the brain so that towards the
end-stage of AD, there is marked downregulation of micro-
glial inflammation, with equally deleterious consequences as
evidenced by the accelerated cognitive decline [30].
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